A REVIEW OF ARAC'S INVOLVEMENT IN THE TITAN II MISSILE ACCIDENT

Thomas J. Sullivan

Lawrence Livermore National Laboratory, University of California Livermore, California 94550

October 1980

GENERAL

The ARAC response to the Titan II accident near Damascus, Arkansas on 19 September 1980 entailed 12 personnel for periods ranging from 2 to 12 hours. The first call was a "NEST Standby" alert at 0415L (PDT), followed by a request for dispersal calculations at 0615L, personnel callout at 0630L, crude estimates of plausible source term scenarios at 0845-0900L, first model calculations at 1130L and final model calculations at 1500L. While several new firsts were recorded for ARAC, demonstrating expanded capabilities for NEST-type responses, time lines were very long, essential information was very scant to non-existent, and useful communication of final calculations to the accident site impossible. A detailed chronology is found in Appendix A and a list of acronyms and abbreviations is contained in Appendix B.

OVERVIEW

Attached are a series of figures which summarize and depict the events of the day as well as the results of the calculations. Table 1 is a condensed timeline of events as well as a cross reference between ARAC local time (Pacific Daylight Time) and Greenwich Mean Time. Figure 1 lists the available meteorological

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (615) 576-8401, FTS 626-8401

> Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd., Springfield, VA 22161

PDT (L)	Greenwich (GMT/Z)	Action
18/1700	19/0000	Approximate start of Titan II accident "leak"
18	01	
19	02	
20	03	
21	04	
22	05	
23	06	
19/00	07	
01	08	Approximate Titan II "explosion"
02	09	
03	10	
		LLNL SSA Alerted
04	11	
		ARAC put on "NEST Standby"
05	12	•
06	13	DOE/EOC advisory of ARAC involvement
		JNACC request for "dispersal calculations"
		ARAC staff callout initiated
07	14	
		AFGWC/SACWX contacts (precise acciden
		time & WX
08	15	ARAC fully staffed — actions started
		USGS Topography MATHEW/ADPIC
		Manual Topography Site X
		2BPUFF (1000, 70m
09	16	Brackets of source term
10	17	
11	18	
		First ARAC calculations (2BPUFF)
12	19	
13	20	Second ARAC calculations (2BPUFF)
14	21	
15	22	Third ARAC calculations (ADPIC)
16	23	ARAC termination
17	24	

TABLE 1. Timelines

stations within 200 km of Damascus. Figure 2a, b, and c depict the upper atmosphere conditions at Little Rock, Arkansas approximately 40 km from the accident site about 3-4 hours after the accident. Note the 180[°] change in wind direction in the lower 1000 metres. This implies that a surface accident pattern would have extended to the southwest while an airborne cloud, such as the full

3

explosion fireball, would have travelled northeast! Figures 3a and b list the data retrieved from AFGWC by the SDM capability. Figures 4a, b, and c are the manually generated topography and Figs. 5a, b, and c are the USGS generated topography for the same grid (Fig. 5a is the full 200 x 200 km topography with a lower left corner at 35°N latitude and 93°W longitude). The Site "X" geography for the Damascus area was generated from the map (Fig. 6a), and data points (Fig. 6b) to produce the relevant simplistic overlay (Fig. 6c). The 2BPUFF input file is shown in Fig. 7. Figures 8a, b, c, and d are the 2BPUFF calculations for the indicated source heights, normalized to 1 kilogram of source material. Figures 9a, b, c, and d depict the initial (a) and 1 hour x-z (b), y-z (c) and x-y (d) particle plots of the ADPIC calculations for a 276 m cloud stabilization height. Figures 10a and b define the normalized integrated air dose and surface deposition patterns respectively for 1 hour after the accident. Figures 11a and b show the final result of the ADPIC calculations overlaid with the site geography as ready for transmission to the field. Even in these calculations one begins to see the effects of the vertical wind shear on the cloud (Figs. 9b and c) and the elongation of the surface patterns to the northeast and southwest of the accident site.

What follows is intended to be a somewhat critical analysis of various components of the ARAC system and its interfaces on this particular problem. The intent is to identify weak points in the system which should be addressed for improvement.

1. Notification, Communications and Startup

This area involves most of the ARAC interfaces, i.e., LLNL Alert Center/SSA, JNACC and DOE/EOC.

a. There are many questions about notification for the problem. Examination of Table 1 reveals the long timelines associated with this accident. A significant attribute of the ARAC system is its capability to estimate environmental consequences should an incident progress to a point where estimates are necessary. However, to accomplish this service the ARAC center should be notified early on even when it is not clear that a significant problem might develop.

- b. Accident specification ARAC was woefully lacking in substantive information regarding the nuclear material in this accident. For valid results it is essential that ARAC know: (1) whether the material was dispersed by an HE detonation and by how much; (2) whether there was a fissle; (3) whether it was involved in a fire with the potential for airborne aerosol. Whichever agency EOC gets the first notification of an accident, they must pursue the accident specification problem until a reasonable or probable picture is available and at the very least provide some brackets on the amount of nuclear material, type incident (HE dispersal explosion, fire, etc.) the time of occurrence, and precise location information.
- c. Data flow Meteorological data at and following the time of an accident is essential for ARAC to make realistic dispersion calculations. The Air Force Global Weather Central (AFGWC) has a very valuable capability to perform a Point Analysis (PA) for all relevant meteorological parameters for any location from its real-time data base. Such a PA was performed shortly after the Titan II accident and sent to the Pentagon, but was unavailable to ARAC. AFGWC did provide other essential meteorological data, as did the SAC Staff Meteorologist and Weather Support Units. For future incidents, arrangements should be made to put LLNL/ARAC as an addressee on Point Analyses done for nuclear accidents (Broken Arrows).
- d. Communication of results and ARAC field deployment Had an actual dispersal of nuclear material taken place, it appears as if the ARAC

calculations could not have arrived anywhere near the scene to be of use. No provisions were made to provide a contact phone number of a telecopier location near the scene. If ARAC is to continue to respond to such incidents then provisions should be made for communicating assessment results to personnel tasked with determining the health and safety aspects.

We expect that for this incident DOD/USAF had a health physicist-type individual on-scene within a short period after the accident or an EOD individual trained for nuclear explosives problems. This individual could serve as a point of contact for the relay of essential information to and from the ARAC center to the accident site until the DOE weapons team health physicist and/or ARAC representative arrives. It would be beneficial if all DOD nuclear emergency response organizations and in particular, nuclear explosives trained EOD units were made aware of ARAC's existence, capabilities and accessibility. These same organizations could also determine the availability of or acquire Xerox telecopier units for on-scene receipt of ARAC calculations.

- e. Communications and Security Several problems arose regarding the possibility of transmitting classified information over insecure phone lines (such as the exact location of the missile silo, type and quantity of nuclear material, etc.). The latter was easily handled by courier/runner within LLNL, but the former led to either a security violation by several parties or imprecise location of the source point. Once an accident has occurred, it is important that provisions be made for transmitting precise coordinates of the incident.
- f. The Alert manuals had out-of-date FTS prefixes for JNACC. These numbers should either be made invariant or changes fully distributed in advance.

2. ARAC Center Operation

Initial manning of the ARAC center started at 0515L, followed by a callout of personnel beginning at approximately 0620L and gradual arrival of staff between 0710 and 0800L. After initial in-briefing of the staff regarding the problem, a multi-pronged effort was initiated to bring the center up to speed. One effort started with the preparation of a detailed topographic data file from the USGS tape data base. A second effort started to manually generate a topographic data file using a new ARAC code capability. A third effort was begun to prepare a site "X" data base for the Damascus area so that model calculations could be overlaid with local geography (another new ARAC capability). Due to the uncertainty of the source term prescription and hilly terrain, it was decided to <u>not</u> prepare a "flat earth" calculation with the MATHEW/ADPIC codes but wait for the topographic data. About 0900L it was decided that reasonably bracketing dispersal calculations could be made using 10 ton and 1 pound HE equivalent initial detonation conditions. The 2BPUFF model was activated to prepare these sets of calculations.

a. Topography generation — this was by far the most tedious and time consuming part of the ARAC response. The manual method proved very taxing but workable (including two false starts, the process took about 5 hours). Standard map overlay templates are being prepared and a row-by-row rather than point-by-point code entry scheme is being developed. These should reduce the manual method to about 3 hours. The USGS tape data base is also plagued with tediousness, less than fully tested codes, and vulnerability to failed tapes. The process took 5% hours including a rerun due to a code error. This process will be streamlined, all files put on a system archive and preliminarily processed such that a one hour or less response can be achieved. Resources are being allocated ASAP with a projected completion date of 1 February 1981. This process

- 6 -

will also be integrated with the site "X" definition process to assure consistent grid coordinate generation. The final results from the manual topography generation figure (4c) were excellent when compared with the automated system (Fig. 5c) and instill confidence in our capability to handle off-CONUS problems.

- b. Site "X" definition This new capability also worked well with the end result that we were able to prepare a hand generated geography (Fig. 6c) and later overlay this on the ADPIC contours. However, haste and round-off in generating a reference corner coordinate resulted in a horizontal location error of 5 km to the east for the local roads and towns. Total process time took 1½ hours due to several interruptions, hand generation of geography and missing site "X" system documentation.
- c. Meteorological data collection Once the exact time of the accident was established (0745L) action was taken to recover meteorological data back to that time. The SDM capability with AFGWC was used effectively although the output format needs improvement. This can be done locally. ARAC needs to explore the possibility of extracting old data directly from the AWN system.
- d. 2BPUFF model Initial dispersal calculations were provided from this model, although its limitation to provide results within 10 km was a handicap. The very rigid input format (Fig. 7) of this model is highly error prone (as happened for the first attempt at calculations). This model should have its input file changed to free format and its range of application increased to include centerline concentrations from the source point out to 10 km. Improved user documentation is also required.
- e. MATHEW/ADPIC models The MATHEW calculations were accomplished without a problem. The ADPIC model aborted because of a problem in

- 7 -

generating source particles above the grid domain. This required ½ hour to identify and fix. Prior to this, a problem or limitation on source prescription to the model resulted in blank output.

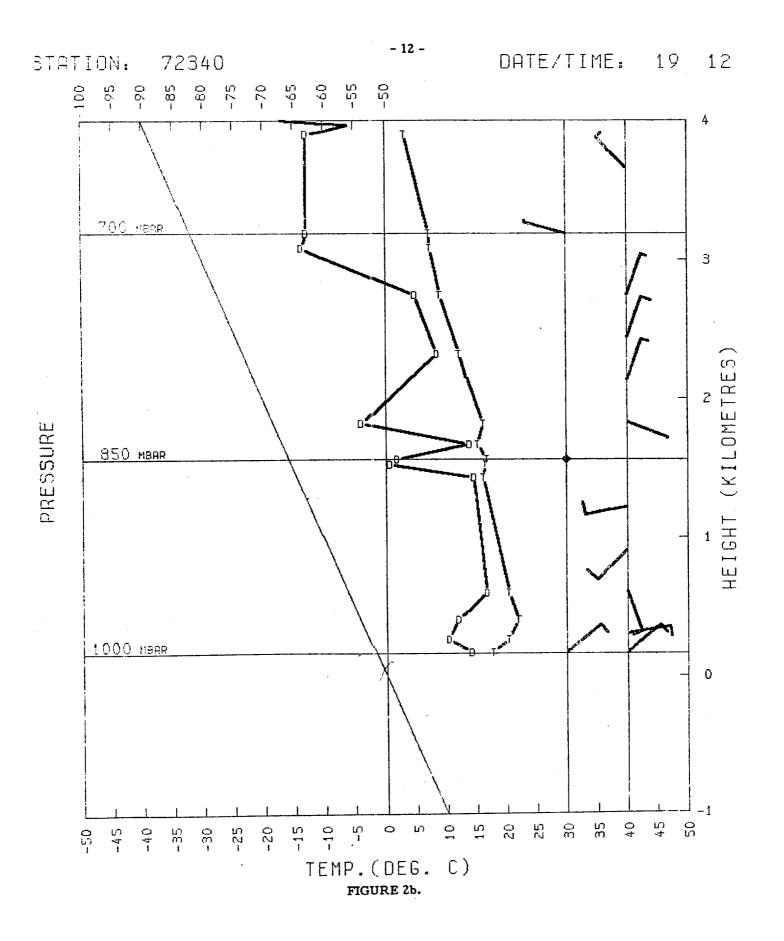
- f. Plotting code The contour plotting code could not generate a contour file for the DPR computer because of a coordinate error on the "blank geography" file on the 7600. The generation of "blank geography" for the 7600 codes on a site "X" problem needs to be integrated into the site "X" definition process. A small code will generate a "blank geography" file with only the source coordinates and a site name as input.
- g. Dose conversion factors This continues to be a tedious process highly subject to human error. A procedures writeup with relevant examples, conversion factors and individual model limitations needs to be developed to insure a more error free system.
- h. Miscellaneous problems Delay in implementing the RJET User lockout slowed down the USGS topography code debug process. This feature should be implemented on all 7600's at the start of a problem and removed after the operation is running smoothly. A few non-ARAC personnel came to visit the center despite the sign outside. In the future the inner door should be locked to control access. Labeling of ARAC manuals is inconsistent and reference manuals for all models and procedures is incomplete.
- i. An improved checklist or guide for site "X"-type problems should be developed to flag more of the key processes and checkpoints as well as minimizing interruptions of the ARAC center.

- 8 -

The accident near Damascus, Arkansas pointed out several deficiencies in the ARAC system and its interfaces. In order to provide calculations which can be used for near real-time accident site approach, population evacuation/protection, and cleanup assessment, ARAC must be brought into a problem or potential problem at its first recognition. Pertinent meteorological data in Point Analysis form should be available to ARAC on a priority basis from AFGWC. ARAC topography data generation must be feasible in less than one hour for CONUS accidents/incidents and less than three hours for off-CONUS events. ARAC procedures, models, documentation and training must be improved to absolutely minimize the timeline from first notification to first calculation available for transmission.

ACKNOWLEDGMENTS

The LLNL/ARAC response to this accident was a team effort reflecting directly the capabilities of the current operational staff and many others who have contributed to the development and realization of ARAC as an operational emergency response system for DOE.¹ This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore Laboratory under contract No. W-7405-Eng-48.


REFERENCES

1. Dickerson, M. H. and R. C. Orphan, "Atmospheric Release Advisory Capability," Nuclear Safety, 17(3), May-June 1976.

an nuungu						NVILLE		M	S	1	Ø	ø	40 00000	0
) 二百倍化物化	-723348 R=	101	3500M	9114W	WEST M	EPH1S M	IUNII	AR	a	0	Ø	64	001000	
7101M1	723400 R=	11	3450N	9216W	NORTH	LITTLE	ROCK	AR	6	12	12	172	011171	
TILCREET	723401 R=	Ø	3444N	9214W	LITTLE	ROCK/A	DAMS F	AR	1	0	0	- 78	001171	
DOOLERF	723405 R=	22	3455N	9209W	LITTLE	ROCK A	FB	AR	1	0	0	95	000000	
DODOARG	-723406 R≈	195	3608N	9056W	WALNUT	RIDGE	MUNI	AR	Ø	0	0	84	010000	
<u>alia</u> uer	723407 R=	188	3550N	9039W	JONESB	ORO MUN	II	AR	1	0	0	84	000000	
TOHLOCUL	-723415 R=	84	3429N	930EM	HOT SP	RINGS M	IE14 FLD	AR	1	0	0	169	000000	
DOODPBF	723417 R=	69	3410N	9156W	PINE B	LUFF/GR	IDER F	AR	1	0	0	65	000000	
DECOELD	723419 R=	176	3313N	9243W	EL DOR	ADO/GOO	DWIN	AR	1	0	0	87	000000	
TATALEO	723446 R≍	189	3616N	930951	HARRIS	ON/ROOM	IF CO	AR	1	0	Ø	422	aaaaaa	

FIGURE 1.

STATION: 72340

DHTERTIME: 19 HI 162

HEIGH	IT(FT,KM)	اللغة اليوه دور الله حاط عدم م <u>طو سور ال</u> ارد .	WIND	
554 1000 2000 3000 4000 6000 2000 12000 14000 16000 20000 25000 28000 39000 35000 35000 53000 53000	$\begin{array}{c} 0.169\\ 0.305\\ 0.610\\ 0.914\\ 1.219\\ 1.829\\ 2.134\\ 2.438\\ 2.743\\ 3.658\\ 4.267\\ 4.877\\ 6.096\\ 7.620\\ 9.144\\ 10.668\\ 9.144\\ 10.668\\ 12.497\\ 13.411\\ 15.240\\ 16.154 \end{array}$	50 DEG 80 DEG 200 DEG 260 DEG 260 DEG 200 DEG 200 DEG 200 DEG 315 DEG 355 DEG 135 DEG 260 DEG 260 DEG 260 DEG 280 DEG 280 DEG 280 DEG 280 DEG 280 DEG 280 DEG 280 DEG 280 DEG	66673333333333333333333333333333333333	7.0850 MM/S5930 MM/S5930 MM/S5941 MM/S554 MM/S59427 MM/S5954 MM/S5954 MM/S5954 MM/S5954 MM/S5954 MM/S5954 MM/S59555 MM/S59555 MM/S59555 MM/S59555 MM/S5955 MM/S5955 MM/S5955 M

FIGURE 2c.

FIGURE 3a.

SSESE SESES SECSEC SSSSS SECSEC SEC TWIWI VSPRP PRETEM LLLMH DEWAPP SNODEP 8DEKT WMWMW DMBC 8 W C IN ICAO LAT LON DEG DEG WMO. 80SEP19 1100Ž 02 3550N09033W 00000 6100M 208 16 MMMMM 13MMM 3329N09059W 00105 6900M MMM 20 MMMMM 15MMM 3410N09156W 00000 5605M MMMMMM MMMMMM MMMMMM 3455N09209W 00000 6100M 196 18 MMMMM 13MMM 3444N09214W 20503 545M 196 18 MMMMM 13MMM 723407 JBR 722356 GLH 723417 PBF 723405 LRF 723401 LIT Ø5 723419 ELD 723415 HOT 723446 HRO 3313N09248W 20000 5845M 189 21 MMMMM 3429N09306W 20905 6100M MMM 23 MMMMM 3616N09309W 01207 5645M 200 17 MMMMM 19MMM 18MMM 17MMM

3444N03214W 20505 5845M 194 18 MMMMM 3313N03243W 20000 6045M 185 22 MMMMM 3616N09305W 00000 6300M 198 18 MMMMM 723401 LIT 723419 ELD 723446 HRO

805EP19 1000Z 723407 JBR 3550N03033W 20403 6100M 208 16 MMMMM 13MMM 723405 LRF 3455N03209W 20006 6045M 194 18 MMMMM 14MMM

05

14MMM ZOMMM

17MM

LULSDM12 SITE LRF 1000Z DATA TIME 80SEP19 1000Z, RAN 1533Z SSFSF SFSFS SFCSFC SSSSS SFCSFC SFC TWIWI VSPRP PRETEM LLLMH DEWAPP SNODEP 8DEKT WMWMW DMBC 8 W C IN

ICAO LAT - LON

DEG DEG

LLLSDM13 SITE LRF 1100Z DATA TIME 80SEP19 1100Z, RAN 1535Z

WMO

WMO	ICAO	DEG	LON DEG	SSFSF TWIWI 8DEKT	VSPRP	PRE1	ΈM		SFCSFC DEWAPP C	
80SEP19	3 0900	9Z -								
723407			40903 9 W						14+07	
723405	LRF	34551	409209W	20000	6005M	198	18	MOMOR	15+03	
223401		3444	409214W	20303	5645M	196	18	MMMMM	14+02	
723419	Contra State		409248W						21+03	
723446	HRO	3616	4093090	00904	6300M	199	18	MMMMM	18+03	

LLLSDM11 SITE LRF 03007 DATA TIME 80SEP19 03002, RAN 15372

WMO ICAO 805EP19 0800	LAT LON DEG DEG 22	SSFSF TWINI SDEKT	SFSFS VSPRP WMWMW	SFCSFC FRETEM IMBC	SSSSS LLLMH 8 ଧ	SFCSFC DEWAPP C	SFC SNODEF IN
723407 JBR 723405 LRF 723401 LIT 723419 ELD 723446 HR0	3550109039W 3455109209W 3444109214W 3313109248W 3616109309W	200003 20103 200003 2000000	6100M 6005M 5645M 6100M 6300M	202 16 196 19 194 19 185 23 200 18 f[f 17	MAMMM MMMMM MMMMM MMMMMM MMMMMM	13MMM 16MMM 21MMM 17MMM 17MMM	

LLLSDM10 SITE LRF DATA TIME 203EP19 0800Z, RAN 1524Z

FIGURE 3b.

723446 HRO 3616N09709W 01505 4845H 204 18 MMMMM 17MMM

WMO 80SEP15		LAT DEG	LON DEG	SSFSF TWIWI 8DEKT	SFSFS VSPRP WMWMW	SFCS PRET DMBC	ΓEΜ	SSS SS LLLLMH 8 W	SFCSFC DEWAPP C	SFC SNODEP IN
723407 722356	JBR GLH	3550t 3329t	109039W 109059W		5805M 6900M	MMM	19 24	MMMMM MMMMMM	15MMM 16MMM	
723417 723405 723401		3455	109156W 109209W 109214W				19	MMMMM MMMMMM MMMMMM	15MMM 14MMM 14MMM	
,					04					
723419	EL.D	331.3h	1090436	21205	5645M ØS	197	23	h#46#6#6#	1900	
723415	HOT	3429	109306W	01207	6100M	ммм	23	MMMMM	16MMM	

LLLSDM16 SITE URF 14002 DATA TIME E0SEP19 14002, RAM 15302

DATA TI			9 1300Z,	RAN J	1538Z				•
UMO 80SEP19	ICAO	DEG	LON DEG	SSFSF TWIWI 8DEKT		PRETEM		SFCSFC DEWAPP C	SFC SNODEP IN
722356 723417 723405 723401	GLH PBF LRF	33291 34101 34551	1090591) 1091561 1092091 1092091	20000 00703	5605M 6005M		MMMMM MMMMM	16MMM MM14MMM 13MMM 14MMM	
723419	ELD	3313	409243W	20603	3245M 05	197 21	MMMMM	19MMM	
723415 723446			109306W		6600M 3245M	MMM 22 204 17		17MMM 17MMM	

SSESE SESES SECSEC SSSSS SECSEC SEC TWIWI VSPRP PRETEM LLLMH DEWAPP SNODEP 8DEKT WMWMW DMBC 8 W C IN DEG DEG 805EP19 12002 723407 JBR 39 722356 GLH 33 02 3550N09039W 00604 5205M 212 16 MMMMM 13+03 3329N09059W 20106 5505M MMM 19 MMMMM 14MMM 3410N09156W 20000 5605M MMMMMM MMMMMM MMMMMM 3455N09209W 21004 6005M 202 18 M0M01 13+03 3444N09214W 20805 5304M 199 18 MMMMM 13+03 723417 PBF 723405 LRF 723401 LIT 05 3450N09216W 10705 61021 196 18 00905 3313N09248W 20704 3345M 193 21 MMMMM 723400 1M1 723419 ELD 14+03 20+03 05 3429N0930GU 81006 6100M MMM 22 MMMMM 3616N09309W 01307 3245M 200 17 MMMMM 723415 HOT 723446 HR0 17MMM 17帖树

LLLSDM14 SITE LRF 1200Z DATA TIME 80SEP19 1200Z, RAN 1537Z

LON

ICAO LAT

LLLSDM15 SITE LRF 10002

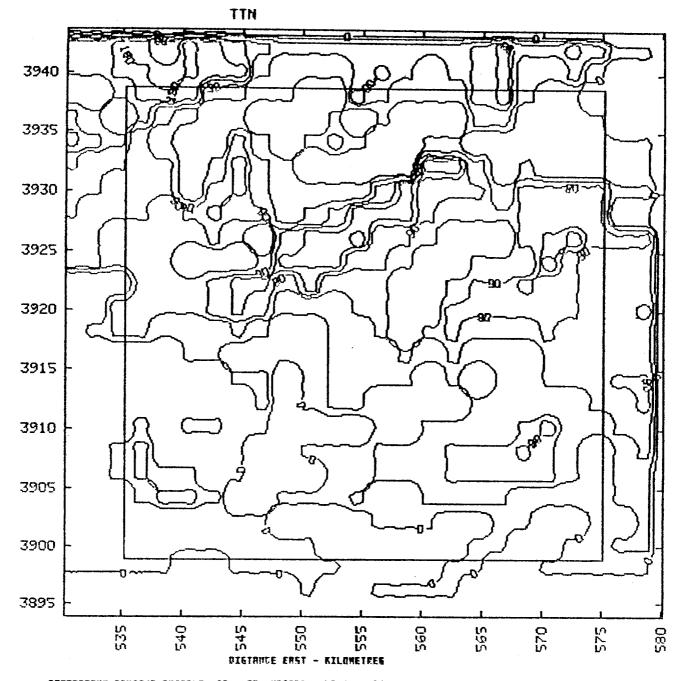
WMO

MATHEW CELL HEIGHTS

			-										-							_					
	5	9		7	5		7	`£	5	9	1	1	1	1	1	1	4	5	£	4	٩	5	4	Ş	2
3940	- 7	7			7	1	7	7	4	3	1	2	4	5	4	1	4	5	£	3	2	4	Z	1	1
	5	6	<u>م</u> ا	8					8		-2-	2				- 8-		-5-			- 2 -	-2	יר	J	1
	8	7	6	7	5	4	а	2	2	Ş	5	2	2	3	5	2	5	٩	1	5	2	2	2	1	1
3935	~ 9	8	7	5	٩	2	8	5	a	2	2	4	3	2	2	3	8	Z	2	5	5	5	2	5	Z
	7	6	Б	5	5	3	4	6	٩	7	S	5	2	Z	2	7	7	4	2	2	2	2	2	Z	z
3930	5	6	5	S	5	3	5	6	4	a	2	3	1	5	7	S	5	5	3	5	5	5	s	2	a
0,00	6	S	5	5	٩	5	8	5	5	3	4	5	7	7	7	5	9	1	4	5	5	5	5	2	2
	5	\$	1	٩	٩	٩	5	٩	3	5	7	7		5	5	1	3	2	1	5	5	7	5	5	5
3925	- 5	5	4	4	٩	a	a	a	٩	7	7	7	5	5	٩	2	2	٩	٩	٩	2	5	1	٩	-
	5	2	5	4	٩	1	5	6	6	٩	E	٩	1	٩	2	2	٩	5	5	6	5	5	9	4	9
3920	2	2	1	P	٩	4	S	6	5	3	a	2	4	ſ	2	2	5	5	5	5	5	5	1	٩	s
3920	5	2	1	٩	3	2	2	٩	3	2	2	3	2	1	2	1	5	٩	4	1	5	٩	1	4	-
	z	2	z	Z	Z	2	8	2	2	2	2	2	2	X	٩	2	4	2	2	2	P	4	1	4	٩
3915	- 2	2	2	2	2	S	2	2	3	1	S	2	2	2	2	2	3	5	a	2	4	٩	1	5	=
	2	s	2	z	2	S	2	2	3	1	5	2	a	5	2	2	2	2	3	2	2	2	1	٩	5
7010	5	2	2	2	5	2	2	2	5	1	1	1	1	S	2	3	3	2	2	٩	5	2	3	٩	-
3910	2	2	a	4	2	2	5	2	1	1	2	2	5	3	2	2	4	٩	1	5	4	3	Z	2	-
	2	2	2	4	3	1	2	2	1	1	1	S	2	2	2	2	4	4	1	٩	٩	2	2	2	2
3905	- 2	2	2	a	٩	4	3	1	1	2	2	2	2	2	2	3	2	2	3	2	2	2	2	2	8
	2	2	2	5	5	5	5	5	2	1	1	1	1	2	2	2	1	1	5	2	1	1	2	5	2
7000	5	2	2	z	2	2	2	2	5	5	2	1	1	1	1	1	1	2	2	1	1	s	2	3	a
3 90 0	2	2	لي_		-2	- 1 -	1	<u></u>			2	- 2-	1	-1	1	-1-	-2	-2	1		2	2]2	5	2
	1	1	1	1	1	1	1	1	1	1	2	1	1	S	2	2	5	1	1	1	1	1	1	1	1
3895	- 1	1	, 1	1	1	1	1	, 1	1	1	1	1	, 1	1	1	1	1	, 1	1	1	1	1	,1	1	r
4		 L	<u>ກ</u>		o Q					Ö			<u>ب</u>		ö		ļ.	<u>ر</u>				ŗ	<u></u>		
		ľ	2.25 2.25		540			14 10 10 10	TE .	550	_ *			•	560		Ľ	200		570		ľ	2		580
							P.	16181	74 8	. 1732 (- 61	11.0/10		R											

GELL HEIFMT OF TRO-RELN REGIONS PRINTER AT GENTER OF THAT REGION. BRID OPISIN DIN GODRDINNTEG RPE: A- 570.2 KM, Y- 2893.9 KM, 2- 20 MARL. HEIM INTERVALS ARE: BELM- 1.000 KM, BELY- 1.000 KM, BELZ- 20 METRES.

FIGURE 4b.


STRTANCE NUMBER STLUTENES

12

1000 10 10 10 100 100 100 100 10 60 60 70 80 70 60 70 30 90 60 50 70 50 40 40 40 70 90 100 10 10 20 10 60 60 50 50 50 20 60 60 50 50 90 60 50 50 50 40 40 1010 90 101 30 10 20 60 50 50 50 60 50 50 50 50 10 70 10 50 50 50 50 40 40 80 50 70 70 70 50 50 70 60 90 10 10 50 80 70 60 60 60 90 10 50 80 50 SO SO 30 70 70 70 90 90 90 90 90 700 700 700 600 60 70 80 90 90 90 70 70 70 70 50 30 70 70 70 70 50 90 50 60 60 600 700 700 600 00 80 80 80 80 80 70 70 70 70 10 S =) SS ST ST 50 50 60 60 40 500 0 0 50 10 50 10 10 10 10 70 70 80 8 50=2 ST 60 70 60 40 9 47 40 10 50 \$ 60 60 60 70 20 70 70 70 60 50 60 00 St 50 50 60 7010 50 50 40 40 50 50 50 60 60 60 60 50 50 50 50 50 50 60 60 70-4 50 50 50 50 50 50 50 50 50 40 40 40 40 50 50 40 40 50 50 60 50 50 50 50 50 50 50 50 50 50 40 40 40 40 40 40 50 50 50 60 60 80-5 90-4 10 01 3 40 40 40 40 40 40 40 50 40 40 50 50 50 50 50 40 40 40 40 40 40 40 40 40 100=2

FIGURE 4a.

TOPOGRAPHY CONTOURS

FRAME 3

TOPOFRAPHY CONTOUR INTERVAL IS 20. METRES. NAMINUM CONTOUR IS 219. BRID DRIGIN DIM COORDINATES BRE: N= 570.2 KM, Y= 2092.3 KM, 2= 20 MREL. 3 MESH INTERVALE ARE: DELK= 1.000 KM, DELY= 1.000 KM, DELE= 20 METRES.

FIGURE 4c.

. 's

おうちょうせいい ちびあてい - メエレムメモスを行き

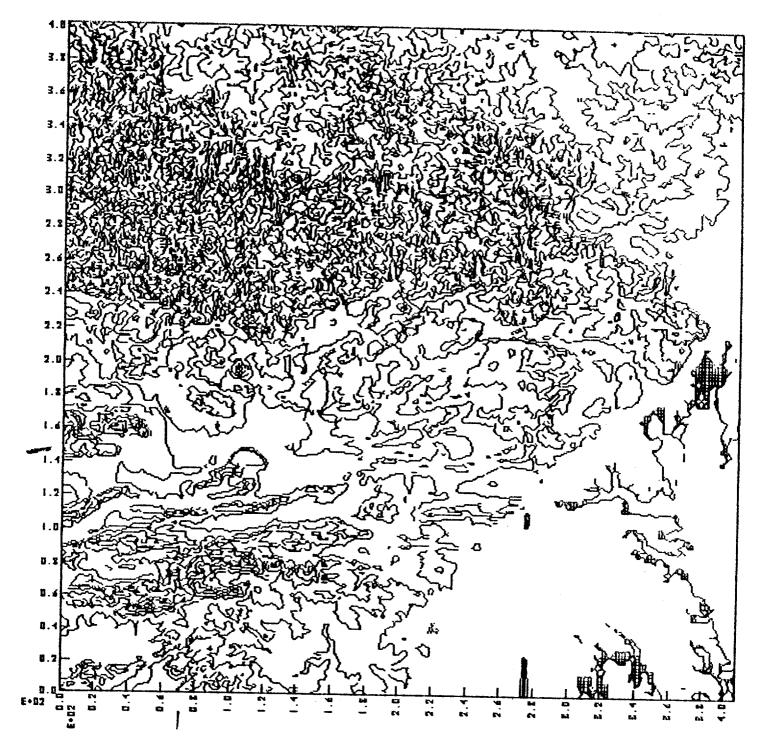
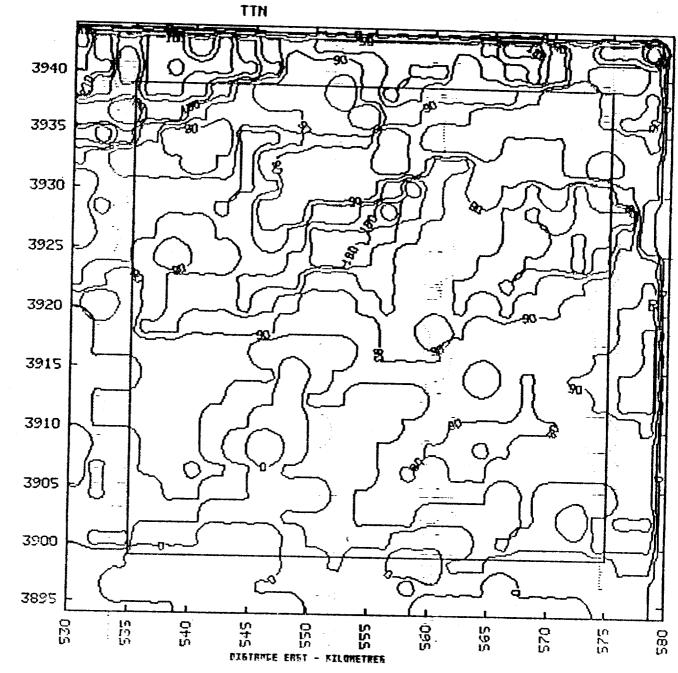


FIGURE 5a.

- 19 -

¥

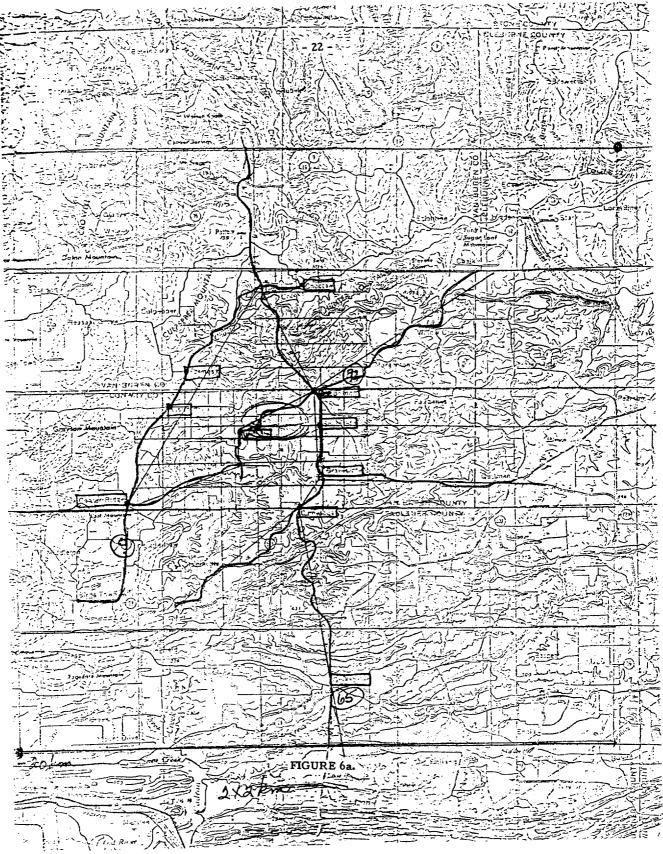
MATHEW CELL HEIGHTS


	13	10	1	18	10	1	10		£	5	5	6	5	F	6	K	£	7	9	"	5	1	T.E	5	
3940	15	11	7	18	11	10	10	9	7	4	٩	٩	5	6	7	7	5	5	7		£	٩	2	2	-
0,40	11	5	ſ	18-	-18-		7	5				-7-		7		- 5 -	5	5	<u>-</u> 5		-1-		11	٩	5
	7	7	5	1	8	5	5	5	S	5	4	٩	2	5	5	٩	4	2	8	2	3	3	1	5	5
3935	- 9	10	8	6	٩	4	4	7	7	5	5	5	5	2	q	3	2	2	1	٩	1	2	3	2	4
	7	6	5	5	5	٩	5	7	5	4	٩	4	4	2	1	5	5.	4	٩	٩	٩	2	2	2	2
3930	5	6	6	6	ĥ	Ē	6	7	6	9	4	1	٩	ñ	8	£	5	٩	5	6	5	7	5	5	2
	5	7	G	6	5	Ę	7	5	4	1	5	6	7	5	7	6	5	5	£	7	l	7	7	7	Z
	5	5	5	6	5	5	6	6	5	6	ß		A	7	F	5	5	5	6	5	7	1	7	5	2
3925	- 5	6	Б	5	٩	5	5	6	5	7	٦		7	5	5	5	5	Ĩ,	5 .	7	7	#	5	4	4
	Б	5	2	5	6	6	6	7	7	7	5	S	F	ĥ	5	5	ĥ	ĥ	7	ñ	5	5	1	4	S
3920	4	а	4	5	6	6	5	7	5	5	٩	٩	5	5	5	5	6	5	5	5	5	1	1	5	5
	3	٩	9	5	5	5	S	5	5	٩	٩	٩	٩	5	5	1	5	3	٩	٩	1	1	1	5	8
	2	٩	1	1	1	4	٩	9	3	3	1	2	4	5	5	5	٩	9	4	4	4	1	5	5	6
3915	- 2	2	a	٩	1	٩	4	1	1	2	2	1	4	٩	٩	4	٩	2	٩	5	4	5	5	F	F
	5	4	9	4	1	4	1	3	3	2	٩	4	3	3	2	1	4	9	٩	5	٩	1	5	F	5
3910	a	9	٩	٩	٩	1	3	3	5	2	2	2	2	2	4	1	Ş	5	5	5	5	5	1	٩	5
	5	2	a	٩	9	7	3	2	1	5	2	2	3	٩	4	5	5	6	5	٩	1	4	1	٩.	٩
	2	٩	а	4	٩	5	٩	3	5	2	2	3	2	٩	5	4	5	5	٩	٩	4	4	1	9	1
3905	- 2	4	3	3	4.	4	3	3	2	5	5	3	1	٩	9	1	٩	1	2	4 -	2	2	2	4	4
	а	3	2	3	1	2	2	5	2	7	2	1	4	٩	1	2	1	3	2	٩	1	5	1	5	5
3900	- 2	4	1	5	2	2	1	1	1	5	3	1	2	2	2	5	2	2	1	2	1	1	1	1	1
	5	2	يو. ب		1			-1-		2	-2-			-2-					2		-2-		-15	٦ -	2
2005	2	2	1	1	1	1	1	1	5	2	2	2	2	2	2	2	2	js ,	1	, ,	5	2	5	2	2
3895	- 2		2 	5			1	<u></u>	1	<u></u>		5	<u></u>	5	<u></u>	1	1	1	1	<u></u>	1	1	<u>ر</u>	5	4
C F L	Dic		232		070 C70			545		550			222	_	560			262		570			573 2		580
							ß	ISTR	ICE	EUEL	- K	TLON	ETRE	5											

GELL MEIGHT DE TRO-DELN REGIONG FRINTED AT GENTER OF THAT REGION. Bath opigia bir cooppinateg are: n= 530.0 km, 4= 3094.0 km, 2= 90 ABGL. Rekn intervalg hae: peln= 1.000 km, rel4= 1.000 km, pel2= 30 metreg.

FIGURE 5b.

FRAME 2


TOPDERRPHY CONTOUR INTERVEL IS 20. REFPER. PENIMUN CONTOUR IS 220. Erid Dribie oth cooperates fre: N= 530.0 km, V= 2054.0 km, 2= 52 kmsL. REGN INTERVELS FRE: FELN= 1.000 km, FELY= 1.000 km, FELZ= 20 ketres.

也以近了没什么吗。当过来了声。——"大人**儿口子弟!我想要**

FRAME 3

ĺ.,

FIGURE 5c.

1

υ

SITE LRF

Parameter

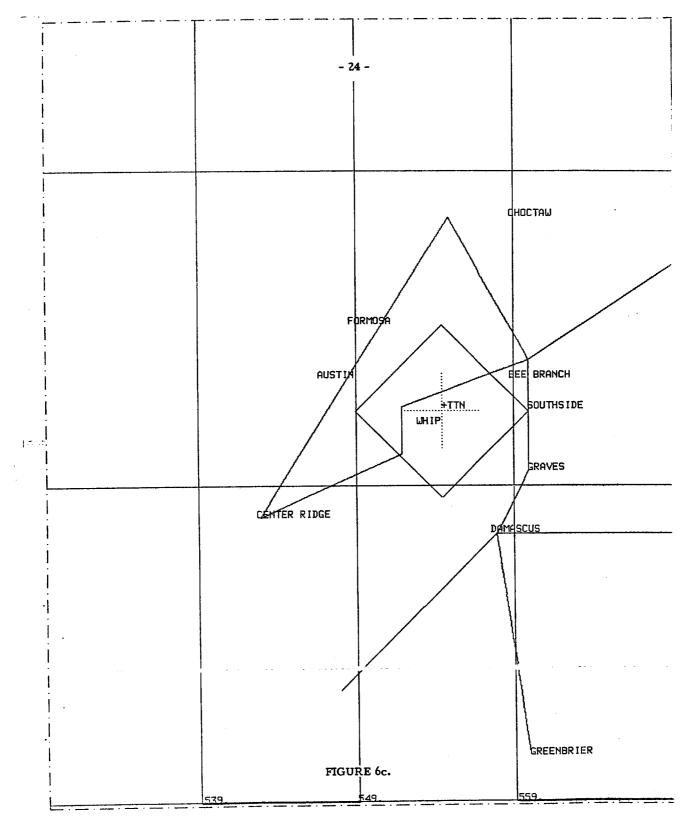
6

۲

8

-

Lower Left	3894. 529.
Center	3918.869N 554.696E
Upper Right	3944. 579.


Towns

UTM East
553.
559.
560.
560.
558.
559.
543.
560.
547.
549.
560. 560. 558. 559. 543. 560. 547.

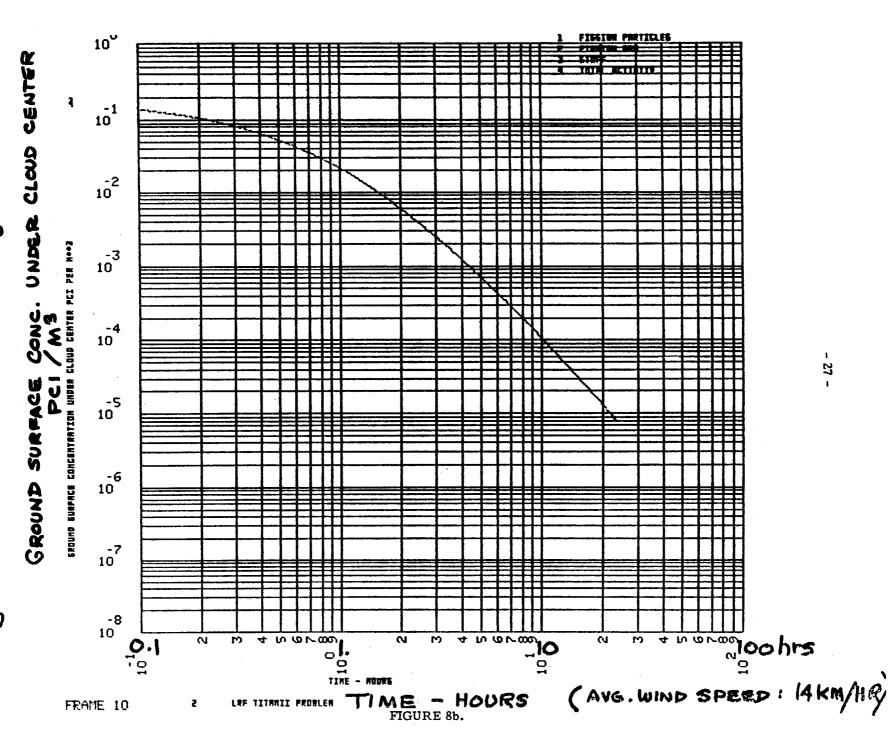
Roads

HWY	9	(3912.,	543.) - (3931	., !	555 .)				
HWY	65	(3931., (3897.,	555.) - (3922 560)	2., 5	560.)	- (3915.,	560.) -	- (3911.,	558.) -
HWY	92	(3912., (3932.,	543.) - (3916 575.))., 5	552.)	- (3919.,	552.) -	- (3922.,	560.) -
		(3903.,	548.) - (3911	., 5	558.)				
		(3911.,	558.) - (3911	., 5	578.)				

FIGURE 6b.

× = 554.586 , Y = 3918.905

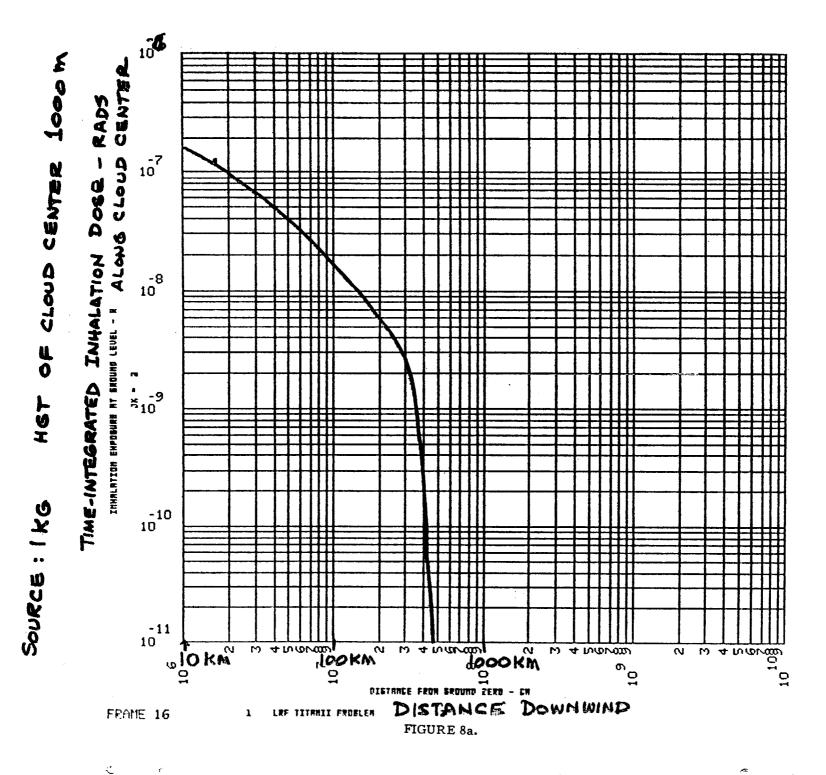
 \mathbf{v}


.

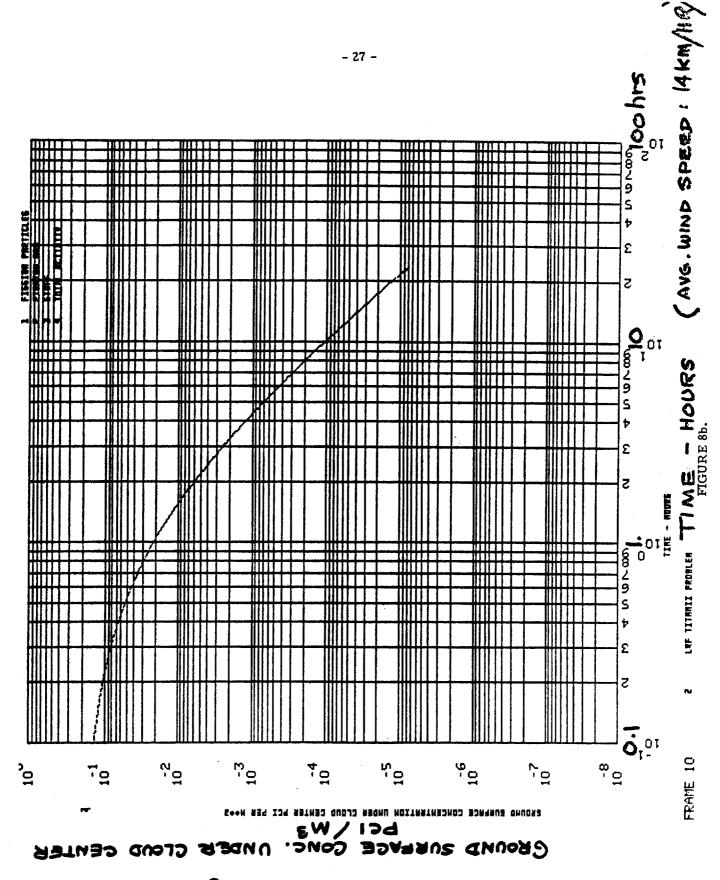
ŧ,

1 LRF TITANII PROBLEM, CLD CTR HGT = 70 M 2 UBAR = 3.0ZTOP = 10000. RO= 70. 20= 70. JCP = 63 INVC = 4Bi = 10000. INFP=3 82= 50000. B3= 100000. 4 KEPLOT= 1 DIV=6.VDEP = 1.CRT = -1. **RAINTP= 8000.** 5 ZZZZZZZ 6 01 0.0 0. 70. 100. 1. 2. 1600. 2100. 1. 0. 7 02 24. 0. 70. 200. 1. 2. 1. 1600. 2100. 0. 8 -1 0.00 E 00 1.0 E 00 9 01 FISSION PARTICLES 10 1 FISSION PRODUCTS-PART CLOUD - WHOLE BODY 1.2 E-09 2 FISSION PRODUCTS-PART FALLOUT - WHOLE BODY 11 1.7 E-11 12 3 FISSION PRODUCTS-PART INHALATION -0.0 13 4 FISSION PRODUCTS-PART MILK PATH 0.0 14 5 FISSION PRODUCTS-PART SOIL ROOT 0.0 15 G FISSION PRODUCTS-PART SEA FOOD - NO INFO 0.0 16 7 FISSION PRODUCTS-PART FRESH WATER F - NO INFO 0.0 17 02 FISSION GAS 0.00 E 00 1.0 E 00 18 1 FISSION PRODUCTS-GAS CLOUD - WHOLE BODY 2.0 E-09 19 2 FISSION PRODUCTS-GAS FALLOUT - WHOLE BODY 0.0 3 FISSION PRODUCTS-GAS 20 INHALATION 0.0 21 4 FISSION PRODUCTS-GAS MILK PATH 0.0 22 5 FISSION PRODUCTS-GAS SOIL ROOT 0.0 23 6 FISSION PRODUCTS-GAS SEA FOOD -NO INFO 0.0 24 7 FISSION PRODUCTS-GAS FRESH WATER F -NO INFO 0.0 25 03 STUFF E 09 1.00 E 10 2.2 26 1 STUFF CLOUD - WHOLE BODY 0.0 27 2 STUFF FALLOUT - WHOLE BODY Rm3 pCi Sec. 0.0 28 3 STUFF INHALATION -1.2 E-08 29 4 STUFF TVC MEAN OF MILK PATH -0.0 30 S STUFF SOIL ROOT 0.0 31 6 STUFF SEA FOOD -NO INFO 0.0 32 7 STUFF FRESH WATER F -NO INFO 0.0 E 00 0.00 E 00 33 08 TOTAL ACTIVITY 0.0 0.00 E 00 - WHOLE BODY 34 1 TOTAL ACTIVITY CLOUD 0.0 35 2 TOTAL ACTIVITY FALLOUT - WHOLE BODY 0.0 36 3 TOTAL ACTIVITY INHALATION -0.0 37 4 TOTAL ACTIVITY MILK PATH 0.0 38 S TOTAL ACTIVITY SOIL ROOT 0.0 39 6 TOTAL ACTIVITY SEA FOOD -NO INFO 0.0 40 7 TOTAL ACTIVITY FRESH WATER F -NO INFO 0.0 41 2 4 6 8(1)2 4 6 8(2)2 4 6 8(3)2 4 6 8(4)2 4 6 8(5)2 4 6 8(6)2 4 6 8(7)2 4 6 8(01 0.0 0. 70. 100. 1. 2. 1. 1600. 2100. 0.

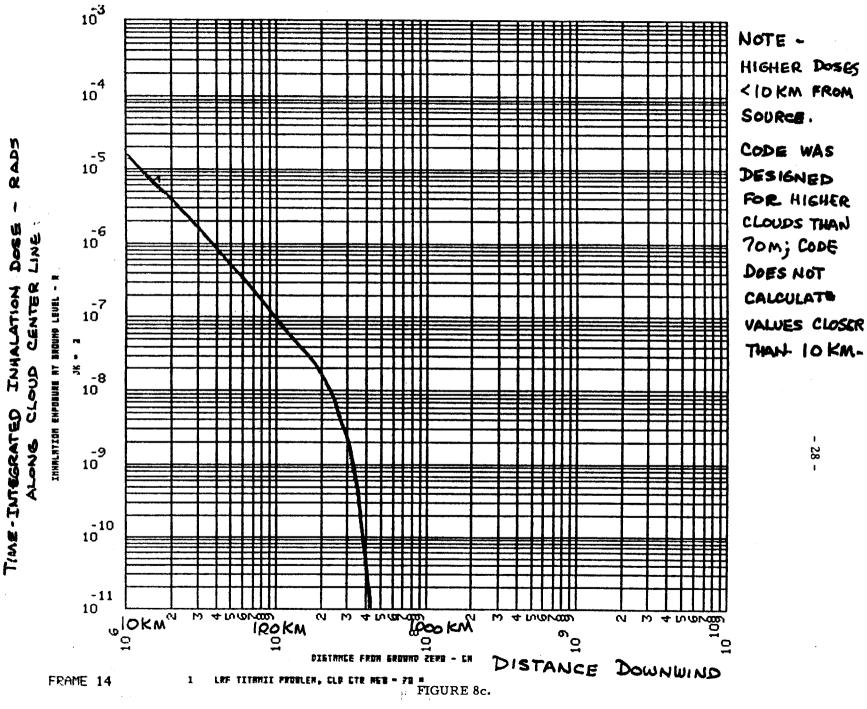
0

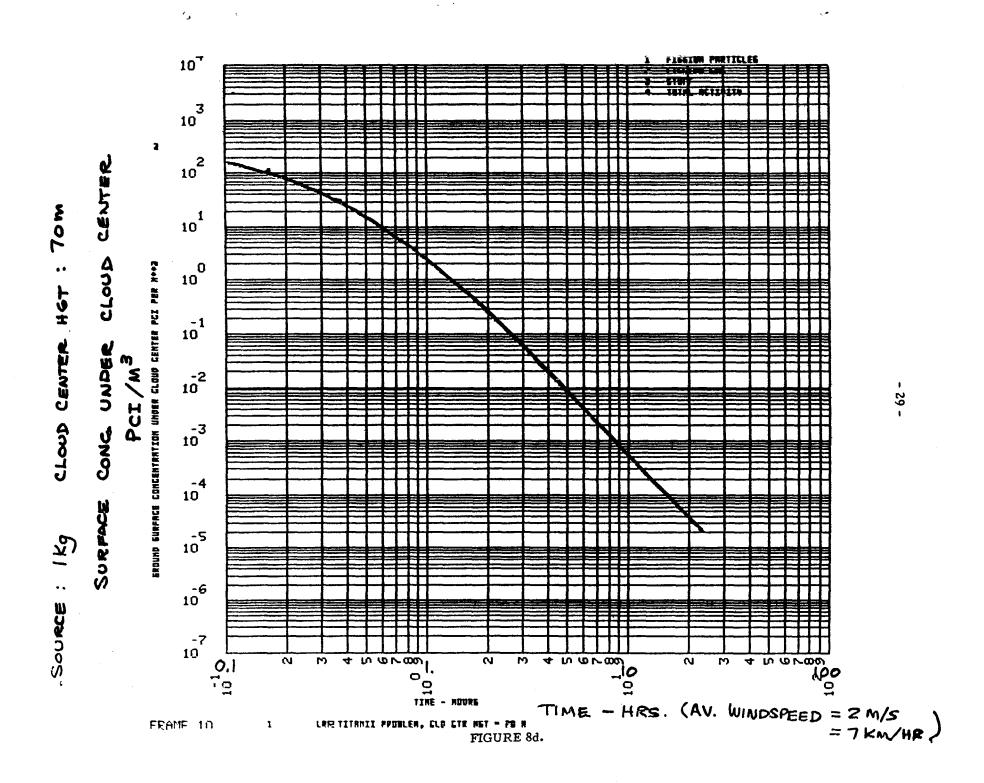

looom cloud center hgt. Kg Source

ر به


 C_{μ}

- C




CLOUD CENTER HGT = 70 M	TIME TURESPATCO TAUAL ATION DOC 9000
Source : 1 kg C	TIME TURECOATE

r

 \leq

r.

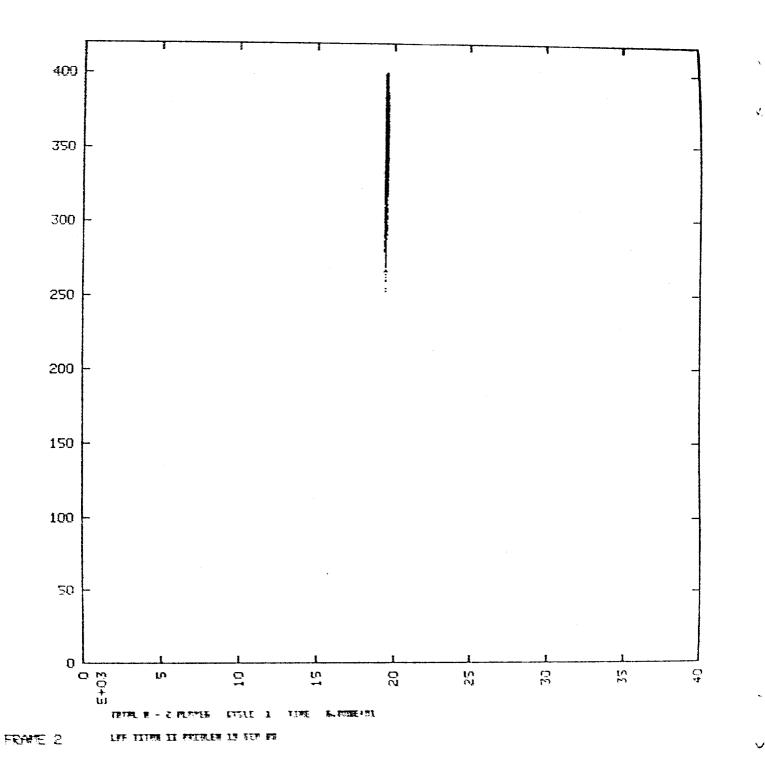


FIGURE 9a.

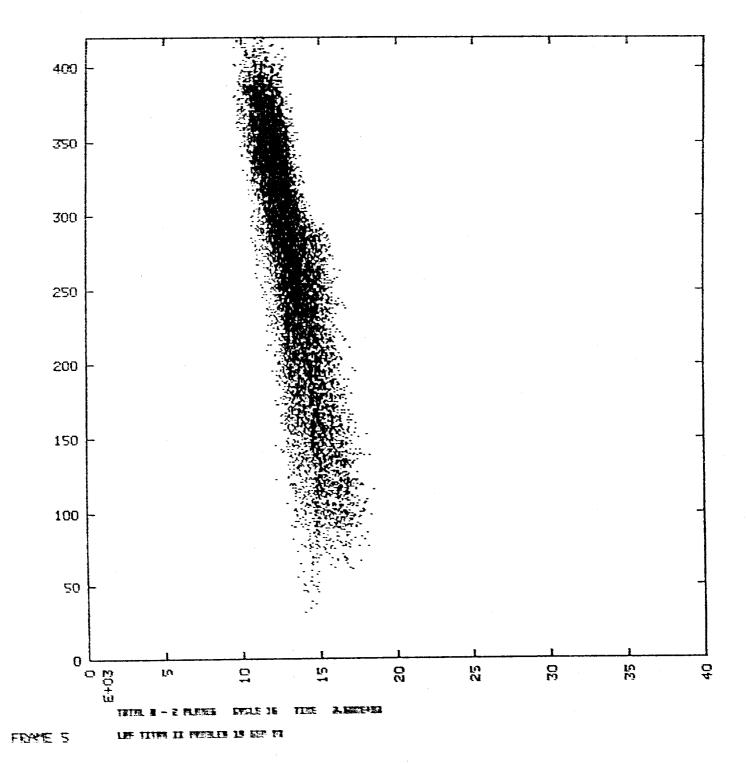


FIGURE 9b.

Y

- 31 -

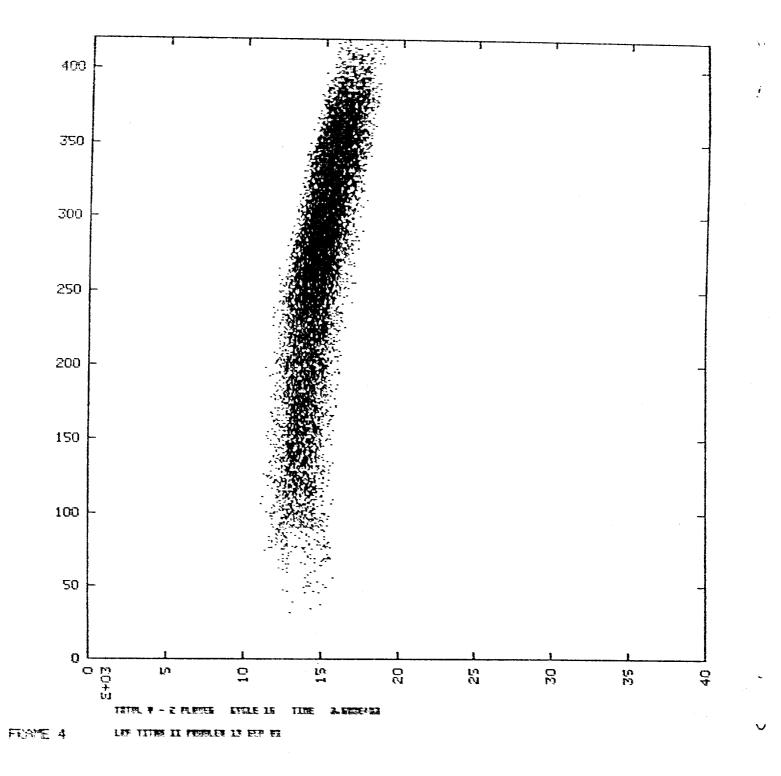
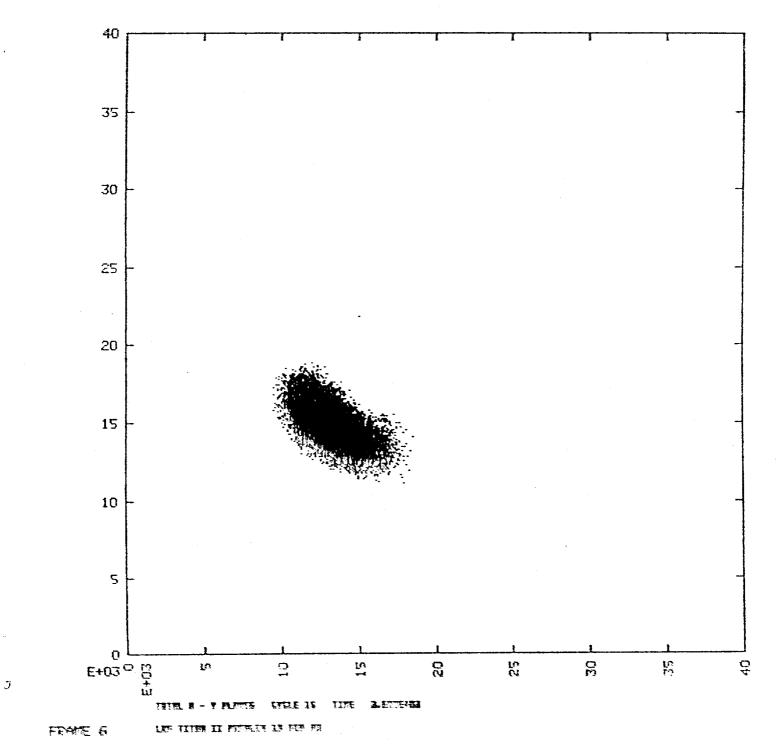
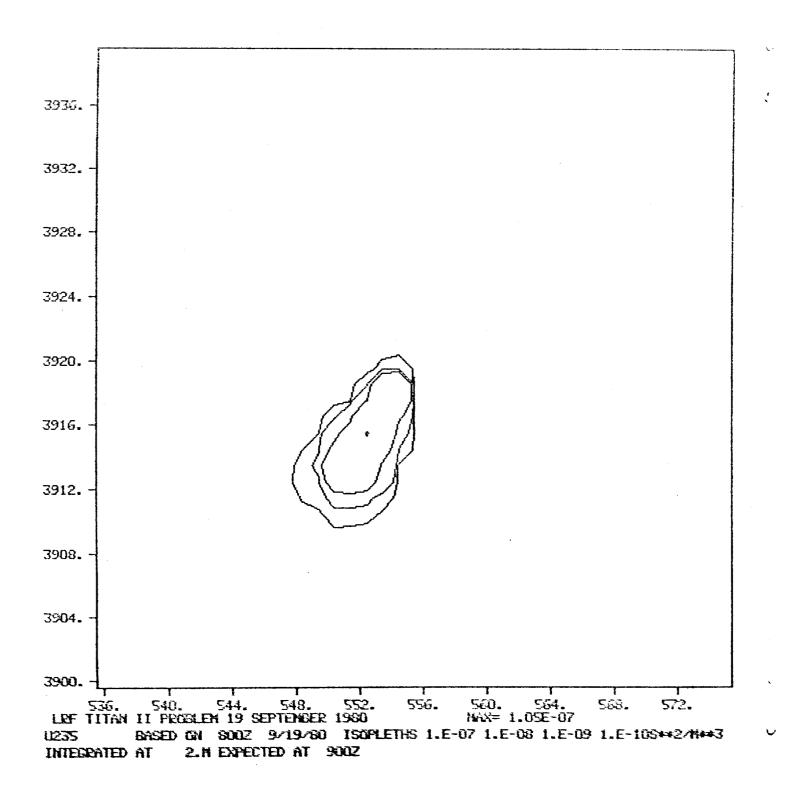




FIGURE 9c.

FIGURE 10a.

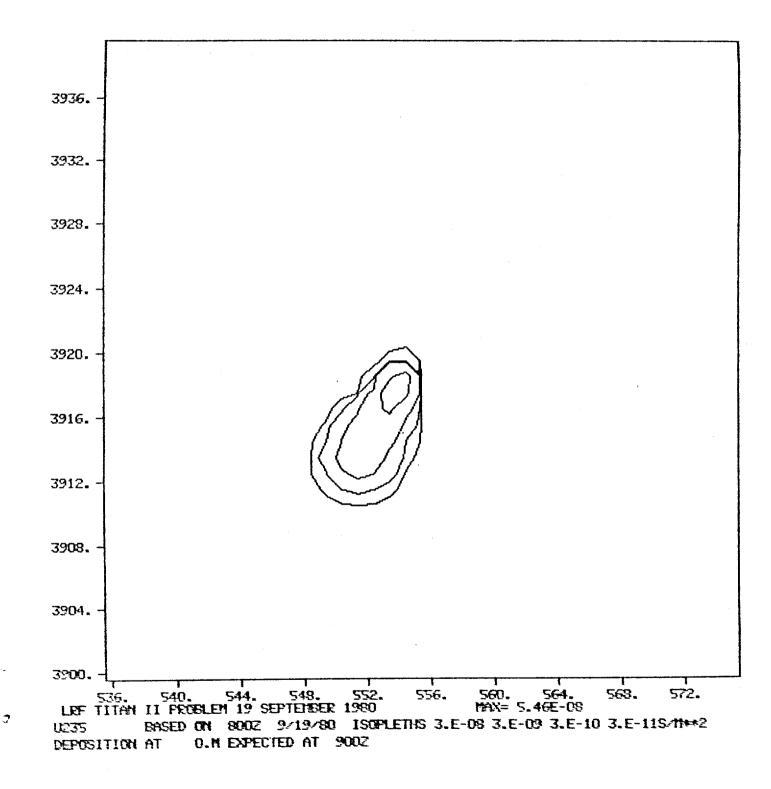
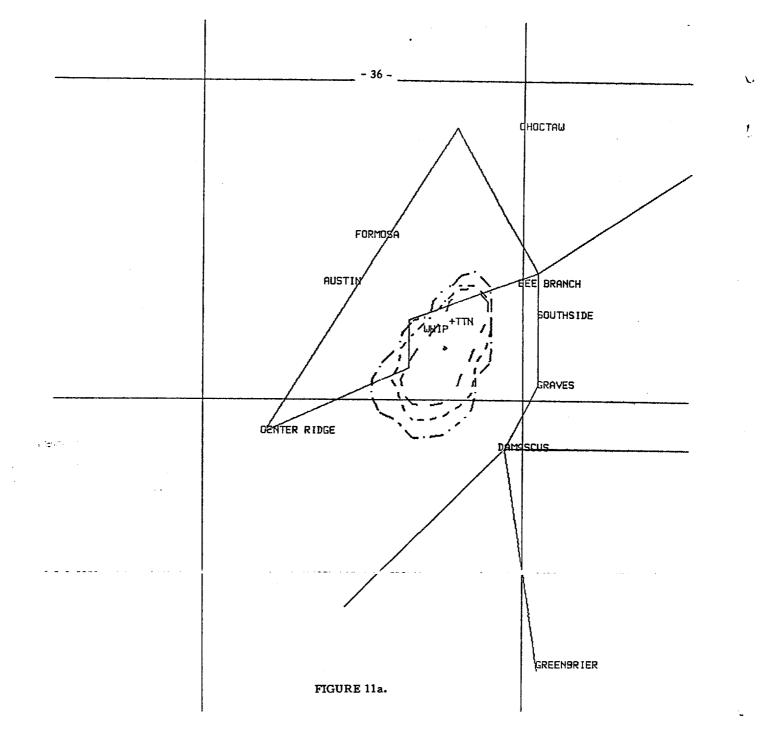
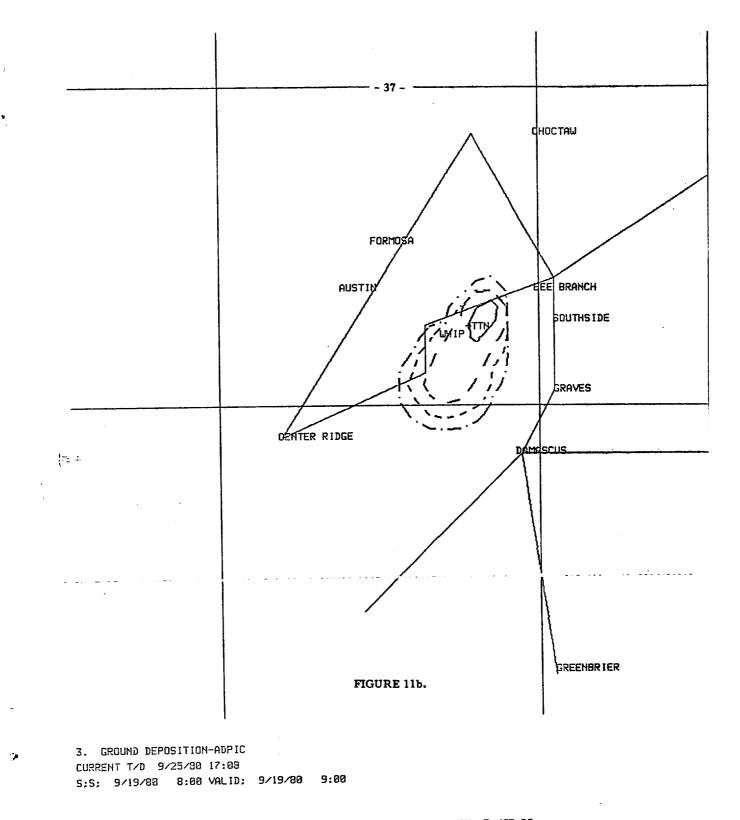



FIGURE 10b.


1. INTEGRATED SURFACE AIR-ADPIC CURRENT T/D 9/25/80 16:50 S;S; 9/19/80 8:00 VALID; 9/19/80 9:00

 LRF TITAN II PROBLEM 19 SEPTEMBER 1980
 MAX= 1.05E-07

 U235
 BASED ON 800Z
 9/19/80
 ISOPLETHS
 1.E-07
 1.E-09
 1.E-105***2/14**3

 INTEGRATED AT
 2.M EXPECTED AT
 900Z

4

 LRF TITAN II PROBLEM 19 SEPTEMBER 1980
 MAX= 5.46E-08

 U235
 BASED ON 800Z 9/19/80 ISOPLETHS 3.E-08 3.E-09 3.E-10 3.E-115/14x42

 DEPOSITION AT
 0.M EXPECTED AT 900Z

1. 123

APPENDIX A: CHRONOLOGY OF EVENTS

- 19/0000-0030Z Start of missile fuel leak.
 - 0800Z Missile fuel explosion in silo.
 - 1015Z LLNL SSA contacted (Bill Nelson).
 - 1118Z ARAC contacted for NEST-type Standby.
 - 1202Z Tom Sullivan arrives at Alert Center vacant.
 - 1210Z Tom Sullivan arrives at ARAC center, located Damascus/Conway

L

1230Z Tom Sullivan ran RAT* for meteorological data around Damascus.

Found surface, upper air stations.

Terrain - quite hilly, presenting transport problems.

- 1230Z Tom Sullivan notified Police dispatcher of his presence at ARAC center, requested he pass fact to Bill Nelson. Dispatcher advised that Albuquerque had deployed a NEST team.
- 1255Z Fritz Wolff called from DOE/EOC and relayed information concerning Oak Ridge deployment, negative reports on activity from USAF, EACT meeting to decide/act on request for assistance.
- 1315Z Police dispatcher called to relay a request for calculations of dispersion downwind of the accident site for the Albuquerque team (deployed). Also provided lat/lon coordinates of 30°24'51"N and 90°23'50"W (which turned out to be bad). Also learned LLNL first called at 1015 (0315L), home phone number of Bill Nelson. Tried to contact re bad coordinates phone busy.

1320-1340Z Called out four additional ARAC staff members.

1428Z Fritz Wolff called again. DOE supporting/assisting 0800Z = accident time

"still no known radioactivity"

Albuquerque deployment of a team at USAF request

SSA - Bill Chambers (NEST) + Jay Wecsler, Jerry Dummer

He will try to establish a contact and phone number in Arkansas.

Coordinates from Fritz (DOE) good to the nearest minute:

35⁰24'N and 92⁰23'W

"Plume went several thousand feet in the air"

I requested he seek out source/accident characteristics

Team assembling

٠.

1510Z Ira Morrison — called and provided/confirmed the coordinates (to the nearest second)

I requested source/accident characteristics.

1532Z Talked with JNACC again - Bill Sayer

Requested information on the source/accident characteristic.

No answer on explosion vs. fire.

Fireball to 1000-2000 feet or higher in IR at night (personal estimate) also a plume at 200 feet.

No radioactivity on patients, fuel leak in silo then "it went".

EOD at site "Warhead may be recoverable"!

"Stability type B, 10% of oxidizer left, silo flooded, Puff-type release, small residual fire"

"USAF personnel from Pinebluff went within 1000 feet downwind and no activity" After considerable discussion of possible source terms we decided on calculations for puff with (a) all HE and (b) 10% HE.

)

- 1545Z Talked with Walt Nervik about Alert Center knowledge of accident. Reiterated ARAC need for specific source prescription. He suggested using: (a) 10 ton (fuel) contribution (explosive) and (b) all HE.
- 1600Z Decided to have Ken Peterson/George Greenly prepare 2BPUFF-type calculations while the input topography files were being generated for MATHEW/ADPIC.
- 1600Z Dan Rodriguez went as courier to Alert Center to get actual source term information
- 1630Z Dan returned.
- 1730Z Ken Peterson had first results done but bad values due to DCON format.
- 1815Z First results done, called JNACC for telecopier number bad number, always busy. Finally got back to JNACC at 1845Z, they got a new number at approximately 1900Z.

First transmission at 1915Z-1935Z (from 2BPUFF).

- 1835Z Fritz Wolff relayed "Probably no nuclear source at all" Probably in a "weapon recover phase", may not need or may need ARAC for recovery support.
- 2030Z Second set of 2BPUFF calculations sent (70m)
- 2145Z JNACC called Alert center "wind-down" from Dave Foster relayed by Wade Patterson.

I called JNACC/Jack Roeder and he said they were winding down. "Thanks" and that's all for this one.

- 2200Z Finished the MATHEW/ADPIC calculations for a normalized source with 276 m stabilization height and actual topography.
- 2215Z Problem with output file for the ARAC DPR system could not marry the site "X" geography with the output contours.
- 2300Z ARAC involvement terminated after quick debrief/critique and storage of all computer files.

APPENDIX B: ACRONYMS AND ABBREVIATIONS

3

1

 \sim

ADPIC	Atmospheric Dispersion Particle-in-Cell Model
AFGWC	Air Force Global Weather Central
ARAC	Atmospheric Release Advisory Capability
AWN	Automated Weather Net
DPR	Data Processor
EACT	Emergency Action Coordinating Team
EOC	Emergency Operations Center
EOD	Explosive Ordinace Disposal
FTS	Federal TeleCommunications System
HE	High Explosive
IR	Infrared Radiation
JNACC	Joint Nuclear Accident Coordinating Center
LLNL	Lawrence Livermore National Laboratory
MATHEW	Mass-Adjusted, Three-Dimensional Wind Field Model
NEST	Nuclear Emergency Search Team
PA	Point Analysis
RAT*	Radius Around Target code
RJET	Remote Job Entry Terminal
SSA	Senior Scientific Advisor
USGS	U. S. Geological Service
UTM	Universal Transverse Mercator Reference System
2BPUFF	An ARAC Large Cloud Dispersion Code