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1.   Introduction 

       Multirate digital signal processing (DSP) has attracted much attention over the past 

two decades due to the applications in subband coding of speech, audio and video, 

multiple carrier data transmission, etc. A key characteristic of multirate algorithms is 

their high computational efficiency. A multirate system can increase or decrease the 

sampling rate of individual signals before or while processing them. These signals then 

with different sampling rate can be simultaneously processed in various parts of the 

multirate system.  

      Digital filter banks are the most important applications of multirate DSP. A great 

amount of different filter bank approaches have been developed over last fifteen years. 

Among those filter banks, Cosine Modulated filter banks [1]-[3] are very popular because 

they are easy to implement and can provide perfect reconstruction (PR). The Discrete 

Fourier Transform (DFT) polyphase filter bank [4] is another popular filter bank that 

provides high computational efficiency, but suffers from the fact that it is not able to 

cancel alias components caused by subsampling the sub band signals. By introducing a 

certain modification to the DFT filter bank, we can overcome its disadvantage. The 

modified DFT (MDFT) filter banks [5]-[7] can also provide PR.  

      In this report, we will first study the structures of DFT, MDFT and Cosine-Modulated 

filter banks, and then demonstrate MATLAB simulation for these filter banks. In section 

2, we will discuss some essential operations for multirate systems in order to understand 

filter banks. A brief review on these three filter banks and their MATLAB 

implementation results will be presented in Section 3 and Section 4 respectively, and 

finally the conclusions are given in Section 5. 
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2.   Fundamentals of Multirate DSP 

2.1  Sampling Rate Conversion 

      To understand the multirate systems, it is essential to understand how the sampling 

rate is changed. There are two basic sampling rate change operations: downsampling 

(decrease the sampling rate) and upsampling (increase the sampling rate).  

 

Downsampling 

      Downsampling is the process of reducing the sampling rate. Downsampling a signal 

can be useful if the sampling rate was considerably greater than the bandwidth of the 

signal. It can reduce the calculation and/or memory required to implement a DSP system.   

      The operation of downsampling by a factor M is shown in Figure 2-1, where the 

downsampler takes an input signal x[n] with high sampling rate HsF _  and produces a low 

sampling rate LsF _  output sequence y[m] by keeping every thM sample and discarding the 

rest. This downsampling process can be written as  

mMnnxmy == ][][  for Nn L,2,1,0= ;  
M
Nm L,2,1,0=        (2.1) 

The relationship between sampling rates HsF _  and LsF _  can be described as below 

MFF HsLs /__ =                (2.2) 

where M is called the downsampling factor, and is simply the ratio of the input rate to the 

output rate.  

 

Figure 2-1 Downsampler 

y[m] 
 

LsF _  

x[n] 
 

HsF _  M 
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Upsampling  

      Upsampling increases the sampling rate of signal by inserting zero-valued samples 

between original samples. The main reason for upsampling is to increase the sampling 

rate at the output of one system so that another system operating at a higher sampling rate 

can process the signal.  

      Figure 2-2 illustrates the operation of upsampling a signal by a factor L, it takes an 

input signal x[m] with a low sampling rate LsF _  and produces the output sequence y[n] 

has high sampling rate HsF _ by inserted L-1 zeros between every sample of the input 

signal. This upsampling process can be written as  

Lnmmxny /][][ ==   for ∈m  integer ,   0][ =ny     otherwise             

Nn L,2,1,0= ;  
L
Nm L,2,1,0=                              (2.3) 

In this case the sampling rates LsF _ and HsF _ are related by an upsampling factor L, which 

is the ratio of the output rate to the input rate.  

 

Figure 2-2 Upsampler 

 

2.2 Decimation 

      Decimation is the process of filtering and downsampling a signal to decrease its 

effective sampling rate. If we downsample a signal by just throwing away the 

intermediate samples, we will get alisasing. To prevent this alisasing of the result from 

the downsampling, an anti-aliasing low pass filter )(zH  is employed before the 

downsampler as shown in figure 2-3.  

L 
y[n] 
 

HsF _  

x[m] 
 

LsF _  
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Figure 2-3 Decimator consisting of an anti-aliasing filter H(z) and a downsampler 

 

2.3 Interpolation 

      Interpolation is the process of upsampling and filtering a signal to increase its 

effective sampling rate as shown in figure 2-4. To prevent extra spectral copies that might 

result from upsampling, an anti-image low pass filter )(zG  is employed after the 

upsampler.  

 

Figure 2-4 Interpolator consisting of an upsampler and anti-image filter G(z) 

 

2.4  Noble Identities 

      The noble identities describe the property of reverse ordering the filter and 

downsampling/upsampling. Figure 2-5 (a) and (b) show a pair of equivalent block 

diagrams, which describe the Noble identities for decimation and interpolation 

respectively. Note the FIR filter )(zH is the M downsampled impulse response of  

)( MzH  and )( LzH is the upsampled impulse response of )(zH . 

(a) 

                  
 

(b) 

                 
 

Figure 2-5 The Noble identities for (a) decimation and (b) interpolation 

y[n]
 

x[m] 
)(zH   L 

y[n]x[m] 
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y[n] x[m] 
L G(z)

y[m] x[n] 
M H(z)

y[m] 
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2.5  Polyphase Decimation 

      The standard decimation method in Figure 2-3, is computationally inefficient because 

it throws away the majority of the computed filter outputs. By using the Noble identity 

we can rearrange the structure in Figure 2-3 so that filter outputs are not discarded. In 

order to apply the Noble identity for decimation, first we must decompose the filter H(z)  

into its polyphase components. 

∑
−

=

−=
1

0
)()(

M

i

M
i

i zHzzH     (2.4) 

Now we can transform Figure 2-3 into the polyphase components structure as shown in 

Figure 2-6. 

 
 

Figure 2-6  Polyphase components structure 
 

Then we can apply the Noble identity for decimation to Figure 2-6 yielding the process 

shown in Figure 2-7. The ladder of delays and downsamplers on the left of Figure 2-7 

accomplishes a form of serial-to-parallel conversion.  

 

Figure 2-7 Polyphase structure for decimation 
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      Figure 2-8 shows an equivalent structure of the polyphase decimation by using an 

input commutator to represent the splitting of input signal x[n] into the lower rate sub-

sequences ][][],[ 110 mxmxmx M −L [4]. These two structures have trivial differences in 

their practical implementation. For the configuration in Figure 2-7, a group of M input 

samples are sent to the M sub filters at times t=mM by M downsamplers. For example at 

time t=0 (m=0), a group of samples { ]1[]0[],1[]0[],0[]0[ 110 +−=−== − Mxxxxxx ML } 

are sent to filters { )(,),(),( 110 zHzHzH M −L }. At time t=M (m=1), a group of samples 

{ ]1[]1[],1[]1[],[]1[ 110 xxMxxMxx M =−== −L } are sent to the same filters, etc. On the 

other hand, the representation with an input commutator (Figure 2-8) gives the 

impression that the input samples pass to M sub filters one after the others. To get the 

output value y[m], the commutator has to rotate counterclockwise to give input samples 

][],1[,],1[ txtxMtx −+− L  (t=mM) to the filters )(),(,),( 011 zHzHzH M L− . However 

these two representations lead to same result.  

 

Figure 2-8 Polyphase decimator with an input commutator rotating counterclockwise 

 

2.6  Polyphase Interpolation 

      The standard interpolation procedure illustrated in Figure 2-4 is also computationally 

inefficient since the lowpass filter operates on a sequence that is mostly composed of 

M
x[n] )(1 zH

)(1 zHM −  

)(0 zH y[m] ][0 mx

][1 mx

][1 mxM −
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zeros. We can use the same procedures as polyphase decimation to transform Figure 2-4 

into an efficient implementation structure as shown in Figure 2-9 by using the Noble 

identity for interpolation. 

 

Figure 2-9 Polyphase structure for interpolation 

 

      In Figure 2-9, to produce the output signal y[n], the sub-sequences 

{ ][][],[ 110 mymymy M −L } must transform to polyphase components of the output signal 

by upsampling by a factor L and adding a delay )10( −≤≤ Mz λλ  at the higher sampling 

rate. This process can also be represented by using a commutator to combine 

subsequence into the output signal as illustrated in Figure 2-10. The commutator 

combines the output signal by taking sample by sample from sub-sequence 

{ ][][],[ 110 mymymy M −L }. So the output signal y[n] has sample sequence as 

{ LLL ],1[,],1[],0[,],0[ 1010 −− MM yyyy }. Again these two structures will produce same 

result. 

 

Figure 2-10 Polyphase interpolator with a counterclockwise output commutator 
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3.  Filter Bank 

      For many applications in signal processing, it is useful to separate a signal into 

different frequency ranges called sub-bands. The spectrum can be partitioned in the 

uniform manner as illustrated in Figure 3-1, where the sub-band width
M

k π2
=∇  is 

identical for each sub-band and the band centers are uniformly spaced at intervals of
M
π2 . 

 

 
 

Figure 3-1 Uniform spaced spectrum (Ref: Connexions, by Phil Schniter)  
  
 

 
      The sub-bands can also have non-uniformly spacing. For our discussion, we will only 

focus on uniformly spaced sub-bands. The goal of separation into sub-band components 

is to make further processing more convenient. Some of the popular applications for sub-

band decomposition are audio and video source coding with the purpose of efficient 

storage and/or transmission. 

      In typical applications, non-trivial signal processing takes place between a bank of 

analysis filters { })()(),( 110 zHzHzH M −L  and { })()(),( 110 zGzGzG M −L , a bank of 

synthesis filters as shown in Figure 3-2. For our discussion, we will focus on filter bank 

design rather than the sub-band processing that occurs between the filter banks. 
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Figure 3-2 Standard filter bank structure 
 

 
      The main goals in filter bank design is to have good reconstruction (i.e., y[n]≈ x[n−d] 

for some integer delay d) when the sub-band processing is lossless. This goal is 

motivated by the idea that the sub-band filtering should not limit the reconstruction 

performance when sub-band processing (e.g., the coding/decoding) is lossless or nearly 

lossless. For the following sections, we will discuss three types of polyphase filter bank 

design: DFT, Modified DFT (MDFT) and Cosine Modulated filter banks respectively.  

 

3.1   DFT Filter bank 

      Among these three polyphase filter banks, the DFT filter bank is the easiest one to 

implement and it has the simplest structure, which is shown in Figure 3-3. The materials 

in section 2 are essential for us to understand the structure of the polyphase filter bank. 

For the standard filter bank shown in Figure 3-2, it performs filtering before 

downsampling. On the other hand, the DFT polyphase structure performs downsampling 

first and then filtering, which results in a huge computational saving. We know that 

filtering is very expensive in computation. With the structure of downsampling before 

filtering, we can save a huge amount of filtering operations. The properties that allow 

polyphase structures to perform the sampling and then filtering are known as the Noble 

identities, which we had discussed in section 2.  

M
x[n] )(1 zH  

)(1 zHM −  

)(0 zH  

M

)(1 zG

)(1 zGM −

)(0 zG

y[n] 

 
 

Subband 
processing

 M M

M

M

M

 M
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Figure 3-3 Structure of DFT filter bank 

 

      In Figure 3-3, the DFT filter bank consists of analysis and synthesis filter banks, and 

the sub-filters within these banks are generated from same prototype filter. For the 

analysis bank, we need to perform polyphase decimation. In contrast, we implement 

polyphase interpolation in the synthesis bank. Filters in the analysis bank 

{ })()(),( 110 zHzHzH M −L  and filters in the synthesis bank { })()(),( 110 zHzHzH M −L  are 

called the polyphase components of the prototype filter. The impulse responses of these 

filters are related as 

 

)1()( nNhnh kk −−= , 10 −≤≤ Nn   (3.1) 

       

      If the sub-band processing between IDFT and DFT operations is lossless, then the 

output signal y[n] should be identical to x[n] with some delay. But that is not the case, 

when we decompose the prototype filter into its polyphase components; it creates aliasing 

among these sub-filters, which prevents us from reconstructing the signal perfectly. DFT 

filter bank structure is very simple and it doesn’t contain any aliasing cancellation 

structure; it suffers from the aliasing effect within the banks, but is useful for 

channelization. 

M
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M M
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3.2 Modified DFT Filter Bank 

      The disadvantage of DFT polyphase filter banks can be overcome by introducing a 

certain modification to the DFT filter bank. It is called the Modified DFT (MDFT) filter 

bank [5], where a structure inherent alias cancellation can be obtained, yielding nearly 

PR. MDFT filter banks are modified complex modulated, critically sub-sampled filter 

banks based on DFT filter banks. 

 

 

Figure 3-4 MDFT filter bank realized by two DFT polyphase filter banks 

 

      The structure of MDFT filter bank can be realized by means of two DFT polyphase 

filter banks, where one is delayed by M/2 samples as shown in Figure 3-4. We also notice 

from the structure that it is taking alternately the real and imaginary part of the sub-band 

signals. For the upper DFT filter bank, the even sub-channels take the real parts, and the 

odd sub-channels take the imaginary parts of the sub-band signals. For the lower DFT 
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filter bank, it performs the opposite. Even sub-channels take imaginary parts, and odd 

sub-channels take the real parts. The implementation cost of this MDFT structure is twice 

the implementation cost of the DFT filter bank but can be further reduced [6]. 

 

 

Figure 3-5 Computational efficient realization of the MDFT Filter Bank 

 

      A simpler and computational efficient realization of the MDFT filter bank is shown in 

Figure 3-5. (Detailed information can be found in [5]). In this structure, the input signal 

x[n] will be decomposed into M/2 polyphase components and the prototype filter will 

have M polyphase components. Each of the M/2 polyphase components of input signal 

will filter with a pair of the sub-filters alternately without and with a delay. The MDFT 

filter bank guarantees PR if each paired polyphase components of the prototype filter 

)(zH k  and )(2/ zH Mk+  satisfy following condition, 

αz
M

zHzHzHzH MkMkkk
2)()()()( 2/2/ =+ ++   for  12/,,0 −= Mk L       (3.1) 

This is equivalent to the PR condition for Cosine Modulated filter banks which will be 

introduced in the following section. 
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3.3 Cosine Modulated Filter bank 

      The theory and design of M-channel Cosine Modulated filter banks have been studied 

extensively in the past [1]-[3]. The Cosine Modulated filter banks emerged as an 

attractive choice for filter banks due to its simple implementation and the ability to 

provide PR. In this system, the impulse responses of analysis filters )(nhk  and synthesis 

filters )(nfk  are the Cosine Modulated versions of a single prototype filter )(nh [2]. 

Therefore the design of the whole filter bank reduces to that design for the prototype 

filter. The filter bank has perfect reconstruction if the polyphase components of the 

prototype satisfy a pair-wise power complementary condition,   

M
zHzHzHzH kMkMkk 2

1)()(~)()(~ =+ ++          (3.2) 

The detail design of the prototype filter can be found in [1], where the optimization of the 

prototype filter coefficients is given.  

      Several efficient methods have been proposed to facilitate the design of prototype 

filter. In [8], Creusere and Mitra proposed a very efficient prototype design method 

without using nonlinear optimizations. Instead of a full search, it is limited to the class of 

filters obtained using the Parks-McClellan algorithm. As a result, the optimization can be 

reduced to that of a single parameter. In the Kaiser Window method of prototype filter 

design for Cosine Modulated filter banks [9], the design process is reduced to the 

optimization of the cutoff frequency in the Kaiser Window. Another design method in 

[10] is based on windowing, which varies the value of 6-dB cutoff frequency of the 

prototype filter so that final prototype filter has its 3-dB cutoff frequency located 

approximately at M2/π . 
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Figure 3-6 Structure of Cosine Modulated polyphase filter bank 

 

      The structure of the Cosine Modulated polyphase filter bank is shown in Figure 3-6 

[11]. In this structure, the input signal x[n] will be decomposed into M polyphase 

components and the prototype filter will have 2M polyphase components. Each of the 

polyphase components of the input signal will be filtered with a pair of sub-filters that 

satisfy the pair-wise power complementary condition as shown in equation (3.2). The 

elements of the Cosine Modulation matrix 1C and 2C in Figure 3-6 can be calculated by 

use following equation, 
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4. MATLAB Simulation 

      In section 3, we have reviewed the structures of DFT, MDFT and Cosine Modulated 

filter banks. In this section, we are going to show the MATLAB implementation results 

for these three filter banks. The structures of these filter banks used in our simulation are 
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based on the previous section, and we use various types of test signals (an audio signal, a 

chirp signal, and a step frequency signal) in our simulation. For demonstration purposes 

we are going to show only the result of the chirp input signal in our report. Since it is 

hard to compare and distinguish the difference between communication signals, we are 

going to perform both visual and subjective aural comparison. We not only plotted and 

compared the input and output signals, but also played them as sound waves to hear and 

find out how good the signal reconstruction is for each filter bank. We also try to 

introduce some sub-band channel distortion (e.g. zero out one sub-channel) to see its 

effect on filter bank reconstructions.  

 

DFT Filter Bank  

      As we have mentioned before, the DFT polyphase filter bank is the easiest one to 

implement among these three filter banks, but it has the disadvantage of lack in ability of 

aliasing cancellation. The prototype filter we used is a very simple FIR (finite impulse 

response) filter with a cutoff frequency of 1/M (M is the number of sub-channels). Figure 

4-1 shows the implementation result of DFT filter bank with a chirp input signal and 

sixteen sub-channels. Plot (a) displays the input signal in blue, output signal in red and 

error signal in cyan on the same axis. We can immediately observe that there is a great 

amount of error between input and output signals from the cyan color signal in this plot. 

Comparing the spectrogram of input signal and spectrogram of output signal in plot (b), 

we notice the occurring of some aliasing components in certain frequencies. This is 

mainly due to the aliasing effects produced by subsampling the sub-band signals. If we 

look at the frequency responses of these sub-filters, they are overlapping with each other, 

which creates interference among the filter banks and results in aliasing distortion. We 
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can easily hear the aliasing noise when we try to listen and compare the input and output 

signals. 
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Figure 4-1 Implementation result of DFT filter bank:  
Chirp input signal and 16 sub-channels  

 
 
      To find out the effect of the channel distortion on the DFT filter bank, we zero out 

one of the sub-channels, and the implementation result is shown in Figure 4-2. In the time 

domain plot (a), we see great amount of error at some time due to the fact of losing one 

sub channel data. In the spectrogram plot (b) and (c), we can look at it from a frequency 

point of view. In plot (b), we see the discontinuity of the output signal occurring at the 
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particular frequency. On the other hand, we see significant amount spectrogram of error 

signal occurring at the same exact frequency range in plot (c). We can conclude from the 

figure that zeroing out one sub-channel in DFT filter bank has only impact on the 

particular sub-channel that has been zeroed out, but no significant impact on the other 

sub-channels within the filter bank. The reason we see two symmetric chirp signals on 

the upper and lower part of the spectrogram plot (b) and (c) is because it shows both the 

imaginary and real parts of the signal due to the fact that when we zero out one sub 

channel, the output signal becomes complex due to the IDFT and DFT operations.   
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Figure 4-2 Implementation result of the DFT filter bank with one channel zeroed out: 
Chirp input signal and 16 sub-channels  
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MDFT Filter Bank 

      By introducing certain modifications to the DFT filter bank, we can improve the 

performance of filter bank significantly. MDFT filter bank has much better ability to 

handle the aliasing effects. The prototype filter design for MDFT filter bank can be done 

by either FIR method or the Kaiser Window method, which is the prototype filter design 

method for Cosine Modulated filter bank. Both methods will lead to very similar results. 

For the purpose of comparison, we use the FIR prototype filter design method for our 

MDFT filter bank implementation.  

      We have introduced two different MDFT filter bank structures in sections 3: one is 

the MDFT realized by 2 DFT filter banks; the other is the simplified and computational 

efficiency MDFT filter bank. The author of the MDFT filter bank only briefly mentions 

the MDFT realized by 2 DFT filter banks in his paper [5], and didn’t go into detail 

discussion about its structure. We have spent some time to try to study and implement 

both structures of MDFT filter bank, and we found some interesting results.  

      Figure 4-3 illustrates the MDFT realized by 2 DFT filter banks’ implementation result 

with the same prototype filter design as the DFT filter bank. Comparing with the 

performance of the DFT filter bank in Figure 4-1, we can clearly see the improvement on 

the signal reconstruction for this MDFT filter bank; the magnitude of the error signal in 

plot (a) is much less than the DFT filter bank’s error signal, the spectrogram of output 

signal in plot (b) doesn’t contain any significant aliasing components as the DFT filter 

bank does, and there are only few minimal errors in the spectrogram shown in the plot 

(c). We can also verify this improvement by listening to the output signal; we don’t hear 

any aliasing noise in the signal background.  However the performance of this MDFT 
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filter bank structure is much better than the DFT filter bank, but it is not as good as the 

performances of the simplified MDFT filter bank and the Cosine Modulated filter bank, 

which will be discussed in the following sections.  
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Figure 4-3 Implementation result of the MDFT realized by 2 DFT filter banks:  
Chirp input signal and 16 sub-channels  

 

      We are showing the implementation result of the second MDFT filter bank structure 

in Figure 4-4. For plot (a), the error between input and output signals is plotted at the 

same magnitude scale as the input and output signals seen as a straight line and it give us 

the impression that there is no error between input and output signals. In fact, the actual 

difference is of the order of 210− , which is hard to recognize without zooming in the plot. 
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Comparing with the implementation result of MDFT realized by 2 DFT filter banks in 

Figure 4-2, we also notice the improvement on the reconstruction in this MDFT filter 

bank structure. The spectrogram of the output signal in plot (b) doesn’t show any 

significant aliasing components, and we only see some minor amount of error in plot (c). 

When we try to hear and distinguish the input and output signals, it’s difficult to 

recognize the difference. So the performance of the MDFT filter bank in this case can be 

considered able to achieve nearly perfect reconstruction. 
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Figure 4-4 Implementation result of the simplified MDFT filter bank: 
Chirp input signal and 16 sub-channels 

 
 

      The interesting result we found about the MDFT filter bank implementation is for the 

case when we introduce sub-band channel distortion by setting one sub-channel to zero 
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for both structures of the MDFT filter banks. It turns out that performance of the MDFT 

realized by 2 DFT filter banks in this situation is much better than the result for the 

simplified MDFT filter bank structure. The output results for these two MDFT filter bank 

structures are shown in Figure 4-5 and Figure 4-6 respectively. In Figure 4-5, we see a 

very similar result as the case of the DFT filter bank with one sub-channel zeroed out. 

The effect of the channel distortion in the structure of MDFT realized by 2 DFT filter 

banks only occurs on the particular channel that has been zeroed out; it doesn’t have any 

significant impact on the other sub-channels within the filter bank.  
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Figure 4-5 Implementation result of MDFT realized by 2 DFT filter banks with one 
channel zeroed out: Chirp input signal and 16 sub-channels 
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      In contrast, we can clearly see a huge amount of the error signal without needing to 

zoom in for the result of simplified MDFT filter bank in Figure 4-6. The effect of zeroing 

out one sub-channel is significant for this structure of the MDFT filter bank; it totally 

destroys the reconstruction for all the channels within the filter bank. We can easily hear 

the aliasing noise in the output signal, and we notice from the output signal’s spectrogram 

in plot (b) that many significant aliasing harmonic components of the signal cross over 

with the actual output signal.  
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Figure 4-6 Implementation result of simplified MDFT filter banks with one channel 
zeroed out: Chirp input signal and 16 sub-channels 

 
 



 
 

23

      To conclude the performance of MDFT filter bank from our implementation results, 

we see that these two difference structures of the MDFT filter banks have advantages and 

disadvantages over each other for different situations. One performs well on the 

reconstruction while the other performs well when dealing with channel distortion. It is 

hard to say one is better than the other, but they can be alternative choices when we try to 

decide which structure to use for a particular situation or specific application.  

 

Cosine Modulated Filter Bank 

      As we had discussed in section 3, there are several different prototype filter design 

methods for Cosine Modulated filter bank. For our implementation, we take advantage of 

the Kaiser Window design method [9], which only needs to optimize one parameter (the 

cutoff frequency) during the design process in order to generate the prototype filter. We 

found out that the prototype filter produced by the Kaiser Window method works very 

well in our simulation.  

      The implementation results is shown in Figure 4-7, where the error between input and 

output signals shown in plot (a) is at the same magnitude scale as the input signal. It 

again looks like a straight line without zooming in, and the actual error signal is of the 

order of 310− . The spectrograms of input and output signals in plot (b) are identical to 

each other, and we don’t see any aliasing in plot (b) but only some minor error in plot (c). 

We cannot tell much difference between input signal and output signal by either 

comparing the plots or hearing the signals. We can tell from comparison of Figure 4-7 

and Figure 4-4 that the Cosine Modulated filter bank works a little bit better than the 

MDFT filter bank.  



 
 

24

0 1 2 3 4 5 6 7 8

x 104

-1

0

1
(a) Input(Blue), Output(Red) and Error(Cyan) signals

Time

Fr
eq

ue
nc

y

(b) Spectrogram of the input and output signals

1 2 3 4 5 6 7

x 104

0

0.5

1

Time

Fr
eq

ue
nc

y

(c) Spectrogram of the input and error signals

1 2 3 4 5 6 7

x 104

0

0.5

1

 
 

Figure 4-7 Implementation result of Cosine Modulated filter bank: 
Chirp input signal and 16 sub-channels 

 
 

     Similar to MDFT filter bank, Cosine Modulated filter bank is sensitive to sub-band 

channel distortion. When we set one sub-channel to zero, the output signal of the 

simulation result is distorted as shown in Figure 4-8, we can clearly see the error signal in 

plot (a), and all the aliasing components are crossing over with the actual output signal in 

the spectrogram plot of output signal in plot (b). We can also clearly hear the aliasing 

noise in the background of output audio signal during playback. Comparing the response 

of simplified MDFT and Cosine Modulated filter bank to the sub-channel distortion, we 

notice that zeroing out one channel in MDFT filter bank leads to significant effect on all 



 
 

25

the sub-channels within the bank, in contrast to the Cosine Modulated filter bank which 

has only a significant effect on the particular sub-channel that has been zeroed out and 

some minor effect on the neighboring sub-channels. 
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Figure 4-8 Implementation result of Cosine Modulated filter bank with one channel 
zeroed out: Chirp input signal and 16 sub-channels 

 

 

5. Conclusions 

      In this report, we have reviewed three different types of polyphase filter banks: the 

DFT filter bank, MDFT filter bank and Cosine Modulated filter bank. For each of these 

filter banks, they consist of analysis and synthesis filters, which are derived from the 
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same prototype filter (PF). Summary of comparisons between these filter banks are listed 

in the two tables below. 

 

Filter bank PF Design 
Method 

Length of PF Number of Output 
Sample Delay 

DFT FIR M*N Length(PF)-M 
MDFT realized by 2 

DFT 
FIR/Kaiser M*N Length(PF)-M/2 

Simplified MDFT FIR/Kaiser M*N Length(PF) 
Cosine Modulated Kaiser 2*M*N Length(PF)-M 

 
Table 1 Prototype filter comparison 

 
      Table 1 lists the comparison of prototype filter design for these filter banks, where M 

is the number of sub-channels in the filter bank and N is the number of samples in each 

polyphase component of the prototype filter. The prototype filter for DFT filter bank is a 

very easy FIR filter design with cutoff frequency of 1/M, filter length of M*N, and the 

delay for the output signal is length of prototype filter minus M samples. The design of 

the prototype filter for Cosine Modulated filter banks is a little bit harder, as it involves 

an optimization process to find the cutoff frequency with Kaiser Window approach. It 

requires twice the length prototype filter for the same number of the sub-channels, and 

the delay for the output signal is also length of prototype filter minus M samples. The FIR 

prototype filter design of DFT filter bank can be used with the MDFT filter bank 

implementation with the same number of sub-channels. On the other hand, the Kaiser 

Window design of the Cosine Modulated filter bank with M sub channel can be used for 

the MDFT filter bank with 2M sub-channels implementation. The delays for the outputs 

of two MDFT filter bank structures are different by M/2 samples. 
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      Table 2 shows the comparison for the performances of these filter banks in our 

simulation. DFT filter bank doesn’t have a good reconstruction since it suffers from 

significant aliasing effects, but it doesn’t cause huge impact to the neighboring channels 

when channel distortion occurs during the filter bank processing. Therefore DFT filter 

bank is good for channelization applications. The MDFT realized by 2 DFT filter banks 

has better performance than the DFT filter bank, with not only have the same advantage 

of minimal impact to neighboring channels from channel distortion as DFT filter bank, 

but also a lot of improvement on signal reconstruction. So it is suitable for both 

channelization and audio/image coding. Both simplified MDFT and Cosine Modulated 

filter banks are able to achieve nearly perfect reconstruction, but the Cosine Modulated 

filter bank has superior performance over the simplified MDFT filter bank in the channel 

distortion case as we have shown in our simulation. 

 

Filter bank Reconstruction Channel 
Distortion 

Application 

DFT Significant Aliasing Minimal Channelization 
MDFT realized by 

2 DFT 
Minor Aliasing Minimal Audio/image coding 

 Channelization 
Simplified MDFT Nearly Perfect Significant Audio/image coding 
Cosine Modulated Nearly Perfect Significant or some Audio coding 

 
Table 2 Filter bank’s performance comparison 

 
      A detailed comparison for these two filter banks can also be found in [5], which 

claims that the MDFT filter bank and Cosine Modulated filter bank have some 

similarities and some difference. The computational complexities of both kinds of filter 

banks are comparable, and the MDFT filter bank has certain advantages over Cosine 

Modulated filter bank in some applications.    
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7.  List of Acronyms 
 

DSP  Digital Signal Processing 
 
DFT  Discrete Fourier Transform 
 
FIR  Finite Impulse Response 
 
IDFT  Inverse Discrete Fourier Transform 
 
MDFT  Modified Discrete Fourier Transform 
 
PF  Prototype Filter 
 
PR  Perfect Reconstruction 
 




