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Abstract: Geo-spatial technologies (i.e., remote sensing (RS) and Geographic Information Systems
(GIS)) offer the means to enable a rapid assessment of terrestrial carbon stock (CS) over large areas.
The utilization of an integrated RS-GIS approach for above ground biomass (AGB) estimation and
precision carbon management is a timely and cost-effective solution for implementing appropriate
management strategies at a localized and regional scale. The current study reviews various RS-related
techniques used in the CS assessment, with emphasis on arid lands, and provides insight into the
associated challenges, opportunities and future trends. The study examines the traditional methods
and highlights their limitations. It explores recent and developing techniques, and identifies the most
significant RS variables in depicting biophysical predictors. It further demonstrates the usefulness of
geo-spatial technologies for assessing terrestrial CS, especially in arid lands. RS of vegetation in these
ecosystems is constrained by unique challenges specific to their environmental conditions, leading to
high inaccuracies when applying biomass estimation techniques developed for other ecosystems.
This study reviews and highlights advantages and limitations of the various techniques and sensors,
including optical, RADAR and LiDAR, that have been extensively used to estimate AGB and assess
CS with RS data. Other new methods are introduced and discussed as well. Finally, the study
highpoints the need for further work to fill the gaps and overcome limitations in using these emerging
techniques for precision carbon management. Geo-spatial technologies are shown to be a valuable
tool for estimating carbon sequestered especially in difficult and remote areas such as arid land.

Keywords: forest biomass; biophysical parameters; GIS; remote sensing; carbon sequestration;
carbon stock

1. Introduction

Carbon sequestration is the process of capturing CO2 gas in the atmosphere and storing it in liquid
or solid state. This process occurs naturally through trees, oceans, soil, and live organic matter [1].
Any reservoirs or stores of carbon are called carbon pools. Storing of CO2 occurs at three levels:
in plants and soil (Terrestrial Sequestration), underground (Geological Sequestration) and deep in
Oceans (Ocean Sequestration) (Figure 1). The bulk of carbon sequestered terrestrially is stored in forest
biomass. A practical definition of forest biomass is the total amount of aboveground living organic
matter in trees expressed as oven-dry tons per unit area [2]. The estimation of biomass is a challenging
task, especially in the areas with both complex stands and varying environmental conditions as well as
in low vegetation cover density areas, such as arid lands. Both types of ecosystems require the use of
accurate and consistent measurement methods.
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Arid lands in particular, have received less attention in recent decades despite their importance
to society and their exceptional vulnerability to climate change. They provide ecosystem services
to more than two billion people, including significant crop production and forage for wildlife and
domestic livestock [3]. While arid lands are sparsely vegetated with low annual productivity, they
have been identified as an important player in the global trends and variability in atmospheric CO2

concentrations [4–7]. Monitoring the spatiotemporal dynamics of arid lands ecosystem structure
and function is, therefore, a high research priority. Satellite RS particularly, has been instrumental
in exposing the role of arid lands within the context of global carbon cycling and the broader Earth
system [6,7].

Estimation of terrestrial carbon stock through remote sensing techniques is based on the estimation
of terrestrial biomass. Terrestrial or biologic sequestration is the process of storing atmospheric CO2 as
carbon in the stems, roots of plants and soil. Forests’ biotic components and soil act as large carbon
pools where CO2 in the atmosphere is converted into plant biomass through photosynthesis. Carbon
sequestration through forests is estimated at 2–4 gigatons annually [8]. However, around 60% of carbon
sequestered by forests is returned to the atmosphere as a result of deforestation [9]. Precise carbon stock
estimation is necessary for planning carbon emission mitigation strategies and programs at the local
and regional levels [10]. Studies based on such estimation are important for a better understanding of
long-term behavior and drivers of carbon sequestration under the global change and land-use and
land-cover change scenarios [11].

The importance of monitoring carbon and vegetation biomass has been recognized by the Paris
Agreement which was signed by 197 countries, and ratified by 189 nations who have all committed to
report their carbon footprint [12]. Forests, as both carbon sources and sinks, can play a major role in
combating global climate change [13,14]. Afforestation projects and land use conversion to forests can
be used to earn carbon credits and reduce the carbon footprint, resulting in a long-term reduction in
greenhouse gas (GHGs) levels through carbon sequestration [15]. This approach has attracted a growing
interest among policymakers and governments. Similarly, plantation cropping projects, as a land use
system, have the potential to contribute to carbon stocks, maintain soil biodiversity and improve soil
fertility [16]. These projects can add economic value as well, by providing more job opportunities,
better income and food security, especially in the smallholder systems in developing countries [15,17].
Such countries can also take part in the UN program on reduction in emissions from deforestation and
forest degradation (REDD+) which allows for earning financial incentives by implementing climate
policies and demonstrating emission reductions through carbon sequestration [18].
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Measuring and mapping biomass accurately are serious challenges, particularly in arid lands, that
must be addressed when quantifying carbon stocks. The total carbon stock in any terrestrial ecosystem
is the sum of carbon in living, dead, and soil biomass [20]. Eggleston et al. [21] have listed five terrestrial
ecosystem carbon pools involving biomass: above-ground biomass (AGB), below-ground biomass
(BGB), litter, woody debris and soil organic matter (SOM). Of these, AGB is the most visible, dominant,
dynamic and important pool of the terrestrial ecosystem, constituting around 30% of the total terrestrial
ecosystem carbon pool [22]. AGB and, especially, forest biomass estimation has received considerable
attention over the last few decades because of the increased awareness of global warming and the
role of forests in carbon sequestration. Furthermore, the acceleration of the release of GHGs into the
atmosphere specifically from deforestation has led to numerous studies investigating the methods for
the estimation and quantification of carbon stored in forests [22,23].

AGB accounts for more than 70% of total forest biomass [24]. Additionally, AGB contributes to
atmospheric carbon fluxes to a much greater extent due to disturbances such as forest fires, logging
and land use change, and hence has a much higher importance than the other types of biomass [25].
This implies the necessity of the continuous monitoring of AGB rather than a single date mapping.
However, the estimation of AGB involves scientific challenges to identify feasible approaches to assess
carbon at a national level [18]. Effective management of carbon stocks requires constant monitoring and
accurate measuring of biomass [26]. The most accurate methods are the traditional biomass assessment
methods based on field measurements; however, they are difficult to conduct over large areas and
are not practical for broad-scale assessments [25]. They also make monitoring activities costlier, time
consuming, and labor intensive. Furthermore, field-based resource inventories are usually carried out
for economic, not environmental, considerations; they provide good historical data on patterns and
trends, but are not accurate enough to estimate fluxes for the entire landscape and all carbon pools
therein [27].

Recently, geo-spatial technologies procedures have been applied to natural resources management
and biomass assessment [28,29]. RS can obtain biomass information over large areas with repetitive
coverages, at a reasonable cost and with acceptable accuracy [30]. Various techniques and sensors
have been used and tested in numerous studies. RS, both active and passive, provide some of the
most time-efficient and cost-effective approaches to derive AGB estimation at the regional and national
scale. Optical, RADAR and LiDAR data have been extensively used to estimate the same with a
variety of methods. Moreover, the integration of RS data into GIS models provides advantages of
both technologies, allowing for adding ancillary and field data to the analysis, besides increasing
reliability in estimating AGB. However, mapping vegetation for accurate measuring of biomass and
assessing carbon stock (CS) is a significant challenge which needs to be addressed when quantifying
carbon stock. This is most specifically for arid lands, where RS has unique challenges that are not
typically encountered in other sub-humid or humid regions. Major challenges include low vegetation
signal-to-noise ratios, high soil background reflectance, presence of biological soil crusts, high spatial
heterogeneity from plot to regional scales, and irregular growing seasons due to unpredictable seasonal
rainfall and frequent periods of drought [3,31–33]. Additionally, there is a relative discontinuity in
the long-term measurements in arid lands, which hampers reliable calibration and evaluation of
remotely sensed data products. Consequently, RS techniques developed in other ecosystems often
result in inaccurate estimates of arid lands ecosystem carbon stocks. To address these challenges, other
innovative approaches and techniques are proposed (Section 8).

The overall objective of this review is to evaluate all spectra of methods and approaches that use
geo-spatial technologies, as innovative techniques applied to biomass studies and carbon stock (CS)
assessment worldwide, in particular in arid land ecosystems. The study reviews briefly traditional
biomass assessment methods including destructive and allometric equations-based approaches,
and summarizes their benefits and limitations. Specific objectives of the review include:

i. To summarize traditional methods used for biomass and carbon assessment in terrestrial ecosystems;
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ii. To highlight the growing developments in biomass and terrestrial carbon stock assessment
through the use of geo-spatial technologies with emphasis on arid lands;

iii. To identify significant RS variables sensitive to measurable biophysical predictors;
iv. To identify the gaps and limitations of RS-GIS based methods as well as to address the need for

further work to overcome them.

To achieve these objectives, we start by overviewing the traditional methods used to estimate
the stored carbon components in terrestrial ecosystems, including the destructive and nondestructive
(allometry) methods, and their limitations. Next, we review extensively the geo-spatial technologies
approach for estimating terrestrial biomass and carbon stock—which is the main focus of the current
review—and assess their long-term potential. The study is organized as follows:

Section 1: provides an introduction and background information;
Section 2: gives an overview of the traditional methods used in biomass estimation;
Sections 3 and 4: give an overview of the geo-spatial methods used to attain a certain level of accuracy
at the species/plant communities (multispecies) level;
Section 5: surveys all biophysical predictors used in RS technology;
Section 6: identifies significant RS variables;
Section 7: highlights RS-GIS integrated models;
Section 8: presents arid lands case studies with challenges and opportunities;
Section 9: identifies gaps and limitations of the geo-spatial approaches for biomass estimation and;
Section 10: presents conclusions, recommendations and the need for future work.

The review concludes by highlighting the best practices within the geo-spatial methods, presenting
conclusions and providing recommendations. Figure 2 demonstrates the work methodology of
the review.
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Figure 2. Workflow of the review process.

The study starts by performing a quick textual search on Google Scholar, in order to identify
statistically relevant temporal patterns of the use of terms such as ‘Carbon Sequestration’, ‘Carbon
Sequestration + Remote Sensing’ and ‘Carbon Sequestration + GIS’ in the literature. Statistical analysis
of the data revealed an exponential increase with time in the number of scientific studies on carbon
sequestration considering both RS and GIS in their methodology. This can be attributed to the
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increase in volume of available satellite imagery and the ease of access to their archives witnessed
over the last two decades. Furthermore, the introduction of GIS in the late eighties contributed
to this trend as well. A large number of articles (387,312) were retrieved when using the term:
‘Carbon Sequestration’ alone. Next, this number was reduced to only 811 articles after using search
keywords such as: “allometric equations”, “remote sensing variables”, “biophysical predictors”, “GIS”,
“Biomass”, “AGB”, “vegetation indices”, and “mapping”. These searches were then pared down by
initial reviewing of their abstract. The resulting final number was 156 articles, which were used for the
preparation of this comprehensive review, considering that all reviewed articles were published in
peer-reviewed journals.

2. Traditional Methods in Biomass Estimation

Plant biomass can be measured or estimated by both direct (destructive) and indirect
(nondestructive) methods. Direct methods are the most accurate for determining biomass and
assessing CS. This is done through destructively harvesting all plants, separating each into various
constituent components (e.g., stem, branches, leaves, flowers, fruits, roots) and, subsequently, either
determining the carbon content of the various components analytically or calculating this as a fraction
of measured biomass (indirect) [34]. However, the destructive methods of biomass estimation are
limited to a small area due to their destructive nature as well as the time, expense and labor involved.
Besides, the direct methods ultimately rely on ground measurements and can result in damage to the
forests, with associated environmental consequences [17,35]. The indirect methods include estimation
based on allometric equations (Section 2.1) or methods that use RS/GIS-based integrated models
(Sections: 4 onward).

As mentioned in Section 1 above, terrestrial carbon is calculated considering the following five
components: (1) AGB; (2) BGB; (3) Litter; (4) Debris; and (5) Soil Organic Carbon (SOC) [18,21]. It is
estimated as the sum of two quantities representing the amounts of carbon in biomass and in soil
respectively. The first involves estimating vegetation biomass by calculating the AGB and using it
to derive the remaining components, i.e., BGB, Litter and Debris, as shown in Table 1. The second
involves estimating SOC, which is part of the SOM. As mentioned above, AGB accounts for 30%
of the total terrestrial ecosystems carbon pool which, in turn, represents 70–90% of the total forest
biomass [24]. Moreover, estimates of AGB can also be used to predict root biomass (BGB), which is
generally estimated at 20% of the AGB based on the predictive relationship applied by many studies
(Table 1) [24,36,37]. In addition, carbon stocks of dead wood or litter (e.g., felled or dead trees, dead or
broken branches, leaves, etc.) in mature forests are generally assumed to be equivalent to 10 to 20%
of the calculated AGB [18,38]. As for SOM, it is most commonly estimated through soil sampling at
various layers; SOC is then estimated using the total combustion method, as explained in Walkley
and Black [39]. The content of SOC included in SOM may change depending on many factors such as
ecosystem, type of organic residues and land management. Many studies estimate SOC from SOM
using the common factor of 1.724 (~58% of SOM). While this figure has been widely used in the last
century, Brady and Weil [40] concluded that it probably applied only to highly stabilized humus.
After conducting a statistical analysis of 481 studies, Pribyl [41] found that common conversion factor
varied from 1.35 to 7.50, with a mean of 2.20. They concluded that applying a single conversion factor
universally, had the potential for a serious error when used to estimate the carbon content of soils.
However, recent studies have accepted a generic, quick, simple and inexpensive coefficient of 57% to
estimate SOC from SOM [42].
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Table 1. Calculation methods of stored carbon components in terrestrial ecosystems.

No Component Calculation Method Source

1 AGB Destructive OR Nondestructive Methods [18]
2 BGB 20% of Above-ground biomass [24]
3 Litters 10–20% of Above-ground biomass each [38]
4 Debris
5 SOC Total combustion method [39]

2.1. Allometric Equations

Allometric equations were developed to avoid destructing forests when estimating their biomass
(Table 2). In general, an allometric equation is a statistical model to estimate the biomass of the
trees using their biometrical characteristics (e.g., height, diameter at breast height (DBH) or crown
size), which are easy and simple to measure [43]. The proportions between the tree height and
diameter, between crown height and diameter, and between biomass and diameter, follow rules that are
common to all trees grown under the same conditions; these become more useful in uniform forests or
plantations with similarly aged stands [25]. The selection of appropriate and robust models, therefore,
has considerable influence on the accuracy of the obtained estimates [44]. As mentioned above the
aim of using allometric equations is to estimate biomass without the need to cut trees. However,
these equations are based on the destructive sampling of vegetation in a given location, before they
can be applied generally. In order for those equations to be validated, cutting and weighting tree
components is necessary [45]. The number of trees destructively sampled to build allometric equations
differs from one study to another. Currently, there is no consensus on that number, as this is often
dependent on resource availability and permission to harvest trees [34]. For example, Russell [46] and
Deans et al. [47] used 15 and 14 trees, while Brown et al. [48] and Khalid et al. [49] used only 8 and
10 trees, respectively to build their allometric equations. However, a recent study showed that small
sample size (≤10) results in biased allometric equations [50].

Many allometric equations have been developed for various plant species. For example,
the GlobeAllomeTree database contains over 706 equations from Europe, 2843 from North America
and 1058 from Africa [51]. Some of these are volume equations, and the others are biomass equations.
One of the limitations of volume equations is that they can only be applied to stems, while biomass
equations cover a wide range of vegetation components [52]. Allometric models can be developed
for either individual or multiple species (a mixture of species) to represent a community or bioregion.
They also can be developed to cover specific sites, regional or pan-tropical scales [34,44]. Only a
few biomass assessment equations are available for plant species in desert or arid land ecosystems.
The multispecies equations are developed due to the challenges involved in developing allometric
equations for all species present in the ecosystem [13]. Chave et al. [53] have shown that one hectare of
a tropical forest may shelter as many as 300 different tree species. Hence, the multispecies allometric
models are more methodologically efficient for biomass estimation compared to those developed for
individual species at specific locations. However, these models carry the potentiality to misrepresent
local, species- or community-specific variations and anomalies. Therefore, they may fail to capture
variations in both forest type and the full diversity of the natural vegetation communities hence
leading to an increased level of uncertainty [44]. Hence, a tailored equation for each specific species
is needed for a better accuracy in estimating the biomass. Nevertheless, such an equation will still
be conditioned by the ecological zone based on which it had been built. In their review of allometric
equations in Asia, Yuen et al. [34] concluded that applying the existing allometric equations for the sake
of convenience can potentially be a key source of uncertainty in above- and below-ground carbon stock
estimates in many Asian landscapes. Site and species-specific allometric models could provide a higher
level of accuracy at a given location to assist with the assessment of biomass carbon sequestration.
This will make the locally developed equation a better option allowing to produce a more accurate and
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site-specific biomass estimation [35]. Since the choice of the equation is the first critical step in this
process, there has been a rapid increase in efforts to develop locally appropriate equations [51].

Most equations for AGB or biomass of any component (stem, branch, leaves, other) consider
the diameter and/or height as the independent variables. In their study to investigate the allometric
equations in China, Cheng et al. [52] found that the most frequently used predictive variable in
single-variable models was the DBH, and those in two-variable models were DBH and tree height while
wood density and CD were used in more complex models. They found that diameter variables had a
dominant proportion of 87.4% of the surveyed equations. However, DBH showed a weak correlation
with biomass quantity in certain species, such as palm trees [54,55]. Age can be used as a predictor for
biomass estimation in many studies since there is a linear correlation between biomass accumulation
and age [15,56]. Many studies have highlighted the importance of tree height as a predictor variable
in the AGB equation [16,17,23,43]. The use of crown variables as indicators for biomass estimation
became of more interest lately due to the developments in RS technologies. A single plant species
can have more than one allometric equation, e.g., palm species (Table 2). More recently, allometric
equations have been coupled with RS and field-based structural variables measurements [23,57–59].
Furthermore, Cheng et al. [52] recommended developing more equations with different field structural
variables that can be linked to RS predictors. Likewise, Jucker et al. [60] suggested developing a
new generation of allometric equations that could estimate biomass based on attributes which can be
remotely sensed.

Table 2. Examples of several allometric equations developed for a single plant species.

Output Variable Allometric Equations Input Variable Location Source

AGB of palms (general) =1.697 × 10−3
× DBH1.754

× H2.151 DBH and H Colombia and
Venezuela [61]

Biomass of palms
(general)

=10.0 + 6.4 × H
=4.5 + 7.7 × Ht H and Ht Tropical forests [2]

AGB of Elaeis guineensis =725 + 197 × H H Malaysia [49]

AGB of A. inexicanwn =0.3060 × DBH1.837
× 1.035 DBH Mexico [62]

Biomass of
Elaeis guineensis

=−0.00020823Age4

+ 0.000153744Age3 − 0.011636Age2

+ 7.3219Age − 6.3934
Age Malaysia [56]

AGBfresh of
Elaeis guineensis =1.5729 × Ht − 8.2835 Ht West Africa [63]

AGBdry of
Elaeis guineensis =0.3747 × Ht + 3.6334

Trunk biomass of
E.guineensis =0.1 π × TD × H × (DBH/2)2 H, TD, DBH, W, D,

and Age
Tropical region [64]

Frond biomass of
E.guineensis =0.02 ×W × D + 0.21

AGB of Elaeis guineensis =0.976 × H + 0.0706 H Indonesia [65]

AGB of Euterpe precatoria =13.59 × H − 108.8 H Amazonia [66]

AGB of palm (general) =0.0950 × (DF × DBH2
× H) DF, DBH, and H Amazonia [66]

AGB of Euterpe precatoria =0.167 × (DBH2
× H × TD)0.883 DBH, H, and TD Amazonia [67]

AGB of Areca catechu =0.03883 × H × DBH1.2 DBH and H Malaysia [16]

AGB of Cocos nucifera =3.7964 × H1.8130 H Tanzania [68]

Crown biomass of
P. dactylifera =14.034e0.0554 × CA Crown area Abu Dhabi, UAE [58]

Trunk biomass of
P. dactylifera =40.725 × Ht0.9719 Ht Abu Dhabi, UAE [58]

DBH is diameter at breast height, H is palm height, Ht is trunk height, TD is trunk density, W is frond width, D is
frond depth, and DF is the dry to fresh weight ratio.
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3. Geo-Spatial Approach for Estimating AGB

Ground-based methods for forest AGB estimation and carbon stock are generally based on plots,
forest inventory, and monitoring methods that use allometric equations developed from destructive
methods and in situ measurements [10,69]. As shown above, the biomass estimates derived from
field data measurements were found to be the most accurate; however, it is not a practical approach
for broad-scale assessments and not adequate enough to be used for mapping biomass estimation
distribution at a regional scale. On the other hand, RS and related technologies have shown to be
practical and cost/time-effective. RS can provide data over large areas at a fraction of the cost associated
with extensive field works and enables assessment of inaccessible places. Data from RS satellites
are available at various scales, from local to global, and from several different platforms. There are
also different types of sensors both passive, such as optical and thermal RS sensors, and active,
such as Radar and Light Detection and Ranging (LiDAR) sensors, with each having its advantages
and disadvantages [22]. Likewise, GIS is a platform hosting spatial databases capable of assembling
and integrating geographically referenced data, running spatial analysis, integrating various types
and formats of spatial data, building spatial models enabling the prediction of future scenarios,
and allowing for proper management of forests [70–72].

Our findings confirm the increase in scientific studies incorporating RS in their methodologies
for carbon sequestration estimation during the study period. Remote sensing was widely used to
collect information regarding forest AGB and vegetation structure, as well as to monitor and map
vegetation biomass and productivity at a large scale [73–76]. As explained in the introduction section,
the final number of articles used in the preparation of this comprehensive review was reduced to only
156 peer-reviewed articles (Figure 3).

Statistical analysis of the data retrieved reveals that three quarters of the studies used optical
sensors (with different spatial resolutions) in their experimental sections while, the remaining used
active sensors (almost equally divided between Radar and LiDAR sensors) (Figure 4). For optical
sensors, half of the studies used coarse spatial resolution (>100 m) such as MODIS and SPOT VEG
sensors. Around one third of the studies that used optical sensors estimated the biomass using
moderate spatial resolution (~10–100 m) sensors such as: Landsat, Sentinel, IRS, and SPOT sensors,
while around 20% of the studies used fine spatial resolution data (sub-meter to 5 m) such as IKONOS,
Quickbird and World View sensors (Table 3).

Statistical results further showed that the number of studies that estimate AGB at plant species
levels, instead of forests in general or mixed species, was increasing. Many plant species are not
separable targets using RS because they are indistinguishable from other plants due to their spectral
similarities. Hence, resolution concerns such as high spatial resolution (e.g., IKONOS) and high spectral
resolution (e.g., hyperspectral) should be taken into account as they help resolve such ambiguities and
play essential roles in the quality of the resulting maps [63]. Hyperspectral sensors showed plausible
classification accuracies in mapping major forest species and predicting the susceptible areas of fruit
malformation. Hebbar et al. [77] used LISS-IV data to classify fruit trees and found that old and mature
plantations were classified more accurately while young and recently planted ones (3 years or less)
showed poor classification accuracy due to the mixed spectral signature, wider spacing and poor
stands of plantations.
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Table 3. Specifications of the remote sensing (RS) optical sensors most commonly used for above-ground
biomass (AGB) estimation.

Sensor Type Bands Spatial
Resolution (m)

Temporal
Resolution

Swath
(km) Cost

AVHRR Multispectral 5 bands (Red, IR,
and 3 Thermal IR) 1100 12 h 2500 Free

MODIS Multispectral 36 bands (from Blue
to Thermal IR) 250, 500 and 1000 1–2 days 2330 Free

SPOT VEG Multispectral 4 bands (Blue, red,
NIR, and SWIR) 1000 1 day 2250 Free

TM Multispectral 7 bands (3 VIS, 3 IR
and Thermal IR) 30 and 120 16 days 185 Free

ETM+ Multispectral
9 bands (3 VIS, 3 IR

and 2 Thermal IR and
1 PAN)

15, 30 and 60 16 days 185 Free

SPOT Multispectral 4 bands (2 VIS, 1 NIR,
and 1 PAN) 5, 10 and 20 26 days 60 Commercial

Landsat 8
OLI Multispectral

11 bands (1 Ultra,
3 VIS, 3 IR, 1 Cirrus,

2 Thermal IR,
and 1 PAN)

15, 30 and 100 16 days 185 Free

LISS-III (IRS) Multispectral 5 bands (2 VIS, 2 IR,
and 1 PAN) 5.3, 23 and 50 5–24 days 142 Commercial

Sentinel-2 Multispectral 13 bands (4 VIS, 6 NIR
and 3 SWIR) 10, 20, and 60 5–10 days 290 Free

IKONOS Multispectral 5 bands (3 VIS, 1 IR,
and 1 PAN) 1 and 4 3 days 11 Commercial

World View2 Multispectral 9 bands (6 VIS, 2 IR,
1 PAN) 1.84 and 0.46 1.1 days 16 Commercial

Quickbird Multispectral 5 bands (4 bands
and 1 PAN) 0.61 and 2.44 3 days 16 Commercial

HyMap Hyperspectral 126 bands 2–10 Airborne 2.3 and 4.6 Commercial

AVIRIS Hyperspectral 224 bands (from VIS
to MIR) 2.5 to 20 Airborne 1.9 and 11 Commercial

Accurate image classification relies on the successful extraction of pure spectral signature for
each species, which is often dictated by the spatial resolution of the observing sensor and the
timing of observation [78]. Bryceson [79] used the habitat type, condition and soil type as the
delineating parameters to locate Chortoicetes terminifera (Australian plague locust) by using Landsat-5
multispectral scanner data. Anderson et al. [80] mapped Ericameria austrotexana infestation in a large
homogenous area using Landsat TM imagery. The spectral radiances in the red and near-infrared
regions, in addition to others, were used for vegetation mapping by RS technology. The spectral
signatures of photosynthetically and nonphotosynthetically active vegetation showed noticeable
differences and could be utilized to estimate forage quantity and quality of grass prairies [78].
Moreover, discrimination of vegetation species from single imagery is only achievable where a
combination of leaf chemistry, structure and moisture content culminates to form a unique spectral
signature. As the detection and estimation of biomass are sensed from space, the crown biomass
component has gained prominence in the majority of the relevant studies [52,60,81–85]. The unique
pattern of crown palm plantations makes them easily distinguishable from other trees on satellite
imagery [86]. Figure 5 shows the proportion of utilizing different sensors with different number of
bands and costs for the estimation of the biomass and carbon sequestered. It is worth mentioning that
most of these studies were conducted on boreal and tropical forests with a small portion conducted on
arid regions (around 10%). This could be due to the early availability of geo-spatial technologies in the
developed northern countries (boreal forests) and the relative importance of the tropical rainforests to
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the global carbon cycle (Figure 5). Nowadays, RS data are widely available for a fraction of their cost
only a decade ago. For example, archived and recent Landsat imageries are available and are freely
downloadable from the USGS website, providing a globally consistent record of archived imageries
since 1972; other resources are being continuously published and added to the internet.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 31 
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4. RS-Based Methods

To explore the potential of RS-based methods to provide biomass information in different
environments, various techniques and sensors have been used and tested in numerous studies.
Optical, RADAR and LiDAR data have been extensively used to estimate AGB with a variety of
methods [10]. AGB studies using geo-spatial technologies can be aggregated according to the
level of the methodological complexity to several tiers including different levels of detail and
accuracy. The Intergovernmental Panel on Climate Change (IPCC) proposed three tiers: Tier-1,
Tier-2, and Tier-3 [18,87,88]. Tier-1 is the basic method based on the generalized equation or the
‘biome average’ approach. It is the simplest level using the globally available data and provides
a rough approximation of biomass, and hence carbon stock, and could be used as a starting point
for decision-makers; however, it can provide inaccurate results with a high level of uncertainty [18].
Tier-1 is considered as a generalized equation for the ecological zones, and is typically used when no
species-specific equations exist [87]. Tier-2 is an intermediate level that is based on the volume equation
and wood density. It is used when species-specific volume equations exist, and woody density for the
specific plant species is available. The volume is then converted to biomass using wood density and a
default biomass expansion factor (BEF) (see Section 3) [21,87]. Finally, Tier-3, the most demanding in
terms of complexity and data requirements, is based on using a species-specific biomass equation to
calculate either total or partial biomass. Partial biomass is obtained by adding up the biomass estimates
obtained from the species-specific equations for the different compartments. Tier-2 and Tier-3 levels
are more dependent on ground-based measurements of the tree (i.e., DBH and height) and building
the predictive relationships (allometric equations) [18]. This makes these two levels more expensive to
implement than Tier-1. It is worth noting here that the precision for a given species generally increases
with the increase in the Tier number [87].

A geo-spatial approach is widely used to collect information regarding forest AGB and vegetation
structure as well as to monitor and map vegetation biomass and productivity at large scales [73–76].
For mapping vegetation using RS data, a multistep process is usually applied. The first step involves
image preprocessing and aims at enhancing the quality of original images. For example, satellite
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data with moderate spatial resolution (such as Landsat) offers plausible results after using specific
techniques such as pan-sharpening or fusion techniques, and integration with other RS sources (fine
spatial resolution data or active sensors). A panchromatic band with 15 m spatial resolution that
can be used to pan-sharpen other bands and hence increase their interpretability, has been added to
Landsat’s multispectral sensors [89,90]. Previous studies showed that such use of the panchromatic
band helped achieve dramatic improvements (15%) in classification accuracies [91]. The second step
involves determining the level of vegetation classification (at community or species level). The third
step determines the correlation between the vegetation types and spectral characteristics of remotely
sensed imagery. Vegetation data is identified by interpreting satellite images based on the elements
such as image color, texture, tone, pattern and association information. Lastly, the final step includes
translating the spectral classes into vegetation types by assigning each pixel of the scene to one of the
vegetation groups defined in the vegetation classification system selected in the second step.

Classification methods are broadly based on the pixel-based classification (PBC) approach or
the object-oriented based classification (OOC) approach. Both methods have their advantages and
disadvantages depending on their areas of applications, and most importantly, the RS datasets that are
used for information extraction [92]. OOC methods group several pixels with homogeneous properties
into an object/objects instead of pixels, which are considered as the basic unit for analysis, while PBC
approaches are based on combining reflectance pixel values into separated spectral clusters [93,94].

AGB and hence CS can be estimated from different RS data types using various approaches
(Figure 6). Landsat series (i.e., TM, ETM+, OLI) have been historically used to map biomass and carbon
in a variety of ecosystems, due to the relevance of their spectral bands, the continuity of the program,
and the suitability of the 30 m spatial resolution for regional mapping [10]. Although biomass cannot
be directly measured from space, the use of spectrally-derived parameters from sensor reflectance
(bands), including vegetation indices (VIs) that were created to improve prediction accuracy, enables
increased biomass prediction accuracy when combined with field-based measurements [95].

RS data have been correlated with plot-based field measurements to estimate carbon stocks.
In general, RS data are empirically linked to AGB measurements of field plots using different regression
analyses and algorithms [96]. There are many methods of image analysis that can be integrated to
achieve a better accuracy. Algorithm development and implementation is an important subject in
studies estimating biomass [25]. The advanced machine learning algorithms methods and/or other
state-of-the-art processing techniques can reveal important information about the spatial and temporal
biomass patterns by determining relationships between field measurements and RS data, especially
over large areas [25]. To determine the relationship between above-ground field biomass and RS
data, researchers have used linear regression models with or without log transformations of field
biomass data, and multiple regressions with or without stepwise selection [97,98]. Artificial neural
networks [99], semi-empirical models [99], nonlinear regression [100], and nonparametric estimation
techniques (e.g., k-nearest neighbor and k-means clustering) have also been used [30]. However,
few studies have investigated approaches other than the empirical relationship with spectral bands or
VIs [101]. One of these approaches is Monteith’s efficiency model for obtaining indirect estimates of
absorbed photosynthetically active radiation (APAR) from the red and IR reflectance characteristics of
the vegetation where APAR is used as an indication of how efficiently absorbed energy is converted to
dry biomass [102]. Rosema et al. [103] used a simulation of vegetation development from daily total
evapotranspiration with the in/out radiation of METESTAT in order to estimate the herbaceous biomass
in savannah grassland in Sahel countries. Other studies used canopy functioning process-based models
coupled with physical radiative transfer models to estimate biomass production from RS data [104].
Fourier transform textural ordination (FOTO) was used by Morel et al. [105] with SPOT5 data for
estimation AGB in Thailand with the R-value equal to 0.83.

Regression, ordinary kriging, co-kriging, and stepwise linear regression have been used in various
studies and it was found that the combination of RS and geo-statistics can improve the accuracy of
biomass estimates more than the use stepwise linear regression only [106]. Extensive field knowledge
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and expert knowledge may help improve classification accuracy. Studies have shown that classification
accuracy can be greatly improved after applying expert knowledge (empirical rules) and ancillary data
to extract thematic features (e.g., vegetation groups) [78]. Fieldwork is the foundation for RS technology
allowing to extend limited vegetation information to large scale predictions [107]. This direct mapping
approach is more accurate at depicting variations in biomass across the landscape, making it easier to
update the maps as needed [108].
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5. Biophysical Predictors

The biophysical predictors of the vegetation growth need to be considered in RS studies due to the
different rates of growth of various part of vegetation [109]. These predictors can be detected by remote
sensors and are manifested through shadow, roughness, and spectral response [110]. RS variables
measured and correlated with biomass quantification include the spectral reflectance of vegetation
as the spectral properties of AGB obtained by the sensors have unique signature correlated with
chlorophyll content in the plants [30]. The signals are sensitive to AGB structure and influenced
by density, shadow, texture, soil moisture and roughness [101]. RS variables are correlated to the
biophysical predictors in order to estimate AGB and the total biomass. The biophysical predictors used
for estimating biomass include leaf area index (LAI), chlorophyll content, leaf nutrient concentration,
crown measurements (crown area and crown diameter (CD)), height, DBH, stand basal area and
greenness of canopy. All of these predictors are traditionally used to estimate biomass, but only some
are applicable for RS based estimation (Figure 7).

Xiaoming et al. [111] observed a robust logarithmic correlation between LAI and AGB. LAI can be
defined as the area of one-sided leaf tissue per unit ground and measures the density of the leaves
surface in a canopy. Ten et al. [112] estimated LAI of oil palm in Malaysia using UK-DMC2 and
ALOS POLSAR. They concluded that an increase in the LAI shows a proportional increase in the
spectral reflectivity or Normalized Difference Vegetation Index (NDVI) during the initial growth
stage; however, it presents little to no increase once it attains the full canopy cover due to sensor
saturation. The ability of hyperspectral RS to collect reflectance in many narrow bands makes it
particularly useful for extracting vegetation parameters, such as LAI, chlorophyll content, and leaf
nutrient concentration [113]. Large scale photographs have been used to measure various forest
characteristics, such as tree height, CD, crown closure, and stand area [81]. In their study on the indirect
estimation of biomass, Popescu et al. [84] used RS data to determine tree canopy parameters, such as
CD, using multiple regression analysis and canopy reflectance models. The area of the crown can be
measured by satellite imageries and, thus, provide biomass estimation. Suganuam et al. [114] found
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that medium-resolution or more detailed spatial resolution data could be used for the crown coverage.
Crown projection area (CPA), which is the canopy area that is covered by an individual tree, can be
calculated by delineating trees using object-based image analysis [109,110]. Greenberg et al. [115] have
effectively used IKONOS data (spatial resolution 4 m) for estimating crown projected area, DBH and
stem density. Song et al. [85] estimated tree crown size from IKONOS and Quickbird images and
concluded that this approach could provide estimates of average tree crown size for hardwood stands.

Height information of a tree can be retrieved using various approaches of RS, e.g., LiDAR
and Radar. Height has been shown to be a potentially successful indicator for age in oil palms,
for example, and it is widely used in estimating forest biomass [109]. Radar backscatters (P and
L bands) are positively correlated not only with tree height and age but also with other major
biophysical forest parameters such as DBH, basal area, and total AGB [22]. LiDAR sensor can directly
measure three-dimensional (3D) components of vegetation canopy structure and is widely used in
the estimation of forest biophysical parameters. LiDAR data are used for biomass estimation for
different forest environments: tropical forest biomass, temperate mixed deciduous forest biomass,
and in measurements of biophysical parameters such as tree height and stand volume, tree and CD,
and canopy structure. The two-dimensional data (2D) have limitations in estimating vertical vegetation
structures such as canopy height, which is one of the critical biophysical parameters for biomass
estimation. Recently, optical data such as ALOS, panchromatic RS instrument for stereo mapping
(PRISM), IKONOS stereo satellite images, and SPOT have been used to provide a stereo viewing
capability that can be used to develop vegetation canopy height, thus improving biomass estimation
performance [116]. St-Onge et al. [116] assessed the accuracy of the forest height and biomass estimates
derived from an IKONOS stereo pair and a LiDAR digital terrain model. Reinartz et al. [117] used SPOT
5 HRS for forest height estimations in Bavaria and Spain, while Wallerman et al. [118] investigated
3-D information derived from SPOT 5 stereo imagery to map forest variables such as tree height, stem
diameter and volume.
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6. Remote Sensing Variables

Vegetation index models are generally used to estimate biomass in many studies [98] (Figure 8).
VIs are calculated from mathematical transformations of the original spectral reflectance data and can
be used to interpret land vegetation cover [119]. VIs are applied to remove the variations caused by
spectral reflectance measurements while also measuring the biophysical properties that result from the
soil background, sun view angles, and atmospheric conditions [30]. The notion of VI is well adapted for
quantifying vegetation over large areas, for example, over areas covering many pixels of an image [120].
VIs are quantitative measurements indicating the vigor of vegetation. They show better sensitivity
for the detection of biomass than individual spectral bands [120]. Previous studies have shown a
significant positive relationship between biomass and VIs [121]. In order to examine the relationship
between AGB and RS variables including individual band reflectance values and VIs, Günlü et al. [122]
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used Landsat TM in their study and found that VIs present better estimation of AGB in Anatolian pine
forests with R2 equal to 0.606, compared to individual band reflectance with R2 of 0.465.

AGB models could be developed using many available predictors, grouped into two distinct
categories: raw bands of the sensor as reflectance and VIs, including the simple ratio (SR), difference
vegetation index (DVI), NDVI, ratio vegetation index (RVI), global environmental monitoring index
(GEMI), soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI), tasseled cap index of
greenness (TCG), tasseled cap index of brightness (TCB), tasseled cap index of wetness (TCW), and many
others. All these indices can measure the presence and density of green vegetation, overall reflectance
(e.g., differentiating light from dark soils), soil moisture content, and vegetation density (structure).
Most VIs rely on red and IR bands, which are the raw bands present in earth observation satellites
and often contain more than 90% of the information related to vegetation [123–128]. Early studies
have shown that both the simple ratio (NIR/Red) and the NDVI were closely related to dry matter
accumulation [124]. The use of vegetation and other indices (e.g., NDVI, EVI, SAVI) are considered
as part of the classification method. The principle of applying NDVI, for example in vegetation
mapping, is that vegetation is highly reflective in the near infrared and highly absorptive in the visible
red. The contrast between these channels can be used as an indicator of the vegetation status [78].
Sonnenschein et al. [129] used NDVI, SAVI and TCG from Landsat imageries for forests mapping in
Greece. In a study conducted in Saudi Arabia, Aly et al. [130] found that NDVI images of Landsat
could be classified into three classes of vegetation cover in arid regions, namely dense vegetation cover
(NDVI > 0.5), moderate vegetation cover (NDVI 0.25–0.5), and sparse vegetation cover (NDVI < 0.25).

The ability of VIs to separate the vegetation from its background varies from one ecoregion to
another, and from one plant species to another. VIs commonly used to estimate biophysical variables
such LAI, APAR and biomass include NDVI, EVI, and SAVI [22]. NDVI is a prominent and frequently
used index with different spatial resolutions of the optical sensors (Figure 8). Thenkabail et al. [63]
implemented a regression model using NDVI and optical band reflectance 3 and 4 of IKONOS for
estimation of AGB for oil palm in Africa, with 64–72% accuracy. Morel et al. [105] found that the
Normalized Difference Fraction Index (NDFI) of Landsat ETM+ data performs better when estimating
AGB for oil palm in Malaysia with R-value equal to 0.8. Srestasathiern and Rakwatin [131] found that
the best performing VI to separate oil palms from its background was the Normalized Difference Index
(NDI), which is a normalized ratio of green to the red band, and displays the highest discriminating
power using a histogram dissimilarity metrics. Nevertheless, these results could not be generalized
as all VIs must be tested. Zhao et al. [132] examined specific spectral bands of Landsat and their
relationships with AGB in the Zhejiang province of Eastern China. They found that, when the
forest stand structure is complex, VIs including shortwave infrared spectral bands (SWIR) had a
higher correlation with AGB than others. However, the VIs including near-infrared wavelength (NIR)
improved correlations with AGB in relatively simple forest stand structures. VIs can maximize the
sensitivity for recording the green vegetation situation [122]. The choice of adequately performing VIs
depends on the type of ecosystem, the environmental conditions and the spectral information available.
In their study on forests in Bogotá, Colombia, Clerici et al. [10] estimated AGB and found that the best
performing AGB estimation model was based on the RVI, with R2 equal to 0.582. They also found that
atmospheric and topographic correction was vital in improving model fit, especially in high aerosol
and rugged terrain.

However, some studies had shown poor relationship between biomass and VIs compared with
using raw bands [133]. Singh et al. [134] used two optical sensors (Landsat TM and SPOT 5) to assess
their efficacy and evaluate disparities in forest composition and AGB in Sabah, Malaysia. They found
that NDVI derived from SPOT 5 could distinguish between pristine forests and oil palm plantations.
In fact, the reflectance values of bands 3 (red sensitive) and 4 (near infrared sensitive) of Landsat were
strongly correlated with the field-based AGB values while both VIs derived from Landsat TM and
SPOT 5 (such as NDVI) were weakly correlated with the field-based AGB values. The data saturation
problem in Landsat imagery is well recognized and is regarded as an important factor resulting in
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inaccurate forest AGB estimation, especially when AGB is high (>130 Mg·ha−1) and when the forest
structure is heterogenous [132]. In a study to estimate total living biomass of Miombo woodlands of
Tanzania, Gizachew et al. [135] found no clear evidence of data spectral saturation at higher biomass
value in open canopy woodlands. They suggested that Landsat 8 OLI derived NDVI could be used as
suitable auxiliary information for carbon monitoring in the context of the REDD+ program.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 31 
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7. RS-GIS Integrated Models

GIS is usually employed to process model inputs and to visualize results [70]. However, building
GIS-based models to predict future scenarios for forest management and the implementation of
afforestation plans is another, more valuable product. In RS-GIS integrated models, RS data are used
as input to the GIS model; where GIS act as a platform for data layering and database building in
order to perform spatial data analysis and map creation. This not only saves time, but also allows for
faster and better communication between research centers across the globe [70]. The use of geo-spatial
modeling to study the current state of carbon sequestration and its future dynamics is a promising
technique; it has the potential ability to tackle the ecological assessment problems [136]. Furthermore,
as mentioned above, the integration of RS data into GIS models enables adding ancillary and field
data (soil, climate, topography, etc.), in the analysis and increasing reliability in estimating AGB.
For example, there are different GIS-based AGB estimation models that integrate other data models
such as: digital terrain model (DTM), rainfall models, canopy height models, atmospheric scattering
models, biomass production models, grazing models, 3D forest structure models and regression
models [70,115,137–149]. An integrated classification approach, coupled with GIS analysis, has been
employed successfully to improve land use and land cover (LULC), forest, and biomass mapping for



Remote Sens. 2020, 12, 2008 17 of 32

Landsat data [71]. Results show that an integration of RS and spatial analysis functions in GIS can
increase the overall classification accuracy from 50.12% to 74.38% [93]. Furthermore, the integration of
more than one sensor and the introduction of GIS-based models are becoming more common, used in
around 12.3% and 12.8% of the reviewed studies, respectively. Indeed, we found more than 46 studies
that used these two approaches together [150].

8. Arid Lands Case Studies with Challenges and Opportunities

Arid lands, defined as regions where annual potential evapotranspiration substantially exceeds
precipitation, are critically important to society, yet exceptionally vulnerable to climate change [151].
Arid lands make up to 40% of the Earth’s land surface and provide ecosystem services to more than two
billion people, including supporting significant crop production and forage for wildlife and domestic
livestock [3].

RS images can reduce the complexity of fieldwork by collecting quantitative and qualitative
information at regular intervals and enabling the mapping of inaccessible places, as is the case in most
arid regions [140,142,152–166]. In their review, Eisfelder et al. [101] stated that RS studies of vegetation
in arid regions are scarce, and additional methodological research is needed to address the specific
challenges faced by RS techniques in these environments. In our review, out of the 156 reviewed
studies conducted from 1984 to 2019 to estimate AGB, only 12 studies were conducted in arid lands
and another 21 studies in semiarid ecosystems (more than a third of these studies were conducted
in Niger and Senegal). Figure 9 shows the proportions of RS-based AGB estimation studies in arid
and semi-arid regions taking into account the proportion of reviewed studies, sensors used and their
spatial resolutions, the use of GIS tools and locations of the studies (Figure 9).
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As mentioned above, monitoring the spatiotemporal dynamics of arid lands ecosystem structure
and function is therefore a high research priority. Although the methods detailing vegetation cover
mapping and estimation integrating RS and GIS are well developed, research on RS-based biomass
estimation for arid lands is relatively scarce compared to other ecosystems (tropical, subtropical,
temperate and boreal forests) [101]. Very few biomass measurements are available for plant species in
desert ecosystems. Although biomass per unit area is normally low in those regions, the vast extent of
the Earth’s arid lands gives it a significant role as a carbon pool and for the supply of essential ecosystem
services [167]. Studies showed a strong link between desertification and emission of CO2 from soil and
vegetation to the atmosphere [168]. Desertification, and degradation of soils and vegetation in arid
lands resulting from climatic and anthropogenic factors, affects more than one billion hectares of soils
and more than 2.5 billion hectares of rangelands globally. Furthermore, an alarming estimate of six
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billion hectares of land is affected by desertification per year [168]. Lal [168] in his study, concluded
that the total world historic loss of carbon due to desertification in the period between 1850 and 1998
was in the order of 19–29 Pg, an amount that could have been sequestered. Information on biomass
helps to quantify the resilience of arid land systems and is thus essential for sustainable land-use
management [146]. Hence, suitable methods to map biomass in arid land regions still need to be
developed [163].

If plant species are very scattered, which is the case for most arid lands ecosystems, where
vegetation is characterized by its patchiness pattern, the background reflection is mostly related to the
soil. Hence, the selection of sites must be characterized by their relatively high density of plant species
under study in order to reduce the background effects as much as possible. In addition, the selected
sites must be relatively large in area and be homogenous, to enable the extraction of real spectral
signature that represent the species to be mapped or to use a minimum number of field plots within
each pixel as well as to increase the spatial/spectral resolution of the sensors used [101].

Moreover, using satellite images to map and correlate biomass is only possible if the target
vegetation spectra are strong enough to be identified within the pixel [130,169,170]. This presents a
major challenge in the desert where vegetation is usually sparse, offering a small spectral target that
requires higher resolutions to be detected [171]. In the desert environment in China, Ren et al. [162]
estimated crop biomass of individual components (e.g., leaves, stems) for the whole season using red
edge reflectance of hyperspectral data. Optical RS probably provides the best alternative to biomass
estimation using remote sensors due to its historic global coverage, repetitiveness and cost-effectiveness
and thus is useful and operational in dry lands. Such regions can be found in most of the low-income
developing or least developed countries. Zandler et al. [167] used Landsat 8 OLI in the arid regions
of Tajikistan to model total biomass in extremely low vegetation cover. The coverage of the SWIR
spectral region showed the importance in detecting shrubs or nonphotosynthetic vegetation. To deal
with soil brightness, the study used additional soil adjusted VIs variations such as SAVI, transformed
soil-adjusted vegetation index (TSAVI), and modified soil-adjusted vegetation index (MSAVI) as VIs
suffer from various soil effects, especially when vegetation cover is low. The study indicated that
biomass quantification in this arid setting is feasible but is subject to large uncertainties. One of
the main challenges is the extreme aridity and the associated strong influence of soil background.
Another challenge is the fact that large parts of arid or desert plants consist of nonphotosynthetic,
woody matter and hence the photosynthetic signal, captured by most spectral bands and indices, may
be low in relation to the biomass amount.

In order to overcome the limitations of current remote sensing techniques, especially in arid
lands, we recommend: (1) Exploring novel combinations of sensors and techniques (e.g., solar-induced
fluorescence, thermal, microwave, hyperspectral, and LiDAR) across a range of spatiotemporal scales to
gain new insights into arid land ecosystems’ dynamics; (2) utilizing near-continuous observations from
new-and-improved satellites to capture the subtle variations of arid land ecosystems; (3) developing
algorithms that are specifically designed to meet arid land ecosystems conditions and coupling remote
sensing observations with process-based models to improve our understanding of the arid land
ecosystem dynamics and for long-term projections.

9. Merits, Gaps, Limitations and Accuracy of the Geo-Spatial Methods

Although RS has proven to be efficient in saving time and money, this technology cannot achieve
its goal without additional field and data measurements [13]. Nevertheless, the amount of fieldwork
required when using RS is significantly reduced. This should not lead to the rejection of the traditional
methods for AGB estimation, but allow instead for using the advantages of geo-spatial technologies
methods to accelerate and enhance existing methods through process integration and modeling [88].
Geo-spatial technologies can be a modern alternative to traditional methods in estimating AGB and will
continue to be further developed; however, they do not come without their limitations and drawbacks.
Despite the successful application of various sensors in AGB estimation, there are challenges related to
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acquisition costs, area coverage (swath width), and limited availability. Selecting the “right” sensor is
associated with the specific data availability of the area under study, project budget, technical skill
requirements for data interpretation, and software packages. Table 4 summarizes the main limitations
and benefits of using different sensors in AGB estimation studies. The technology used in RS includes
satellites, aerial photography devices such as drones, computers and sensors which are all extremely
costly. The maintenance of this technology can also be costly, requiring specialized care and trained
professionals. Using computers to analyze the incoming data requires training and skills, such as being
able to read the GIS maps and make sense of the incoming RS imagery. The training of the scientists
involved in this discipline can be costly. Furthermore, with the constant development of technology,
the knowledge in applied remote sensing will continue to develop. This translates to GIS and RS
specialists needing to continually acquire the latest training and skills [172].

The optical imagery-based technologies are commonly used for biomass estimation due to high
correlations between spectral bands and biomass [132]. On the other hand, Carson et al. [173] found
that the Landsat TM and SPOT data with a ground resolution of 30 and 20 m, respectively, are not
considered useful for mapping at the species level unless the stand of an invasive species is large enough.
Due to the limitation of spatial resolution, Landsat products are usually used to map vegetation at the
community level. Using Landsat images for mapping at the species level is challenging, especially
in a heterogeneous environment. Although VIs, especially derived NDVI, can distinguish among
different vegetation, some studies found that the spectral variables were limited in their effectiveness in
differentiating between forest types, and in estimating their biomass. Spectrally, NDVI saturation could
lead to the underestimation of biomass carbon in certain places. In a study to derive spectrally modeled
AGB of coniferous forests of Western Himalaya, Wani et al. [96] attributed the underestimation of
biomass to the shadow effect resulting in decreased overall reflectance. Conversely, they referred
the overestimation of biomass in other locations of their study area to the mixing up of reflectance
contributed by soil and crown cover, leading to an increase in overall reflectance [96].

When using RS in ecological subjects such as assessing carbon stock, uncertainties are high due
to vegetation structural variations, heterogeneity of landscapes, species composition, soil properties,
climatic variables and seasonality, topographical variables, disproportionate data availability and
human activities. These uncertainties can have a great impact on biomass distribution and change
tendency [11,25,69,107]. Also, no RS sensor can measure forest carbon stock directly without additional
ground-based collection [18]. One of the widespread limitations of the vegetation mapping is that
the same vegetation type on the ground may have different spectral features in remotely sensed
images. Further, different vegetation types may possess similar spectra, which makes it very hard
to obtain accurate classification results. It is important to consider the biological traits of plants in
order to distinguish these from their surroundings and other vegetation covers. Characteristics of
these biological traits include (1) peak flowering, which is critical for timing imagery acquisition,
(2) plant pubescence, which affects the reflectance of visible light and infrared (early green-up or late
senescence), and (3) canopy architecture, which affects the brightness and darkness of image response.
Plants with biological characteristics that are readily distinguishable spectrally from the surrounding
vegetation can be detected by lower spectral resolution imagery. Forest biomass is continuously
affected by disturbance [174]; likewise, forest structure is also influenced by environmental conditions,
ecological processes of tree growth, mortality, and decomposition [76]. Comprehensive time-series
records are required to accurately monitor forest change in dynamic systems [175]. All these issues
must be considered when applying RS change detections studies.
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Table 4. A summary of limitations and benefits of Optical, RADAR, and LiDAR sensors used for
estimating the Above Ground Biomass (AGB) of standing forests.

Sensor Types Approaches/Resolutions Limitations Benefits

Optical Sensors

Coarse Resolution Spatial
(>100 m)
Examples: MODIS,
AVHRR, NOAA,
METEOSAT and
SPOT Vegetation

Average R value of 0.58, with average
predictive of 42%
Saturation of spectral data at high
biomass density
Mismatch between the size of field
plots, field measurements and pixel
size (mixed pixels)
Cloud cover
Limited to discriminating
vegetation structure

Availability of data with huge
datasets archived
Estimation and mapping of AGB
at continental and global scale
Repetitive, with high temporal
frequency increasing the
probability of acquiring
cloud-free data
Provide consistent spatial data

Medium Spatial Resolution
(10–100 m)
Examples: TM Landsat,
ETM+, OLI and SPOT

Average R value of 0.68 with average
predictive error of 32%
Single pixel can encompass many tree
crown or noncrown features
No reliable indicators of biomass in
closed canopy structure
Not all texture measures can
effectively extract
biomass information

Provide consistent global data
Archived datasets back to 1972
for Landsat
Small to large-scale mapping
Cost-effective (Free)

Fine Spatial Resolution
(<5 m)
Examples: Quickbird,
WorldView-2,
and IKONOS

Need large data storage and
processing time
High cost, and more costly when it
applies on large areas

Average R value of 0.75 and
average predictive error (27%)
Estimate tree crown size
Validation at localized scale

Hyperspectral
Many, very narrow,
and contiguous
spectral bands
Examples: AISA Eagle,
HYDICE and ALOS

Cloud cover
High cost
Suffers from band redundancy and
saturation in dense canopy
Computationally intensive and
technically demanding

Average R value of 0.83
Allows discrimination of subtler
differences (species level)
Potential for the future of
RS-based biomass
estimation models
Integration with LiDAR can
improve results.

RADAR Sensors

Approaches involve the
use of either backscatter
values or interferometry
techniques
Examples:
Microwave/radar i.e.,
ALOS PALSAR, ERS-1,
Envisat and JERS-1.

Not accurate in mountainous region
due to spurious relation between AGB
and backscatter values.
Signal saturation in mature forests at
various wavelengths (C, L and
P bands)
Polarization (e.g., HV and
VV) problems
Low spatial resolution makes it
inaccurate for AGB assessment at the
species level.
Cannot be applied on any vegetation
type without considering stand
characteristics and ground conditions.

Measure forest vertical structure
Generally free
Can be accurate for young and
sparse forests
Repetitive data
Can give an average R value of
0.74, with average predictive error
of 25%.
Integrating RADAR with multi
source data (optical, microwave
data and GIS modeling
techniques) is a
promising approach.

LiDAR Sensors

Using laser light
Spatial Resolution:
(0.5 cm–5 m)
Examples: Carbon 3D

Repetitive at high cost and
logistics deployment
Requires extensive field
data calibration
Highly expensive
Technically demanding

Penetrate cloud cover and canopy
Among all sensors option,
LiDAR is the easiest to use for the
extraction of tree attributes for
estimating AGB with
great accuracy
Accurate for estimating forest
biomass in all spatial variability
(sparse, young or mature forests)
- Average R value of 0.89, with
average predictive error equal 14%
- Potential for satellite-based
system to estimate global forest
carbon stock

Accuracy of predictions is often assessed using independent field plots or Lidar-based AGB
data. It is important to note that uncertainties arising from ingesting different data sources need
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to be carefully considered given the inconsistency in inventory methods including plot sizes and
survey techniques [176]. There are many limitations associated with low spatial resolutions data
(>80 m). One of these limitations is the mismatch between the size of field plot and pixel size
producing poor prediction’s accuracy of AGB due to mixed pixels [22,30]. This limitation is lowering
the average of determination coefficient (R2 value) to be 0.58, with an average predictive error equal
to 42% [177]. With moderate optical resolution data (10–80 m), the accuracy of estimation of AGB
is improved, averaging an R2 value of 0.68 and an average predictive error of AGB estimation of
32% [177]. The popularity of multispectral sensors urged researchers on AGB studies to apply advanced
techniques (such as pan sharpening or multiresolution merging) in order to improve the accuracy
of their estimates for large areas [178,179]. An example was the combination of medium resolution
Landsat TM data with AVHRR coarse resolution data in the boreal forests of Finland and Norway
along with different modeling approaches, which provided more accurate biomass estimation for large
areas as done by Hame et al. [180]. With fine spatial resolution data (<10 m), we can estimate the forests
biophysical variables such as tree crown size which is essential in running the allometric equations
with high precision and accuracy order. Hence, by using fine spatial resolution data, the average R2

value can reach 0.75 with an average predictive error equal to 27% [177]. Furthermore, with high
spectral resolution data such as the hyperspectral sensors’ data, the average R2 value in estimating
AGB can reach high levels of accuracy especially in desert and arid lands.

Both multispectral and hyperspectral sensors have been used in AGB studies however, and despite
accuracy problems and limited numbers of spectral bands, multispectral optical sensors have been more
frequently utilized operationally in estimating and mapping AGB [18,22,25,45,88,101]. AGB estimation
in western China showed that integrating SPOT5 data with LiDAR could increase biomass estimation
accuracy (R2 = 0.784) [181]. Basuki et al. [182] likewise, integrating RADAR with optical sensors can
reduce both the mixed pixels and the saturation problems. For example, combining ETM+ data with
RADAR data in estimating the biomass of tropical forests in Indonesia achieved an R2 value ranging
between 0.7 and 0.75.

In respect of the limitations and gaps summarized above, we propose a framework combining
multiscale RS techniques and building on the previously established and growing ground observation
stations especially in arid lands:

• Measuring other plants’ variables rather than limiting our research to VIs. As these indices suffer
from several weaknesses in arid lands ecosystems, as explained above.

• Measuring vegetation optical depth (VOD) using microwave sensors to assess vegetation water
content [183] and relates closely with total AGB [184].

• Measuring chlorophyll fluorescence (ChlF) (which is the re-emittance of excess energy by the
photosystems during the light reactions of photosynthesis [185]. This is highly related to total AGB,

• Measuring land surface temperature (LST) from the Thermal infrared (TIR) band, which can be
integrated with measurements of air temperature to infer rates of canopy transpiration [186,187],

• Finally, hyperspectral imaging spectroscopy can provide more information relative to traditional
multispectral platforms. A single full-range hyperspectral reflectance spectrum (400–2500 nm)
can provide information on a variety of functional traits, including vegetation water, nitrogen,
chlorophyll, carotenoid, and xanthophyll dynamics [188–190] that can be used to map functional
traits and life history strategies across the landscape [190].

10. Conclusions–Recommendations and Future Works

The conclusions of our review are consistent with the consensus of numerous scientific papers
on the subject published in the last five decades. Geo-spatial technologies are practical, feasible and
provide an adequate validation for AGB assessment monitoring, modeling and management of carbon
sequestration. The use of these technologies can provide a useful tool, especially for developing
countries, for measuring, mapping, monitoring, modeling and management of their carbon stock in
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biomass and soil; leading to improve soil and plant productivity, to increase food security, and to
control land degradation. In their turn, these countries can play a significant role in reducing the
negative impacts of climate change, by mitigating carbon emissions.

There are many methods that could be used for estimating carbon stock, and all of them have
their advantages and disadvantages. Traditional methods relying on heavy fieldwork measurements
are the most accurate, but they require significant time, expense and labor, and can be damaging
for the ecosystems. Building allometric equations can help avoid the destructive nature and other
disadvantages of the fieldwork method. However, most of the allometric equations are mixed species
equations and not tailored for single species; most of them are also built for specific sites and ecosystems
(less applicable for arid regions). Also, it is recommended building the allometric biomass equations
using variables that rely more on RS techniques to estimate biomass and carbon stock (crown and height
attributes). Building a database including the rates of carbon sequestered and stored for each plant
species, especially those with high economic values, will fill the gap and increase our understanding of
the atmospheric carbon sequestration potential of plant species and ecosystems.

Solely using RS may not always be possible as ground measurements, such as soil samples and
verification of results by ground truthing are required at some stages in the estimation of biomass.
The best fit methodology relies on both fieldwork and the analysis of RS data. The suggested process
involves three steps, including: pre-field preparations to identify sample areas of interest, fieldwork
that includes sample collection and measurement of plant characteristics, and post-field activity that
focuses on processing RS data, classification, model development and validation. Assessing carbon
stocks remotely and consistently over large areas varies greatly depending on the type of instruments
used, and the platforms. Nevertheless, these difficulties could be solved and tackled using different
sensor options and other innovative methods, and hence avoiding the limitations that relate to aspects
such as scale, cost, and associated errors and uncertainties.

High resolution RS data are the most accurate. However, moderate resolution satellite data,
such as Landsat, have shown to be effective in estimating AGB and, consequently, carbon stock,
with good accuracy. Furthermore, these sensors provide invaluable historical data to monitor the
change of carbon stock over time. Developing algorithms that combine more than one remote sensor
is highly important for tackling the challenges associated with estimating AGB and subsequently
assessing carbon sequestration. Merging and fusion of more than one set of data have the potential
to reduce uncertainty errors in biomass estimation. In such studies, it is important to consider the
effects of bioclimatic factors depending on parameters such as plant age, species, forest type, rainfall,
topography, vegetation structural variations, heterogeneity of landscapes, and seasonality. One of the
common challenges in achieving this, is mapping the spatial patterns of vegetation and soil carbon
and producing geo-referenced estimates of carbon. Such maps provide a better understanding of
carbon dynamics and help quantify the regional and global carbon budgets. In addition, this will
provide decision makers with a strong knowledge base to be able to identify and focus on the most
essential issues.

We argue that arid lands RS research should be a high research priority, especially given that more
than 2 billion people depend on services provided by arid lands ecosystems. Hereafter, we offer a
framework by which current and coming RS activities could be optimally utilized to accelerate our
knowledge of arid land ecosystem dynamics, by adopting some emerging new techniques such as:
(i) Measuring other plants’ variables rather than limiting our research to VIs.; (ii) Measuring vegetation
optical depth (VOD); (iii) Measuring chlorophyll fluorescence (ChlF); (iv) Measuring land surface
temperature (LST) from the Thermal infrared (TIR) bands and; (v) Finally, hyperspectral imaging
spectroscopy can provide more information relative to traditional multispectral platforms.

A combination of the field-based measurements and geo-spatial approaches reviewed in this paper
have the potential to help improve carbon estimation to reduce emissions resulting from deforestation
and forest degradation (REDD+), and to design incentive programs in the countries with arid land
regions. A renewed prioritization of arid lands remote sensing is needed, especially given rapidly
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developing field-based remote sensing techniques and the upcoming diversity of observations that
will be available from space. In order to exploit these new opportunities, the following research areas
should be emphasized: (1) Exploring novel combinations of sensors and techniques (e.g., solar-induced
fluorescence, thermal, microwave, hyperspectral, and LiDAR) across a range of spatiotemporal scales to
gain new insights into arid lands ecosystems’ dynamics; (2) Utilizing near-continuous observations from
new-and-improved satellites to capture the subtle variations of arid lands ecosystems; (3) Developing
algorithms that are specifically designed to meet arid lands ecosystems conditions and coupling remote
sensing observations with process-based models to improve our understanding of the arid lands
ecosystem dynamics and for long-term projections.
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