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Phase-transition problems are ubiquitous in science
and engineering. They have been widely studied
via theory, experiments and computations. This
paper reviews the main challenges associated to
computational modelling of phase-transition problems,
addressing both model development and numerical
discretization of the resulting equations. We focus on
classical phase-transition problems, including liquid-
solid, gas-liquid and solid-solid transformations. Our
review has a strong emphasis on the treatment of
interfacial phenomena and the phase-field method.

1. Introduction

Perhaps the most classical example of a phase transition
is a change between the gaseous, liquid and solid phases
of a single component, for example, ice melting to liquid
water, steam condensing into liquid water or dry ice
subliming to gaseous CO>. The term phase transition
is also used more broadly to describe phenomena that
are at a first glance very different from the classical
example of, e.g., liquid-to-gas transformations, but share
many important properties. For example, we usually
consider a phase transition the process whereby a
magnet loses its magnetic properties upon a temperature
increase. For most phase transformations problems, the
appearance of interfaces is inherent to the problem. From
a modelling point of view, the presence of interfaces
transforms the problem into a free-boundary problem.
Free-boundary problems are very difficult to treat
mathematically and computationally. Here, we review
different approaches to computational modelling of
phase-transition problems. By computational modelling,
we refer to both model development and numerical
discretization of the resulting equations. Due to space
limitations, we focus on specific examples of liquid-solid,
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liquid-gas and solid-solid transformations. This allows us to cover classical examples such as
solidification of a pure material, vaporization and condensation, martensitic transformations and
grain growth. Our review has a strong emphasis on the phase-field method.

2. The phase-field approach

(a) Mean curvature flow

Let us consider a surface I'(t) that evolves in time. We say that the surface evolves by
mean curvature flow if the normal velocity of a point on the surface is proportional to the
mean curvature of the surface at that point. Computing the time evolution of I" requires a
parameterization of the surface which changes in time. This may initially look like a very simple
problem to treat, but even in this case, the situation is quite challenging because it is known that
mean curvature flow develops singularities and these are usually unavoidable [1]. For example,
for an initial closed surface, the flow contracts the surface until it collapses to a point. Another
potential complication is that the topology of the surface can change through the evolution. These
two examples illustrate the challenge of treating mean curvature flow computationally by using
an explicit parametric representation of the surface. Mean curvature flow may be understood as
a very simple phase transition problem. More physically relevant phase transition problems have
a higher level of complexity and may involve the solution of partial differential equations (PDEs)
in the interior and exterior of the surface. Because the surface evolves in time, the numerical
approximation of the PDEs requires geometrically flexible computational methods (e.g., the finite
element method) and a procedure to update the mesh. Interface motion is usually not only
controlled by the geometry of the surface (like in mean curvature flow), but also by the value
of the unknowns to be solved in the interior and exterior of the surface. For these reasons,
an alternative formulation that does not require an explicit parameterization of the surface is
desirable. There are multiple approaches that permit to avoid the surface parameterization [2].
In our opinion, the two most successful are the level set approach [3-5] and the phase-field
method [6-9]. Both formulations employ an auxiliary field ¢(x,t), which is a function of space
and time. The surface I'(t) is defined as I'(t) = {x | ¢(x, t) = 0}. Level set methods usually define
¢ as ¢(x,t) =d(x, I'(t)), where d(x, I'(t)) represents the signed distance from « to I" at time
t. The phase-field method, however, defines ¢ as a hyperbolic tangent function of d, such that
¢(x,t) = tanh (7(1(3%1;(0)
diffuse interface between the phases that replaces the original sharp interface. The length scale € is
a measure of the thickness of the diffuse interface. As ¢ — 0, we recover the sharp-interface limit.
We favor the phase-field approach because, in addition to the purely geometric interpretation that
we have just described, it may also be understood as a generalized approach to thermomechanics
that permits to derive mathematical models for interface problems by using the Coleman-Noll
approach and classical balance laws for mass, linear momentum, angular momentum and energy

), where € is a length scale. The phase field may be understood as a

[6]. This has led to an enormous number of applications of the phase-field method to material
science [10,11], solid mechanics [12-15], fluid mechanics [7,16-19], biomechanics [20-24] and
interface problems in general [25-28].

Next, we show how to derive a phase-field formulation of mean curvature flow [29,30]. The
mathematical formulation of mean curvature flow can be stated as follows: Let us assume that the
time evolving surface I'(t) C R? is defined parametrically as I'(t) = {z(p,t) | p € Rp} where p
represents two parametric coordinates defined in suitable ranges R . Mean curvature flow can be
defined as P

% (p,t) = -7k, 2.1)
where k is the curvature vector of the surface and  is a positive constant. To derive a phase-field
formulation of mean curvature flow, we introduce the phase-field

d(z, I'(t))

oz, t)=f (T

) , where f(z)=tanh(z). (2.2)
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We adopt the sign convention that d is positive outside I'(t) and negative inside. The unit outward

normal vector to I'(¢) can be defined as n = Vd and the mean curvature as xy, = %. The spatial

derivatives of the phase field can be computed as

8¢_,(d>8d 1 #¢ 1 ,0dod 1 , 9%d 23)

al'i o ﬁ (932‘Z ﬁ’ 8I18Ij o ﬁ 81'1 al'j + ﬁ 6:516:10] ’
Next, by using the identities f = ¢, f' =1 — f2and f = —2ff', we obtain, from Eq. (2.3),
2¢
1— g2

V2(1 - ¢?)

Let us define the function ¢(t) = ¢(x (-, t), t), which is identically zero according to the definition
of the phase field; see Eq. (2.2). Using the chain rule we can write

Vd=n=

V¢, and %Ad:nm: <A¢+ 2¢ |v¢|2). (2.4)

1—¢2

— dig v/ dzr , 09
Sdt o T ot ot
The motion of an interface is determined by its normal velocity, which in this case, can be
computed as

0 (2.5)

V2e 0¢

amp _ \/56 amp. o op
1—¢2 o’

ot "T1-42 ot

Vo=

2.6)

where we used Egs. (2.4) and (2.5). Then, substituting Egs. (2.4) and (2.6) into (2.1), we obtain the
phase-field formulation of mean curvature flow

99 v 2¢ 2

—=-1A . 2.7

=3 (40+ 2251l @)
To write Eq. (2.7) as the classical Allen-Cahn equation, we need to introduce the function
Wi(p) = %(1 — ¢?)%. From the relation f' =1 — f2, it may be shown that §|ti5|2 = %(1 — ¢?)2.
This implies that 13‘;2 |Vo|? = —@ and the phase-field formulation of mean curvature flow
becomes

Aoy W'(9)

which corresponds to the classical Allen-Cahn equation [31,32].

(b) Thermomechanics approach to Allen-Cahn

The Allen-Cahn equation can be derived as an approximation to mean curvature flow, but
also from fundamental balance laws and the Coleman-Noll approach [33,34]. The Coleman-
Noll method starts by postulating a free energy functional that is enforced to decrease as the
solution evolves in time. This is a rational approach to impose restrictions to the constitutive
relations. The energy functional may be expressed in terms of the free energy density ¥ as
Fl¢] = [, Wdx, where 2 denotes the spatial domain. The free-energy density ¥ is assumed to
belong to the constitutive class ¥ = ¥ (¢, V). The energy-dissipation property that we postulate
can be expressed as F = W(£2) — D(2), where F denotes the time derivative of F. In addition,
W(12) is referred to as the working term and accounts for external forces or energy supplies coming
through the boundary of 2. The dissipation term, D({2) must be non-negative for all conceivable
processes. The Allen-Cahn equation represents non-conservative phase dynamics. Therefore, the
mass balance equation may be expressed as

99 _
ot
where the function R is determined to ensure energy dissipation. The constitutive class of R is
given by R= ﬁ(qﬁ, Vo, n), where p= ?)% -V- (%) is the variational derivative of F with

—R, (2.9)
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respect to ¢. By using the definition of the free energy F and the chain rule, we obtain

- d ov 0o
—— | wdz=| = et 21
F : J dx J uRdz + J N n . da, (2.10)

where 0f2 is the boundary of 2 and n denotes the unit outward normal to 9f2. In Eq. (2.10),
we identify D(£2) = [, pRdz and the remaining term on the right-hand side as W(£2). To
achieve energy dissipation, we take R = m/(¢)u, with m(¢) > 0. If we define ¥ using the classical
Ginzburg-Landau energy, that is, ¥ = W (¢) + §|V¢|2, then substituting R =m(¢)p in Eq. (2.9),
we get the canonical Allen-Cahn equation

80— —m(s) (W'(9) — 49). @11)

Taking m(¢) = 51, we recover the phase-field form of mean curvature flow; see Eq. (2.8).

3. Liquid-solid phase transformations

Liquid-solid phase transformations usually refer to solidification and melting. This type of phase
transformations have been widely studied in the literature [28,35,36].

(a) Generalized Stefan problem

The generalized Stefan problem considers a solid-liquid system in the open, spatial domain 2.
The spatial domain 12 can be decomposed as 2 =25 U 2;, where 2, and (2, denote, respectively,
the liquid and solid subdomains. Due to the phase transformations, both {2, and {25 change with
time and their time evolution is actually one of the unknowns of the problem. The solid-liquid
interface I'y, is defined as I'y; = {2y N {2,. The generalized Stefan problem can be expressed as

p% +V-q=0 in 25U52, (3.1)
plVn = Hq]] gy on Iy, (3.2)
[f]=0 on Iy, (3.3)
Om — 0
o pH =02km +wVn) on Iy, (3.4)

where p denotes density, e = C0 + £y, is internal energy per unit mass, § is the temperature,
Cy is heat capacity per unit mass, £ is specific latent heat (energy per unit mass) and x; is a
characteristic function of the liquid phase, i.e., a discontinuous function that takes the values +1
in the liquid phase and 0 in the solid phase. We use Fourier equation, so that ¢ = —kV6 where k
is the thermal conductivity (energy per unit length, per unit time and per unit temperature). V,
is the normal velocity of the interface (positive if directed towards the liquid), [q] is the heat flux
jump across the interface with the sign convention that [f] = fs — f, for any function quantity
that is discontinuous across the interface, nys is the unit normal to Iy pointing towards the
liquid, 6, is the melting temperature, H represents the interfacial enthalpy per unit mass, w is the
kinetic undercooling coefficient, k., is the mean curvature of the interface (positive for spherical
solid crystals) and o is the surface tension. By following the same procedure employed to derive
a phase-field formulation of mean curvature flow we can obtain a phase-field approximation to
the generalized Stefan problem that reads as
!

02 4t ()20 =V - (k(6)v0); =29 WDy LGl
Here, ¢ is a phase field that transitions smoothly from —1 in the solid to +1 in the liquid, A is
a monotone interpolatory function that verifies h(+1) =1, h(—1) =0, e.g., h(¢) = %(1 + ¢) and
W is the double-well potential introduced in Sect. 2. The thermal conductivity is a function
of the phase-field to account for a potentially different thermal conductivity of the liquid and
solid phases. We take a function that satisfies k(+1) = k; and k(—1) = ks, for example, k(¢) =
1(1+ ¢)ks + 3(1 — ¢)ks. The function G(¢) vanishes in the pure phases. There are multiple

(3.5)
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Figure 1: Crystal growth on the two-dimensional domain §2 = [0, L]? with L = 0.1 cm. We used a
uniform mesh with 5122 C 1—quadratic elements. We employed the parameters p=8.91g cm 3,
Co=0.6083JK g™, ¢=274.98Tg" !, ks =k;=08401JK 'em 's™!, w=130scm ™2, e=

2.107%cm, H=-4.751Jg },=3.7-10"°Jem™ 2, 0,, = 1728 K, § = 0.05, ap = 7/4 and ¢ = 4.

possibilities for G(¢). Depending on the functional form that we choose for G(¢), the phase-field
formulation will converge faster or slower to the generalized Stefan problem. Common choices in
the literature are G(¢) = 1 — ¢ and G(¢) = (1 — $*)%. Here, we will use the second one. To attain
good agreement between simulations and experiments, it is common to introduce anisotropy in
the material surface tension by assuming that o depends on the unit normal to the liquid-solid
interface. We use the expression o/ =1 + d cos[g(« — ap)], where 7 is the mean value of o, J is
the strength of the anisotropy, g is the mode number and «y is the preferred angle. The angle of
the normal to the surface, o, can be easily defined from the phase field. Fig. 1 shows the results of
a simulation performed using isogeometric analysis [37]. The computation shows how a crystal
located in an undercooled region grows creating a dendritic pattern.

(b) Free-energy approach to solidification
(i) Wang’s solidification model

Phase-field models of solidification can also be derived using thermomechanics [38,39]. The
internal energy and entropy of any subvolume V of the system of interest can be defined as

2
_ — _& 2
& —vaed:c, S_JV (3 5 V| ) dz, (3.6)

where e is the specific internal energy and s(e, ¢) is an entropy density. The key difference with
classical thermodynamics is that S depends not only on ¢, but also on its gradient. By applying
the first and second laws of thermodynamics we obtain

5‘+J q-nda=0, $+J (ﬂ+e2¢v¢)ndazo. (3.7)
oV oy \0

where 0V is the boundary of V. By defining a suitable expression for the specific internal energy
e(, ¢), assuming that the latent heat is a constant and using the Coleman-Noll approach, one
obtains the following model

PO+ bl (0150 =5 - (b&)V0)s w5y =0 = D Bty (L 7). 9

ot ot ot He? Om 0

This model is identical to Eqgs. (3.5), except for the last term in the phase-field equation. To our
knowledge, this model converges to the sharp interface solidification theory as e — 0 only when
0 = Om. However, the functional form of the last term in the phase-field equation depends on the
expression of e(6, ¢). Therefore, a judicious choice of e(f, ¢) may lead to a model that converges,
for all temperatures, to the expected sharp-interface limit as ¢ — 0. More details on this may be
found in [40]. To our knowledge, deriving thermodynamically consistent solidification models
that converge to the generalized Stefan problem as ¢ — 0 in the anisotropic case is an open
problem.
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(il) Phase-field crystal approach to atomic scale solidification

The solidification models described up to now represent continuum descriptions of the physical
process. Continuum models permit simulating long times and large systems, but sometimes
fall short of incorporating fundamental physical phenomena that occurs at very small scales.
Molecular dynamics [41] is an alternative approach to continuum modelling that may account
for phase-transition physics at atomic length scales. The disadvantage of molecular dynamics
is that simulations are restricted to very small systems and microsecond time periods at most.
Recently, the phase-field crystal equation has been proposed as a model to describe two-phase
systems on atomic length scales and diffusive time scales. The use of diffusive time scales allows
to study much longer time intervals than those reachable with molecular dynamics simulations.
The phase-field crystal equation has been employed to model multiple physical phenomena,
including crystal growth in a supercooled liquid and dendritic solidification. The phase-field
crystal equation can be derived from the following free-energy functional

il =

oo+ [0 - 2vo2 + 7] fas, (39)

where p represents a local atomistic density field and @(p) = —% 0+ % p*. Here, r is the so-called
undercooling coefficient [42]. By impossing mass conservation and free energy dissipation, one
can derive the equation (see [43] for more details)

api / 2
a_A(gb(p)erJrzAerA p). (3.10)

The phase-field crystal equation has been widely studied in the computational physics [44—47]
and condensed matter physics literature [48-50]. Recently, the phase-field crystal model has been
generalized to account for faster dynamics [51-54].

For the computational study of the phase-field crystal equation, instead of resorting to classical
finite element methods, we will illustrate here how very fast and simple algorithms can be derived
using first-order accurate semi-implicit time integration schemes and fast Poisson solvers for
the spatial dicretization. We begin by performing time discretization. Rearranging Eq. (3.10) and
applying standard finite differences to the time derivative, we get

Pn+l — Pn
At

where py, is the time discrete approximation to p(z, t») and ¢, = nAt for n > 0. Note that some of
the terms on the right-hand side of Eq. (3.11) have been approximated at ¢, and some others at
tn+1. We decided whether a linear term is approximated at ¢, (explicitly) or at ¢,,41 (implicitly)
based on stability considerations. Linear terms that contribute to increase the L? norm were
approximated explicitly. This is a common approach to attain stability in time discretization
schemes; see [6]. The cubic, nonlinear term was approximated explicitly to keep the algorithm
linear. Basic manipulations allow us to rewrite Eq. (3.11) as

=(1—1)Apns1 + Alpy) +248%p5 + A%pp 1, (3.11)

14— At(1 = 1)A = AtA®] ppi1 = pu + 2AL4% o + ALA(R), (3.12)

where I, is the identity operator. What remains to be done at this point is to discretize in
space, which in view of Eq. (3.12) boils down to constructing a discrete approximation of
the Laplace operator. Given this situation, spatial discretization can be accomplished using
a fast Poisson solver [55], which may be simply understood as a very fast implementation
of a second-order finite difference method on a uniform mesh. For example, for a Poisson
equation —Au + f =0 in two dimensions, the discretized equation at an interior node (i, j) is
4ui7j — Uj,j—1 — Uj—1,5 — Wi41,57 — Ui j+1 :bija where Us, 5 %U(ih,jh), h is the mesh size and
bij = R2f (th,jh). The indices i and j go from 1 to N. After collecting the equations for all
the interior nodes and boundary conditions, we obtain a linear system of equations given by
Kwu =b. There are multiple ways to solve linear systems of equations, but they very rarely
involve the use of the matrix eigenvalues. However, for the matrix K that arises from central
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finite differences on a uniform mesh all eigenvalues and eigenvectors are known a priori. This
is true for Dirichlet, Neumann and periodic boundary conditions. For conciseness, here we will
only illustrate the procedure for Dirichlet boundary conditions but the method is analogous for
the Neumann and periodic cases; see [55] for more details. The eigenvalues and eigenvectors
of K are given by Kwvj; = Ajvg;, where the component of vy; corresponding to the (i, )
node is v,(fl’j) =sin(tkn /(N + 1)) sin(jlw /(N + 1)) and its corresponding eigenvalue is Ay =
4 —2[cos(km /(N + 1)) + cos(im /(N + 1))]. By collecting the eigenvectors vy, into a matrix S and
the eigenvalues into a diagonal matrix A in the usual way, we can write K = SAS ™. Therefore,
the solution to the linear system Ku =b can be expressed as u = SA~'S~1b. Computing the
matrix A~! and multiplying vectors with it is fast because A is diagonal. The matrices S and
S~ 1, however, are full and even if we know them a priori, multiplying them with a vector requires
O(N*%) operations'. The key element in the process is that multiplication of a vector with S can
be interpreted as a discrete sine transform, which using the fast Fourier transform algorithm can
be done in O(N?log,(N?)) operations. By using this method, it has been shown [56] that the
overall operation count is 2N? logy N. This result is nearly optimal. Because we are considering
a two-dimensional problem simply writing the solution requires N2 operations. For Neumann
boundary conditions the algorithm is very similar, but we have to use discrete cosine (rather
than sine) transforms. By combining the time integration algorithm in Eq. (3.12) with the fast
Poisson solver, highly efficient and surprisingly simple algorithms can be derived for the phase-
field crystal equation. Below, we include a MATLAB® listing that solves the unsteady phase-field
crystal equation with free flux boundary conditions and plots the solution in a few lines of code.

Listing 1: Matlab code to solve the unsteady phase-field crystal equation

N = 512; L=200; dx = L/(N=1); x = (0:dx:L)’; [xx,yy]= meshgrid(x’,6x);

it 0; it_plot = 10; dt = .1; ntmax = 2000; r=0.5;

L1 dt/dx”2; L2 = L1/dx”2; L3 = L2/dx"2;
LEV = (((2xcos(pix*(0:N—1)"/(N—1)))—2)*ones(1,N)); LEV = LEV + LEV’;
LHS = ones(N,N) — L1x(1—r)*LEV — L3xLEV.*LEV.xLEV;
RHS = ones(N,N) + 2xL2«xLEV.%LEV;
U= —4 + 0.3xrand(N,N); hatU = dct2(U);
while it < ntmax
if (mod(it,it_plot)==0) | (it==0);
surf(xx,yy,U, "facecolor’, interp’, edgecolor’, 'none’); colorbar; view([0,0,1]); drawnow
end ;

it = it+1;

hatb = RHS.xhatU + L1xLEV.xdct2(U.73);
hatU = hatb./LHS;

U = idct2 (hatU);
end

Fig. 2 shows a crystal growth simulation performed with the code provided in Listing 1, but
changing the initial condition. We started the simulation with four small crystallites with different
orientations surrounded by undercooled liquid; see [43]. The crystallites grow and interact with
each other leaving defects at their interaction regions.

4. Liquid-gas phase transformations

Liquid-gas transformations are very important in science and engineering. Examples of physical
phenomena controlled by liquid-gas transformations include vaporization, condensation, boiling
and cavitation. The phase-field model that describes liquid-gas phase transformations coupled
with heat transfer and flow is the so-called Navier-Stokes-Korteweg equations. A thermodynamic
analysis and computational study of the Navier-Stokes-Korteweg model may be found in [57];
see also [58]. For simplicity, here, we restrict ourselves to the isothermal case [59,60]. The
isothermal Navier-Stokes-Korteweg equations may be derived from an energy functional using

INote that, here, IV is the number of nodes per direction and the matrix S has N 2 x N? elements
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Figure 2: Simulation of the phase-field crystal equation using the code provided in Listing 1, but
with an initial condition that corresponds to four small crystallites with different orientations
surrounded by undercooled liquid; see [43]. The crystals grow with time, leaving remnant defects
at their intersection due to their different orientations. Solution at ¢t = 20, t = 420 and ¢ = 1500.

thermomechanics. We start from the energy functional
1
el Vol =| (v golul) an, @
P

where P; is a set of material particles in the current configuration, ¥ = @(p, Vp), p is the fluid
density and w is the fluid velocity. Then, we use mass, linear momentum and angular momentum
balance laws

p+pV-u=0 pu=Vv. T, T=TT, 4.2)

where p = %% + u - Vp denotes the material derivative of the fluid density and T" = T (L, p, Vp, 1)
is the Cauchy stress tensor. Here, L = % (Vu + Vul)and u= % -V (5‘961%) By imposing the

dissipation law & = —D(P:) + B(dP;), with D(P;) > 0, we can determine a suitable form of the
stress tensor T'. Using standard continuum mechanics, the chain rule, the relation (Vp) =Vp —
VuVp and the balance laws we can show that

: o o . ov
S_L%< o —pV - u+6V Vp— vy -VuVp+9V-u+u-V- T)dx. 4.3)

Integrating by parts and using the relation ?Wf'p -VuVp= ?Wﬁp ® Vp:Vu, one can derive

: ov v
S—th ((W —pp)I — BV ®Vp— T) .Vudz—l—LPt ( W n+u- Tn) da, (4.4)

where I is the identity tensor. Eq. (4.4) allows to identify D(P;) and B(9P;) as

%
D(Py) = J ((pu - I + 88— ® Vp+ T) :Vudz, (4.5)
P, Vp
o
B(OP, = J ——  n+u- Tn|da. 4.6
(0P¢) . < Povn > (4.6)

If we now use frame invariance arguments to show that PWW;; ® Vp is a symmetric tensor and
impose D(P¢) >0 for all conceivable process, we obtain a possible expression for the Cauchy
stress tensor given by

ov
(pp =T + =

T=2uL +\V -ul 4.7
vy ® Vp+ uL + AV - ul, (4.7)
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Figure 3: Three-dimensional simulation of the Navier-Stokes-Korteweg equations. Two gas
bubbles which are initially close to each other coalesce into a single one. The plot also shows
streamlines. The color scale indicates velocity magnitude.

where 7z and )\ are viscosity coefficients satisfying z > 0 and %ﬁ + A > 0. By using the expression
of ¥ for a Van der Vaals fluid

v =W(p) + g\vpﬁ, with  W(p) = ROplog (ﬁ) — ap, 4.8)

we obtain
1 _
T= (—p + 5)\|Vp\2 + ApAp) I-AVpRVp+2uL 4 AV -ul, 4.9

where p = pW'(p) — W(p) is the thermodynamic pressure, 6 is the (constant) temperature and a,
b are constants that define the fluid’s equation of state. Multiple algorithms have been used for
the solution of the Navier-Stokes-Korteweg equations, including discontinuous Galerkin methods
[58] and isogeometric analysis [59]. Fig. 3 shows a simulation performed using the isogeometric
discretization proposed in [59]. The computation shows how two vapor bubbles which are close
to each other coalesce into a single one.

5. Solid-solid phase transformations

Solid-solid phase transformations usually manifest themselves as changes in the material’s
microstructure. Material’s microstructures are structural and compositional inhomogeneities.
They may consist of grains of different orientations, domains of phases with different
compositions or domains of different structural variants. Material’s microstructures usually
arrange in space, with characteristic sizes in the order of microns. Understanding microstructure
evolution is crucial in materials science and engineering because the microstructure has a strong
impact on the macroscale physical properties of a material. During microstructure evolution the
interfaces that separate different domains move in a very complex way. Thus, not surprisingly,
the phase-field method has attracted a lot of attention in materials science research [61,62].

(a) Martensitic transformations

Martensitic transformations are diffusionless, first-order, solid-solid transformations. Atomistic
simulations (see, e.g., [63]) have been used to explore systems of size up to ~ 10nm for a few
nanoseconds. The sharp-interface approach has also been utilized [64]. In recent years, the phase-
field method has established itself as a powerful tool to model martensitic transformations.
Multiple models have been proposed for isothermal [65] and thermally-coupled systems [66].
Here, we review and extend to the large deformation regime one of the representative models [65].
To introduce the model we consider a set of material points Py, which may be understood as the
initial configuration of the solid. We consider the usual mapping ¢ which takes P into the current
configuration. The displacement field is defined as d = ¢ — Iz, where I; represents the identity
mapping. The deformation gradient and the Cauchy-Green tensor are defined, respectively, as
F =V and C = FFT. The model considers two martensitic variants represented by the phase
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fields ¢1 and ¢ which take values between 0 and 1. The austenite phase is located where
¢1 = ¢p2 = 0. The free-energy of the system may be written as

J’ZJ'P {we (C.¢1,¢2) + 97 (¢1, V1, b2, Vo) + %po\d\Q} dz, (5.1)

where w® represents the composition-dependent elastic energy, Y denotes the Ginzburg-Landau
energy and 3 po|d| 2 accounts for the kinetic energy. We now use conservation of linear momentum
and mass balance laws for the martensitic variants

pod—V-P=0, ¢1+R1=0, ¢+ Ra=0, (5.2)

where P is the first Piola-Kirchhoff stress tensor. We postulate the dissipation law ¥ = W(Pp) —
D(Py), where D(Py) > 0 for all solutions to the balance laws. By taking the time derivative of the
free-energy, integrating by parts and using the balance laws, we obtain

b= L {%% ZZ g(; + 11+ pady — P Vd}d:c
Y9 I :
+ JBPO {8V¢ NP1+ fo— NV, “neg2 + Pn - d}da, (5.3)

where p1 = % -V ( aav% ) .and. o = gﬁz - V- (;Vid}aﬁgz) are referred to as chemical
potentials. Using the identities Vd = F and P : F = %S : C where P = F'S, we obtain

. ow® 1 . ow® ow®
o= L»O{(ac 2 )’C’Rl(aqb *“1>’R2(6¢2”2>}dx

g g . .
L)P {aavwd) ‘ng1 + aaqus -nos + Pn - d}da. (5.4)

Therefore, we can take

ow® ow® ow®
5—2%, Ry = <3¢ +M1> szmz((% +u2) (5.5)

with m1 >0 and mo > 0. This model is usually employed in the small deformation regime and
assuming quasi-static mechanical equilibrium. Under these assumptions, common expressions
for the free energy are

we (&, ¢1, P2) =% [Eij - 5?j(¢1,¢2)} Cijri(1, 92) [Ekl - 521(¢1,¢2)] , (5.6)

where repeated indices indicate summation, € = %(Vd + vdT) is the infinitesimal strain tensor
and C(¢1, ¢2) is the elasticity matrix that varies linearly between the austenitic matrix and
the martensite phase, i.e., C(¢1,¢2) =Ca + ¢1 (Cay —Ca) + ¢2 (Cpy — C4). Here, Cpy and Cy
represent, respectively, the martensite and austenite elasticity matrices. The transformation-
induced eigenstrains are defined as eO(qSl, P2) =1 5(1) + @2 ag. The Ginzburg-Laundau free
energy is defined as

V981, V61,02, V2) = s o (91, 62) + 2 rgGL (19612 + [V6]2) (5.7)
where
2
P16 =1+ 5 (6 +63) - 2 (o +63) + 2 (3 +43) . 689

Here, x5, kg, @, B and -y are constants. In this simplified setting, the governing equations may be

written as
B 91 ow® _ Opo ow® _
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Figure 4: Numerical simulation of Egs. (5.9). The color scale corresponds to ¢1. We start the

simulation with five random seeds of the martensitic variant ¢;. The variant ¢2 is assumed to
be zero. The parameters are taken as in [67].

where ;5 = Cyjri(o1, ¢2)[ers — 621 (¢1,¢2)]. Egs. (5.9) can be discretized, e.g., using finite
differences in time and finite elements in space. Fig. 4 shows a simulation using the finite element
code provided in [67].

(b) Grain growth

Most materials of engineering interest are composed by multiple grains with different
crystallographic orientations. Some grains grow at the expense of others, leading to an evolution
of the material’s microstructure. Grain growth has been studied using sharp-interface methods
[68], but the algorithmic tracking of the interfaces becomes very cumbersome for a large number
of grains. Phase-field models have grown significantly since the early work by Chen and Yang
[69], which was later improved in [70]. The model is derived from the free energy

N
.
Fimotre ool = [ {8 oo o)+ Y S 1on b (5.10)
=1
where
a9 B4 LIGELARAN
Fommz, - an) =Y {—gm + Zm} YD ning. (5.11)
i=1 i=1j=1
i

By using the standard themomechanics approach, we can derive the governing equations

N

on; 0OF oOF
Vo LS, where T =—an; + B} +2ym Y] — KA, (5.12)
ot 57]7; (57]1‘ =
i

is the variational derivative of F and the L;’s are positive constants. Fig. 5 shows a simulation of
Egs. (5.12) for 25 grains (/N = 25) using the finite-difference code provided in [67].

6. Adaptive mesh refinement

Phase-field models have significant advantages with respect to sharp-interface methods. They
avoid interface tracking, which is very difficult when many interface types are present; they
can easily handle topological changes; and they permit to couple interface motion with bulk
physics in a straightforward manner. However, when computations are performed on uniform
meshes they may be suboptimal from the point of view of computational cost even if they are
simpler formulations. For example, if we want to study solidification of a pure material in three
dimensions using a sharp-interface method, the energy balance equation needs to be solved in
the volume of the pure phases, but the interface motion remains as a 2D problem. When we
introduce the phase-field formulation, the interface problem becomes 3D. Because the phase-field
is approximately constant away from the interface, it is possible to concentrate small elements in
the interfacial area and use very coarse meshes in the bulk areas, somehow retrieving a quasi-2D
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Figure 5: Simulation of grain growth. We used 25 grains with different crystallographic
orientations. The parameters were selected as in [67].

problem that enjoys all the advantages of the phase-field method. Adaptive mesh refinement is
the ideal mathematical tool to do this is.

Adaptive mesh refinement can be done using simple, heuristic criteria, such as for example,
refining the regions where the phase-field is far from the pure phase values or where the gradient
of the phase-field is large. These approaches have proven very useful (see [71-73]), but they may
lead to inaccurate solutions on coarse meshes. A rigorous approach for adaptive mesh refinement
is that provided by a posteriori error estimates. The simplest and most widely known estimator
in this category is the Zienkiewicz-Zhu gradient-recovery method [74], which can be used for
the spatial discretization in a method-of-lines approach. Adaptive mesh refinement was used
in 2D computational phase-field modelling almost since its inception [75]. More recently, the
approach was extended to 3D and complex geometries using a hierarchical approach to local
refinement [71]. In this reference, the adaptive approach was implemented in a dynamic context,
so that the mesh evolves in time to resolve the moving interface. The total number of elements
in a representative simulation with the adaptive approach was approximately 13% of the number
of elements that would be required to attain the same spatial resolution at the interface with a
uniform mesh.

Time step adaptivity has also been shown to be crucially important in some phase-field
models. For example, for the Cahn-Hilliard equation, which describes phase separation of
immiscible fluids, it has been reported that keeping time accuracy approximately constant
throughout a simulation may require variations in the time step of up to six orders of magnitude
[76]. Time step adaptivity can be performed using classical approaches from the ordinary
differential equations literature [77]. A commonly used method consists of computing each time
step using a lower order and a higher order time stepping scheme. The difference between the
lower order and the higher order approximation is an error estimate that can be used to adapt the
time step [76]. While this approach requires computing each time step twice, it leads to dramatic
savings when the adapted time step spans several orders of magnitude.

Finally, the most rigorous approach to adaptivity is based on space-time a posteriori error
estimates. The estimates are usually derived using residual-based approaches [78] or resorting to
dual problems [79].
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