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Abstract  

 

Energy-efficient application-specific integrated circuits (ASICs) are necessary in severely 

energy-constrained sensors. Compressed sensing is a signal-processing algorithm for data 

compression which exploits the nature of the sparseness in typical bio-signal. However, 

compressed sensing algorithms are not stable in the presence of noise, so data is often 

reconstructed with errors. Most existing designs only provide either spike detection or 

compressed sensing for data compression to achieve energy-efficient ASICs. In this capstone 

project, we demonstrate a design for combining spike sorting and compressed sensing 

algorithms in a DSP chip that can perform data compression by achieving accurate data 

reconstruction with injected noise. The resulting circuit architecture is implemented in a 

32nm CMOS process. Clocked at 20 kHz, the total power dissipation is 30.462 uW at 0.78 V 

for a single channel with a 10bit/sample input stream. 

 

 



I. INTRODUCTION 

 

Over the past two decades, the cost of the microelectronics has decreased, allowing for 

relatively cheap wearable sensors. In turn, wearable sensors are highly developed and 

employed in a broad range of applications from agriculture to health care, where high energy 

efficiency is essential. For example, the battery lives of implantable medical devices for 

patients should be long enough to reduce the costs of replacing them. In order to improve the 

energy efficiency of the system, the overhead by compressing the data cannot outweigh the 

energy savings from data compression. Thus, compressed sensing is a practical solution for 

wireless sensors, and an energy efficient hardware implementation must be realized. 

 

In a traditional bio-sensor, analog input signals are sampled based on the Nyquist sampling 

theorem, which requires that the sampling rate must be twice greater than the maximum 

frequency of the sampled input signal. However, compressed sensing requires the sampling 

rate to be based on the information content rather than the frequency content of a signal. In 

theory, this would enable a far smaller data sampling rate compared to a traditional Nyquist 

sampling rate [2]. Thus, compressed sensing exploits the low rate of significant events in 

sparse signals and achieves low-power consumptions for wearable sensors. 

 

To counteract compressed sensing’s natural weakness to noise, which Fig. 1 shows, a spike-

sorting algorithm is introduced to filter out noise. Through the spike-sorting algorithm, 

thresholds of input signals are calculated within the chip and filtered and aligned to a 

common reference [3]. For data reconstruction, this combination of two algorithms is 

particularly attractive because it achieves a robust data reconstruction regardless of noise. 

 



 

Fig 1. Compressed sensing on bio-signal without (top) and with (bottom) spike-sorting;  

original signal (blue) and reconstructed signals (red). 

 

Section II of this paper describes the background of the spike-sorting and compressed sensing 

algorithm. Section III presents the design details of each block and discusses the energy-

efficient choices made during the architecture design. Power optimization strategies are 

described in Section IV. Section V presents measured results. Section VI concludes the paper. 

 

 

 

 

 

 

 

 

 



II. BACKGROUND 

 

 

Fig. 2. Block diagram of the whole system. 

 

i. Spike Sorting Algorithm 

 
Fig. 3. Block diagram of the single-channel spike-sorting DSP block. 



 

Fig. 3 shows the block diagram of a single-channel spike-sorting DSP module. In the NEO 

block,      is calculated for each input sample     : 

                          . 

The threshold calculation block calculates the threshold as 

     
 

 
      

   . 

We chose the number of samples in period N to be 1024, a power of 2, so that the division 

can be calculated by shift operation. C is constant and 8 was chosen for our implementation 

[4]. When      exceeds the calculated threshold, the detection block outputs 

spike_detected signal. When a spike is detected, 50 crossing samples need to be saved in the 

memory. The maximum derivative block calculates the point of maximum derivative (k) as [5] 

                     . 

The point of maximum derivative serves as the address offset for reading the aligned spikes 

from the memory. The aligned spike is read out so that k corresponds to the 12th sample of 

the 50-sample-long aligned spike. 

 

ii. Compressed Sensing Algorithm 

 
Fig. 4. Block diagram of the single-channel compressed sensing DSP block. 



Data compression with compressed sensing is defined by the matrix multiplication [1],  

[Y] = [Φ][X],  

where [X] = N-dimensional input signal, [Φ] = M N measurement matrix, 

[Y] = M-dimensional set of measurement (M < N). 

The compressed sensing algorithm performs a linear projection from the N-dimensional input 

[X], to an M-dimensional set of measurements [Y] with the M N measurement matrix [Φ], 

which reduces the data to be transmitted and saves power dissipation by a similar factor. 

Sparsity is determined as (1 - K/N) where K is the number of significant values among the N 

input samples [1]. Compressed sensing relies primarily on the signal of interest, so sparsity 

implies compressibility. For example, a sine wave signal requires many coefficients to 

represent in time domain, while it requires only one non-zero coefficient to be represented in 

the Fourier domain [6]. Fortunately, many bio-signals are sparse in representation, which 

makes them suitable for compressed sensing. 

 

 

 

 

 

 

 

 

 

 

 

 

 



III. IMPLEMENTATION 

 

i. Architecture 

At the release of reset, the detection block goes into a “training-mode” where most other 

blocks are powered off, and the threshold is calculated for the first 1024 samples. Once the 

threshold is calculated, the input is conditioned using the threshold to detect “spikes.” 

 

Using an external 12.8 MHz clock, a 20 kHz clock is generated in a clock divider block. By 

implementing a clock divider instead of having a 12.8 MHz clock, the dynamic power 

consumption is decreased dramatically. All of the blocks are clocked at 20 kHz as the 

input/output data rates are 20 kHz. Since the design runs at a low frequency, leakage power 

dominates the total power consumption. 

 

Though the Synopsis tool library includes standard memory cells which are big in size, it 

would be inefficient to our design. Instead, we used registers with pointers to implement a 

circular structure. The preamble buffer has a size of at least 22, and it is sufficient to keep 40 

post-samples. If the maximum derivative occurs such that more post-samples are needed, the 

preamble buffer will output zeros when past the post-samples size. 

 

ii. NEO 

In the basic architecture version, the NEO calculates      from four registers, x(n0), x(n), 

x(n+1), and x(n-1), which store the incoming input stream sequentially, shifting them from 

the leftmost register to the rightmost register, and finally out to the buffer. Four registers are 

needed for Verilog implementation so that the earliest value in the x(n0) register can be sent 

to the buffer while the NEO computes the next value from the other three registers. 



Calculation halts for 50 clock cycles when a spike is detected.  

 

iii. Threshold Calculation 

Once the NEO block first begins to produce values of     , the threshold calculation block 

starts to accumulate them according to the equation:      
 

 
      

   , with N = 1024 

and C = 8. The minimum word length of 23 was used for the accumulation to reduce the 

number of memory elements. Once the threshold is computed, the threshold calculation is 

deactivated. 

 

iv. Preamble Buffer 

The preamble buffer is a circular buffer implemented with 22 registers and two pointers, P1 

and P2. P1 is an internal pointer to the location which stores the data that comes from the four 

registers of the NEO block, and it increments by one each time. P2 is a register used for 

sending out data from the buffer to construct the final output data stream of 50 samples. 

When a spike is detected, P1+1 is sent to P2, and the buffer stops accepting input data for 40 

counts. However, detections may occur close enough in time that the buffer must have 

enough pre-detection samples for the next spike, so an input signal to the buffer informs it 

when the output is not retrieving samples from the buffer (i.e. output samples are retrieved 

from the memory instead). Therefore, the buffer resumes storage of input samples to account 

for close, adjacent spikes. 

 

v. Memory 

The memory is composed of 40 registers with a single pointer that increments linearly and 

resets to zero for each spike detection. When a spike is detected, input samples are stored, 

and the maximum derivative calculation is processed immediately on the input stream to 



produce the index of maximum derivative. The derivative calculation updates a register with 

an index number between 1 and 40 when it completes the calculation, so that output samples 

can be retrieved from the buffer and memory, with the sample at the index as the 22nd 

sample of the output data stream. 

 

vi. Alignment 

When the index number is calculated from the memory, the 50 output data can be prepared. 

Depending on the value of the index, the data can come from both the preamble buffer and 

the memory, or from the memory alone if the index is greater than 22. If the data comes from 

the memory alone, which is of size 40, it will output zeros when past the memory size. If a 

spike occurs when the memory has not been read yet (if the two spikes occurs too close to 

each other), then the second spike is ignored. Otherwise, the cost of the overhead to handle 

these two spikes would be too large. 

 

vii. Matrix Generation 

 

Fig. 4. Block diagram of the measurement matrix generation block [6]. 



The matrix generation block requires two PRBS generators. As shown in Fig. 4, a 15-bit 

PRBS1 output is XOR'd with the every output of 50-bit PRBS2 in our implementation. A 

wide variety of pseudo-random matrices can be produced, because the seed sequence and the 

length of the matrix are programmable. The resulting implementation requires only 65 flip-

flops for an M of 50, compared to what would have been 750 flip-flops to produce PRBS 

sequences with the same length matrix [7]. With these improvements, the matrix generation 

power is reduced to less than 10% of the total power consumption. 

 

viii. Multiplication 

Once a random matrix of size M is generated from a matrix generation block, the matrix is 

stored in the registers of a multiplication block, and multiplication with each element of 

random matrix at every clock edge proceeds. In order to reduce power consumption, the 

matrix generation block is powered off while matrix calculation is running. Multi-channel 

multiplication block implementation is able to achieve parallel computation because we have 

a long slack and a large voltage overhead to reduce. However, the current Synopsys tool we 

are using does not allow voltage to be reduced below 0.78 V, so we need to characterize low-

voltage libraries ourselves. Thus, multi-channel block implementation can be attempted in 

future work. 

 

 

 

 

 

 

 



IV. EXPLORATION 

 

i. VDD Reduction and Multi-Vt Transistor 

At the 20 kHz clock, many modules remain mostly in standby mode. In this situation, leakage 

power could dominate total power consumption. We confirmed this fact by simulating and 

analyzing power consumption in a pt-pwr report. We synthesized our design mostly with 

HVT cells because HVT cells have less leakage current and saved more than 90% in the total 

power consumption at each voltage level. 

 

 

Fig. 5. Power vs VDD for RVT and Multi-Vt standard cells. 

 

ii. Clock Gating 

In Design Compiler, the compile_ultra command is used to synthesize RTL code into a gate-

level netlist with many levels of optimizations. During this process, the -gate_clock option 

can be used to gate clocks to registers whenever possible. Using this option, 98% of the 

registers were clock gated by the Design Compiler during synthesizing. Clock gating resulted 

in a significant reduction in dynamic and internal power, while the leakage power was 



reduced by about 8%. The total power was effectively reduced by about 8%. 

 

TABLE I. Power Reduction with Clock Gating. 

 Switch Power Int. Power Leak. Power Total Power 

Reduction in Power with 

Clock gating 

25% 50% 8% 8% 

 

iii. Memory and Buffer 

Without any low-power techniques, almost 100% of the power was attributed to leakage 

power, and about 47% came from the memory and about 18% came from the buffer. There 

are about 40 registers, each with 10 bits; hence, 400 registers are used by the memory, which 

is about 50% of the total registers used in the design. Similarly, the buffer uses 220 registers. 

The memory and buffer are register arrays. Instead of shifting the data in the register array, 

the circular memory and buffer use a pointer to indicate the register that is used to read and 

write data. By doing this, the circular memory and buffer are able to save a great amount of 

switching power. But in terms of the total power consumption, this saving is insignificant. To 

reduce the power consumption of the memory and buffer, we need to reduce the leakage 

power by using HVT cells. In order to further improve our performance, four registers (10 

bits each) used in the NEO computing block were removed. Data saved in the preamble 

buffer could then be used for the NEO computation instead. With this optimization, we saved 

static power by reducing the number of registers. The result is summarized in the following 

table. 

 

The total power savings should be about 1.5 uW × 40 registers = 60 uW, which agrees with 

the results shown in the table below. 

 



TABLE II. Power consumption for architectures with and without four dedicated NEO registers 

 Total Power Consumption (mW) Saving (%) 

With Four Register in NEO 1.74 NA 

Without Four Register in NEO 1.68 3.4 

 

iv. Word-length 

Reducing the number of registers can decrease the power consumption. First, by using the 

given equations for threshold and NEO calculations and the fact that the input stream has 10 

bits, we found that the minimum number of bits required in the worst case. Then, we used 

MATLAB simulations on the actual data to find out the maximum value of     , the 

threshold value, the terms in the threshold summation, and the maximum derivative, so that 

the number of bits could be reduced to the minimum. 

 

The following tables summarize the number of bits used and power consumption after 

optimizing for word-length. Compared to the basic design, the leakage and total power 

decreased by 10uW, while dynamic power decreased by roughly 20%. This is expected 

because the basic design uses 11 more registers than the minimum required, and each register 

consumes 1uW of leakage power on average. 

 

TABLE III. Summary of word-length requirement. 

Size of Registers Based on Real Data Worst Case Actual Bits Used 

Input / Output 10 10 10 

     20 20 20 

Threshold 16 22 16 



Accumulate 23 30 23 

Derivative 11 11 11 

 

v. Measurement Matrix 

 

 
Fig. 6. From the top: bio-signal with spike-sorting; compress sensing on bio-signal with spike-sorting; 

reconstructed signals with CF=2, 4, 6, and 8, respectively. 



 

Fig. 6 shows compressed sensing on bio-signals with spike-sorting and reconstructed signals 

with compression factors (CF) = 2, 4, 6, and 8, respectively. Compression factor (CF) is 

defined by N/M, with an N-dimensional input and M-dimensional output. In each plot, M is 

fixed to 50 and N is swept to vary compression factor. Because the purpose of compressed 

sensing is data compression, a higher compression factor is desirable and is proportional to 

power savings. As expected, the details of reconstructed signals decreases as the data 

compression factor increases. Based on our simulation results, details of signal are lost at CF 

= 8 and beyond. Thus, details of signals can be accurately reconstructed with CF = 6 and 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V. MEASURED RESULTS 

 

Each block of the whole system is implemented in Verilog and synthesized at 0.78V with 

multi-threshold transistors (mostly with high-threshold transistors) by following the 28/32nm 

Synopsys design tool flow. At every stage of synthesizing (RTL, dc-syn, and icc-par), the 

output of the design is verified with respect to the output of MATLAB’s simulation result. 

 

i. Power 

Power is measured by Synopsys PrimeTime. Fig. 7 shows the power breakdown of each 

block in the system, and Fig. 8 shows the power breakdown of the total power consumption. 

As expected, the memory block consumes the most power because leakage power dominates 

in our system. Our system operates at 20kHz, which sets every block in standby mode for a 

long time. We can also notice that internal power consumes even more than switch power; 

this is caused by the short-circuit current between the power and ground. Both leakage and 

internal power can be reduced by implementing a power-gating technique effectively. For the 

next phase in the EE241B project, we are planning to implement a power-gating technique in 

Synopsys tools. Also, we cannot reduce the voltage supply below 0.78V in Synopsys tools 

now, so we are manually characterizing the low-voltage library. Considering that we have 

enough time slack, we can further reduce power.  

 

Another way of reducing power in this situation is to implement SRAM for memory. SRAM 

costs area and is difficult to be implemented in Verilog; however, Chisel, a new hardware 

description language (HDL) developed by UC Berkeley, allows us to implement a SRAM in 

HDL level. Thus, we will try it in the next phase as well. The current total power 

consumption is 30.462 uW. 



 

 

Fig. 7. Power breakdown of each block. 

 

Fig. 8. Power breakdown of top module. 

 

ii. Area 

Area is measured by a Synopsys IC compiler. As expected, the memory takes up the most 

part in the total area. The trend in power and area is quite proportional, so we reached the 

conclusion that we can reduce power by optimizing area as much as we can. Thus, we 



synthesized our design to target a density of no more than 70 or 80 percent to allow space for 

clock tree synthesis, buffer insertion, and routing. The width and height of our layout is 165 

um x 165 um, and the total area of the block is 17953.53 um
2
. 

 

 

Fig. 9. Area breakdown of each block. 

 

Fig. 10. Layout by IC-Compiler in 28/32nm Synopsys tool. 



VI. CONCLUSIONS 

 

 

Fig. 11. Power consumption comparison for spike-sorting and compressed sensing. 

 

Fig. 12. Area comparison for spike-sorting and compressed sensing. 

 

As shown in Fig. 12 and Fig. 13, a spike-sorting algorithm is more expensive than 

compressed sensing in both power and area. However, considering the natural weakness of 

compressed sensing on noise, this combination of both techniques can be implemented to 

achieve a robust operation. For example, compressed sensing is often exploited in MRI 

applications where noise frequently appears, and our approach can be considered for this 



situation. 

 

TABLE IV. Summary 

Technology 28 / 32 nm Synopsys Tool 

VDD 0.78 V 

No. of Channels 1 

Clock 20 kHz 

Compression Factor 6 

Total Power 

30.462 uW/channel 

Power 

(spike-sorting) 
27.863 uW/channel 

Power 

(compressed sensing) 
2.198 uW/channel 

Area 17953.53 um
2
 

 

This paper explains the design of combining spike-sorting and compressed sensing 

algorithms in a DSP chip. The chip has a core area of 17953.53 um
2
. Clocked at 20 kHz, it 

consumes 30.462 uW/channel at 0.78V for a single channel with a 10bit/sample input stream. 
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