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Abstract— In this paper, a tracking controller is developed
for an aircraft model subject to uncertainties in the dynamics
and additive state-dependent nonlinear disturbance-like terms.
In the design of the controller, dynamic inversion technique
is utilized in conjuction with a robust term. Only the output
of aircraft dynamics is utilized in the controller design and
acceleration measurements are not required. Lyapunov based
stability analysis is used to prove global asymptotic tracking.

I. INTRODUCTION

Dynamic inversion (DI) technique, which is a control

design approach for nonlinear systems, was firstly developed

for, and generally used in aerospace systems [1], [2]. The

main idea of this technique is to transform the nonlinear

system to a linear time invariant system by making change of

variables and after using an appropriate control input, to drive

the linear aircraft dynamics to a reference model [3], [4],

[5], [6], [7], [8]. Guarino et al. utilized DI technique in servo

control design and also compared it with traditional feedback

controllers [3]. In [4], Oppenheimer and Doman applied the

DI technique to stabilize an unstable, non-minimum phase

hypersonic aircraft system. In [5], a DI based controller was

proposed for Wiener systems. In [6], a DI based method

was developed for finite time stability of a class of nonlinear

systems where the input matrix was full rank. In [7], an

autonomous flight control system was developed for a small

scale unmanned helicopter based on approximate DI method.

In [8], closed–loop stability of a six degree-of-freedom

nonlinear air-to-air missile was ensured with a DI based

controller. A DI based aircraft controller was developed for

autonomous operation of a linear Yamaha RMAX helicopter

in [9]. DI based controllers were also applied to experimental

systems as in [10] and [11].

In the literature, DI technique is generally utilized when

system dynamics is known. However, in some cases, and

specifically for flight systems, exact dynamics is not avail-

able. When the system dynamics is subject to uncertainties

(be it structured or unstructured), DI based algorithms can

have difficulty in compensating for these uncertainties due

to the increase in inversion error. Another reason for the

increase of inversion error is the uncertainties in the input

matrix. To avoid the increase in inversion error, uncertainties

must be compensated by fusing the DI technique with

adaptive and/or robust techniques. Some past research was
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devoted to fusing DI technique with robust controllers. In

[12], a robust DI method based on sliding mode control

was proposed for tracking control of an unpowered flying

vehicle. Yamasaki et al. proposed a robust DI controller

for tracking control of an unmanned aerial vehicle (UAV)

[13]. In [14], A stochastic robust nonlinear control approach

fused with DI technique was applied to a highly nonlinear

complicated aircraft model. In [15], a nonlinear dynamic

inversion controller is combined with a PI controller to lin-

earize the dynamics of UAVs. Some other past research fused

adaptive control techniques with DI to compensate for lin-

early parameterizable uncertainties. For example, in [16], DI

technique based null-space injection controller, and in [17],

an adaptive DI based switching control methodology was

proposed to compensate for structured uncertainties. In [18],

DI was used in conjuction with a nonlinear model reference

adaptive controller (MRAC) based on neural networks. Chen

et al. proposed an adaptive dynamic inversion (ADI) based

feedback linearization control for a flexible spacecraft [19].

To compensate for modeling errors and external disturbances,

Wang and Stengel designed an ADI controller for a miniature

UAV [20]. In [21], Calise and Rysdek proposed an ADI

controller which was a combination of adaptive feedforward

neural networks with feedback linearization. Lavretsky and

Hovakimyan designed a direct MRAC augmented with a

DI controller [22]. ADI based controllers, while compen-

sating for structured uncertainties, mostly failed to address

unstructured uncertainties. To compensate for both structured

and unstructured uncertainties, neural networks were utilized

in conjuction with ADI based controllers [23], [24], [25],

[26] and [27]. However, in these works, while boundedness

of the tracking error was ensured, asymptotic tracking was

lost. Recently, Shin et al. developed a position tracking

control system for a rotorcraft-based unmanned aerial vehicle

(RUAV) by using robust integral of the signum of the error

(RISE) feedback and neural network feedforward terms [28],

[29]. Different from typical neural network based robust

controllers, this method guaranteed semi-global asymptotic

tracking. In [30], MacKunis et al. fused the robust controller

in [31], [32] with DI technique to achieve asymptotic output

tracking for aircraft systems with an uncertain input matrix

and subject to additive unknown nonlinear disturbances.

However, the signum of the time derivative of the output

was utilized (i.e., acceleration information was required) in

the design of the controller. Acceleration measurements are

widely used in aircraft systems for system identification or

control design. While acceleration measurements are avail-

able for some aircraft systems, utilizing these measurements
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in control design may not be preferred from control theory

perspective. Additionally, although accelerometers may be

seen as good and practical solutions in system identification

and control applications, there are several reasons for not

using them in some applications. Firstly, aside from onerous-

ness in implementation, one needs to deal with sensor–related

issues such as calibration and possible sensor failures. One

way to avoid calibration requirements and sensor failures is,

if possible, not to use them. For some cases, using them

may be considered as redundant due to their costs. While

the costs of sensors are decreasing rapidly, using them still

adds to the cost of the overall system. Furthermore, aside

from these, it should also be noted that using an additional

sensor complicates the sensing system.

In this paper, model reference tracking control of an

uncertain aircraft model subject to uncertainties is discussed.

Specifically, the state and the input matrices are considered to

be uncertain, and the dynamics is subject to an additive state-

dependent nonlinear disturbance-like terms. Furthermore, to

remove the need for acceleration measurements, we consider

that only the output of the aircraft being available for control

development. In the design of the controller, the robust

integral of the sign of the error component in [31], [32]

is utilized. Since the input matrix of the aircraft system

is considered to be uncertain, a matrix decomposition is

utilized in the development of the error system. The control

design is based on Lyapunov based design and analysis

techniques, and global asymptotic stability of the tracking

error is ensured.

II. AIRCRAFT MODEL

Following aircraft model is considered [4], [16], [33], [34]

ẋ = Ax + f(x, t) + Bu , y = Cx (1)

where x(t) ∈ R
n is the state vector, A ∈ R

n×n is the

state matrix, B ∈ R
n×m is the input matrix, y(t) ∈ R

m

is the output, C ∈ R
m×n is the output matrix, u(t) ∈ R

m

is the control input, and f(x, t) ∈ R
n is a state-dependent

nonlinear disturbance-like term representing gravity, inertial

coupling and nonlinear gust modeling. The above model is

assumed to satisfy the following properties.

Assumption 1: The model in (1) is controllable.

Assumption 2: The state-dependent nonlinear

disturbance-like term f(x, t) is continuously differentiable

and bounded up to its first order time derivative (i.e.,

f(x, t) ∈ C1 and f(x, t), ḟ(x, t) ∈ L∞).

III. CONTROL DESIGN

The control design objective is to develop a robust control

law that ensures that the output of the aircraft model y (t)
tracks the output of a reference model that will be designed

subsequently, and additionally, all closed-loop signals are

required to remain bounded. In the subsequent development,

C is assumed to be known, while A, B, and f(x, t) are

considered to be uncertain, thus, will not be utilized in the

control design. The subsequent development is derived based

on the assumption that only the output y (t) is measurable.

The reference model is represented as

ẋm = Amxm + Bmum , ym = Cxm (2)

where xm (t) ∈ R
n is the reference state vector, Am ∈

R
n×n is the reference state matrix, Bm ∈ R

n×m is the

reference input matrix, um(t) ∈ R
m is the reference input,

ym (t) ∈ R
m is the reference output, and C is the same

output matrix in (1). The reference state matrix Am is chosen

to be Hurwitz, and the reference input um(t) and its time

derivative are designed as bounded functions. Linear analysis

tools can then be utilized along with these assumptions to

prove that xm (t), ẋm (t), ẍm (t) and thus, ym (t), ẏm (t),
ÿm (t) are bounded functions.

To quantify the tracking control objective, an output track-

ing error, denoted by e (t) ∈ R
m, is defined as

e , y − ym = C(x − xm). (3)

In the subsequent development, the error system will be

designed based on a filtered tracking error, denoted by r (t) ∈
R

m, which is defined as

r , ė + Λe (4)

where Λ ∈ R
m×m is a constant, positive definite, diagonal

control gain matrix. It is noted that since only y (t) is

available then ė (t) and thus r (t) are not measurable, and

cannot be utilized in the control design.

Assumption 3: Since the number of states is strictly

greater than the number of outputs (i.e., n > m), there may

be some states that can not be observed through the output.

The subsequent control development and stability analysis

rely on the assumption that the state vector can be partitioned

as

x = xo + xu (5)

where xo (t) ∈ R
n contains the observable states through the

output, and xu (t) ∈ R
n contains the unobservable states.

Furthermore, the unobservable states can be partitioned as

xu = xuρ + xuξ (6)

where xuρ (t), xuξ (t) ∈ R
n contain the unobservable states

that can be bounded by a function of error signals and a

constant, respectively. Mathematically speaking, following

bounds are assumed

‖xuρ (t)‖ ≤ c1 ‖z‖ and ‖xuξ (t)‖ ≤ ξxu
(7)

where c1, ξxu
∈ R are known positive bounding constants

and z ,
[

eT , rT
]T ∈ R

2m is the combined error signal. A

similar upper bound can be obtained for the components of

ẋu(t) in the sense that

‖ẋuρ (t)‖ ≤ c2 ‖z‖ and ‖ẋuξ (t)‖ ≤ ξẋu
(8)

where c2, ξẋu
∈ R are known positive bounding constants.

Similar to (5), the reference state vector xm (t) can be

partitioned as

xm = xmo + xmu (9)



where xmo (t) ∈ R
n contains the entries of the reference

state vector corresponding to the observable states of the state

vector, and xmu (t) ∈ R
n contains the rest of the entries of

the reference state vector.

After substituting (1)-(3) into (4), following expression can

be obtained

r = CAx + Ωu + Cf − CAmxm − CBmum + Λe (10)

where Ω , CB ∈ R
m×m is an auxiliary constant matrix.

Since B is uncertain, then Ω is uncertain as well. Further-

more, we do not know whether or not Ω is symmetric and/or

positive definite. Given these restrictions, we consider the

SDU decomposition of Ω as [35]

Ω = SDU (11)

where S ∈ R
m×m is a symmetric positive-definite matrix,

D ∈ R
m×m is a diagonal matrix with entries ±1 and U ∈

R
m×m is a unity upper triangular matrix. Details of the SDU

decomposition can be found in [36].

Remark 1: We evaluated the SDU decomposition of Ω
for different aircraft models in the literature. For all these

models, we observed that the diagonal matrix D was equal

to identity matrix. However, for the sake of completeness,

the subsequent controller will be designed to be applicable

to any diagonal matrix D without imposing any restrictions,

as long as it is available for control design.

After utilizing (11), the time derivative of the filtered

tracking error r(t) can be written as

ṙ = CAẋ + SDUu̇ + Cḟ − CAmẋm − CBmu̇m + Λė. (12)

After premultiplying (12) with M , S−1 ∈ R
m×m,

following expression can be obtained

Mṙ = M [CAẋ + Cḟ −CAmẋm −CBmu̇m + Λė] + DUu̇.

(13)

It is noted that, since S is symmetric and positive-definite,

then so is M . An auxiliary signal, denoted by N (x, ẋ, t) ∈
R

m is defined as

N , M [CAẋ + Cḟ − CAmẋm − CBmu̇m + Λė] + e (14)

which can be utilized to rewrite the expression in (13) as

Mṙ = N − e + DUu̇. (15)

The auxiliary signal N can be partitioned as

N = Nd + Ñ (16)

where Nd (t) ∈ R
m contains functions that can be bounded

by constants

Nd , MCAẋuξ +MCḟ −MCBmu̇m +MC(A−Am)ẋmo

(17)

and Ñ (x, ẋ, e, ė) ∈ R
m is an auxiliary error-like term

defined as follows

Ñ , MC[A(ẋo − ẋmo) + Aẋuρ − Amẋmu] (18)

+MΛ(r − Λe) + e.

The main idea behind partitioning N as in (16)-(19) is to

make use of the following facts.

Remark 2: From Assumptions 1 and 3, and the assump-

tion on boundedness of the reference model signals, it can be

shown that Nd(t) is a bounded function of time in the sense

that ‖Nd‖ ≤ ζNd
∀t where ζNd

∈ R is a positive bounding

constant. Or alternatively, |Nd,i| ≤ ζNd,i
∀t with ζNd,i

∈ R

being positive bounding constants.

Remark 3: The auxiliary error like term in (19) can be

upper bounded as

‖Ñ‖ ≤ ρ ‖z‖ (19)

where ρ ∈ R is a positive bounding constant.

Based on the subsequent stability analysis, the control

input is designed as

u = −DK[e(t) − e(0) + Λ

∫ t

0

e(τ)dτ ] − DΠ (20)

where Π(t) ∈ R
m is an auxiliary filter signal updated

according to1

Π̇(t) = βSgn(e(t)) with Π(0) = 0m×1 (21)

where β ∈ R
m×m is a constant, positive-definite, diago-

nal control gain matrix, Sgn (·) denotes the vector signum

function, and K ∈ R
m×m is a constant, positive-definite,

diagonal control gain matrix and defined as

K = Im + kgIm + diag{kd,1, kd,2, ..., kd,m−1, 0} (22)

with kg , kd,1, ..., kd,m−1 ∈ R being positive gains. The time

derivative of the control input in (20) is obtained as

u̇ = −DKr − DβSgn(e) (23)

where (4) and (21) were utilized. After substituting (23) into

(15), following closed-loop error system is obtained

Mṙ = Nd +Ñ−e−DUDβSgn(e)−D(U −Im)DKr−Kr

(24)

where (16) was utilized.

Since U is unity upper triangular then U − Im is strictly

upper triangular, thus we can rewrite the D(U − Im)DKr

term as

D(U − Im)DKr =
[

ΦT , 0
]T

(25)

where the entries of Φ (r) ∈ R
(m−1)×1 are defined as

Φi = di

m
∑

j=i+1

djkjUi,jrj for i = 1, ..., (m − 1). (26)

Since di = ±1 ∀i = 1, .., m, following upper bound can be

obtained for the entries of Φ

|Φi| ≤
m

∑

j=i+1

kjζUi,j
|rj | ≤ ζΦi

‖z‖ (27)

where ζUi,j
are positive bounding constants satisfying

ζUi,j
≥ Ui,j ∀i, j. It is important to highlight that ζΦi

depends on the control gains ki+1, ..., km.

1Throughout the paper, In and 0m×r will be used to represent an n×n

standard identity matrix and an m× r zero matrix, respectively.



IV. STABILITY ANALYSIS

Theorem 1: The controller given in (20), (21) ensures

global asymptotic tracking in the sense that

‖e (t)‖ → 0 as t → ∞ (28)

provided that the control gain matrices K and β are selected

by using the following procedure:

1) For i = m, βm is selected according to

βm ≥ ζNd,m

(

1 +
γ2

Λm

)

(29)

and from i = m−1 to i = 1, βi are selected according

to

βi ≥



ζNd,i
+

m
∑

j=i+1

ζΨj
βj





(

1 +
γ2

Λi

)

(30)

where γ2 ∈ R is some positive bounding constant and

the subscript i = 1, . . . , m denotes the i-th element of

the vector or the diagonal matrix.

2) Control gain kg is chosen big enough to decrease the

constant ρ2

4kg
.

3) Choose kd,i, i = 1, . . . , (m − 1) to decrease the

constant
∑m−1

i=1

ζ
Φ2

i

4kd,i
.

Proof: The proof of theorem has four subproofs. In the

first part, boundedness of all the signals under the closed-

loop operation will be presented (see Appendix I). Secondly,

a lemma and its proof (which utilizes the boundedness of the

error signals) will be presented (see Appendix II). The proof

of this lemma will provide an upper bound on the terms
∫ t

0 |ėi(τ)|dτ , which will then be utilized in the next part of

the proof. In the third part, the positiveness of an auxiliary

integral term is demonstrated (see Appendix III). Finally, the

asymptotic tracking result is proven (see Appendix IV).

V. CONCLUSION

A robust controller was designed for an aircraft model

subject to uncertainties in the dynamics and additive state-

dependent nonlinear disturbance-like terms. In the design of

the controller, a DI technique was used in conjuction with

robust integral of the sign of the error terms to compensate

for the uncertainties in the dynamic model. Lyapunov type

stability analysis techniques were utilized to ensure global

asymptotic tracking of the output of a reference model.

When compared with the similar studies in the literature,

the key contribution of the proposed work is that only the

output of the aircraft model was utilized in the control design

and no acceleration measurements were required. Specifi-

cally, the closest work to ours is the work of MacKunis

et al. in [30] where adaptive and robust controllers were

designed for uncertain aircraft models subject to uncertain-

ties in the dynamics and additive state-dependent nonlinear

disturbance-like terms. In the design of the controllers, a DI

technique was used in conjuction with robust integral of the

sign of the error terms to obtain a similar result. However,

in the design of the controllers in [30] the time derivative of

the output was utilized, while in our work only the output

information was utilized in the design of the controller.

APPENDIX I

BOUNDEDNESS PROOF

In this appendix, the boundedness of all the signals under

the closed-loop operation will be demonstrated. Let V1 (z) ∈
R be a Lyapunov function defined as

V1 ,
1

2
eT e +

1

2
rT Mr (31)

which can be upper and lower bounded as

1

2
min{1, Mmin}‖z‖2 ≤ V1 (z) ≤ 1

2
max{1, Mmax}‖z‖2

where Mmin and Mmax denote minimum and maximum

eigenvalues of M , respectively. Time derivative of the Lya-

punov function can be written as

V̇1 = −eT Λe + rT Nd + rT Ñ − rT DUDβSgn(e)

− rT
[

ΦT , 0
]T − rT r − kgr

T r −
m−1
∑

i=1

kd,ir
2
i . (32)

After utilizing (27), following upper bound can be obtained

rT
[

ΦT , 0
]T

=
m−1
∑

i=1

riΦi ≤
m−1
∑

i=1

ζΦi
|ri|‖z‖. (33)

After substituting the upper bounds in Remarks 2 and 3, and

utilizing (33), following expression can be obtained

V̇1 ≤ −eT Λe − ‖r‖2 + ζNd
‖r‖ + ζ1‖r‖ + ρ‖r‖‖z‖

− kg‖r‖2 +
m−1
∑

i=1

ζΦi
|ri|‖z‖ −

m−1
∑

i=1

kd,ir
2
i (34)

where rT DUDβSgn(e) ≤ ζ1‖r‖ was utilized with ζ1 ∈
R being a positive bounding constant. After utilizing below

manipulations

ζ1‖r‖ + ζNd
‖r‖ ≤ 1

4δ
‖r‖2 + δ (ζ1 + ζNd

)2 (35)

ρ‖r‖‖z‖ − kg‖r‖2 ≤ ρ2

4kg

‖z‖2 (36)

ζΦi
|ri|‖z‖ − kd,ir

2
i ≤

ζ2
Φi

4kd,i

‖z‖2 (37)

∀i = 1, ..., (m − 1), where δ ∈ R is a positive damping

constant, the right-hand side of (34) can be upper bounded

as

V̇1 ≤ −[min{Λmin, (1 − 1

4δ
)} − ρ2

4kg

−
m−1
∑

i=1

ζ2
Φi

4kd,i

]‖z‖2

+ δ (ζ1 + ζNd
)
2

(38)

where Λmin denotes the minimum eigenvalue of Λ. Provided

that the control gains Λ, kg , kd,1, ..., kd,m−1 are selected

sufficiently high, the above expression can be rewritten as

V̇1 ≤ −c1V1 + c2 (39)



where c1 and c2 are some positive bounding constants. From

(39), it can be concluded that V1(t) ∈ L∞, and thus, e(t),
r(t) ∈ L∞. The definition of r(t) in (4) can be utilized to

prove that ė(t) ∈ L∞. By using (3) and its time derivative,

along with the assumption that the reference model signals

being bounded, it can be proven that y (t), ẏ (t), x (t), ẋ (t) ∈
L∞. The above boundedness statements and Assumption 2

can be utilized along with (1) to prove that u (t) ∈ L∞.

From (23), it is easy to see that u̇ (t) ∈ L∞. After utilizing

the above boundedness statements, Assumption 2, and the

assumption that the reference model signals being bounded

along with (12), it is clear that ṙ (t) ∈ L∞. Standard signal

chasing algorithms can be used to prove that all remaining

signals are bounded.

APPENDIX II

LEMMA 1 AND ITS PROOF

Lemma 1: Provided that e(t) and ė(t) are bounded, the

following expression for the upper bound of the integral of

the absolute value of the i-th entry of ė(t) can be obtained

[41]
∫ t

t0

|ėi(τ)|dτ ≤ γ1 + γ2

∫ t

t0

|ei(τ)|dτ + |ei| (40)

where γ1, γ2 ∈ R are some positive bounding constants.

Proof: First, we note that if ei(t) ≡ 0 on some interval,

then ėi(t) ≡ 0 on the same interval, and the inequality (40)

yields this qualification. Therefore, without loss of generality,

we assume that ei(t) is absolutely greater than zero on the

interval of [t0, t]. Let T ∈ [t0, t) be the last instant of time

when ėi(t) changes sign. Then, on the interval [T, t], ėi(t)
has a constant sign, hence

∫ t

T

|ėi(τ)|dτ =

∣

∣

∣

∣

∫ t

T

ėi(τ)dτ

∣

∣

∣

∣

= |ei(t) − ei(T )|. (41)

From the boundedness of ėi(t), it follows that there exist a

constant γ > 0 such that |ėi(t)| ≤ γ, therefore
∫ T

t0

|ėi(τ)|dτ ≤ γ(T − t0). (42)

On the other hand, by applying the Mean Value Theorem

[42], we can obtain the following expression
∫ T

t0

|ei(τ)|dτ = (T − t0)ei∗. (43)

where ei∗ is some intermediate value of |ei(t)| on the interval

[t0, T ]. By assumption, ei∗ is bounded away from zero.

Therefore, from (42) and (43), we can conclude as
∫ T

t0

|ėi(τ)|dτ ≤ γ2

∫ T

t0

|ei(τ)|dτ (44)

where γ2 ,
γ

ei∗
. Combining the relationships in (41) and

(44), we can write
∫ t

t0

|ėi(τ)|dτ ≤ |ei(t)| + γ2

∫ t

t0

|ei(τ)|dτ + |ei(T )| (45)

which yields in (40) with γ1 , sup|ei(T )|.

APPENDIX III

LEMMA 2 AND ITS PROOF

Lemma 2: Let the auxiliary function L(t) ∈ R be defined

as

L , rT (Nd − DUDβSgn(e)). (46)

If the entries of β are selected to satisfy the conditions in (29)

and (30), then it can be concluded that P (t) ∈ R defined as

P , ζb −
∫ t

0

L(τ)dτ. (47)

is nonnegative where ζb ∈ R is a positive bounding constant.

Proof: The proof can be found in [43].

APPENDIX IV

ASYMPTOTIC STABILITY PROOF

In this appendix, the asymptotic stability of the output

tracking error is presented.

Let V2 (w) ∈ R be a Lyapunov function defined as

V2 , V1 + P (48)

where w (t) ,
[

eT rT
√

P
]T ∈ R

(2m+1)×1. It should

be noted that, the non-negativeness of P (t), which is essen-

tial to prove that V2 (w) is a valid Lyapunov function, was

proven in Appendix III. The Lyapunov function in (48) can

be upper and lower bounded as follows

1

2
min{1, Mmin}‖w‖2 ≤ V2 (w) ≤ max{1

2
Mmax, 1}‖w‖2.

Taking the time derivative of the Lyapunov function in (48),

substituting (32) and time derivative of (47), and after some

straightforward manipulations, we obtain

V̇2 = −eT Λe + rT Ñ − rT
[

ΦT , 0
]T − rT r − kgr

T r

−
m−1
∑

i=1

kd,ir
2
i . (49)

After utilizing (36) and (37), the right-hand side of (49) can

be upper bounded as

V̇2 ≤ −
[

min{λmin(Λ), 1} − ρ2

4kg

−
m−1
∑

i=1

ζ2
Φi

4kd,i

]

‖z‖2.

(50)

Provided that the control gains Λ, kg, kd,1, ..., kd,m−1

are selected sufficiently high, the below expression can be

obtained for the derivative of the Lyapunov function

V̇2 ≤ −c3‖z‖2 (51)

where c3 is some positive bounding constant. From (48) and

(51), it is clear that V2(w) is nonincreasing and bounded.

After integrating (51), it can be concluded that z(t) ∈ L2.

Since z(t) ∈ L∞ ∩ L2 and ż(t) ∈ L∞, from Barbalat’s

Lemma [42], ‖z(t)‖ → 0 as t → ∞, thus meeting the

control objective. Since no restrictions with respect to the

initial conditions of the error signals were imposed on the

control gains, the result is global.
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