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Top income inequality rose sharply in the United States over the last
40 years but increased only slightly in France and Japan. Why? We ex-
plore a model in which heterogeneous entrepreneurs, broadly inter-
preted, exert effort to generate exponential growth in their incomes,
which tends to raise inequality. Creative destruction by outside innova-
tors restrains this expansion and induces top incomes to obey a Pareto
distribution. Economic forces that affect these two mechanisms—includ-
ing information technology, taxes, and policies related to innovation block-
ing—may explain the varied patterns of top income inequality that we see
in the data.

I. Introduction

As documented extensively by Piketty and Saez (2003) and Atkinson,
Piketty, and Saez (2011), top income inequality—such as the share of in-
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come going to the top 1 percent or top 0.1 percent of earners—has risen
sharply in the United States since around 1980. The pattern in other coun-
tries is different and heterogeneous. For example, top inequality rose only
slightly in France and Japan. Why? What economic forces explain the var-
ied patterns in top income inequality that we see around the world?

Itis well known that the upper tail of the income distribution follows a
power law. One way of thinking about this is to note that income inequal-
ity is fractal in nature, as we document more carefully below. In particular,
the following questions all have essentially the same answer: What fraction
of the income going to the top 10 percent of earners accrues to the top 1
percent? What fraction of the income going to the top 1 percent of earn-
ers accrues to the top 0.1 percent? What fraction of the income going to the
top 0.1 percent of earners accrues to the top 0.01 percent? The answer to
each of these questions—which turns out to be around 40 percent in the
United States today—is a simple function of the parameter that character-
izes the power law. Therefore, changes in top income inequality naturally
involve changes in the power law parameter. This paper considers a range
of economic explanations for such changes.

The model we develop uses the Pareto-generating mechanisms that re-
searchers such as Gabaix (1999) and Luttmer (2007) have used in other
contexts. Gabaix studies why the distribution of city populations is Pareto
with its key parameter equal to unity. Luttmer studies why the distribution
of employment by firms has the same structure. It is worth noting that both
cities and firm sizes exhibit substantially more inequality than top incomes
(power law inequality for incomes is around 0.5, as we show below, vs.
around 1 for city populations and firm employment). Our approach there-
fore is slightly different: why are incomes Pareto and why is Pareto inequal-
ity changing over time, rather than why is a power law inequality measure
so close to unity?'

The basic insight in this literature is that exponential growth, tweaked
appropriately, can deliver a Pareto distribution for outcomes. The tweak
is needed for the following reason. Suppose that city populations (or in-
comes or employment by firms) grow exponentially at 2 percent per year
plus some random normally distributed shock. In this case, the log of pop-
ulation would follow a normal distribution with a variance that grows over
time. To keep the distribution from spreading out forever, we need an ad-
ditional force. For example, a constant probability of death will suffice to
render the distribution stationary.

In the model we develop below, researchers create new ideas: new com-
puter chips or manufacturing techniques, but also bestselling books, smart-

' These papers in turn build on a large literature on such mechanisms outside economics.
For example, see Reed (2001), Mitzenmacher (2004), and Malevergne, Saichev, and Sornette
(2013). Gabaix (2009) and Luttmer (2010) have excellent surveys of these mechanisms, written
for economists. Benhabib (2014) and Moll (2016) provide very helpful teaching notes.
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phone apps, financial products, surgical techniques, or even new ways of
organizing a law firm. Ideas should be interpreted broadly in this model.
The random growth process corresponds to the way entrepreneurs in-
crease their productivity and build market share for their new products.
The growth rate of this process is tied to entrepreneurial effort, and any-
thing that raises this effort, resulting in faster growth in entrepreneurial in-
come, will raise top income inequality. The “death rate” in our setup is nat-
urally tied to creative destruction: researchers invent new ideas that make
the previous state-of-the-art surgical technique or bestselling iPad applica-
tion obsolete. A higherrate of creative destruction restrains entrepreneur-
ial income growth and results in lower top income inequality. In this way,
the interplay between existing entrepreneurs growing their profits and the
creative destruction associated with new ideas determines top income in-
equality.

This paper proceeds as follows. Section II presents some basic facts of
top income inequality, emphasizing that the rise in the United States is ac-
curately characterized by a change in the power law parameter. Section III
considers a brief toy model to illustrate the main mechanism in the paper.
The next two sections then develop the model, first with an exogenous al-
location of labor to research and then more fully with an endogenous al-
location of labor. Section VI uses the Internal Revenue Service’s public use
panel of tax returns as well as data from the Social Security Administration
to estimate several of the key parameters of the model, illustrating that the
mechanism is economically significant. Section VII highlights the important
role played by transition dynamics in this framework.

The existing literature—A number of other recent papers contribute to
our understanding of the dynamics of top income inequality. Piketty, Saez,
and Stantcheva (2014) and Rothschild and Scheuer (2016) explore the pos-
sibility that the decline in top tax rates has led to a rise in rent seeking, lead-
ing top inequality to increase. Philippon and Reshef (2012) focus explicitly
on finance and the extent to which rising rents in that sector can explain
rising inequality; see also Bell and Van Reenen (2014). Bakija, Cole, and
Heim (2010) and Kaplan and Rauh (2010) note that the rise in top inequal-
ity occurs across a range of occupations; it is not just focused in finance
or among CEOs, for example, but includes doctors and lawyers and star
athletes as well. Benabou and Tirole (2016) discuss how competition for the
most talented workers can result in a “bonus culture” with excessive incen-
tives for the highly skilled. Haskel et al. (2012) suggest that globalization
may have raised the returns to superstars via a Rosen (1981) mechanism.
Aghion et al. (2015) show that innovation and top income inequality are
positively correlated within US states and across US commuting zones; we
discuss how this finding might be reconciled with our framework in a later
section. There is of course a much larger literature on changes in income
inequality throughout the distribution. Katz and Autor (1999) provide a



1788 JOURNAL OF POLITICAL ECONOMY

general overview, while Autor, Katz, and Kearney (2006), Gordon and Dew-
Becker (2008), and Acemoglu and Autor (2011) provide more recent up-
dates. Banerjee and Newman (1993) and Galor and Zeira (1993) study the
interactions between economic growth and income inequality.

Lucas and Moll (2014) explore a model of human capital and the shar-
ing of ideas that gives rise to endogenous growth. Perla and Tonetti (2014)
study a similar mechanism in the context of technology adoption by firms.
These papers show that if the initial distribution of human capital or firm
productivity has a Pareto upper tail, then the ergodic distribution also inher-
its this property and the model can lead to endogenous growth, a result rem-
iniscent of Kortum (1997). The Pareto distribution, then, is more of an “in-
put” in these models than an outcome.”

The most closely related papers to this one are Levy (2003), Nirei (2009),
Benhabib, Bisin, and Zhu (2011), Moll (2012), Piketty and Saez (2013), Toda
(2014), Piketty and Zucman (2015), Benhabib and Bisin (2016), Hubmer,
Krusell, and Smith (2016), and Nirei and Aoki (2016). These papers study
economic mechanisms that generate endogenously a Pareto distribution
for wealth, and therefore for capital income. The mechanism responsible
for random growth in these papers is either the asset accumulation equa-
tion (which naturallyfollows arandom walk when viewed in partial equilib-
rium) or the capital accumulation equation in a neoclassical growth model.
Geerolf (2016) connects both top income inequality and firm size inequal-
ity in a Garicano (2000) style model of hierarchies, building on the assign-
ment model of Gabaix and Landier (2008).%

The present paper differs most directly from much of the previous liter-
ature by focusing explicitly on labor income and entrepreneurial income.*
Since much of the rise in top income inequality in the United States is due
to labor income (e.g., see Piketty and Saez 2003), this focus is appropriate.
Our paper also differs by embedding the discussion of Pareto inequality in
a model with endogenous growth, allowing us to study the potential trade-
offs between growth and inequality.

Finally, Gabaix et al. (2016) show that the basic random growth model has
trouble matching the transition dynamics of top income inequality. Build-

* Luttmer (2014) extends this line of work in an attempt to get endogenous growth with-
out assuming a Pareto distribution and also considers implications for inequality. Koenig,
Lorenz, and Zilibotti (2016) derive a Zipf distribution in the upper tail for firm productiv-
ity in an endogenous growth setting.

* The mechanism by which Geerolf (2016) generates the Pareto distribution is different
from the random growth mechanism in most of these other papers. Instead, Geerolf exploits
the fact that power functions (like Cobb-Douglas production functions) are closelyrelated to Pa-
reto distributions and that the first-order Taylor expansion of a function with f(0) = 0 around
zero is itself a power function (a linear one).

* Classic papers on generating Pareto distributions for income include Champernowne
(1953), Simon (1955), and Mandelbrot (1960).
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ing on Luttmer (2011), they suggest that a model with heterogeneous mean
growth rates for top earners will be more successful, and we incorporate
their valuable insights, as discussed further below.

II. Some Basic Facts

Figures 1 and 2 show some of the key facts about top income inequality
that have been documented by Piketty and Saez (2003) and Atkinson et al.
(2011). For example, the first figure shows the large increase in top in-
equality for the United States since 1980 compared to the relative stability
of inequality in France.

Figure 2 shows the dynamics of top income inequality for a range of
countries, illustrating that the United States and France are large countries
close to the two extremes. The horizontal axis shows the share of aggregate
income earned by the top 1 percent, averaged between 1980 and 1982,
while the vertical axis shows the same share for 2006-8. All the economies
for which we have data lie above the 45-degree line; that is, top income
inequality has risen everywhere. The rise is the largestin the United States,
South Africa, and the United Kingdom, but substantial increases are also
seen elsewhere, such as in Ireland, Norway, Singapore, Italy, and Sweden.
Japan and France exhibit smaller but still noticeable increases. For exam-
ple, the top 1 percent share in France rises from 7.4 percent to 9.0 percent.

8% I

United States

6%

4%

INCOME SHARE OF TOP 0.1 PERCENT

2%

1950 1960 1970 1980 1990 2000 2010
YEAR

FiG. 1.—Top income inequality in the United States and France. Source: World Wealth and
Income Database (http://www.wid.world/). Includes interest and dividends but not capital
gains. Color version available as an online enhancement.
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Fic. 2.—Top income inequality around the world, 1980-82 and 2006-8. Top income in-
equality has increased since 1980 in every country for which we have data. The size of the in-
crease varies substantially, however. Source: World Wealth and Income Database (http://www
.wid.world/). Color version available as an online enhancement.

A.  The Role of Labor Income

As discussed by Atkinson et al. (2011) and Piketty, Saez, and Zucman (2016),
a substantial part of the rise in US top income inequality represents a rise
in labor income inequality, particularly if one includes “business income”
(i.e., profits from sole proprietorships, partnerships, and S corporations)
in the labor income category. Given our focus on entrepreneurs, our ideal
income measure would always include entrepreneurial income. From now
on, when we speak of “labor income,” we will include entrepreneurial in-
come as well. Figure 3 shows an updated version of a graph from Piketty
and Saez (2003) for the period since 1950, supporting the observation that
much of the rise in top income inequality is associated with this broad con-
cept of labor income.

Because the model in this paper is based on labor income as opposed
to capital income, documenting the Pareto nature of labor income inequal-
ity in particular is also important. It is well known, dating back to Pareto
(1896), that the top portion of the income distribution can be characterized
by a power law. That is, at high levels, the income distribution is approxi-
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Fic. 3.—The composition of the top 0.1 percent income share. Source: These data are
taken from the “data-Fig4B” tab of the June 2016 update of the spreadsheet appendix to
Piketty and Saez (2003). Color version available as an online enhancement.

mately Pareto. In particular, if Y is a random variable denoting incomes,
then, at least above some high level (i.e., for Y > y,),

¢
PelY > ] = (yl) , (1)

where £ is called the “power law exponent.”

Saez (2001) shows that wage and salary income from US income tax
records in the early 1990s is well described by a Pareto distribution. Fig-
ure 4 replicates his analysis for 1980 and 2005 for a broader income con-
cept that includes both wage and salary income as well as entrepreneur-
ial income from businesses. In particular, the figures plot mean income
above some threshold as a ratio to the threshold itself. If income obeys
a Pareto distribution like that in (1), then this ratio should equal the
constant £/(¢ — 1), regardless of the threshold. That is, as we move to
higher and higher income thresholds, the ratio of average income above
the threshold to the threshold itself should remain constant.” Figure 4
shows that this property holds reasonably well in 1980 and 2005 and also
illustrates that the ratio has risen substantially over this period, reflecting
the rise in top income inequality.

® This follows easily from the fact that the mean of a Pareto distribution is £y,/(¢ — 1)
and that the conditional mean just scales up with the threshold.
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F1c. 4.—The Pareto nature of labor income (broadly defined). A, Linear scale, up to $3 mil-
lion. B, Log scale. The figures plot the ratio of average wage plus entrepreneurial income above
some threshold z to the threshold itself. For a Pareto distribution with Pareto inequality
parameter 7, this ratio equals 1/(1 — 7). Saez (2001) produced similar graphs for 1992 and
1993 for wage and salary income using the IRS public use tax files available from the NBER
at www.nber.org/taxsim-notes.html. The figures here replicate these results using the same
data source and a broader income concept for 1980 and 2005. Color version available as an
online enhancement.

B.  Fractal Inequality and the Pareto Distribution

There is a tight connection between Pareto distributions and the “top x
percent” shares that are the focus of Piketty and Saez (2003) and others.
To see this, let $(p) denote the share of income going to the top p per-
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centiles. For the Pareto distribution defined in equation (1) above, this
share is given by (p/100)' "%, A larger power law exponent, £, is associated
with lower top income inequality. It is therefore convenient to define the
“power law inequality” exponent as

WEE (2)

S(p) = (%) (3)

For example, if n = 1/2, then the share of income going to the top 1 per-
centis 10072 = .10. However, if n = 3/4, the share going to the top 1 per-
cent rises sharply to 100™"/* ~ 0.32.

An important property of Pareto distributions is that they exhibit a
fractal pattern of top inequality. To see this, let S(a) = S(a)/S(10a) de-
note the fraction of income earned by the top 10 x @ percent of people
that actually goes to the top a percent. For example, S(1) is the fraction
of income going to the top 10 percent that actually accrues to the top 1
percent, and S$(0.1) is the fraction of income going to the top 1 percent
that actually goes to the top one in 1,000 earners. Under a Pareto distri-
bution,

so that

S(a) = 107", (4)

Notice that this last result holds for all values of «a, or at least for all val-
ues for which income follows a Pareto distribution. This means that top
income inequality obeys a fractal pattern: the fraction of the top 10 per-
cent’s income going to the top 1 percent is the same as the fraction of the
top 1 percent’s income going to the top 0.1 percent, which is the same as
the fraction of the top 0.1 percent’s income going to the top 0.01 percent.

Not surprisingly, top income inequality is well characterized by this frac-
tal pattern, as shown in figure 5.° At the very top, the fractal prediction
holds remarkably well, and S(0.01) = S(0.1) = S(1). Prior to 1980, the frac-
tal shares are around 25 percent: one-quarter of the top X percent’s in-
come goes to the top X/10 percent. By the end of the sample in 2015, this
fractal share is closer to 40 percent.

The rise in fractal inequality shown in figure 5 can be related directly
to the power law inequality exponent using equation (4) and taking logs.
The corresponding Pareto inequality measures are shown in figure 6. This
figure gives us the quantitative guidance that we need for theory. The goal
is to build a model that explains why top incomes are Pareto and that

® Others have noticed this before. For example, see Aluation.wordpress.com (2011).
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F1c. 5.—Fractal inequality of US income. The term S(a) denotes the fraction of income
going to the top 10a percent of earners that actually goes to the top a percent. For example,
S(1) is the share of the top 10 percent’s income that accrues to the top 1 percent. Source:
World Wealth and Income Database (http://www.wid.world/). Includes interest and dividends
but not capital gains. Color version available as an online enhancement.
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Fic. 6.—The power law inequality exponent 5, United States. The term 7(a) is the power
law inequality exponent obtained from the fractal inequality income shares in figure 5 as-
suming a Pareto distribution. See equation (4) in the text. Color version available as an online
enhancement.
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generates a Pareto exponent that rises from around 0.4 to around 0.6 for
the United States but by much less in France and other countries.

C. Skill-Biased Technical Change?

Before moving on, it is worth pausing to consider a simple, familiar expla-
nation in order to understand why it is incomplete: skill-biased technical
change. For example, if the distribution of skill is Pareto and there is a rise
in the return to skill, does this raise top inequality? The answer is no, and
it is instructive to see why.

Suppose the economy consists of a large number of homogeneous low-
skilled workers with fixed income y. High-skilled people, in contrast, are
heterogeneous: income for highly skilled person ¢ is y; = wx*, where x; is
person ¢’s skill and w is the wage per unit of skill (ignore « for now). If the
distribution of skill across people is Pareto with inequality parameter 7,, then
the income distribution at the top will be Pareto with inequality parameter
n, = am,. Thatis, if Pr[x; > x] = x7"/", then Pr[y, > | = (y/iu)fl/"‘.An in-
crease in w—a skill-biased technical change that increases the return to
skill—shifts the Pareto distribution right, increasing the gap between high-
skilled and low-skilled workers. But it does not change Pareto inequality
a simple story of skill-biased technical change is not enough.

Notice that if the exponent o were to rise over time, this would lead to
a rise in Pareto inequality. But this requires something more than just a
simple skill-biased technical change story. Moreover, even a rising o would
leave unexplained the question of why the underlying skill distribution
is Pareto. The remainder of this paper can be seen as explaining why x
is Pareto and what economic forces might cause « to change over time or
differ across countries.”

D.  Summary

Here then are the basic facts related to top income inequality that we
would like to be able to explain. Between 1960 and 1980, top income in-
equality was relatively low and stable in both the United States and France.
Since around 1980, however, top inequality has increased sharply in coun-
tries such as the United States, Norway, and the United Kingdom, while it
has increased only slightly in others, including France and Japan. Finally,
labor income is well described by a Pareto distribution, and rising top in-
come inequality is to a great extent associated with rising labor income in-
equality. Changing top income inequality corresponds to a change in the

7 Gabaix et al. (2016) explore an alternative approach they call “scale dependence” in
an extension of Gabaix and Landier (2008), viewing a rise in « as a convexification in the re-
turns to skill.
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power law inequality exponent, and the US data suggest a rise from about
0.4 in the 1970s to about 0.6 by 2015. The remainder of this paper devel-
ops and analyzes a model to help us understand these facts.

III. A Simple Model of Top Income Inequality

It is well known that exponential growth and Pareto distributions are
tightly linked, and this link is at the heart of the main mechanism in this
paper. To illustrate this pointin the clearest way, we begin with a brief toy
model, illustrated graphically in figure 7.%

When a person first becomes a top earner (“entrepreneur”), she earns
income y,. As long as she remains a top earner, her income grows over
time at rate p, so the income of a person who has been a top earner for x
years—think of xas “entrepreneurial experience”™—is y(x) = yet*.

People do not remain top earners forever. Instead, there is a constant
probability 6 per unit of time (more formally, a Poisson process) that an
existing entrepreneur is displaced. If this occurs, the existing entrepreneur
drops out of the top, becoming a “normal” worker, and is replaced by a
new entrepreneur who starts over at the bottom of the ladder and earns y,.

What fraction of people in this economy have income greater than
some level y? The answer is simply the fraction of people who have been
entrepreneurs for at least x(y) years, where

1 b)
= “log(Z). 5
x(y) p 0g<y0> (5)

With a Poisson replacement process, it is well known that the distribu-
tion of experience for a given individual follows an exponential distribu-
tion, that is, Pr[Experience > x| = ¢ . Let us take for granted that the
stationary distribution of experience across a population of entrepreneurs
is this same exponential distribution; this is shown more formally in ap-
pendix A (apps. A-D are available online). Then the remainder of the ar-
gument is straightforward:

Pr[Income > y] = Pr[Experience > x(y)]

— e*M)‘)

(6)

which is a Pareto distribution!

¥ See Gabaix (2009) for a similar stylized model, which Gabaix attributes to Steindl (1965),
applied to Zipf’s law for cities. Benhabib (2014) traces the history of Pareto-generating mech-
anisms and attributes the earliest instance of a simple model like that outlined here to Can-
telli (1921).
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F1c. 7.—Basic mechanism: exponential growth with death = Pareto. Color version avail-
able as an online enhancement.

Pareto inequality in this model is then given by the inverse of the expo-
nent above:

(7)

SOs

Ny =

Top income inequality can therefore change for two reasons. First, an in-
crease in the growth rate of top earners, u, will widen the distribution: the
higher is the growth rate, the higher is the ratio of top incomes to the in-
come of a new entrepreneur. Second, an increase in the “death rate” 6 will
reduce top inequality, as entrepreneurs have less time during which to
build their advantage.

The logic of the simple model provides useful intuition about why the
Pareto result emerges. First, in equation (5), the log of income is propor-
tional to experience. This is a common and natural assumption. For exam-
ple, in models in which income grows exponentially over time, income and
time are related in this way. Or in labor economics, log income and expe-
rience are linked in Mincer-style equations. Next, the distribution of expe-
rience is exponential. This is a property of a Poisson process with a constant
arrival rate. Putting these two pieces together, log income has an exponen-
tial distribution. But this is just another way of saying that income has a Pa-
reto distribution. More briefly, exponential growth occurring over an ex-
ponentially distributed amount of time delivers a Pareto distribution.

What are the economic determinants of u and 6, and why might they
change over time or differ across countries? Answering these questions is
one of the goals of the full model that we develop next.
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IV. A Schumpeterian Model of Top
Income Inequality

The simple model illustrates in a reduced-form fashion the main mech-
anism at work in this paper. In our full model, we develop a theory in which
the economic determinants of u and 6 are apparent, and we consider what
changes in the economy could be responsible for the range of patterns we
see in top income inequality across countries. Entrepreneurs undertake re-
search to improve the productivity of their existing firms and increase their
incomes. This process is assumed to be stochastic, which allows us to better
match up the model with microdata on top incomes. At the same time, the
death rate is endogenized by tying it to the process of creative destruction
by outside research in a Schumpeterian growth model. The setup captures
some of the key features of top incomes: the importance of entrepreneur-
ial effort, the role of creative destruction, and the centrality of “luck” as
some people succeed beyond their wildest dreams while others fail.

A, Entrepreneurs

An entrepreneur is a monopolist with the exclusive right to sell a partic-
ular variety, in competition with other varieties. We interpret this statement
quite broadly. For example, think of a Silicon Valley start-up, an author of
anew book, a new rock band, an athlete just making it to the pros, or a
doctor who has invented a new surgical technique. Moreover, we do not as-
sociate a single variety with a single firm: the entrepreneur could be a mid-
dle manager in a large company who has made some breakthrough and
earned a promotion.

When a new variety is first introduced, it has a low quality/productivity,
denoted by x, which can be thought of as the stock of the new incumbent’s
innovation. The entrepreneur then expends effort (“incumbent research”)
to improve x. We explain later how x affects firm production and profitabil-
ity. For the moment, it is sufficient to assume that the entrepreneur’s in-
come is proportional to x, as it will be in general equilibrium. Note that we
are recycling notation: this x does not measure experience as it did in the
simple model of Section II (though it is related).

Given an x, the entrepreneur maximizes the expected present discounted
value of flow utility, u(c, ¢) = log ¢, + Blog ¢,, subject to the following con-
straints:

¢ = Y, ()

o+l +717=1, 9)
dx, = p(e)xdi + ox,dB,, (10)
u(e) = ge. (11)

For simplicity, we do not allow entrepreneurs to smooth their consump-
tion and instead assume that consumption equals income, which in turn is



SCHUMPETERIAN MODEL OF TOP INCOME INEQUALITY 1799

proportional to the entrepreneur’s productivity x. The factor of proportion-
ality, ¥, is exogenous to the individual’s actions and is the same for all entre-
preneurs; it is endogenized in general equilibrium shortly. The entrepre-
neur has one unit of time each period, which can be used for effort e or
leisure £ or it can be wasted, in amount 7. This could correspond to time
spent addressing government regulations and bureaucratic red tape, for
example.

Equation (10) describes how effort improves the entrepreneur’s produc-
tivity x through a geometric Brownian motion. The average growth rate of
productivity is u(¢) = ¢e, where ¢ is a technological parameter converting
effort into growth. The term dB, denotes the standard normal increment
to the Brownian motion. This equation can be viewed as a stochastic ver-
sion of an Aghion-Howitt research equation for incumbents. Alternatively,
itis also reminiscent of the human capital accumulation process in Lucas
(1988). Interestingly, as we discuss below, the inherent linearity of this equa-
tion does not give rise to long-run growth. Instead the model will deliver a
stationary distribution of x across heterogeneous entrepreneurs.

Finally, there is a Poisson creative destruction process by which the en-
trepreneur loses her monopoly position and is replaced by a new entrepre-
neur. This occurs at the (endogenized in general equilibrium) rate é. In ad-
dition, there is an exogenous piece to destruction as well, which occurs at
a constant rate d.

The Bellman equation for the entrepreneur is

E[dV (x, t)]

oV(x,t) = max logy, + logx, + Blog(Q — ¢) +
(%, 1) = max log 8 82— o) pr (12)

+ (6 +0)[V“(t) = V(x, t)]

subject to (10), where @ = 1 — 7 and E[dV («,, t)]/dt is shorthand for the
Ito calculus terms, that is,

E[dV (x, t)]

1 .
0l = u(e)x Vi(x, t) + §U2X,ZVM(X,, t) + Vi(x, ).

The term V(x, t) is the expected utility of an entrepreneur with quality x
and rate of time preference p. The flow of the value function depends on
the “dividend” of utility from consumption and leisure, the “capital gain” as-
sociated with the expected change in the value function, and the possible
loss associated with creative destruction, in which case the entrepreneur
becomes a worker with expected utility V*.

The first key result describes an existing entrepreneur’s choice of research
effort. (Proofs of all propositions are given in app. D.)

ProrosiTiON 1 (Entrepreneurial effort). Entrepreneurial effort solves
the Bellman problem in equation (12) and along the balanced growth path
is given by
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1 _
e*=1—7—$-6(p+6+6). (13)

This proposition implies that entrepreneurial effort is an increasing func-
tion of the technology parameter ¢ but decreases whenever 7, 8, p, 6, or 6
is higher.

B.  The Stationary Distribution of Entrepreneurial Income

Assume there is a continuum of entrepreneurs of unit measure at any point
in time. The initial distribution of entrepreneurial productivity x is given by
Jo(x), and the distribution evolves according to the geometric Brownian mo-
tion process given above. Entrepreneurs can be displaced in one of two
ways. Endogenous creative destruction (the Poisson process at rate 6) leads
to replacement by a new entrepreneur who inherits the existing quality x;
hence the distribution is not mechanically altered by this form of destruc-
tion. In large part, this is a simplifying assumption; otherwise one has to
worry about the extent to which the step up the quality ladder by a new en-
trepreneur trades off with the higher x that the previous entrepreneur has
accumulated. We treat the exogenous destruction at rate § differently. In this
case, existing entrepreneurs are replaced by new “young” entrepreneurs
with a given initial productivity x,. Exogenous destruction could correspond
to the actual death or retirement of existing entrepreneurs, or it could stand
in for policy actions by the government: one form of misallocation may
be that the government appropriates the patent from an existing entrepre-
neur and gives it to a new favored individual. Finally, it simplifies the anal-
ysis to assume that x, is the minimum possible productivity: there is a “re-
flecting barrier” at x,; this assumption could be relaxed.

We have set up the stochastic process for x so that we can apply a well-
known result in the literature for generating Pareto distributions.” If a var-
iable follows a Brownian motion, like x above, the density of the distribu-
tion f(x, ?) satisfies a Kolmogorov forward equation:'’

of (x, ) - 0 . 1 & 5,
AN — 2 [u(e +2. 2 . (14
50— ) = D) 0]+ 3 ot 0] (1)
If a stationary distribution, lim,_, .f (x, t) = f(x), exists, it therefore sat-
isfies

2

0= =8(x) = (V)] + 5 Sl ()

? For more detailed discussion, see Reed (2001), Mitzenmacher (2004), Gabaix (2009),
and Luttmer (2010). Malevergne et al. (2013) is closest to the present setup.

' This is the stochastic generalization of an equation like (A2) in app. A, related to the
simple model at the start of the paper.
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Guessing that the Pareto form f(x) = Cx™*' solves this differential equa-
tion, one obtains the following result:

ProrosITION 2 (The Pareto income distribution). The stationary dis-
tribution of (normalized) entrepreneurial income is given by

(16)
where
£t (17)
and 1 1
BEE () — 50t = ¢(1 - 1) = Blp + 8" +8) — 50"

Power law inequality is therefore given by n* = 1/£".

The word “normalized” in the proposition refers to the fact that the in-
come of an entrepreneur with productivity x is ,x. Aggregate growth oc-
curs via the , term, as discussed when we turn to general equilibrium, while
the distribution of x is what is stationary. Finally, we put a “star” on ¢ as a
reminder that this value is determined in general equilibrium as well.

Comparative statics—Taking §* as exogenous for the moment, the com-
parative static results are as follows: power law inequality, 1, increases if
effort is more effective at growing entrepreneurial income (a higher ¢), de-
creases if the time endowment is reduced by government policy (a higher 7),
decreases if entrepreneurs place more weight on leisure (a higher ), and
decreases if either the endogenous or exogenous rates of creative destruc-
tion rise (a higher §" or §)."

The analysis so far shows how one can endogenously obtain a Pareto-
shaped income distribution. We have purposefully gotten to this result as
quickly as possible while deferring our discussion of the general equilibrium
in order to draw attention to the key economic forces that determine top
income inequality.

C. Heterogeneous Mean Growth Rates

As pointed out by Luttmer (2011) and Gabaix etal. (2016), the basic ran-
dom growth framework that forms the heart of the model so far has trou-
ble explaining features of the data associated with transition dynamics. For
example, in the firm dynamics studied by Luttmer (2011), Google and
Microsoft become billion-dollar companies seemingly overnight, much

"' The effect of ¢* on power law inequality is more subtle. If n* > p* /6, then a rise in ¢
increases 7" Since n* — p* /6 as 0> — 0, this is the relevant case. Notice the similarity of this
limit to the result in the simple model given at the start of the paper.
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faster (and more frequently) than occurs in plausibly calibrated basic ran-
dom growth models. Gabaix et al. (2016) also note that the speed of conver-
gence to the stationary distribution is very slow in such models, making it
hard for those models to match the rapid rise in top income inequality
observed in the data.

Both papers suggest that a solution to these problems can be found by
introducing heterogeneous mean growth rates; that is, it is possible for
some entrepreneurs to grow extremely rapidly, at least for awhile (this is
sometimes called the “Luttmer rocket”). This insight is consistent with re-
cent empirical work: Guvenen et al. (2016) show that growth rates for top
earners are extremely heterogeneous, with the distribution of growth rates
featuring a thick upper tail that even appears to be Pareto itself.

We follow the implementation by Gabaix et al. (2016) and augment our
basic setup to include two growth states for entrepreneurs.'* When research-
ers discover a new idea, a fraction of them inherit the high-growth ¢, pa-
rameter. They then face a Poisson process with arrival rate p for transition-
ing permanently down to the more normal ¢, low-growth parameter. In
addition, we allow the variance of the shocks to also depend on the state,
distinguishing o;,and o;. This change is easily introduced and has a straight-
forward effect on the analysis we have done so far, as shown in the next
proposition.

ProposITION 3 (Pareto inequality with heterogeneous mean growth
rates). Extending the model to include high- and low-growth rates as in
Luttmer (2011) and Gabaix et al. (2016), for ¢, sufficiently large, the sta-
tionary distribution of (normalized) entrepreneurial income has an upper
tail with a Pareto inequality exponent n* = 1/£,,, where

%k sk 2 —= —
iy i 2(6 +
£y = _“_2”4_ <p._7> +¥ (18)
Oy O O
and
~ * 1 2 * < 1 2
pu =pu(e’) — <oy = ¢u(1 —7) — B + 6 +6) — —ou.
2 2

That is, Pareto inequality is determined just as before, only with the
key parameters replaced by those in the high-growth case. The addition of
¢ allows some entrepreneurs to grow very rapidly, addressing the Google/
Microsoft problem. And the speed of convergence to steady state is gov-
erned by the Poisson “death rate.” Here, the relevant death rate includes p,
the rate at which entrepreneurs “die” out of the high-growth state. We later

' Also see Luttmer (2016). The logic of the proposition below suggests that the restric-
tion to only two states instead of more is not especially important: the Pareto distribution
will be dominated by the single state that delivers the thickest tail.
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estimate this rate to be very rapid, thereby substantially speeding up the tran-
sition to the stationary distribution.

D.  Production and General Equilibrium

Next, we flesh out the rest of the general equilibrium: how the entrepre-
neur’s productivity x enters the model, how x affects entrepreneurial in-
come (the proportionality factor ¥,), and how creative destruction 6% is de-
termined.

The remainder of the setup is a relatively conventional model of endog-
enous growth with quality ladders and creative destruction, in the tradition
of Grossman and Helpman (1991) and Aghion and Howitt (1992). A fixed
population of people choose to be basic laborers, outside researchers (search-
ing for a new idea), or entrepreneurs (who have found an idea and are in
the process of improving it).

A unit measure of varieties exist in the economy, and varieties combine
to produce a single final output good:

1 1/0
Y=<J dei) , 0<6<1. (19)

0

Each variety is produced by an entrepreneur using a production function
that exhibits constant returns to basic labor L;

K = 'yn’xf‘Li. (20)

The productivity in variety ¢’s production function depends on two terms.
The first captures aggregate productivity growth. The variable n, measures
how far up the quality ladder the variety is, and v > 1 is the step size. For
simplicity, we assume that a researcher who moves a particular variety up
the quality ladder generates spillovers that move all varieties up the qual-
ity ladder: in equilibrium, every variety is on the same rung of the ladder.
(This just avoids our having to aggregate over varieties at different posi-
tions on the ladder.) The second term is the key place where the entrepre-
neur’s idiosyncratic productivity enters: labor productivity depends on x;'.
As usual, variety ¢’s market share is increasing in x;

The main resource constraint in this environment involves labor:

1
L +R +1=N, LtEJL,;,di. (21)

0
A fixed measure of people, N, are available to the economy. People can
work as the raw labor making varieties, as outside researchers, R, or as en-
trepreneurs—of which there is always just a unit measure, though their

identities can change. It is convenient to define L = N — 1.

Outside researchers discover new ideas through a Poisson process with
arrival rate N per researcher. Research is undirected, and a successful dis-
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covery, if implemented, increases the productivity of a randomly chosen
variety by a proportion y > 1. Once the research is successful, the researcher
becomes the entrepreneur of that variety, replacing the old entrepreneur by
endogenous creative destruction. In addition, as explained above, the new
idea generates spillovers that raise productivity in all other varieties as well.
Existing entrepreneurs, however, may use the political process to block new
ideas. We model this in a reduced-form way: a fraction z of new ideas are
successfully blocked from implementation, preserving the monopoly (and
productivity) of the existing entrepreneur.
The flow rate of innovation is therefore

. = N1 — 2)R,, (22)
and this also gives the rate of creative destruction:

6, = M. (23)
E.  The Allocation of Resources

There are 12 key endogenous variables in this economic environment: ¥,
Y, x, L, L, R, n, 0, ¢, ¢, {;, and ¢. (Appendix table Al summarizes the no-
tation used in the paper.) The entrepreneur’s choice problem laid out ear-
lier pins down ¢, £ and efor each entrepreneur. Production functions and
resource constraints determine Y, Y, L, x;, n, and 6. This leaves us needing
to determine R, L, and .

Itis easiest to do this in two stages. Conditional on a choice for R, stan-
dard equilibrium analysis can easily pin down the other variables, and the
comparative statics can be calculated analytically. So to begin, we focus on a
situation in which the fraction of people working as researchers is given ex-
ogenously: R/L = 5. Later, we let markets determine this allocation as well
and provide numerical results.

We follow a standard approach in decentralizing the allocation of re-
sources. The final goods sector is perfectly competitive, while entrepreneurs
each engage in monopolistic competition in selling their varieties. Each entre-
preneur is allowed by the patent system to act as a monopolist and charges
amarkup over marginal cost given by 1/6. In equilibrium, then, wages and
profits are given by the following proposition.

ProposITION 4 (Output, wages, and profits). Let w denote the wage
per unit of raw labor, and let 7; denote the profit earned by the entrepre-
neur selling variety 7. Assume now and for the rest of the paper that o =
(1 — 6)/6." The equilibrium with monopolistic competition leads to

Yo =~"X'L, (24)

'* This is merely a simplifying assumption that makes profits a linear function of x. It can
be relaxed with a bit more algebra.
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w, = Oy" X7, (25)

and

1

n, o ﬁ
T = (1 - 0)7 X (X)L“ (26)

where X, = f(,lxi, di is the mean of the x distribution across entrepreneurs.

According to the proposition, aggregate output is an increasing func-
tion of the mean of the idiosyncratic productivity distribution, X In the
baseline case with only a single state for ¢, the stationary distribution is Pa-
reto throughout, and an important intuition is available. The mean of the
x distribution is then X = x,/(1 — 7). More inequality (a higher ) there-
fore has a long-run level effect in this economy, raising both output and
wages.

We can now determine the value of ¥, the parameter that relates entre-
preneurial income to x. Entrepreneurs earn the profits from their variety,
T, In the entrepreneur’s problem, we previously stated that the entrepre-
neur’s income is ¥,x;, so these two equations define i, as

Yo=(1-00y"X""L. (27)

Finally, we can determine the overall growth rate of the economy along
a balanced growth path. Once the stationary distribution of x has been
reached, X is constant. Since L is also constant over time, the aggregate pro-
duction function in equation (24) implies that growth in output per per-
son is 7, logy = N(1 — 2z)sL log v if the allocation of research is given by
R/L = 5. This insight pins down the key endogenous variables of the model,
as shown in the next result."*

ProposITION 5 (Growth and inequality in the s case).  If the allocation
of research is given exogenously by R/L = swith 0 <5 < 1, then along a
balanced growth path, the growth of final output per person, g, and the
rate of creative destruction are given by

g = N1 —2)sLlogY, (28)
6" = N1 — z)sL. (29)
Power law inequality is then given by proposition 2 or proposition 3 with
this value of §".
F. Growth and Inequality: Comparative Statics

In the setup with an exogenously given allocation of research, the com-
parative static results are easy to see, and these comparative statics can be

' At least one of the authors feels a painful twinge writing down a model in which the
scale of the economy affects the long-run growth rate. This is certainly one target for valu-
able future work.
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divided into those that affect top income inequality only and those that
also affect economic growth.

First, a technological change that increases ¢, will increase top income
inequality in the long run. This corresponds to anything that increases the
effectiveness of entrepreneurs in building the market for their product. A
canonical example of such a change might be the rise in the World Wide
Web. For a given amount of effort, the rise of information technology and
the internet allows successful entrepreneurs to grow their profits much more
quickly than before, and we now see many examples of firms that go from
being very small to very large quite quickly. Such a change is arguably not
specific to any particular economy but rather common to the world. This
change can be thought of as contributing to the overall rise in top income in-
equality throughout most economies, as was documented back in figure 2.

Interestingly, this technological change has no effect on the long-run
growth rate of the economy, at least as long as 5 is held fixed. The reason
is instructive about how the model works. In the long run, there is a sta-
tionary distribution of entrepreneurial productivity x. Some varieties are
extraordinarily successful, while most are not. Even though an increase in
¢increases the rate of growth of x, this serves only to widen the station-
ary distribution, as we showed back in Section IV.B. There is a level effect
on overall GDP (working through X), but no growth effect. Long-run growth
comes about only through the arrival of new external ideas from outside
research, not through the productivity growth associated with improving an
existing idea. In light of the endogenous growth literature, it is interesting
that the log-linear differential equation inherent in the geometric Brown-
ian motion leads only to level effects in the model rather than to growth
effects. The ultimate reason underlying this fact is the “death rate” 6 and the
decay rate p that cause entrepreneurs to exit, generating a stationary distri-
bution of x. This was the logic shown in the toy model back in Section III.

The parameters 7 and 3 also affect top income inequality without affect-
ing growth when s is held constant. An increase in 7 corresponds to a re-
duction in the time endowment available to entrepreneurs; an example of
such a policy might be the red tape and regulations associated with start-
ing and maintaining a business. With less time available to devote to the
productive aspects of running a business, the distribution of x and there-
fore the distribution of entrepreneurial income are narrowed and top in-
come inequality declines.

The two key parameters in the model that affect both growth and top
income inequality are s and z, and they work the same way. If a larger frac-
tion of the labor works in research (1 s) or if fewer innovations are blocked
by incumbents (| z), the long-run growth rate will be higher—a traditional
result in Schumpeterian growth models. Here, however, there will also be
an effect on top income inequality. In particular, faster growth means more
creative destruction—a higher 6. This means that entrepreneurs have less
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time to build successful businesses, and this reduces top income inequal-
ity in the stationary distribution.

These are the basic comparative statics of top income inequality. Notice
that a rise in top income inequality can be the result of either favorable
changes in the economy—a new technology like the World Wide Web—or
unfavorable changes—Ilike policies that protect existing entrepreneurs from
creative destruction.

V. Endogenizing R&D

‘We now endogenize the allocation of labor to research, s. This allocation is
pinned down by the following condition: ex ante, people are indifferent be-
tween being a worker and being a researcher.

A worker earns a wage that grows at a constant rate and simply consumes
this labor income. The worker’s value function is therefore

ave(e)
dt

A researcher searches for a new idea. If successful, the researcher be-
comes an entrepreneur. If unsuccessful, we assume the researcher still earns
awage mw, where m is a parameter measuring the amount of social insur-
ance for unsuccessful research.

The value function for a researcher at time ¢ is

oV (t) = logw, + (30)

dv;(t) + N1 = 2)(E[V(x, )] — V(1)) (31)

+ 0x(E[V(x, )] — V"(1)).

The first two terms on the right-hand side capture the basic consumption
of an unsuccessful entrepreneur and the capital gain associated with wage
growth. The last two terms capture the successful transition a researcher
makes to being an entrepreneur when a new idea is discovered. This can
happen in two ways. First, with Poisson flow rate N(1 — z) the researcher
innovates, pushing the research frontier forward by the factor v, and re-
places some randomly selected existing entrepreneur. Alternatively, the re-
searcher may benefit from the exogenous process: at rate 6; = 6/R, the
researcher replaces a randomly chosen variety and becomes a new entre-
preneur with productivity x,.

Finally, the indifference condition V*(t) = V*(¢) determines the alloca-
tion of labor as summarized in the following proposition.

ProprosITION 6 (Allocation of labor). In the stationary general equilib-
rium, the allocation of labor to research, s, is determined by the condition
that V*(¢) = V"(¢), where expressions for these value functions are given
by equations (30) and (31).

pV' (1) = log(imw,) +
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The key equations that describe the stationary general equilibrium are
then shown in table 1. However, it is not easy to discuss comparative stat-
ics as there is no closed-form solution for s*. Instead, in the next section
we show numerically how each parameter affects growth and inequality.
Appendix D and the online supplementary material explain how the model
is solved.

Steady-state comparative statics—Figure 8 shows the effect of various pa-
rameters on steady-state growth and inequality when s = R/L is endoge-
nously determined. The effects on Pareto inequality are similar to those
from the exogenous s case. Now, however, we can also study the effects on
economic growth. For example, consider the effect of an increase in the
technology parameter ¢,, shown in figure 8A: an increase in ¢, raises Pa-
reto inequality, as discussed earlier, but—perhaps surprisingly—causes a
decline in the long-run growth rate of GDP per person. Similar results oc-
cur throughout figure 8: parameter changes that increase Pareto inequal-
ity tend to reduce economic growth.

To understand this result, recall that the growth rate of the economy is
determined by the fraction of people who decide to enter the research pro-
cess, prospecting for the possibility of becoming successful entrepreneurs.
On the one hand, an increase in ¢, makes it easier for entrepreneurs to
grow their profits, which tends to make research more attractive. However,
from the standpoint of a researcher who has not yet discovered a new idea,
another effect dominates. The positive technological improvement from
arising ¢, raises average wages in the economy through X, both for work-
ers and for unsuccessful researchers. The mean effect on the level of wages
and profits is therefore neutral with respect to the allocation of labor. How-
ever, it also increases the inequality among successful researchers, making
the research process itself more risky. Our researchers are risk-averse indi-
viduals with log utility, and the result of this risk aversion is that a rise in ¢,
results in a smaller fraction of people becoming researchers, which lowers
the long-run growth rate in this endogenous growth model.

One can, of course, imagine writing down the model in a different way.
For example, if research is undertaken by risk-neutral firms, then this ef-
fect would not be present. Ultimately, this question must be decided by em-
pirical work. Our model, however, makes it clear that this additional force

TABLE 1
KEY EQUATIONS CHARACTERIZING THE STATIONARY GENERAL EQUILIBRIUM
Drift of log x = ou(1 —7) — Bl + 6 + 8) — Yeo¥
K of(F
Pareto inequality gt =1/ 8 =~y 1) + M
Creative destruction “=N1-z2)sL " !

Growth gt = 0% log v
Research allocation Ve(s*) = VE(s¥)
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Fic. 8.—Steady-state comparative statics. The figures show the steady-state values of Pa-
reto inequality (solid line) and long-run growth (dashed) when a single parameter changes
away from its baseline value. The baseline values are p = .01, § = 2/3, y = 1.4, A = .02,
¢y = 0.955, 3 =1, 04 =0.15,6=.08, m = .6,z=02,7=02 L=30,p= 15 and
g = .9875. These values will be discussed in more detail in Section VIIL. Color version available
as an online enhancement.

is present, so that increases in Pareto inequality that result from positive
technological changes need not increase the rate of growth.

The model generally features a negative relationship between long-run
growth and top income inequality for two reasons. First is the reason just
given: higher inequality tends to reduce growth by making research riskier.
The second completes the cycle of feedback: faster growth leads to more
creative destruction, which lowers inequality. Along a transition path, how-
ever, this negative effect on long-run growth is temporarily offset by a pos-
itive level effect (e.g., associated with the improved technology). Section VII
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below shows that this effect can be large, even for periods as long as 20 or
30 years.

VI. Micro Evidence

To what extent is our model consistent with empirical evidence? The first
point to make is that the basic stochastic process for incomes assumed in
our model—a geometric random walk with positive drift—is the canonical
data-generating process estimated in an extensive empirical literature on
income dynamics. Meghir and Pistaferri (2011) survey this literature, high-
lighting prominent examples such as MaCurdy (1982), Abowd and Card
(1989), Topel and Ward (1992), Baker and Solon (2003), and Meghir and
Pistaferri (2004). There are of course exceptions, and some papers pre-
fer alternative specifications, with the main one being the “heterogeneous
income profiles,” which allow for individual-specific means and returns to
experience—consistent with the extended model with heterogeneous
mean growth rates—but often find a persistence parameter less than one; for
example, see Lillard and Willis (1978), Baker (1997), and Guvenen (2007,
2009). While debate continues within this literature, it is fair to say that
a fundamental benchmark is that the log of income features a random
walk component. In that sense, the basic data-generating process we as-
sume in this paper has solid microeconometric foundations.

With unlimited access to microdata, our model makes some clear pre-
dictions that could be tested. In particular, one could estimate the stochas-
tic process for incomes around the top of the income distribution. In ad-
dition to the geometric random walk with heterogeneous drifts, one could
estimate the creative destruction parameters: to what extent do high income
earners see their incomes drop by a large amount in a short time? Guvenen,
Ozkan, and Song (2014) provide evidence for precisely this effect, stating
that “individuals in higher earnings percentiles face persistent shocks that
are more negatively skewed than those faced by individuals that are ranked
lower, consistent with the idea that the higher an individual’s earnings are,
the more room he has to fall” (20).

Beyond estimating this stochastic process, one could also see how the
process differs before and after 1980 in the United States and how it differs
between the United States and other countries. For example, one would
expect the positive drift of the random walk to be higher for top incomes
after 1980 than before. And one would expect this drift to be higher in the
United States in the 2000s than in France; there could also be differences
in the creative destruction parameters or the decay rate out of the high-
growth state between countries and over time that could be estimated.

In the remainder of this section, we present estimates of the determi-
nants of 1 and how they have changed over time. We have two sources
for these estimates. First, we use the rich set of moments for wage and sal-
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ary (W2) income based on the Social Security Administration data, as re-
ported in the extensive data appendix of Guvenen et al. (2016); we refer
to this as the “SSA data.” These results have the advantage of being based
on a large random sample of more than a million workers, with moments
available annually between 1981 and 2011. Second, we use the US Internal
Revenue Service public use tax model panel files created by the Statistics
of Income Division from 1979 to 1990, hosted by the NBER (the “IRS
data”)." This is a random sample of taxpayers who can be followed over
time between 1979 and 1990. The disadvantage is that the sample sizes are
small and the time frame is relatively short. The advantage is that it allows
us to examine entrepreneurial income in addition to wages and salaries.

A, The Distribution of Top Income Growth Rates

Guvenen et al. (2016) provide evidence for thick tails on both sides of the
growth rate distribution for wage and salary income, and some of their ev-
idence is shown in figure 9; similar facts can be documented in the IRS
panel data, but the sample sizes are much smaller. According to our model,
the distribution of income growth rates for top earners should display thick
tails at both the top and the bottom, as we see in the figure. At the bot-
tom, the destruction shocks result in a potentially large downward shift in
incomes, causing the growth rate distribution to be left-skewed. Quanti-
tatively, the leftskewness of the distribution of growth rates helps us to iden-
tify 6, = 6, + &,

At the top, the presence of a “high-growth” group leads to a mixture of
normal distributions that thickens the right tail; this helps us to identify ;.
For example, in figure 9, one in 1,000 top earners see their incomes rise
by a factor of 6.8 over the course of a year, and one in 10,000 see an in-
crease by a factor of nearly 25!"°

B.  Empirical Results Based on SSA Data

Our data and estimation are discussed in more detail in appendix B. In
brief, the parameters are estimated from the distribution of growth rates
for top earners, as suggested in a stylized way in figure 9. The upper tail of
the growth rate distribution is used to estimate fiy;, 0z, and p. We estimate
iy as the median of growth rates above the 95th percentile of the growth
rate distribution, that is, as the growth rate at the 97.5th percentile. We es-

' See http://www.nber.org/ taxsim-notes.html.

' Their evidence suggests very thick Pareto-like tails for the growth rate distribution, a fact
that our simple model cannot match. Our model predicts that growth rates would exhibit two
overlapping normal distributions, together with a thick left tail associated with 6 + & exits. We
suspect that a model with more states for the heterogeneous growth rates could do a better job
of matching these data.
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shows the density of annual log income changes in 1995-96 for the 90th percentile of top
earners aged 45-50, obtained from the spreadsheet data appendix of Guvenen et al. (2016)

timate o, as the standard deviation of growth rates above the 95th per-

centile of the growth rate distribution.'” If top incomes fall by more than
40 percent, we consider this a destruction event. The fraction of growth rates
below this cutoff is an estimate of ¢, which is estimated to be around 13 per-

cent in the SSA data.
To estimate p, we again use moments provided by Guvenen et al. (2016).

For each year and each percentile of the income distribution and for each
percentile of the change in log earnings in year ¢, they report the fraction

of people in a cell who have a growth rate above the 95th percentile of
the growth rate distribution in year ¢ + 1. Call this “ProbStayHigh.” In
our model, this probability equals ¢~?**), which is used to recover an esti-
mate of p in each year. Empirically, ProbStayHigh is relatively small: only
around 5 percent of top earners with growth rates above the 95th per-
centile in year ¢ continue in that high-growth state in year ¢ + 1. This yields
estimates of p that average about 2.8. From this value, one can see how

7 Motivated by the empirical income dynamics literature, we make an adjustment for
the presence of temporary income shocks, which are absent from our theory. Calculations
from Blundell, Pistaferri, and Preston (2008) and Heathcote, Perri, and Violante (2010)
suggest that the variance of the random walk innovation accounts for only about one-sixth

to one-third of the variance of income growth rates. It is unclear how this applies to top
incomes. Hence we make the following correction: we calculate ¢*, the variance of the ran-
dom walk innovation, to be one-fourth of the variance calculated from the highest decile of
the growth rate distribution. Because our estimate of 7 is relatively insensitive to o, this ad-

justment does not play a significant role.
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transition dynamics are much faster when based on p than when involv-
ing only 5, a key point made by Gabaix et al. (2016). In fact, the implied
halflife for the mean of high-growth incomes is less than half a year with
this value.'

The heavy solid black line in figure 10 shows the implied steady-state
measure of Pareto inequality, based on (smoothed) values of the param-
eter estimates in each year using the formula in equation (18)." The
thinner colored lines in the graph show how the steady-state n would evolve
if only one parameter changed, with the others held constant at their 1981
values. Of course this ignores transition dynamics, which we turn to in Sec-
tion VIIL.

Several features of figure 10 stand out. First, the overall level of 7 is
roughly consistent with what we see in the data: the initial value is a little
higher than what we observed in the early 1980s (at 0.45 instead of 0.40),
and the value in the year 2000 is lower than in the data (0.53 instead of
0.63). Put differently, the model and the moments from the wage and sal-
ary data are consistent with about half the observed increase in Pareto in-
equality between 1980 and 2000 in the steady-state analysis.

Next, the colored lines in figure 10 provide a decomposition of the over-
all movements in 7. For example, the initial rise in 7 is driven by increases
in py in the 1980s and changes in p after that: the largest increases in 7
come from an increase in ProbStayHigh: the high-growth state appears
to have gotten more persistent in these data (i.e., a decline in the decay rate
p). Interestingly, there is little evidence in the SSA wage and salary data
for a sustained increase in pi. Also, changes in the death rate 6 or in the
idiosyncratic variance ¢, play a much smaller role, according to this decom-
position. For example, reducing o, all the way to zero at the 2000 param-
eter values lowers 7" only from 0.536 to 0.500. Luck matters in our calibra-
tion, but it is luck in the form of becoming and remaining a high-growth
entrepreneur that is most crucial.

C. Empirical Results Based on IRS Data

Similar calculations are possible using the IRS public use microdata, as
explained in more detail in appendix C. Unfortunately, the sample sizes
are smaller (we can follow between 200 and 1,100 earners in the top 5 per-
centacross a given 2-year period; hence we focus on the top b percent in
the IRS data rather than the top 1 percent, which was possible in the SSA

'* Using eq. (29) from Gabaix etal. (2016), the speed of convergence for incomes in the
high-growth state is A;(—1) = —i,; — % - 0}, + p + 6, and the halflife is In(2) divided by
this value.

" We smooth the parameter estimates using a Hodrick-Prescott filter with the smooth-
ing parameter equal to 100, using the data from 1981 until 2006 to avoid the financial crisis
having an undue influence on the smoothed values.
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F1c. 10.—Decomposing Pareto inequality: SSA data. Estimates are based on the wage
and salary data obtained from Guvenen et al. (2016). Color version available as an online
enhancement.

data) and the time frame is shorter (1979-90). But these data have the ad-
vantage that we can see beyond wage and salary income to include busi-
ness and entrepreneurial income. We follow Piketty and Saez (2003) and
define entrepreneurial income to be the sum of income from Schedule C,
partnerships, S corporations, and farm income.*

In the IRS panel data, we consider the top 5 percent of earners in a given
year. We then estimate py as the median growth rate above the 90th per-
centile of the growth rate distribution, that is, as the growth rate at the
95th percentile. We estimate o, as the standard deviation of growth rates
above the 90th percentile of the growth rate distribution. The fraction of
top earners experiencing a decline in earnings of more than 40 percent is
used to estimate 8%, and we assume & = 0.02 and recover § as the differ-
ence between ¢ and 6. We impose a constant value of 0.8 for p. Appen-
dix C reports further details on estimation.'

* The shares of wage income and entrepreneurial income in top incomes have seen
some changes over time (see table A7 of the June 2016 update of the spreadsheet appendix
to Piketty and Saez [2003]). For example, the share of entrepreneurial income in top in-
comes increased after the Tax Reform Act of 1986 as it became advantageous to file as a
partnership or S corporation to avoid the corporate-level tax.

* The main place where our approach deviates from what we did for the SSA data is in
the choice of p. The IRS panel data are not sufficiently rich to provide an estimate of p be-
cause the panel dimension is too short for individual earners. If we use the value obtained
from the moments in the Guvenen et al. (2016) data for the top 1 percent of earners, 2.8,
the implied value of n averages about 0.2. The reason is that the growth rates for the top
1 percentare substantially higher than the growth rates for the top 5 percent, so this high decayrate
paired with lower fi;; leads to the low 7 estimates. By choosing p = 0.8, the level of 1 moves
up to roughly match the data. The overall trend we obtain in 7 is unaffected by the choice of p.
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Figure 11 shows the implied steady-state Pareto inequality from the pa-
rameter estimates for each year (pair) between 1980 and 1990, using equa-
tion (18). As we saw earlier using the moments from Guvenen et al. (2016),
Pareto inequality rises in the 1980s for wage and salary income.* The fig-
ure shows that the upward trend is even more substantial if one focuses
on entrepreneurial income.

We see several main takeaways from figures 10 and 11. First, the basic
moments emphasized by the model lead to Pareto inequality that is of the
right magnitude and generates an upward trend in the 1980s and 1990s.
Some of the trend results from an increase in the growth rate of top in-
comes, especially in the IRS data, where we can see entrepreneurial income.
Asignificant part of the trend in the wage and salary data comes from a de-
cline in the “decay rate” out of the high-growth state. Finally, there is a per-
haps surprising decline in the growth rate of top incomes in the wage and
salary data after 1990. Obviously, exploring these features in the restricted-
access administrative data is a valuable direction for future research.

VII. Transition Dynamics

We now explore the role of transition dynamics in this Schumpeterian
model. This is important for two reasons. First, Gabaix et al. (2016) sug-
gest that transition dynamics in models like this one can be very slow, mak-

* The timing is surprisingly different between figs. 10 and 11. The underlying moments
of the data look somewhat different, partly because the larger sample size in the SSA data
lets us look higher up in the distribution and potentially in part because of the sampling
error in the IRS data.



1816 JOURNAL OF POLITICAL ECONOMY

ing the steady-state calculations of the preceding section potentially mis-
leading. Second, “level effects” in GDP per person may be important, as
opposed to just the long-run growth rate. The first set of examples below
explores one-time shocks to ¢, p, and 7, while the second set feeds in the
shocks recovered from the IRS and SSA data in the previous section. We
trace through the transition dynamics associated with the Kolmogorov
forward equation to study how top inequality and GDP per person evolve
in response to these shocks.

These remain examples, however, for three main reasons. First and
most importantly, the microdata we have access to are imperfect. The de-
tailed SSA data allow us to look at the top of the income distribution and
follow top earners over time, but they are based only on wages and sala-
ries rather than entrepreneurial income. The IRS panel allows us to see
entrepreneurial income but is available only during the 1980s, has small
sample sizes, and has a limited panel dimension. The numerical exam-
ples we report below, then, are merely intended to verify that changes
like what we have seen in the microdata have the potential when filtered
through our model to explain the changes in top inequality that we see.

Second, the “reduced-form” empirical evidence is insufficient to iden-
tify the underlying structural parameters of the model. As one simple ex-
ample, movements in both ¢, and 7 can deliver changes in p; over time;
without additional data, it is hard to know which has changed.

Finally, we solve for only an approximation to the true transition dy-
namics of our model. It is notoriously difficult to solve for transition dy-
namics in heterogeneous agent models, in part because of the large state
space they imply.* The simplification we use to make our problem com-
putationally tractable is to assume that control variables (i.e., the effort
choice by entrepreneurs and the research allocation) jump immediately to
their steady-state values, while state variables evolve according to their laws
of motion. The transition dynamics then come only from the Kolmogorov
equation as the distribution of x evolves slowly over time. Importantly, this
allows us to study transition dynamics in GDP per person as well, since the
mean of the x distribution will also evolve slowly. These transition dynam-
ics turn out to be quite important.

A.  One-Time Shocks to ¢y, p, and T

Our first set of examples consider one-time shocks to ¢, p, and 7. We start
with a set of baseline parameters that match US Pareto inequality in 1975.

* To be more precise, the Hamilton-Jacobi-Bellman and Kolmogorov forward equations
(KFE) are coupled, with one running forward in time and one running backward. A full so-
lution requires solving for a fixed point in the time path of two general equilibrium objects
(the “wage” of the entrepreneurs ¥, and the rate of creative destruction), which is at the
frontier of existing methods. We are grateful to Ben Moll for advice on the solution tech-
nique we undertake.
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Where possible, these are chosen to be consistent with the empirical es-
timates of the previous section. For example, we assume that o, for the
United States is constant and equal to 0.15, broadly consistent with the ev-
idence in Section VI. We assume § = 0.08 and y = 1.4, so that § = 0.06
when the economy’s growth rate is 2 percent, and therefore 6+ 6~0.14,
similar to what we estimated using the SSA data in the previous section.**

Starting the economy off in steady state, we then shock one of our pa-
rameter values in the year 1980 by an amount that raises the new steady-
state Pareto inequality to its average value at the end of our sample, 0.63.
We feed in the new steady-state values of entrepreneurial effort and the
research share and discretize the state space to solve the KFE using a finite
difference method discussed by Moll (2016). The results are shown in fig-
ure 12.%

Several findings stand out. First, consider Pareto inequality. One-time
shocks to all three parameter values can generate rising Pareto inequality
that roughly matches the US experience. Some of the subtleties are in-
teresting. For example, while the shock occurs in 1975, Pareto inequality
does not start rising immediately and in fact declines at first. The reason is
that top incomes take time to accumulate, and “slightly less than top” in-
comes accumulate first. In addition, the transition dynamics are remark-
ably slow, even given the very high decay rates out of the high-growth state.
As explained by Gabaix et al. (2016), the reason is that convergence rates
at the top are much slower than convergence rates for the mean.

Next, consider the results for GDP per person shown in the bottom panel
of figure 12. We saw earlier that each of these shocks lowers the growth rate
of GDP per person in the long run. However, we see here that the long
run is very far away! In particular, the “level effect” associated with the
gradual increase in the mean of the distribution of entrepreneurial pro-
ductivity dominates for at least 30 years. This shows that the model can
reproduce the positive correlation between top inequality and growth
rates that has been documented elsewhere, as discussed more in the con-
cluding section.

This exercise suggests that something like these shocks—or perhaps
some combination of them or even a sequence of such shocks—can poten-

* Our complete set of values are p = 0.01, L = 30,7 = 0.2,0 = 2/3, 8 = 1, \ = 0.02,
z=0204 = 0.15,6 = 0.08,¢; = 0.955,p = 1.5, in = 0.6,and ¢ = .9875. The value of §
is chosen so that the fraction of high-growth entrepreneurs in the stationary distribution is
5 percent.

* To solve the KFE, we discretize the state space into 2,000 grid points and consider a time
interval of dt = 1/25 periods (about 2 weeks). We then apply the finite difference method de-
scribed in Moll (2016) and used by Gabaix et al. (2016), e.g., in their “figdb.m” and “fighb.m”
programs. In particular, the discretized KFE becomes a (sparse) Markov transition problem
once we discretize the state space, and this equation can be solved in Matlab with standard tech-
niques. For the second case in fig. 13, where we consider the sequence of shocks recovered
from the IRS and SSA data, the transition matrix changes over time, but otherwise the same
solution method applies.
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Fi6. 12.—One-time shocks to ¢, p, and 7. A, Pareto inequality, #. B, GDP per person,
log scale. The figures show the US data on top inequality (the circles) as well as the dynamic
response of Pareto inequality and GDP per person to a one-time shock to ¢, p, and 7 that
occurs in 1975, using the approximation method described in the text. The shocks are suf-
ficient to move Pareto inequality from an initial steady-state value of 0.39 to a new steady-
state value of 0.63. All other parameters are held constant. Color version available as an on-
line enhancement.

tially explain the patterns that we see in top income inequality across coun-
tries.”

* The exercise also confirms that the “Luttmer rocket” with high decay rates can suc-
cessfully address the problems in simple random growth models of slow transition dynam-
ics and “very old” people at the top of the distribution. For example, in the steady state of
these simulations, the average length of time that someone in the top 1 percent has been
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tion VI, using the approximation method described in the text. The shocks startin and con-
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For the IRS cases, we hold p constant at the value that delivers an initial value of y of 0.39. All
other parameters are held constant. Color version available as an online enhancement.

B.  Transition Dynamics and the IRS/SSA-Inspired Shocks

An alternative set of examples is shown in figure 13. Here, we take the

(smoothed) time paths of fi;, p, 6, and oy that we observe in the IRS and

an entrepreneur is around 20 years, and the average for someone in the top 1 percent who
is also in the high-growth state is 3.7 years.
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SSA data, feed them into the model, and show the transition path of Pa-
reto inequality and GDP per person. As in our previous exercises, we can-
not solve the full model for transition dynamics. In this case, we are addi-
tionally limited by a basic identification problem: we do not know what
structural changes in the deep parameters of the model led to the changes
in pyy, for example. However, in our previous exercises, we found that the
effects on s and g were not especially large. So for this set of exercises,
we hold those macro-level variables constant and once again solve the dis-
cretized Kolmogorov equation. We assume the parameters that are af-
fected by shocks remain constant at the final values that we observe.

The results for GDP per person confirm what we saw earlier: there are
substantial “level effects” that emerge over 25 years or more that can eas-
ily mask any long-run growth effect during that time.

The results for Pareto inequality are notable in several ways. First, there
is remarkably little action in the wage and salary data from the SSA, con-
sistent with what we saw in the steady-state analysis of figure 10. In part,
this reflects the fact that the rise in Pareto inequality after a shock occurs
with a delay (as shown in the previous figure), and p, exhibits a hump-
shaped pattern in the SSA data.

There is substantial action in the entrepreneurial income data from the
IRS, enough that these changes can generate a rise in Pareto inequality
that matches what we see in the data. The timing is off somewhat, but this
could potentially be explained if there were shocks occurring before 1981
that we cannot see. The IRS series that combines both wages and salaries
with entrepreneurial income, not surprisingly, generates results that are
intermediate.

This analysis is only suggestive, in part because the IRS results are based
on small samples only during the 1980s. However, it clearly points toward
the value of obtaining administrative data on entrepreneurial incomes
via the tax records. The SSA data results are a bit puzzling in that we know
that wage and salary data also display a large increase in Pareto inequal-
ity. Clearly something beyond our basic model must be going on. For ex-
ample, it could be that there is a differential growth rate for wage and
salary income for people who have experienced rapid growth in entrepre-
neurial income in the past, something we cannot see with just the SSA
data alone.

VIII. Conclusion

A model in which entrepreneurs expend effort to increase the profits
from their existing ideas while researchers seek new ideas to replace in-
cumbents in a process of creative destruction generates a Pareto distribu-
tion for top incomes. Moreover, it suggests economic forces that change
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top income inequality. Forces that increase the effort of fast-growing entre-
preneurs in improving their products—or that increase the productivity
of their effort—can increase top inequality. Forces that enhance creative
destruction or that raise the rate at which high-growth entrepreneurs lose
that status can decrease top inequality.

Globalization is a general economic phenomenon that could be driv-
ing these changes. Greater globalization allows entrepreneurs to grow their
profits more rapidly for a given amount of effort, increasing ¢,, and rais-
ing inequality. On the other hand, as countries open their domestic mar-
kets to more competition via globalization, rates of creative destruction
(including p) go up, reducing inequality. Changes in these impacts over
time or differences in their strength across countries can potentially ex-
plain the patterns of top income inequality that we see in the data.

A theme that emerges clearly from our analysis is that there are rich
connections between models of top income inequality and the underly-
ing microdata on income dynamics. Work connecting these two litera-
tures—including incorporating microdata from other countries—is likely
to be quite fruitful in coming years. Aghion et al. (2016) and Bell et al.
(2016) document that children of low-income parents are much less likely
to become inventors. Guvenen, Kaplan, and Song (2014) study the role
of gender differences in the rise in top earnings inequality. These same
authors (in progress) are working to estimate a rich model of micro in-
come dynamics and tie it more closely to the rise in top income inequal-
ity. Related work using the administrative data from the IRS on the dynam-
ics of entrepreneurial income is likely to be a productive area for future
research.

Aghion et al. (2015) and Akcigit, Grigsby, and Nicholas (2016) docu-
ment that innovation and top income inequality are positively correlated
across US states and commuting zones. On the surface, there might be
some tension between their results and ours (innovation raising inequal-
ity empirically vs. the creative destruction effect just discussed), but we
instead see the results as complementary. The creative destruction force
works to reduce inequality in our model, and that effect has a solid eco-
nomic foundation. Empirical estimates of the correlation between inno-
vation and inequality, however, surely reflect more than just creative de-
struction. For example, the incumbent innovation by existing entrepreneurs
(raising x) is also captured by the patent data, and this force tends to raise
inequality in our model. And as we saw earlier, the “level effect” associated
with rising inequality can dominate the long-run “growth effect” for many
decades. Isolating these distinct forces empirically is an important direc-
tion for future research.
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Appendix

TABLE Al
GUIDE TO NOTATION FOR THE FULL MODEL

Pareto inequality measure (inverse of Pareto exponent)
Idiosyncratic productivity of an entrepreneur’s variety
x, 1) Distribution of idiosyncratic productivity across entrepreneurs
Entrepreneur’s effort
B = ¢e — Yo?, drift of log x
Entrepreneur’s leisure
“Tax” on the entrepreneur’s time endowment
Entrepreneur’s “wage” per unit of x
Technology parameter: how effort translates into growth of x
Variance of the idiosyncratic shocks to x
Q=1-71
Weight on (log) leisure in utility
Rate of time preference
Endogenous rate of creative destruction
Exogenous destruction of entrepreneurs
Rate at which high-growth entrepreneurs decay to low-growth
Fraction of new entrepreneurs at x, who begin in the high-growth state
Exponent on x; in production of variety i
Constant elastiticity of substitution curvature parameter in final goods
production

ORI HHA O t\‘gz:\')x:

n, “Height” up the quality ladder; productivity is y"

¥ Step size for the quality ladder, y > 1

N Aggregate labor endowment

L, Aggregate allocation of labor to goods production

R, Aggregate allocation of labor to idea production

L L = N - 1; labor endowment net of entrepreneurs

A Research productivity

z Fraction of innovations that are exogenously blocked
V, V& Ve Expected lifetime utility for entrepreneurs, researchers, and workers
m Fraction of equilibrium wage paid to failed researchers
X Mean of the distribution of idiosyncratic productivity, x
w, Wage of labor in producing goods

T Flow profit in variety i

S s, = R/L; fraction of labor engaged in research

g Growth rate of GDP per person (y)
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