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28 Calculus of Matrix-Valued Functions of a

Real Variable

Problem 28.1
Consider the following matrices

A(t) =

[
t− 1 t2

2 2t+ 1

]
, B(t) =

[
t −1
0 t+ 2

]
, c(t) =

[
t+ 1
−1

]
(a) Find 2A(t) - 3tB(t)
(b) Find A(t)B(t) - B(t)A(t)
(c) Find A(t)c(t)
(d) Find det(B(t)A(t))

Solution.
(a)

2A(t)− 3tB(t) = 2

[
t− 1 t2

2 2t+ 1

]
− 3t

[
t −1
0 t+ 2

]

=

[
2t− 2 2t2

4 4t+ 2

]
−
[

3t2 −3t
0 3t2 + 6t

]

=

[
2t− 2− 3t2 2t2 + 3t

4 2− 2t− 3t2

]
(b)

A(t)B(t)−B(t)A(t) =

[
t− 1 t2

2 2t+ 1

] [
t −1
0 t+ 2

]
−
[
t −1
0 t+ 2

] [
t− 1 t2

2 2t+ 1

]

=

[
t2 − t t3 + 2t2 − t+ 1

2t 2t2 + 5t

]
−
[
t2 − t− 2 t3 − 2t− 1

2t+ 4 2t2 + 5t+ 2

]

=

[
2 2t2 + t+ 2
−4 −2

]
(c)

A(t)c(t) =

[
t− 1 t2

2 2t+ 1

] [
t+ 1
−1

]
=

[
(t− 1)(t+ 1) + t2(−1)
2(t+ 1) + (2t+ 1)(−1)

]
=

[
−1
1

]
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(d)

det(B(t)A(t)) =

∣∣∣∣[ t −1
0 t+ 2

] [
t− 1 t2

2 2t+ 1

]∣∣∣∣ =

∣∣∣∣[ t2 − t− 2 t3 − 2t− 1
2t+ 4 2t2 + 5t+ 2

]∣∣∣∣
= −(t3 + 3t2 + 2t)

Problem 28.2
Determine all values t such that A(t) is invertible and, for those t-values,
find A−1(t).

A(t) =

[
t+ 1 t
t t+ 1

]
Solution.
We have det(A(t)) = 2t + 1 so that A is invertible for all t 6= −1

2
. In this

case,

A−1(t) =
1

2t+ 1

[
t+ 1 −t
−t t+ 1

]
Problem 28.3
Determine all values t such that A(t) is invertible and, for those t-values,
find A−1(t).

A(t) =

[
sin t − cos t
sin t cos t

]
Solution.
We have det(A(t)) = 2 sin t cos 2 = sin 2t so that A is invertible for all t 6= nπ

2

where n is an integer. In this case,

A−1(t) =
1

sin 2t

[
cos t cos t
− sin t sin t

]
Problem 28.4
Find

lim
t→0

[
sin t
t

t cos t 3
t+1

e3t sec t 2t
t2−1

]
Solution.

lim
t→0

[
sin t
t

t cos t 3
t+1

e3t sec t 2t
t2−1

]
=

[
1 0 3
1 1 0

]
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Problem 28.5
Find

lim
t→0

[
te−t tan t
t2 − 2 esin t

]
Solution.

lim
t→0

[
te−t tan t
t2 − 2 esin t

]
=

[
0 0
−2 1

]
Problem 28.6
Find A′(t) and A′′(t) if

A(t) =

[
sin t 3t
t2 + 2 5

]
Solution.

A′(t) =

[
cos t 3
2t 0

]
A′′(t) =

[
− sin t 0

2 0

]
Problem 28.7
Express the system

y′1 = t2y1 + 3y2 + sec t
y′2 = (sin t)y1 + ty2 − 5

in the matrix form
y′(t) = A(t)y(t) + g(t)

Solution.

y(t) =

[
y1(t)
y2(t)

]
, A(t) =

[
t2 3

sin t t

]
, g(t) =

[
sec t
−5

]
Problem 28.8
Determine A(t) where

A′(t) =

[
2t 1

cos t 3t2

]
, A(0) =

[
2 5
1 −2

]
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Solution.
Integrating componentwise we find

A(t) =

[
t2 + c11 t+ c12

sin t+ c21 t3 + c22

]
Since

A(0) =

[
2 5
1 −2

]
=

[
c11 c12
c21 c22

]
by equating componentwise we find c11 = 2, c12 = 5, c21 = 1, and c22 = −2.
Hence,

A(t) =

[
t2 + 2 t+ 5

sin t+ 1 t3 +−2

]
Problem 28.9
Determine A(t) where

A′′(t) =

[
1 t
0 0

]
, A(0) =

[
1 1
−2 1

]
, A(1) =

[
−1 2
−2 3

]
Solution.
Integrating componentwise we find

A′(t) =

[
t+ c11

t2

2
+ c12

c21 c22

]
Integrating again we find

A(t) =

[
t2

2
+ c11t+ d11

t3

6
+ c12t+ d12

c21t+ d21 c22t+ d22

]
But

A(0) =

[
1 1
−2 1

]
=

[
d11 d12
d21 d22

]
so by equating componentwise we find d11 = 1, d12 = 1, d21 = −2, and
d22 = 1. Thus,

A(t) =

[
t2

2
+ c11t+ 1 t3

6
+ c12t+ 1

c21t+−2 c22t+ 1

]
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Since

A(1) =

[
−1 2
−2 3

]
=

[
3
2

+ c11
7
6

+ c12
−2 + c21 1 + c22

]
we find c11 = −5

2
, c12 = 5

6
, c21 = 0, c22 = 2. Hence,

A(t) =

[
t2

2
− 5

2
t+ 1 t3

6
+ 5

6
t+ 1

−2 2t+ 1

]
Problem 28.10
Calculate A(t) =

∫ t
0

B(s)ds where

B(s) =

[
es 6s

cos 2πs sin 2πs

]
Solution.
Integrating componentwise we find

A(t) =

[ ∫ t
0
esds

∫ t
0

6sds∫ t
0

cos 2πsds
∫ t
0

sin 2πsds

]
=

[
et − 1 3t2
sin 2πt
2π

1−cos 2πt
2π

]
Problem 28.11
Construct a 2 × 2 nonconstant matrix function A(t) such that A2(t) is a
constant matrix.

Solution.
Let

A(t) =

[
0 t
0 0

]
Then

A2(t) =

[
0 t
0 0

] [
0 t
0 0

]
=

[
0 0
0 0

]
Problem 28.12
(a) Construct a 2× 2 differentiable matrix function A(t) such that

d

dt
A2(t) 6= 2A

d

dt
A(t)

That is, the power rule is not true for matrix functions.
(b) What is the correct formula relating A2(t) to A(t) and A’(t)?
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Solution.
(a) Let

A(t) =

[
1 t
t2 0

]
Then

A2(t) =

[
1 + t3 t
t2 t3

]
so that

d

dt
A2(t) =

[
3t2 1
2t 3t2

]
On the other hand,

2A(t)
d

dt
A(t) = 2

[
1 t
t2 0

] [
2 + 4t3 2t+ 2t4

2t2 + 2t5 2t3

]
=

[
1 t
t2 0

]
(b) (b) The correct formula is d

dt
A2(t) = A(t)A′(t) + A′(t)A(t)

Problem 28.13
Transform the following third-order equation

y′′′ − 3ty′ + (sin 2t)y = 7e−t

into a first order system of the form

x′(t) = Ax(t) + b(t)

Solution.
Let x1 = y, x2 = y′, x3 = y′′. Then by letting

x =

 x1
x2
x3

 , A =

 0 1 0
0 0 1

sin 2t 3t 0

 , b =

 0
0

7e−t


then the differential equation can be presented by the first order system

x′(t) = Ax(t) + b(t)

Problem 28.14
By introducing new variables x1 and x2, write y′′− 2y+ 1 = t as a system of
two first order linear equations of the form x′ + Ax = b
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Solution.
By letting x1 = y and x2 = y′ we have

x =

[
x1
x2

]
, A =

[
0 −1
−2 0

]
, b =

[
0

t− 1

]
Problem 28.15
Write the differential equation y′′ + 4y′ + 4y = 0 as a first order system.

Solution.
By letting x1 = y and x2 = y′ we have

x =

[
x1
x2

]
, A =

[
0 −1
4 4

]
, b =

[
0
0

]
Problem 28.16
Write the differential equation y′′+ ky′+ (t− 1)y = 0 as a first order system.

Solution.
By letting x1 = y and x2 = y′ we have

x =

[
x1
x2

]
, A =

[
0 −1

t− 1 k

]
, b =

[
0
0

]
Problem 28.17
Change the following second-order equations to a first-order system.

y′′ − 5y′ + ty = 3t2, y(0) = 0, y′(0) = 1

Solution.
If we write the problem in the matrix form

x′ + Ax = b, x(0) = y0

then

A =

[
0 −1
−5 t

]
x =

[
x1
x2

]
=

[
y
y′

]
, b =

[
0

3t2

]
, y0 =

[
0
1

]
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Problem 28.18
Consider the following system of first-order linear equations.

x′ =

[
3 2
1 −1

]
· x

Find the second-order linear differential equation that x satisfies.

Solution.
The system is

x′1 = 3x1 + 2x2
x′2 = x1 − x2

It follows that

x′1 + 2x′2 = 5x1 or x1 =
x′1+2x′2

5

so we let w = x1+2x2
5

so that w′ = x1. Thus, x′1 = 3x1+2x2 = 3x1+(5w−x1) =
2x1 + 5w. Hence, x′′1 = 2x′1 + 5w′ = 2x′1 + 5x1 or x′′1 − 2x′1 − 5x1 = 0

Problem 28.19
List all the permutations of S = {1, 2, 3, 4}.

Solution.

1
↙ ↓ ↘
2 3 4
↙↘ ↙↘ ↙↘
3 4 2 4 2 3

2
↙ ↓ ↘
1 3 4
↙↘ ↙↘ ↙↘
3 4 1 4 1 3

3
↙ ↓ ↘
1 2 4
↙↘ ↙↘ ↙↘
2 4 1 4 1 2

4
↙ ↓ ↘
1 2 3
↙↘ ↙↘ ↙↘
2 3 1 3 1 2

Problem 28.20
List all elementary products from the matrices
(a) (

a11 a12
a21 a22

)
,

(b)  a11 a12 a13
a21 a22 a23
a31 a32 a33
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Solution.
(a) The only elementary products are a11a22, a12a21.
(b) An elementary product has the form a1∗a2∗a3∗. Since no two factors come
from the same column, the column numbers have no repetitions; consequently
they must form a permutation of the set {1, 2, 3}. The 3! = 6 permutations
yield the following elementary products:
a11a22a33, a11a23a32, a12a23a31, a12a21a33, a13a21a32, a13a22a31

Problem 28.21
Find det(A) if
(a)

A =

(
a11 a12
a21 a22

)
,

(b)

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


Solution.
By using the definition of a determinant and Exercise ?? we obtain
(a) |A| = a11a22 − a21a12.
(b) |A| = a11a22a33− a11a23a32 + a12a23a31− a12a21a33 + a13a21a32− a13a22a31
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29 nth Order Linear Differential Equations:

Exsitence and Uniqueness

For Problems 29.1 - 29.3, use Theorem 29.1 to find the largest interval
a < t < b in which a unique solution is guaranteed to exist.

Problem 29.1

y′′′ − 1

t2 − 9
y′′ + ln (t+ 1) + (cos t)y = 0, y(0) = 1, y′(0) = 3, y′′(0) = 0

Solution.
The coefficient functions are all continuous for t 6= −3,−1, 3. Since t0 = 0,
the largest interval of existence is −1 < t < 3

Problem 29.2

y′′′ +
1

t+ 1
y′ + (tan t)y = 0, y(0) = 0, y′(0) = 1, y′′(0) = 2

Solution.
The coefficient functions are all continuous for t 6= −1 and t 6= (2n + 1)π

2

where n is an integer. Since t0 = 0, the largest interval of existence is
−1 < t < π

2

Problem 29.3

y′′ − 1

t2 + 9
y′′ + ln (t2 + 1)y′ + (cos t)y = 0, y(0) = 1, y′(0) = 3, y′′(0) = 0

Solution.
The coefficient functions are all continuous for t so that the interval of exis-
tence is −∞ < t <∞

Problem 29.4
Determine the value(s) of r so that y(t) = ert is a solution to the differential
equation

y′′′ − 2y′′ − y′ + 2y = 0
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Solution.
Inserting y and its derivatives into the equation we find

0 = y′′′ − 2y′′ − y′ + 2y
= (r3 − 2r2 − r + 2)ert

Since ert > 0, we must have 0 = r3 − 2r2 − r + 2 = r2(r − 2) − (r − 2) =
(r − 2)(r2 − 1) = (r − 2)(r − 1)(r + 1). Hence, r = −1, 1, 2

Problem 29.5
Transform the following third-order equation

y′′′ − 3ty′ + (sin 2t)y = 7e−t

into a first order system of the form

x′(t) = Ax(t) + b(t)

Solution.
Let x1 = y, x2 = y′, x3 = y′′. Then by letting

x =

 x1
x2
x3

 , A =

 0 1 0
0 0 1

sin 2t 3t 0

 , b =

 0
0

7e−t


then the differential equation can be presented by the first order system

x′(t) = Ax(t) + b(t)

14



30 The General Solution of nth Order Linear

Homogeneous Equations

In Problems 30.1 - 30.3, show that the given solutions form a fundamental
set for the differential equation by computing the Wronskian.

Problem 30.1

y′′′ − y′ = 0, y1(t) = 1, y2(t) = et, y3(t) = e−t

Solution.
We have

W (t) =

∣∣∣∣∣∣
1 et e−t

0 et −e−t
0 et e−t

∣∣∣∣∣∣
= (1)

∣∣∣∣ et −e−tet e−t

∣∣∣∣− et ∣∣∣∣ 0 −e−t
0 e−t

∣∣∣∣+ e−t
∣∣∣∣ 0 et

0 et

∣∣∣∣ = 2 6= 0

Problem 30.2

y(4) + y′′ = 0, y1(t) = 1, y2(t) = t, y3(t) = cos t, y4(t) = sin t

Solution.
We have

W (t) =

∣∣∣∣∣∣∣∣
1 t cos t sin t
0 1 − sin t cos t
0 0 − cos t − sin t
0 0 sin t − cos t

∣∣∣∣∣∣∣∣ = cos2 t+ sin2 t = 1 6= 0

Problem 30.3

t2y′′′ + ty′′ − y′ = 0, y1(t) = 1, y2(t) = ln t, y3(t) = t2

15



Solution.
We have

W (t) =

∣∣∣∣∣∣
1 ln t t2

0 1
t

2t
0 − 1

t2
2

∣∣∣∣∣∣
= (1)

∣∣∣∣ t−1 2t
−t−2 2

∣∣∣∣− ln t

∣∣∣∣ 0 2t
0 2

∣∣∣∣+ t2
∣∣∣∣ 0 t−1

0 −t−2
∣∣∣∣ = 3t−1 6= 0, t > 0

Use the fact that the solutions given in Problems 30.1 - 30.3 for a fundamental
set of solutions to solve the following initial value problems.

Problem 30.4

y′′′ − y′ = 0, y(0) = 3, y′(0) = −3, y′′(0) = 1

Solution.
The general solution is y(t) = c1 + c2e

t + c3e
−t. With the initial conditions

we have
y(0) = 3 =⇒ c1 + c2 + c3 = 3
y′(0) = −3 =⇒ c2 − c3 = −3
y′′(0) = 1 =⇒ c2 + c3 = 1

Solving these simultaneous equations gives c1 = 2, c2 = −1 and c3 = 2 and
so the unique solution is

y(t) = 2− et + 2e−t

Problem 30.5

y(4) + y′′ = 0, y(π
2
) = 2 + π, y′(π

2
) = 3, y′′(π

2
) = −3, y′′′(π

2
) = 1.

Solution.
The general solution is y(t) = c1 + c2t + c3 cos t + c4 sin t. With the initial
conditions we have

y(π
2
) = 2 + π =⇒ c1 + π

2
c2 + c4 = 2 + π

y′(π
2
) = 3 =⇒ c2 − c3 = 3

y′′(π
2
) = −3 =⇒ −c4 = −3

y′′′(π
2
) = 1 =⇒ c3 = 1
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Solving these simultaneous equations gives c1 = −(π + 1), c2 = 4, c3 = 1
and c4 = 3. Hence, the unique solution is

y(t) = −(π + 1) + 4t+ cos t+ 3 sin t

Problem 30.6

t2y′′′ + ty′′ − y′ = 0, , y(1) = 1, y′(1) = 2, y′′(1) = −6

Solution.
The general solution is y(t) = c1 + c2 ln t + c3t

2. With the initial conditions
we have

y(1) = 1 =⇒ c1 + c3 = 1
y′(1) = 2 =⇒ c2 + 2c3 = 2
y′′(1) = −6 =⇒ −c2 + 2c3 = −6

Solving these simultaneous equations gives c1 = 2, c2 = 4 and c3 = −1 and
so the unique solution is

y(t) = 2 + 4 ln t− t2

Problem 30.7
In each question below, show that the Wronskian determinant W (t) behaves
as predicted by Abel’s Theorem. That is, for the given value of t0, show that

W (t) = W (t0)e
−
∫ t
t0
pn−1(s)ds

(a) W (t) found in Problem 30.1 and t0 = −1.
(b) W (t) found in Problem 30.2 and t0 = 1.
(c) W (t) found in Problem 30.3 and t0 = 2.

Solution.
(a) For the given differential equation pn−1(t) = p2(t) = 0 so that Abel’s theo-
rem predictW (t) = W (t0).Now, for t0 = −1 we haveW (t) = W (−1) =constant.
From Problem 28.1, we found that W (t) = 2.
(b) For the given differential equation pn−1(t) = p3(t) = 0 so that Abel’s theo-
rem predict W (t) = W (t0). Now, for t0 = 1 we have W (t) = W (1) =constant.
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From Problem 28.2, we found that W (t) = 1.
(c) For the given differential equation pn−1(t) = p2(t) = 1

t
so that Abel’s

theorem predict W (t) = W (2)e−
∫ t
2
ds
s = W (2)eln ( 2

t
) = 2

t
W (2). From Problem

28.3, we found that W (t) = 3
t

so that W (2) = 3
2

Problem 30.8
Determine W (t) for the differential equation y′′′+(sin t)y′′+(cos t)y′+2y = 0
such that W (1) = 0.

Solution.
Here pn−1(t) = p2(t) = sin t. By Abel’s Theorem we have

W (t) = W (1)e−
∫ t
1 sin sds ≡ 0

Problem 30.9
Determine W (t) for the differential equation t3y′′′−2y = 0 such that W (1) =
3.

Solution.
Here pn−1(t) = p2(t) = 0. By Abel’s Theorem we have

W (t) = W (1)e−
∫ t
1 0ds = W (1) = 3

Problem 30.10
Consider the initial value problem

y′′′ − y′ = 0, y(0) = α, y′(0) = β, y′′(0) = 4.

The general solution of the differential equation is y(t) = c1 + c2e
t + c3e

−t.
(a) For what values of α and β will limt→∞ y(t) = 0?
(b) For what values α and β will the solution y(t) be bounded for t ≥ 0, i.e.,
|y(t)| ≤ M for all t ≥ 0 and for some M > 0? Will any values of α and β
produce a solution y(t) that is bounded for all real number t?

Solution.
(a) Since y(0) = α, c1 + c2 + c3 = α. Since y′(t) = c2e

t− c3e−t and y′(0) = β,
c2−c3 = β. Also, since y′′(t) = c2e

t+c3e
−t and y′′(0) = 4 we have c2+c3 = 4.

Solving these equations for c1, c2, and c3 we find c1 = α − 4, c2 = β/2 + 2
and c3 = −β/2 + 2. Thus,

y(t) = α− 4 + (β/2 + 2)et + (−β/2 + 2)e−t.
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If α = 4 and β = −4 then
y(t) = 4e−t

and
lim
t→∞

4e−t = 0.

(b) In the expression of y(t) w know that e−t is bounded for t ≥ 0 whereas
et is unbounded for t ≥ 0. Thus, for y(t) to be bounded we must choose
β/2 + 2 = 0 or β = −4. The number α can be any number. Now, for the
solution y(t) to be bounded on −∞ < t < ∞ we must have simultaneously
β/2 + 2 = 0 and −β/2 + 2 = 0. But there is no β that satisfies these two
equations at the same time. Hence, y(t) is always unbounded for any choice
of α and β

Problem 30.11
Consider the differential equation y′′′ + p2(t)y

′′ + p1(t)y
′ = 0 on the interval

−1 < t < 1. Suppose it is known that the coefficient functions p2(t) and p1(t)
are both continuous on −1 < t < 1. Is it possible that y(t) = c1 + c2t

2 + c3t
4

is the general solution for some functions p1(t) and p2(t) continuous on −1 <
t < 1?
(a) Answer this question by considering only the Wronskian of the functions
1, t2, t4 on the given interval.
(b) Explicitly determine functions p1(t) and p2(t) such that y(t) = c1 +c2t

2 +
c3t

4 is the general solution of the differential equation. Use this information,
in turn, to provide an alternative answer to the question.

Solution.
(a) The Wronskian of 1, t2, t4 is

W (t) =

∣∣∣∣∣∣
1 t2 t4

0 2t 4t3

0 2 12t2

∣∣∣∣∣∣ = 16t3

Since 0 is in the interval −1 < t < 1 and W (0) = 0, {1, t2, t4} cannot
be a fundamental set and therefore the general solution cannot be a linear
combination of 1, t2, t4.
(b) First notice that y = 1 is a solution for any p1 and p2. If y = t2 is a
solution then substitution into the differential equation leads to tp1 + p2 =
0. Since y = t4 is also a solution, substituting into the equation we find
t2p1 + 3tp2 + 6 = 0. Solving for p1 and p2 we find p1(t) = 3

t2
and p2(t) = −3

t
.

Note that both functions are not continuous at t = 0
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Problem 30.12
(a) Find the general solution to y′′′ = 0.
(b) Using the general solution in part (a), construct a fundamental set
{y1(t), y2(t), y3(t)} satisfying the following conditions

y1(1) = 1, y′1(1) = 0, y′′1(1) = 0.
y2(1) = 0, y′1(1) = 1, y′′1(1) = 0.
y1(1) = 0, y′1(1) = 0, y′′1(1) = 1.

Solution.
(a) Using antidifferentiation we find that y(t) = c1 + c2t+ c3t

2.
(b) With the initial conditions of y1 we obtain the following system

c1 + c2 + c3 = 1
c2 + 2c3 = 0

2c3 = 0

Solving this system we find c1 = 1, c2 = 0, c3 = 0. Thus, y1(t) = 1. Repeating
this argument for y2 we find the system

c1 + c2 + c3 = 0
c2 + 2c3 = 1

2c3 = 0

Solving this system we find c1 = −1, c2 = 1, c3 = 0. Thus, y2(t) = t − 1.
Repeating this argument for y3 we find the system

c1 + c2 + c3 = 0
c2 + 2c3 = 0

2c3 = 1

Solving this system we find c1 = −1
2
, c2 = −1, c3 = 1

2
. Thus, y3(t) =

1
2
(t− 1)2
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31 Fundamental Sets and Linear Independence

Problem 31.1
Determine if the following functions are linearly independent

y1(t) = e2t, y2(t) = sin (3t), y3(t) = cos t

Solution.
First take derivatives

y′1(t) = 2e2t y′2(t) = 3 cos (3t) y′3(t) = − sin t
y′′1(t) = 4e2t y′′2(t) = 9 sin (3t) y′′3(t) = − cos t

The Wronskian is

W (t) =

∣∣∣∣∣∣
e2t sin 3t cos t
2e2t 3 cos (3t) − sin t
4e2t 9 sin (3t) − cos t

∣∣∣∣∣∣
= e2t(−3 cos 3t cos t− 9 sin 3t sin t)− sin 3t(−2et cos t+ 4e2t sin t)
+ cos t(−18e2t sin 3t− 12e2t cos 3t)

Thus,W (0) = −15. Since this is a nonzero number, we can conclude that the
three functions are linearly independent

Problem 31.2
Determine whether the three functions : f(t) = 2, g(t) = sin2 t, h(t) = cos2 t,
are linearly dependent or independent on −∞ < t <∞

Solution.
Computing the Wronskian

W (t) =

∣∣∣∣∣∣
2 sin2 t cos2 t
0 sin 2t − sin 2t
0 2 cos 2t −2 cos 2t

∣∣∣∣∣∣
= 2[sin (2t)(−2 cos 2t)− (− sin 2t(2 cos 2t)) = 0

So the functions are linearly depedent

Problem 31.3
Determine whether the functions, y1(t) = 1; y2(t) = 1 + t; y3(t) = 1 + t + t2;
are linearly dependent or independent. Show your work.
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Solution.

0 = ay1 + by2 + cy3
= a(1) + b(1 + t) + c(1 + t+ t2)
= (a+ b+ c) + (b+ c)t+ ct2

Equating coefficients we find

a+ b+ c = 0
b+ c = 0
c = 0

Solving this system we find that a = b = c = 0 so that y1, y2, and y3 are
linearly independent

Problem 31.4
Consider the set of functions {y1(t), y2(t), y3(t)} = {t2 +2t, αt+1, t+α}. For
what value(s) α is the given set linearly depedent on the interval −∞ < t <
∞?

Solution.

0 = ay1 + by2 + cy3
= a(t2 + 2t) + b(αt+ 1) + c(t+ α)
= b+ αc+ (2a+ αb+ c)t+ at2

Equating coefficients we find

b+ αc = 0
2a+ αb+ c = 0

a = 0

Solving this system we find that a = b = c = 0 provided that α 6= ±1. In
this case, y1, y2, and y3 are linearly independent

Problem 31.5
Determine whether the set {y1(t), y2(t), y3(t)} = {t|t|+ 1, t2−1, t} is linearly
independent or linearly dependent on the given interval
(a) 0 ≤ t <∞.
(b) −∞ < t ≤ 0.
(c) −∞ < t <∞.
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Solution.
(a) If t ≥ 0 then y1(t) = t|t|+ 1 = t2 + 1. In this case, we have

0 = ay1 + by2 + cy3
= a(t2 + 1) + b(t2 − 1) + c(t)
= (a+ b)t2 + ct+ a− b

Equating coefficients we find

a+ b = 0
c = 0

a− b = 0

Solving this system we find that a = b = c = 0. This shows that y1, y2, and
y3 are linearly independent.
(b) If t ≤ 0 then y1(t) = −t2 + 1 = −(t2 − 1) = −y2(t) + 0y3(t). Thus, y1, y2,
and y3 are linearly dependent.
(c) Since y1, y2, and y3 are linearly independent on the interval 0 ≤ t < ∞,
they are linearly independent on the entire interval −∞ < t <∞

In Problems 31.6 - 31.7, for each differential equation, the corresponding
set of functions {y1(t), y2(t), y3(t)} is a fundamental set of solutions.
(a) Determine whether the given set {y1(t), y2(t), y3(t)} is a solution set to
the differential equation.
(b) If {y1(t), y2(t), y3(t)} is a solution set then find the coefficient matrix A
such that  y1

y2
y3

 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 y1
y2
y3


(c) If {y1(t), y2(t), y3(t)} is a solution set, determine whether it is a funda-
mental set by calculating the determinant of A.

Problem 31.6

y′′′ + y′′ = 0
{y1(t), y2(t), y3(t)} = {1, t, e−t}

{y1(t), y2(t), y3(t)} = {1− 2t, t+ 2, e−(t+2)}
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Solution.
(a) Since y1(t) = 1−2t, y′1(t) = −2 and y′′1(t) = y′′′1 (t) = 0. Thus, y′′′1 +y′′1 = 0.
Similarly, since y2(t) = t + 2, y′2(t) = 1 and y′′2(t) = y′′′2 (t) = 0. Thus, y′′′2 +
y′′2 = 0. Finally, since y3(t) = e−(t+2), y′3(t) = −e−(t+2), y′′3(t) = e−(t+2) and
y′′′3 (t) = −e−(t+2). Thus, y′′′3 + y′′3 = 0. It follows, that {y1(t), y2(t), y3(t)} =
{1− 2t, t+ 2, e−(t+2)} is a solution set.
(b) Since y1 = 1y1−2y2+0y3, y2 = 2y1+1y2+0y3, and y3 = 0y1+0y2+e−2y3
we have

A =

 1 2 0
−2 1 0
0 0 e−2


(c) Since det(A) = 5e−2 6= 0, {y1(t), y2(t), y3(t)} = {1 − 2t, t + 2, e−(t+2)} is
a fundamental set of solutions

Problem 31.7

t2y′′′ + ty′′ − y′ = 0, t > 0
{y1(t), y2(t), y3(t)} = {t, ln t, t2}

{y1(t), y2(t), y3(t)} = {2t2 − 1, 3, ln (t3)}

Solution.
(a) Since y1(t) = 2t2− 1, y′1(t) = 4t, y′′1(t) = 4, and y′′′1 (t) = 0. Thus, t2y′′′1 +
ty′′1 − y′1 = 0. Similarly, since y2(t) = 3, y′2(t) = y′′2(t) = y′′′2 (t) = 0. Thus,
t2y′′′2 + ty′′2 − y′2 = 0. Finally, since y3(t) = ln t3, y′3(t) = 3

t
, y′′3(t) = − 3

t2
and

y′′′3 (t) = 6
t3

. Thus, t2y′′′3 + ty′′3 − y′3 = 0. It follows, that {y1(t), y2(t), y3(t)} =
{2t2 − 1, 3, ln t3} is a solution set.
(b) Since y1 = −1y1+0y2+2y3, y2 = 3y1+0y2+0y3, and y3 = 0y1+3y2+0y3
we have

A =

 −1 3 0
0 0 3
2 0 0


(c) Since det(A) = 18 6= 0, {y1(t), y2(t), y3(t)} = {2t2 − 1, 3, ln t3} is a
fundamental set of solutions
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32 Higher Order Homogeneous Linear Equa-

tions with Constant Coefficients

Problem 32.1
Solve y′′′ + y′′ − y′ − y = 0

Solution.
The characteristic equation is

r3 + r2 − r − 1 = 0.

Factoring this equation using the method of grouping we find

r2(r + 1)− (r + 1) = (r + 1)2(r − 1) = 0

Hence, r = −1 is a root of multiplicity 2 and r = 1 is a of multiplicity 1.
Thus, the general solution is given by

y(t) = c1e
−t + c2te

−t + c3e
t

Problem 32.2
Find the general solution of 16y(4) − 8y′′ + y = 0.

Solution.
The characteristic equation is

16r4 − 8r2 + 1 = 0.

This is a complete square
(4r2 − 1)2 = 0

Hence, r = −1
2

and r = 1
2

are roots of multiplicity 2. Thus, the general
solution is given by

y(t) = c1e
− t

2 + c2te
− t

2 + c3e
t
2 + c4te

t
2

Problem 32.3
Solve the following constant coefficient differential equation :

y′′′ − y = 0.
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Solution.
In this case the characteristic equation is r3− 1 = 0 or r3 = 1 = e2kπi. Thus,
r = e

2kπi
3 where k is an integer. Replacing k by 0,1, and 2 we find

r0 = 1

r1 = −1
2

+ i
√
3
2

r2 = −1
2
− i

√
3
2

Thus, the general solution is

y(t) = c1e
t + c2e

− 1
2
t cos

√
3t

2
+ c3e

− 1
2
t sin

√
3t

2

Problem 32.4
Solve y(4) − 16y = 0

Solution.
In this case the characteristic equation is r4 − 16 = 0 or r4 = 16 = 16e2kπi.
Thus, r = 2e

kπi
2 where k is an integer. Replacing k by 0,1,2 and 3 we find

r0 = 2
r1 = 2i
r2 = −2
r3 = −2i

Thus, the general solution is

y(t) = c1e
2t + c2e

−2t + c3 cos (2t) + c4 sin (2t)

Problem 32.5
Solve the initial-value problem

y′′′ + 3y′′ + 3y′ + y = 0, y(0) = 0, y′(0) = 1, y′′(0) = 0.

Solution.
We have the characteristic equation

r3 + 3r2 + 3r + 1 = (r + 1)3 = 0

Which has a root of multiplicity 3 at r = −1. We use what we have learned
about repeated roots roots to get the general solution. Since the multiplicity
of the repeated root is 3, we have

y1(t) = e−t, y2(t) = te−t, y3(t) = t2e−t.
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The general solution is

y(t) = c1e
−t + c2te

−t + c3t
2e−t.

Now Find the first three derivatives

y′(t) = −c1e−t + c2(1− t)e−t + c3(2t− t2)e−t
y′′(t) = c1e

−t + c2(−2 + t)e−t + c3(t
2 − 4t+ 2)e−t

Next plug in the initial conditions to get

0 = c1
1 = c2
0 = −2 + 2c3

Solving these equations we find c1 = 0, c2 = 1, and c3 = 1. The unique
solution is then

y(t) = te−t + t2e−t

Problem 32.6
Given that r = 1 is a solution of r3 + 3r2 − 4 = 0, find the general solution
to

y′′′ + 3y′′ − 4y = 0

Solution.
Since r = 1 is a solution then using synthetic division of polynomials we can
write (r − 1)(r + 2)2 = 0. Thus, the general solution is given by

y(t) = c1e
t + c2e

−2t + c3te
−2t

Problem 32.7
Given that y1(t) = e2t is a solution to the homogeneous equation, find the
general solution to the differential equation

y′′′ − 2y′′ + y′ − 2y = 0

Solution.
The characteristic equation is given by

r3 − 2r2 + r − 2 = 0
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Using the method of grouping we can factor into

(r − 2)(r2 + 1) = 0

The roots are r1 = 2, r2 = −i, and r3 = i. Thus, the general solution is

y(t) = c1e
2t + c3 cos t+ c4 sin t

Problem 32.8
Suppose that y(t) = c1 cos t + c2 sin t + c3 cos (2t) + c4 sin (2t) is the general
solution to the equation

y(4) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0

Find the constants a0, a1, a2, and a3.

Solution.
The characteristic equation is of order 4. The roots are given by r1 = i, r2 =
−i, r3 = −2i, and r4 = 2i. Hence the characteristic equation is (r2 + 1)(r2 +
4) = 0 or r4 + 5r2 + 4 = 0. Comparing coefficients we find a0 = 4, a1 =
0, a2 = 5, and a3 = 0. Thus, the differential equation y(4) + 5y′′ + 4y = 0

Problem 32.9
Suppose that y(t) = c1 + c2t + c3 cos 3t + c4 sin 3t is the general solution to
the homogeneous equation

y(4) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0

Determine the values of a0, a1, a2, and a3.

Solution.
The characteristic equation is of order 4. The roots are given by r = 0 (of
multiplicity 2), r = −3i and r = 3i. Hence the characteristic equation is
r2(r2 + 9) = 0 or r4 + 9r2 = 0. Comparing coefficients we find a0 = a1 =
0, a2 = 9, and a3 = 0. Thus, the differential equation y(4) + 9y′′ = 0

Problem 32.10
Suppose that y(t) = c1e

−t sin t+c2e
−t cos t+c3e

t sin t+c4e
t cos t is the general

solution to the homogeneous equation

y(4) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0

Determine the values of a0, a1, a2, and a3.
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Solution.
The characteristic equation is of order 4. The roots are given by r1 = −1−
i, r2 = −1+ i, r3 = 1− i, and r4 = 1+ i. Hence (r− (−1− i))(r− (−1+ i)) =
r2 +2r+2 and (r− (1− i))(r− (1+ i)) = r2−2r+2 so that the characteristic
equation is (r2 + 2r+ 2)(r2− 2r+ 2) = r4 + 4 = 0. Comparing coefficients we
find a0 = 4, a1 = a2 = a3 = 0. Thus, the differential equation y(4) + 4y = 0

Problem 32.11
Consider the homogeneous equation with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0

Suppose that y1(t) = t, y2(t) = et, y3(t) = cos t are several functions belong-
ing to a fundamental set of solutions to this equation. What is the smallest
value for n for which the given functions can belong to such a fundamental
set? What is the fundamemtal set?

Solution.
The fundamental set must contain the functions y4(t) = 1 and y5(t) = sin t.
Thus, the smallest value of n is 5 and the fundamental set in this case is
{1, t, cos t, sin t, et}

Problem 32.12
Consider the homogeneous equation with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0

Suppose that y1(t) = t2 sin t, y2(t) = et sin t are several functions belonging
to a fundamental set of solutions to this equation. What is the smallest value
for n for which the given functions can belong to such a fundamental set?
What is the fundamemtal set?

Solution.
The fundamental set must contain the functions y3(t) = sin t, y4(t) =
cos t, y5(t) = t sin t, y6(t) = t cos t, y7(t) = t2 cos t, and y8(t) = et cos t.
Thus, the smallest value of n is 8 and the fundamental set in this case is
{sin t, cos t, t sin t, t cos t, t2 sin t, t2 cos t, et sin t, et cos t}
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Problem 32.13
Consider the homogeneous equation with constant coefficients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = 0

Suppose that y1(t) = t2, y2(t) = e2t are several functions belonging to a
fundamental set of solutions to this equation. What is the smallest value for
n for which the given functions can belong to such a fundamental set? What
is the fundamemtal set?

Solution.
The fundamental set must contain the functions y3(t) = 1 and y4(t) = t
Thus, the smallest value of n is 4 and the fundamental set in this case is
{1, t, t2, e2t}
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33 Non Homogeneous nth Order Linear Dif-

ferential Equations

Problem 33.1
Consider the nonhomogeneous differential equation

t3y′′′ + at2y′′ + bty′ + cy = g(t), t > 0

Determine a, b, c, and g(t) if the general solution is given by y(t) = c1t +
c2t

2 + c3t
4 + 2 ln t

Solution.
Since t, t2, t4 are solutions to the homogeneous equation then

0 + 0 + bt+ ct = 0 =⇒ b+ c = 0
0 + at2(2) + bt(2t) + ct2 = 0 =⇒ 2a+ 2b+ c = 0

t3(24t) + at2(12t2) + bt(4t3) + ct4 = 0 =⇒ 12a+ 4b+ c = −24

Solving the system of equations we find a = −4, b = 8, c = −8. Thus,

t3y′′′ − 4t2y′′ + 8ty′ − 8y = g(t)

But 2 ln t is a particular solution so that

g(t) = t3(4t−3 − 4t2(−2t−2) + 8t(2t−1)− 16 ln t = 28− 16 ln t

Problem 33.2
Consider the nonhomogeneous differential equation

y′′′ + ay′′ + by′ + cy = g(t), t > 0

Determine a, b, c, and g(t) if the general solution is given by y(t) = c1 + c2t+
c3e

2t + 4 sin 2t

Solution.
The characteristic equation is r2(r − 2) = 0 so that the associated homoge-
neous equation is y′′′ − 2y′′ = 0. Thus, a = −1, b = c = 0. The particular
solution is yp(t) = 4 sin 2t. Inserting into the equation we find

g(t) = −32 cos 2t− 2(−16 sin 2t) = −32 cos 2t+ 32 sin 2t
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Problem 33.3
Solve

y(4) + 4y′′ = 16 + 15et

Solution.
We first find the solution to the homogeneous differential equation. The
characteristic equations is

r4 + 4r2 = 0 or r2(r2 + 4) = 0

The roots are

r = 0 (repeated twice), r = 2i, r = −2i

The homogeneous solution is

yh(t) = c1 + c2t+ c3 sin (2t) + c4 cos (2t)

Since g(t) is a sum of two terms, we can work each term separately. The trial
function for the function g(t) = 16 is yp = 1. Since this is a solution to the
homogeneous equation, we multiply by t to get

yp(t) = t

This is also a solution to the homogeneous equation, so multiply by t again
to get

yp(t) = t2

which is not a solution of the homogeneous equation. We write

yp1 = At2, y′p1 = 2At, y′′p1 = 2A, y′′′p1 = 2A, y(4)p1
= 0

Substituting back in, we get 0 + 4(2A) = 16 or A = 2. Hence

yp1(t) = 2t2

Now we work on the second piece. The trial function for g(t) = 15et is et.
Since this in not a solution to the homogeneous equation, we get

yp2 = Aet, y′p2 = Aet, y′′p2 = Aet, y′′′p2 = Aet, y(p24) = Aet

Plugging back into the original equation gives Aet + 4Aet = 15et and this
implies A = 3. Hence

yp2(t) = 3et

The general solution to the nonhomogeneous differential equation is

y(t) = c1 + c2t+ c3 sin (2t) + c4 cos (2t) + 2t2 + 3et
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Problem 33.4
Solve: y(4) − 8y′′ + 16y = −64e2t

Solution.
The characteristic equation r4 − 8r2 + 16 = (r2 − 4)2 = 0 has two double
roots at r = −2 and r = 2. The homogeneous solution is then

yh(t) = c1e
−2t + c2te

−2t + c3e
2t + c4te

2t

Since the nonhomogeneous term is an exponential function, we use the method
of undetermined coefficients to find a particular solution of the form

yp(t) = At2e2t

Plug this into the equation and get

(48A+ 64At+ 16At2)e2t − 8(2A+ 8At+ 4At2)e2t + 16At2e2t = −64e2t

from which we see 32A = −64 or A = −2. The general solution is

y(t) = c1e
−2t + c2te

−2t + c3e
2t + c4te

2t − 2t2e2t

Problem 33.5
Given that y1(t) = e2t is a solution to the homogeneous equation, find the
general solution to the differential equation,

y′′′ − 2y′′ + y′ − 2y = 12 sin 2t

Solution.
The characteristic equation is r3 − 2r2 + r− 2 = 0. We know that r = 2 is a
root of this equation. Using synthetic division we can write

r3 − 2r2 + r − 2 = (r − 2)(r2 + 1) = 0

So the roots are r = 2, r = −i, r = i and the general solution is

yh(t) = c1e
2t + c2 cos t+ c3 sin t

To find a particular solution we use the method of undetermined coefficients
by considering the trial function yp(t) = A cos 2t + B sin 2t. In this case, we
have

y′p(t) = −2A sin 2t+ 2B cos 2t
y′′p(t) = −4A cos 2t− 4b sin 2t
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Inseting into the differential equation we find

12 sin 2t = y′′′p − 2y′′p + y′p − 2yp
= 8A sin 2t− 8B cos 2t− 2(−4A cos 2t− 4B sin 2t)
+ (2B cos 2t− 2A sin 2t)− 2(A cos 2t+B sin 2t)
= (6A− 6B) cos 2t+ (6A+ 6B) sin 2t

Equating coefficients we find 6A − 6B = 0 and 6A + 6B = 12. Solving we
find A = B = 1 and so the general solution is

y(t) = c1e
2t + c2 cos t+ c3 sin t+ cos 2t+ sin 2t

Problem 33.6
Find the general solution of the equation

y′′′ − 6y′′ + 12y′ − 8y =
√

2te2t

Solution.
The characteristic equation r3 − 6r2 + 12r − 8 = (r − 2)3 = 0 has a triple
root at r = 2. Hence, the homogeneous solution is

yh(t) = c1e
2t + c2te

2t + c3t
2e2t

We use the method of variation of paramemters to find the particular solution

yp(t) = u1e
2t + u2te

2t + r3t
2e2t

The Wronskian is

W (t) =

∣∣∣∣∣∣
e2t te2t t2e2t

2e2t e2t + 2te2t 2te2t + 2t2e2t

4e2t 4e2t + 4te2t 2e2t + 8te2t + 4t2e2t

∣∣∣∣∣∣ = 2e6t

Also,

W1(t) =

∣∣∣∣∣∣
0 te2t t2e2t

0 e2t + 2te2t 2te2t + 2t2e2t

1 4e2t + 4te2t 2e2t + 8te2t + 4t2e2t

∣∣∣∣∣∣ = t2e4t

W2(t) =

∣∣∣∣∣∣
e2t 0 t2e2t

2e2t 0 2te2t + 2t2e2t

4e2t 1 2e2t + 8te2t + 4t2e2t

∣∣∣∣∣∣ = −2te4t
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W3(t) =

∣∣∣∣∣∣
e2t te2t 0
2e2t e2t + 2te2t 0
4e2t 4e2t + 4te2t 1

∣∣∣∣∣∣ = e4t

Hence,

u1(t) =
∫ W1(t)

W (t)
g(t)dt =

∫ √
2
2
t
5
2dt =

√
2
7
t
7
2

u2(t) =
∫ W2(t)

W (t)
g(t)dt =

∫
−
√

2t
3
2dt = −2

√
2

5
t
5
2

u3(t) =
∫ W3(t)

W (t)
g(t)dt =

∫ √
2
2
t
1
2dt =

√
2
3
t
3
2

Hence, the general solution is

y(t) = c1e
2t + c2te

2t + c3t
2e2t +

√
2
7
t
7
2 e2t − 2

√
2

5
t
7
2 e2t +

√
2
3
t
7
2 e2t

= c1e
2t + c2te

2t + c3t
2e2t + 8

√
2

105
t
7
2 e2t

Problem 33.7
(a) Verify that {t, t2, t4} is a fundamental set of solutions of the differential
equation

t3y′′′ − 4t2y′′ + 8ty′ − 8y = 0

(b) Find the general solution of

t3y′′′ − 4t2y′′ + 8ty′ − 8y = 2
√
t, t > 0

Solution.
(a) Let y1(t) = t, y2(t) = t2, y3(t) = t4. Then

t3y′′′1 − 4t2y′′1 + 8ty′1 − 8y1 = t3(0)− 4t2(0) + 8t(1)− 8t = 0
t3y′′′2 − 4t2y′′2 + 8ty′2 − 8y2 = t3(0)− 4t2(2) + 8t(2t)− 8t2 = 0
t3y′′′3 − 4t2y′′3 + 8ty′3 − 8y3 = t3(24t)− 4t2(12t2) + 8t(4t3)− 8t4 = 0

W (t) =

∣∣∣∣∣∣
t t2 t4

1 2t 4t3

0 2 12t2

∣∣∣∣∣∣ = 6t4 6= 0, t > 0

Since W (1) 6= 0 then {y1, y2, y3} is a fundamental set of solutions.
(b) Using the method of variation of parameters we look for a solution of the
form

yp(t) = u1t+ u2t
2 + u3t

4
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where

u′1(t) =

∣∣∣∣∣∣∣∣∣
0 t2 t4

0 2t 4t3

1 2 12t2

∣∣∣∣∣∣∣∣∣2t
− 5

2

6t4
= 2

3
t−

3
2

u′2(t) =

∣∣∣∣∣∣∣∣∣
t 0 t4

1 0 4t3

0 1 12t2

∣∣∣∣∣∣∣∣∣2t
− 5

2

6t4
= −t− 5

2

u′3(t) =

∣∣∣∣∣∣∣∣∣
t t2 0
1 2t 0
0 2 1

∣∣∣∣∣∣∣∣∣2t
− 5

2

6t4
= 1

3
t−

9
2

Thus,
u1(t) =

∫
2
3
t−

3
2dt = −4

3
t−

1
2

u2(t) =
∫
−t− 5

2dt = 2
3
t−

3
2

u3(t) =
∫

1
3
t−

9
2dt = − 2

21
t−

7
2

Thus, the general solution is

y(t) = c1t+ c2t
2 + c3t

4 − 4

3
t
1
2 +

2

3
t
1
2 − 2

21
t
1
2 = c1t+ c2t

2 + c3t
4 − 16

21
t
1
2

Problem 33.8
(a) Verify that {t, t2, t3} is a fundamental set of solutions of the differential
equation

t3y′′′ − 3t2y′′ + 6ty′ − 6y = 0

(b) Find the general solution of by using the method of variation of param-
eters

t3y′′′ − 3t2y′′ + 6ty′ − 6y = t, t > 0

Solution.
(a) Let y1(t) = t, y2(t) = t2, y3(t) = t3. Then

t3y′′′1 − 3t2y′′1 + 6ty′1 − 6y1 = t3(0)− 3t2(0) + 6t(1)− 6t = 0
t3y′′′2 − 3t2y′′2 + 6ty′2 − 6y2 = t3(0)− 3t2(2) + 6t(2t)− 6t2 = 0
t3y′′′3 − 3t2y′′3 + 6ty′3 − 6y3 = t3(6)− 3t2(6t) + 6t(3t2)− 6t3 = 0

W (t) =

∣∣∣∣∣∣
t t2 t3

1 2t 3t2

0 2 6t

∣∣∣∣∣∣ = 2t3 6= 0, t > 0
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Since W (1) 6= 0 then {y1, y2, y3} is a fundamental set of solutions for t > 0.
(b) Using the method of variation of parameters we look for a solution of the
form

yp(t) = u1t+ u2t
2 + u3t

3

where

u′1(t) =

∣∣∣∣∣∣∣∣∣
0 t2 t3

0 2t 3t2

1 2 6t

∣∣∣∣∣∣∣∣∣t
−2

2t3
= 1

2t

u′2(t) =

∣∣∣∣∣∣∣∣∣
t 0 t3

1 0 3t2

0 1 6t

∣∣∣∣∣∣∣∣∣t
−2

2t3
= − 1

t2

u′3(t) =

∣∣∣∣∣∣∣∣∣
t t2 0
1 2t 0
0 2 1

∣∣∣∣∣∣∣∣∣t
−2

2t3
= 1

2t3

Thus,
u1(t) =

∫
1
2t
dt = 1

2
ln t

u2(t) =
∫
− 1
t2
dt = 1

t

u3(t) =
∫

1
2t3
dt = − 1

4t2

Thus, the general solution is

y(t) = c1t+ c2t
2 + c3t

3 +
t

2
ln t+

3

4
t = c1t+ c2t

2 + c3t
3 +

t

2
ln t

since 3
4
t is a solution to the homogeneous equation

Problem 33.9
Solve using the method of undetermined coefficients: y′′′ − y′ = 4 + 2 cos t

Solution.
We first solve the homogeneous differential equation

y′′′ − y′ = 0

The characteristic equation is

r3 − r = 0
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Factoring gives
r(r − 1)(r + 1) = 0

Solving we find r = 0, r = −1 and r = 1. The homogeneous solution is

yh(t) = c1 + c2e
t + c3e

−t

The trial function generated by g(t) = 4 + 2 cos (2t) is

yp(t) = At+B cos (2t) + C sin (2t)

Then
y′p = A− 2B sin (2t) + 2C cos (2t)
y′′p = −4B cos (2t)− 4C sin (2t)
y′′′p = 8B sin (2t)− 8C cos (2t)

Plugging back into the original differential equation gives

[8B sin (2t)− 8C cos (2t)]− [A− 2B sin (2t) + 2C cos (2t)] = 4 + 2 cos (2t)

Combining like terms gives

−10C cos (2t) + 10B sin (2t)− A = 4 + 2 cos (2t)

Equating coefficients gives

−10C = 2
10B = 0
−A = 4

Solving we find A = −4, B = 0, and C = −1
5
. The general solution is thus

y(t) = c1 + c2e
t + c3e

−t − 4t− 1

5
sin (2t)

Problem 33.10
Solve using the method of undetermined coefficients: y′′′ − y′ = −4et

Solution.
We first solve the homogeneous differential equation

y′′′ − y′ = 0
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The characteristic equation is

r3 − r = 0

Factoring gives
r(r − 1)(r + 1) = 0

Solving we find r = 0, r = −1 and r = 1. The homogeneous solution is

yh(t) = c1 + c2e
t + c3e

−t

The trial function generated by g(t) = −4et is

yp(t) = Atet

Then
y′p = Aet + Atet

y′′p = 2Aet + Atet

y′′′p = 3Aet + Atet

Plugging back into the original differential equation gives

(3Aet + Atet)− (Aet + Atet) = −4et

Combining like terms gives
2Aet = −4et

Solving we find A = −2. The general solution is thus

y(t) = c1 + c2e
t + c3e

−t − 2tet

Problem 33.11
Solve using the method of undetermined coefficients: y′′′ − y′′ = 4e−2t

Solution.
The characteristic equation is

r3 − r2 = 0

Factoring gives
r2(r − 1) = 0
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Solving we find r = 0 (double root) and r = 1. The homogeneous solution is

yh(t) = c1 + c2t+ c3e
t

The trial function generated by g(t) = 4e−2t is

yp(t) = Ae−2t

Then
y′p = −2Ae−2t

y′′p = 4Ae−2t

y′′′p = −8Ae−2t

Plugging back into the original differential equation gives

(−8e−2t)− (4Ae−2t) = 4e−2t

Combining like terms gives

−12Ae−2t = 4e−2t

Solving we find A = −1
3
. The general solution is thus

y(t) = c1 + c2e
t + c3e

−t − 1

3
e−2t

Problem 33.12
Solve using the method of undetermined coefficients: y′′′−3y′′+3y′−y = 12et.

Solution.
We first solve the homogeneous differential equation

y′′′ − 3y′′ + 3y′ − y = 0

The characteristic equation is

r3 − 3r2 + 3r − 1 = 0

Factoring gives
(r − 1)3 = 0

Solving we find r = 1 of multiplicity 3. The homogeneous solution is

yh(t) = c1e
t + c2te

t + c3t
2et
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The trial function generated by g(t) = 12et is

yp(t) = At3et

Then
y′p = 3At2et + At3et

y′′p = 6Atet + 6At2et + At3et

y′′′p = 6Aet + 18Atet + 9At2et + At3et

Plugging back into the original differential equation gives

(6Aet+18Atet+9At2et+At3et)−3(6Atet+6At2et+At3et)+3(3At2et+At3et)−At3et = 12et

Combining like terms gives
6Aet = 12et

Solving we find A = 2. The general solution is thus

y(t) = c1e
t + c2te

t + c3t
2et + 2t3et

Problem 33.13
Solve using the method of undetermined coefficients: y′′′ + y = et + cos t.

Solution.
The characteristic equation is

r3 + 1 = 0

Factoring gives
(r + 1)(r2 − r + 1) = 0

Solving we find r = −1, r = 1
2
− i

√
3
2

and r = 1
2

+ i
√
3
2
. The homogeneous

solution is

yh(t) = c1e
−t + c2e

t
2 cos

√
3

2
t+ c3e

t
2 sin

√
3

2
t

The trial function generated by g(t) = et + cos t is

yp(t) = Aet +B cos t+ C sin t

Then
y′p = Aet −B sin t+ C cos t
y′′p = Aet −B cos t− C sin t
y′′′p = Aet +B sin t− C cos t
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Plugging back into the original differential equation gives

(Aet +B sin t− C cos t) + (Aet +B cos t+ C sin t) = et + cos t

or
2Aet + (B + C) sin t+ (B − C) cos t = et + cos t

Equating coefficients we find

2A = 1
B + C = 0
B − C = 1

Solving we find A = B = 1
2

and C = −1
2
. Thus, the general solution is

y(t) = c1e
−t + c2e

t
2 cos

√
3

2
t+ c3e

t
2 sin

√
3

2
t+

1

2
(et + cos t− sin t

In Problems 33.14 and 33.15, answer the following two questions.
(a) Find the homogeneous general solution.
(b) Formulate an appropriate for for the particular solution suggested by the
method of undetermined coefficients. You need not evaluate the undeter-
mined coefficients.

Problem 33.14
y′′′ − 3y′′ + 3y′ − y = et + 4et cos 3t+ 4

Solution.
(a) The characteristic equation is

r3 − 3r2 + 3r − 1 = (r − 1)3 = 0

So r = 1 is a root of multiplicity 3 so that the homogeneous general solution
is

yh(t) = c1e
t + c2te

t + c3t
2et.

(b) The trial function for the right-hand function g(t) = et + 4et cos 3t+ 4 is
yp(t) = At3et +Bet cos 3t+ Cet sin 3t+D.

Problem 33.15
y(4) + 8y′′ + 16y = t cos 2t
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Solution.
(a) The characteristic equation is

r4 + 8r2 + 16 = (r2 + 4)2 = 0

So r = −2i and r = 2i are roots of multiplicity 2 so that the homogeneous
general solution is

yh(t) = c1 cos 2t+ c2 sin 2t+ c3t cos 2t+ c4t sin 2t.

(b) The trial function for the right-hand function g(t) = t cos 2t is yp(t) =
t2(At+B) cos 2t+ t2(Ct+D) sin 2t.

Consider the nonhomogeneous differential equation

y′′′ + ay′′ + by′ + cy = g(t)

In Problems 33.16 - 33.17, the general solution of the differential equation is
given, where c1, c2, and c3 represent arbitrary constants. Use this information
to determine the constants a, b, c and the function g(t).

Problem 33.16
y(t) = c1 + c2t+ c3e

2t + 4 sin 2t.

Solution.
The roots of the characteristic equation are r = 0 of multiplicity 2 and r = 2.
Thus, the equation is

r2(r − 2) = r3 − 2r2 = 0.

The corresponding differential equation is y′′′ − 2y′′ = 0. Comparing coef-
ficients we find a = −2, b = c = 0. The function yp(t) = 4 sin 2t is a
particular solution to the nonhomogeneous equation. Taking derivatives we
find y′p(t) = 8 cos 2t, y′′p(t) = −16 sin 2t, y′′′p (t) = −32 cos 2t. By plugging into
the equation we find −32 cos 2t+ 32 sin 2t = g(t)

Problem 33.17
y(t) = c1 + c2t+ c3t

2 − 2t3
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Solution.
The roots of the characteristic equation are r = 0 of multiplicity 3. Thus,
the equation is

r3 = 0.

The corresponding differential equation is y′′′ = 0. Comparing coefficients we
find a = b = c = 0. The function yp(t) = −2t3 is a particular solution to the
nonhomogeneous equation. Taking derivatives we find y′p(t) = −6t2, y′′p(t) =
−12t, y′′′p (t) = −12. By plugging into the equation we find −12 = g(t)

Problem 33.18
Consider the nonhomogeneous differential equation

t3y′′′ + at2y′′ + bty′ + cy = g(t), t > 0

Suppose that y(t) = c1t + c2t
2 + c3t

4 + 2 ln t is the general solution to the
above equation. Determine the constants a, b, c and the function g(t)

Solution.
The functions y1(t) = t, y2(t) = t2, and y3(t) = t4 are solutions to the
homogeneous equation. Substituting into the equation we find

0 + 0 + bt+ ct = 0 −→ b+ c = 0
0 + 2at2 + 2bt2 + ct2 = 0 −→ 2a+ 2b+ c = 0

24t4 + 12at4 + 4bt4 + ct4 = 0 −→ 12a+ 4b+ c = −24

Solving this system of equations we find a = −4, b = 8, and c = −8. Thus,

t3y′′′ − 4t2y′′ + 8ty′ − 8y = g(t).

Since yp(t) = 2 ln t is a particular solution to the nonhomogeneous equation
then by substitution we find g(t) = t3( 4

t3
) − 4t2(− 2

t2
) + 8t(2

t
) − 16 ln t =

28− 16 ln t
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34 Existence and Uniqueness of Solution to

Initial Value First Order Linear Systems

Problem 34.1
Consider the initial value problem

(t+ 2)y′1 = 3ty1 + 5y2, y1(1) = 0
(t− 2)y′2 = 2y1 + 4ty2, y2(1) = 2

Determine the largest t-interval such that a unique solution is guaranteed to
exist.

Solution.
All the coefficient functions and the right-hand side functions are continuous
for all t 6= ±2. Since t0 = 1, the t−interval of existence is −2 < t < 2

Problem 34.2
Verify that the functions y1(t) = c1e

t cos t+c2e
t sin t and y2(t) = −c1et sin t+

c2e
t cos t are solutions to the linear system

y′1 = y1 + y2
y′2 = −y1 + y2

Solution.
Taking derivatives we find y′1(t) = (c1 + c2)e

t cos t + (c2 − c1)e
t sin t and

y′2(t) = −(c1+c2)e
t sin t+(c2−c1)et cos t. But y1+y2 = (c1+c2)e

t cos t+(c2−
c1)e

t sin t = y′1(t) and −y1 + y2 = −(c1 + c2)e
t sin t+ (c2− c1)et cos t = y′2(t)

Problem 34.3
Consider the initial value problem

y′(t) = Ay(t), y(0) = y0

where

A =

[
3 2
4 1

]
, y0 =

[
−1
8

]
(a) Verify that y(t) = c1e

5t

[
1
1

]
+ c2e

−t
[
−1
2

]
is a solution to the first

order linear system.
(b) Determine c1 and c2 such that y(t) solves the given initial value problem.
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Solution.
(a) We have

y′(t) = c1e
5t

[
5
5

]
+ c2e

−t
[

1
−2

]
and

Ay(t) = c1e
5t

[
3 2
4 1

] [
1
1

]
+ c2e

−t
[

3 2
4 1

] [
−1
2

]

= c1e
5t

[
5
5

]
+ c2e

−t
[

1
−2

]
= y′(t)

(b) We need to solve the system

c1 − c2 = −1
c1 + 2c2 = 8

Solving this system we find c1 = 2 and c2 = 3. Therefore, the unique solution
to the system is

y(t) =

[
2e5t − 3e−t

2e5t + 6e−t

]
Problem 34.4
Rewrite the differential equation (cos t)y′′−3ty′+

√
ty = t2 + 1 in the matrix

form y(t) = P(t)y(t) + g(t).

Solution.
Rewriting the equation in the form y′′ − 3t sec ty′ +

√
t sec t = (t2 + 1) sec t

we find

y′ =

[
y
y′

]′
=

[
0 1

−
√
t sec t 3t sec t

] [
y
y′

]
+

[
0

(t2 + 1) sec t

]
= P(t)y + g(t)

Problem 34.5
Rewrite the differential equation 2y′′+ ty+ e3t = y′′′+ (cos t)y′ in the matrix
form y(t) = P(t)y(t) + g(t).
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Solution.
Rewriting the given equation in the form y′′′ − 2y′′ + (cos t)y′ − ty = e3t we
find

y′ =

 y
y′

y′′

′ =
 0 1 0

0 0 1
t − cos t 2

 y
y′

y′′

+
[

0 0 e3t
]

= P(t)y(t) + g(t)

Problem 34.6
The initial value problem

y′(t) =

[
0 1
−3 2

]
y +

[
0

2 cos (2t)

]
, y(−1) =

[
1
4

]
was obtained from an initial value problem for a higher order differential
equation. What is the corresponding scalar initial value problem?

Solution.
Carrying the matrix arithmetic we find y′′ = −3y + 2y′ + 2 cos 2t. Thus, the
initial value problem is

y′′ + 3y − 2y′ = 2 cos 2t, y(−1) = 1, y′(−1) = 4

Problem 34.7
The initial value problem

y′(t) =


y2
y3
y4

y2 + y3 sin y1 + y23

 , y(1) =


0
0
−1
2


was obtained from an initial value problem for a higher order differential
equation. What is the corresponding scalar initial value problem?

Solution.
Let

y(t) =


y1
y2
y3
y4

 =


y
y′

y′′

y′′′
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Then

y′ =


y′

y′′

y′′′

y(4)

 =


y′

y′′

y′′′

y′ + y′′ sin y + (y′′)2


Equating components we find

y(4) = y′ + y′′ sin y + (y′′)2.

Thus, the initial value problem is

y(4) = y′ + y′′ sin y + (y′′)2, y(1) = y′(1) = 0, y′′(1) = −1, y′′′(1) = 2

Problem 34.8
Consider the system of differential equations

y′′ = tz′ + y′ + z
z′′ = y′ + z′ + 2ty

Write the above system in the form

y′ = P(t)y + g(t)

where

y(t) =


y(t)
y′(t)
z(t)
z′(t)


Identify P(t) and g(t).

Solution.

y′ =


y′

y′′

z′

z′′

 =


0 1 0 0
0 1 1 t
0 0 0 1
2t 1 0 1



y
y′

z
z′




0
0
0
0


= P(t)y + G(t)
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Problem 34.9
Consider the system of differential equations

y′′ = 7y′ + 4y − 8z + 6z′ + t2

z′′ = 5z′ + 2z − 6y′ + 3y − sin t

Write the above system in the form

y′ = P(t)y + g(t)

where

y(t) =


y(t)
y′(t)
z(t)
z′(t)


Identify P(t) and g(t).

Solution.

y′ =


y′

y′′

z′

z′′

 =


0 1 0 0
4 7 −8 6
0 0 0 1
3 −6 2 5



y
y′

z
z′




0
t2

0
− sin t


= P(t)y + G(t)
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35 Homogeneous First Order Linear Systems

In Problems 35.1 - 35.3 answer the following two questions.
(a) Rewrite the given system of linear homogeneous differential equations as
a homogeneous linear system of the form y′(t) = P(t)y.
(b) Verify that the given function y(t) is a solution of y′(t) = P(t)y.

Problem 35.1

y′1 = −3y1 − 2y2
y′2 = 4y1 + 3y2

and

y(t) =

[
et + e−t

−2et − e−t
]

Solution.
(a) [

y1
y2

]′
=

[
−3 −2
4 3

] [
y1
y2

]
(b) We have

y′ =

[
et − e−t
−2et + e−t

]
and

P(t)y =

[
−3 −2
4 3

] [
et + e−t

−2et − e−t
]

=

[
et − e−t
−2et + e−t

]
= y′

Problem 35.2

y′1 = y2
y′2 = − 2

t2
y1 + 2

t
y2

and

y(t) =

[
t2 + 3t
2t+ 3

]
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Solution.
(a) [

y1
y2

]′
=

[
0 1
− 2
t2

2
t

] [
y1
y2

]
(b) We have

y′ =

[
2t+ 3

2

]
and

P(t)y =

[
0 1
− 2
t2

2
t

] [
t2 + 3t
2t+ 3

]
=

[
2t+ 3

2

]
= y′

Problem 35.3

y′1 = 2y1 + y2 + y3
y′2 = y1 + y2 + 2y3
y′3 = y1 + 2y2 + y3

and

y(t) =

 2et + e4t

−et + e4t

−et + e4t


Solution.
(a)  y1

y2
y3

′ =
 2 1 1

1 1 2
1 1 2

 y1
y2
y3


(b) We have

y′ =

 2et + 4e4t

−et + 4e4t

−et + 4e4t


and

P(t)y =

 2 1 1
1 1 2
1 1 2

 2et + e4t

−et + e4t

−et + e4t

 =

 2et + 4e4t

−et + 4e4t

−et + 4e4t

 = y′

In Problems 35.4 - 35.7
(a) Verify the given functions are solutions of the homogeneous linear system.
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(b) Compute the Wronskian of the solution set. On the basis of this calcu-
lation can you assert that the set of solutions forms a fundamental set?
(c) If the given solutions are shown in part(b) to form a fundamental set,
state the general solution of the linear homogeneous system. Express the
general solution as the product y(t) = Ψ(t)c, where Ψ(t) is a square matrix
whose columns are the solutions forming the fundamental set and c is a col-
umn vector of arbitrary constants.
(d) If the solutions are shown in part (b) to form a fundamental set, impose
the given initial condition and find the unique solution of the initial value
problem.

Problem 35.4

y′ =

[
9 −4
15 −7

]
y,y(0) =

[
0
1

]
,y1(t) =

[
2e3t − 4e−t

3e3t − 10e−t

]
,y2(t) =

[
4e3t + 2e−t

6e3t + 5e−t

]
Solution.
(a) We have

y′1 =

[
6e3t + 4e−t

9e3t + 10e−t

]
and [

9 −4
15 −7

] [
2e3t − 4e−t

3e3t − 10e−t

]
=

[
6e3t + 4e−t

9e3t + 10e−t

]
= y′1

Similarly,

y′2 =

[
12e3t − 2e−t

18e3t − 5e−t

]
and [

9 −4
15 −7

] [
4e3t + 2e−t

6e3t + 5e−t

]
=

[
12e3t − 2e−t

18e3t − 5e−t

]
= y′2

(b) The Wronskian is given by

W (t) =

∣∣∣∣ 2e3t − 4e−t 4e3t + 2e−t

3e3t − 10e−t 6e3t + 5e−t

∣∣∣∣ = 20e2t

Since W (t) 6= 0, the set {y1,y2} forms a fundamental set of solutions.
(c) The general solution is

y(t) = c2y1 + c2y2 =

[
2e3t − 4e−t 4e3t + 2e−t

3e3t − 10e−t 6e3t + 5e−t

] [
c1
c2

]
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(d) We have [
−2 6
−7 11

] [
c1
c2

]
=

[
0
1

]
Solving this system we find c1 = −0.3, c2 = −0.1. Therefore the solution to
the initial value problem is

y(t) = −0.3

[
2e3t − 4e−t

3e3t − 10e−t

]
− 0.1

[
4e3t + 2e−t

6e3t + 5e−t

]
=

[
e−3t + e−t

−1.5e3t + 2.5e−t

]
Problem 35.5

y′ =

[
−3 −5
2 −1

]
y,y(0) =

[
5
2

]
, y1(t) =

[
−5e−2t cos 3t

e−2t(cos 3t− 3 sin 3t)

]
,

y2(t) =

[
−5e−2t sin 3t

e−2t(3 cos 3t+ sin 3t)

]
Solution.
(a) We have

y′1 =

[
5e−2t(2 cos 3t+ 3 sin 3t)
−11e−2t(cos 3t+ sin 3t)

]
and[
−3 −5
2 −1

] [
−5e−2t cos 3t

e−2t(cos 3t− 3 sin 3t)

]
=

[
5e−2t(2 cos 3t+ 3 sin 3t)
−11e−2t(cos 3t+ sin 3t)

]
= y′1

Similarly,

y′2 =

[
5e−2t(2 sin 3t− 3 cos 3t)
e−2t(−3 cos 3t− 11 sin 3t)

]
and[
−3 −5
2 −1

] [
−5e−2t sin 3t

e−2t(3 cos 3t+ sin 3t)

]
=

[
5e−2t(2 sin 3t− 3 cos 3t)
e−2t(−3 cos 3t− 11 sin 3t)

]
= y′2

(b) The Wronskian is given by

W (t) =

∣∣∣∣ −5e−2t cos 3t −5e−2t sin 3t
e−2t(cos 3t− 3 sin 3t) e−2t(3 cos 3t− sin 3t)

∣∣∣∣ = −15e−4t
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Since W (t) 6= 0, the set {y1,y2} forms a fundamental set of solutions.
(c) The general solution is

y(t) = c2y1 + c2y2 =

[
−5e−2t cos 3t −5e−2t sin 3t

e−2t(cos 3t− 3 sin 3t) e−2t(3 cos 3t− sin 3t)

] [
c1
c2

]
(d) We have [

−5 0
1 3

] [
c1
c2

]
=

[
5
2

]
Solving this system we find c1 = −1, c2 = 1. Therefore the solution to the
initial value problem is

y(t) =

[
−5e−2t cos 3t

e−2t(cos 3t− 3 sin 3t)

]
−
[

−5e−2t sin 3t
e−2t(3 cos 3t+ sin 3t)

]
=

[
5e−2t(cos 3t− sin 3t)
e−2t(2 cos 3t+ 4 sin 3t)

]
Problem 35.6

y′ =

[
1 −1
−2 2

]
y,y(−1) =

[
−2
4

]
,y1(t) =

[
1
1

]
,y2(t) =

[
e3t

−2e3t

]
Solution.
(a) We have

y′1 =

[
0
0

]
and [

1 −1
−2 2

] [
1
1

]
=

[
0
0

]
= y′1

Similarly,

y′2 =

[
3e3t

−6e−3t

]
and [

1 −1
−2 2

] [
e3t

−2e3t

]
=

[
3e3t

−6e−3t

]
= y′2

(b) The Wronskian is given by

W (t) =

∣∣∣∣ 1 e3t

1 −2e3t

∣∣∣∣ = −3e−3t
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Since W (t) 6= 0, the set {y1,y2} forms a fundamental set of solutions.
(c) The general solution is

y(t) = c2y1 + c2y2 =

[
1 e3t

1 −2e3t

] [
c1
c2

]
(d) We have [

1 e−3

1 −2e−3

] [
c1
c2

]
=

[
−2
4

]
Solving this system we find c1 = 0, c2 = −2e3. Therefore the solution to the
initial value problem is

y(t) =

[
−2e3(t+1)

4e3(t+1)

]
Problem 35.7

y′ =

 −2 0 0
0 1 4
0 −1 1

y,y(0) =

 3
4
−2

 ,y1(t) =

 e−2t

0
0

 , y2(t) =

 0
2et cos 2t
−et sin 2t



y3(t) =

 0
2et sin 2t
et cos 2t


Solution.
(a) We have

y′1 =

 −2e−2t

0
0


and  −2 0 0

0 1 4
0 −1 1

 e−2t

0
0

 =

 −2e−2t

0
0

 = y′1

Similarly,

y′2 =

 0
2et(cos 2t− 2 sin 2t)
−et(sin 2t+ 2 cos 2t)
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and  −2 0 0
0 1 4
0 −1 1

 0
2et cos 2t
−et sin 2t

 =

 0
2et(cos 2t− 2 sin 2t)
−et(sin 2t+ 2 cos 2t)

 = y′2

y′3 =

 0
2et(sin 2t+ 2 cos 2t)
et(cos 2t− 2 sin 2t)


and  −2 0 0

0 1 4
0 −1 1

 0
2et cos 2t
−et sin 2t

 =

 0
2et(sin 2t+ 2 cos 2t)
et(cos 2t− 2 sin 2t)

 = y′3

(b) The Wronskian is given by

W (t) =

∣∣∣∣∣∣
e−2t 0 0

0 2et cos 2t 2et sin 2t
0 −et sin 2t et cos 2t

∣∣∣∣∣∣ = 2.

Since W (t) 6= 0, the set {y1,y2,y3} forms a fundamental set of solutions.
(c) The general solution is

y(t) = c2y1 + c2y2 + c3y3 =

 e−2t 0 0
0 2et cos 2t 2et sin 2t
0 −et sin 2t et cos 2t

 c1
c2
c3


(d) We have  1 0 0

0 2 0
0 0 1

 c1
c2
c3

 =

 3
4
−2


Solving this system using Cramer’s rule we find c1 = 3, c2 = 2, c3 = −2.
Therefore the solution to the initial value problem is

y(t) =

 3e−2t

0
0

+

 0
4et cos 2t
−2et sin 2t

−
 0

4et sin 2t
2et cos 2t

 =

 3e−2t

4et(cos 2t− sin 2t)
−2et(sin 2t+ cos 2t)


In Problems 35.8 - 35.9, the given functions are solutions of the homogeneous
linear system.
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(a) Compute the Wronskian of the solution set and verify the set is a funda-
mental set of solutions.
(b) Compute the trace of the coefficient matrix.
(c) Verify Abel’s theorem by showing that, for the given point t0, W (t) =

W (t0)e
∫ t
t0
tr(P(s))ds

.

Problem 35.8

y′ =

[
6 5
−7 −6

]
y,y1(t) =

[
5e−t

−7e−t

]
,y2(t) =

[
et

−et
]
, t0 = −1, −∞ < t <∞

Solution.
(a) The Wronskian is

W (t) =

∣∣∣∣ 5e−t et

−7e−t −et
∣∣∣∣ = 2.

Since W (t) 6= 0, the set {y1,y2} forms a fundamental set of solutions.
(b) tr(P(t)) = 6− 6 = 0.

(c) W (t) = 2 and W (t0)e
∫ t
t0
tr(P(s))ds

= 2e
∫ t
−1 0ds = 2

Problem 35.9

y′ =

[
1 t
0 −t−1

]
y,y1(t) =

[
−1
t−1

]
,y2(t) =

[
et

0

]
, t0 = −1, t 6= 0, 0 < t <∞

Solution.
(a) The Wronskian is

W (t) =

∣∣∣∣ −1 et

t−1 0

∣∣∣∣ = −t−1et.

Since W (t) 6= 0, the set {y1,y2} forms a fundamental set of solutions.
(b) tr(P(t)) = 1− t−1

(c) W (t) = −t−1et and W (t0)e
∫ t
t0
tr(P(s))ds

= −e · e
∫ t
1 (1−s

−1)ds = −t−1et

Problem 35.10
The functions

y1(t) =

[
5
1

]
, y2(t) =

[
2e3t

e3t

]
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are known to be solutions of the homogeneous linear system y′ = Py, where
P is a real 2× 2 constant matrix.
(a) Verify the two solutions form a fundamental set of solutions.
(b) What is tr(P)?
(c) Show that Ψ(t) satisfies the homogeneous differential equation Ψ′ = PΨ,
where

Ψ(t) = [y1(t) y2(t)] =

[
5 2e3t

1 e3t

]
(d) Use the observation of part (c) to determine the matrix P.[Hint: Compute
the matrix product Ψ′(t)Ψ−1(t). It follows from part (a) that Ψ−1(t) exists.]
Are the results of parts (b) and (d) consistent?

Solution.
(a) The Wronskian is given by

W (t) =

∣∣∣∣ 5 2e3t

1 e3t

∣∣∣∣ = 3e3t

Since

W (t) 6= 0, the set {y1,y2} forms a fundamental set of solutions.
(b) Since W ′(t)−tr(P(t))W (t) = 0, 9e3t−3tr(P(t))e3t = 0. Thus, tr(P(t)) =
3.
(c) We have

Ψ′(t) = [y′1 y′2] = [P(t)y1 P(t)y2] = P(t)[y1 y2] = P(t)Ψ(t)

(d) From part(c) we have

P(t) = Ψ′(t)Ψ−1(t) =

[
0 6e3t

0 3e3t

]
· 1
3e3t

[
e3t −2e3t

−1 5

]

=

[
−2 10
−1 5

]
The results in parts (b) and (d) are consistent since tr(P(t)) = −2 + 5 = 3

Problem 35.11
The homogeneous linear system

y′ =

[
3 1
−2 α

]
y
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has a fundamental set of solutions whose Wronskian is constant, W (t) =
4, −∞ < t <∞. What is the value of α?

Solution.
We know that W (t) satisfies the equation W ′(t) − tr(P(t))W (t) = 0. But
tr(P(t)) = 3 + α. Thus, W ′(t) − (3 + α)W (t) = 0. Solving this equation

we find W (t) = W (0)e
∫ t
0 (3+α)ds. Since W (t) = W (0) = 4, e

∫ t
0 (3+α)ds = 1.

Evaluating the integral we find e(3+α)t = 1. This implies that 3 + α = 0 or
α = −3
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36 First Order Linear Systems: Fundamental

Sets and Linear Independence

In Problems 36.1 - 36.4, determine whehter the given functions are linearly
dependent or linearly independent on the interval −∞ < t <∞.

Problem 36.1

f1(t) =

[
t
1

]
, f2(t) =

[
t2

1

]
Solution.
Suppose

k1

[
t
1

]
+ k2

[
t2

1

]
=

[
0
0

]
Then k1t+k2t

2 = 0 and k1+k2 = 0 for all t. In particular, for t = −1 we have
−k1 + k2 = 0. But k1 + k2 = 0. These two equations imply that k1 = k2 = 0.
Hence, {f1(t), f2(t)} is a linearly independent set

Problem 36.2

f1(t) =

[
et

1

]
, f2(t) =

[
e−t

1

]
, f3(t) =

[
et−e−t

2

0

]
Solution.
Note that

1

2

[
et

1

]
− 1

2

[
e−t

1

]
−
[

et−e−t
2

0

]
=

 0
0
0


This shows that f1(t), f2(t), and f3(t) are linearly dependent

Problem 36.3

f1(t) =

 1
t
0

 , f2(t) =

 0
1
t2

 , f3(t) =

 0
0
0
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Solution.
Note that

0

 1
t
0

+ 0

 0
1
t2

+ 1 ·

 0
0
0

 =

 0
0
0


This shows that f1(t), f2(t), and f3(t) are linearly dependent

Problem 36.4

f1(t) =

 1
sin2 t

0

 , f2(t) =

 0
2(1− cos2 t)
−2

 , f3(t) =

 1
0
1


Solution.
Note that  1

sin2 t
0

− 1

2

 0
2(1− cos2 t)
−2

−
 1

0
1

 =

 0
0
0


This shows that f1(t), f2(t), and f3(t) are linearly dependent

Problem 36.5
Consider the functions

f1(t) =

[
t2

0

]
, f2(t) =

[
2t
1

]
(a) Let Ψ(t) = [f1(t) f2(t)]. Determine det(Ψ(t)).
(b) Is it possible that the given functions form a fundamental set of solutions
for a linear system y′ = P(t)y where P(t) is continuous on a t-interval con-
taining the point t = 0? Explain.
(c) Determine a matrix P(t) such that the given vector functions form a
fundamental set of solutions for y′ = P(t)y. On what t-interval(s) is the
coefficient matrix P(t) continuous?(Hint: The matrix Ψ(t) must satisfy
Ψ′(t) = P(t)Ψ(t) and det(Ψ(t)) 6= 0.)

Solution.
(a) We have

F (t) =

∣∣∣∣ t2 2t
0 1

∣∣∣∣ = t2.
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(b) Since F (0) = 0, the given functions do not form a fundamental set for a
linear system y′ = P(t)y on any t−interval containing 0.
(c) For Ψ(t) to be a fundamental matrix it must satisfy the differential equa-
tion Ψ′(t) = P(t)Ψ(t) and the condition det(Ψ(t)) 6= 0. But det(Ψ(t)) = t2

and this is not zero on any interval not containing zero. Thus, our coefficient
matrix P(t) must be continuous on either −∞ < t < 0 or 0 < t <∞. Now,
from the equation Ψ′(t) = P(t)Ψ(t) we can find P(t) = Ψ′(t)Ψ−1(t). That
is,

P(t) = Ψ′(t)Ψ−1(t) = 1
t2

[
2t 2
0 0

] [
1 −2t
0 t2

]

=

[
2t−1 −2

0 0

]
Problem 36.6
Let

y′ =

 1 1 1
0 −1 1
0 0 2

y, Ψ(t) =

 et e−t 4e2t

0 −2e−t e2t

0 0 3e2t

 , Ψ(t) =

 et + e−t 4e2t et + 4e2t

−2e−t e2t e2t

0 3e2t 3e2t


(a) Verify that the matrix Ψ(t) is a fundamental matrix of the given linear
system.
(b) Determine a constant matrix A such that the given matrix Ψ(t) can be
represented as Ψ(t) = Ψ(t)A.
(c) Use your knowledge of the matrix A and assertion (b) of Theorem 36.4 to
determine whether Ψ(t) is also a fundamental matrix, or simply a solution
matrix.

Solution.
(a) Since

Ψ′(t) =

 et −e−t 8e2t

0 2e−t 2e2t

0 0 6e2t


and

P(t)Ψ(t) =

 1 1 1
0 −1 1
0 0 2

 et e−t 4e2t

0 −2e−t e2t

0 0 3e2t

 =

 et −e−t 8e2t

0 2e−t 2e2t

0 0 6e2t
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Thus, Ψ is a solution matrix. To show that Ψ(t) is a fundamental matrix
we need to verify that det(Ψ(t)) 6= 0. Since det(Ψ(t)) = −6e2t 6= 0, Ψ(t) is a
fundamental matrix.
(b) Note that

Ψ(t) =

 et + e−t 4e2t et + 4e2t

−2e−t e2t e2t

0 3e2t 3e2t

 =

 et e−t 4e2t

0 −2e−t e2t

0 0 3e2t

 1 0 1
1 0 0
0 1 1


Thus,

A =

 1 0 1
1 0 0
0 1 1


(c) Since det(A) = 1, Ψ(t) is a fundamental matrix

Problem 36.7
Let

y′ =

[
1 1
0 −2

]
y, Ψ(t) =

[
et e−2t

0 −3e−2t

]
where the matrix Ψ(t) is a fundamental matrix of the given homogeneous
linear system. Find a constant matrix A such that Ψ(t) = Ψ(t)A with

Ψ(0) =

[
1 0
0 1

]
.

Solution.
We need to find a matrix A such that Ψ(0) = Ψ(0)A or A = Ψ−1(0)Ψ(0) =

Ψ−1(0) = −1
3

[
−3 −1
0 1

]
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37 Homogeneous Systems with Constant Co-

efficients

In Problems 37.1 - 37.3, a 2× 2 matrix P and vectors x1 and x2 are given.
(a) Decide which, if any, of the given vectors is an eigenvector of P, and
determine the corresponding eigenvalue.
(b) For the eigenpair found in part (a), form a solution yk(t), where k = 1
or k = 2, of the first order system y′ = Py.
(c) If two solution are found in part (b), do they form a fundamental set of
solutions for y′ = Py.

Problem 37.1

P =

[
7 −3
16 −7

]
, x1 =

[
3
8

]
, x2 =

[
1
2

]
Solution.
(a) We have

Px1 =

[
7 −3
16 −7

] [
3
8

]
= −1x1.

Thus, x1 is an eigenvector corresponding to the eigenvalue r1 = −1. Similarly,

Px2 =

[
7 −3
16 −7

] [
1
2

]
= 1x2.

Thus, x2 is an eigenvector corresponding to the eigenvalue r1 = 1.
(b) Solutions to the system y′ = P(t)y are y1(t) = e−tx1 and y2(t) = etx2.
(c) The Wronskian is

W (t) =

∣∣∣∣ 3e−t et

8e−t 2et

∣∣∣∣ = −2 6= 0

so that the set {y1,y2} forms a fundamental set of solutions

Problem 37.2

P =

[
−5 2
−18 7

]
, x1 =

[
1
3

]
, x2 =

[
1
2

]
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Solution.
(a) We have

Px1 =

[
−5 2
−18 7

] [
1
3

]
= 1x1.

Thus, x1 is an eigenvector corresponding to the eigenvalue r1 = 1. Similarly,

Px2 =

[
−5 2
−18 7

] [
1
2

]
=

[
−1
−4

]
.

Since the right-hand side cannot be a scalar multiple of x2, x2 is not an
eigenvector of P.
(b) Solution to the system y′ = P(t)y is y1(t) = etx1.
(c) The Wronskian is not defined for this problem

Problem 37.3

P =

[
2 −1
−4 2

]
, x1 =

[
1
−2

]
, x2 =

[
1
2

]
Solution.
(a) We have

Px1 =

[
2 −1
−4 2

] [
1
−2

]
= 4x1.

Thus, x1 is an eigenvector corresponding to the eigenvalue r1 = 4. Similarly,

Px2 =

[
2 −1
−4 2

] [
1
2

]
= 0x2.

Thus, x2 is an eigenvector corresponding to the eigenvalue r1 = 0.
(b) Solutions to the system y′ = P(t)y are y1(t) = e4tx1 and y2(t) = x2.
(c) The Wronskian is

W (t) =

∣∣∣∣ e4t 1
−2e4t 2

∣∣∣∣ = 4e4t 6= 0

so that the set {y1,y2} forms a fundamental set of solutions

In Problems 37.4 - 37.6, an eigenvalue is given of the matrix P. Determine a
corresponding eigenvector.
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Problem 37.4

P =

[
5 3
−4 −3

]
, r = −1

Solution.
We have

(P + I)x =

[
6 3
−4 −2

] [
x1
x2

] [
6x1 + 3x2
−4x1 − 2x2

]
=

[
0
0

]
Solving this system we find x2 = −2x1. Letting x1 = 1 then x2 = −2 and an
eigenvector is

x =

[
1
−2

]
Problem 37.5

P =

 1 −7 3
−1 −1 1
4 −4 0

 , r = −4

Solution.
We have

(P + 4I)x =

 5 −7 3
−1 3 1
4 −4 4

 x1
x2
x3

 5x1 − 7x2 + 3x3
−x1 + 3x2 + x3
4x1 − 4x2 + 4x3

 =

 0
0
0


Solving this system we find x1 = 2x2 and x3 = −x2. Letting x2 = 1 then
x1 = 2 and x3 = −1. Thus, an eigenvector is

x =

 2
1
−1


Problem 37.6

P =

 1 3 1
2 1 2
4 3 −2

 , r = 5
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Solution.
We have

(P− 5I)x =

 −4 3 1
2 −4 2
4 3 −7

 x1
x2
x3

 −4x1 + 3x2 + x3
2x1 − 4x2 + 2x3
4x1 + 3x2 − 7x3

 =

 0
0
0


Solving this system we find x1 = x2 = x3. Letting x3 = 1 then x1 = 1 and
x2 = 1. Thus, an eigenvector is

x =

 1
1
1


In Problems 37.7 - 37.10, Find the eigenvalues of the matrix P.

Problem 37.7

P =

[
−5 1
0 4

]
Solution.
The characteristic equation is∣∣∣∣ −5− r 1

0 4− r

∣∣∣∣ = (r + 5)(r − 4) = 0

Thus, the eigenvalues are r = −5 and r = 4

Problem 37.8

P =

[
3 −3
−6 6

]
Solution.
The characteristic equation is∣∣∣∣ 3− r −3

−6 6− r

∣∣∣∣ = r(r − 9) = 0

Thus, the eigenvalues are r = 0 and r = 9
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Problem 37.9

P =

 5 0 0
0 1 3
0 2 2


Solution.
The characteristic equation is∣∣∣∣∣∣

5− r 0 0
0 1− r 3
0 2 2− r

∣∣∣∣∣∣ = (5− r)(r + 1)(r − 4) = 0

Thus, the eigenvalues are r = 5, r = 4, and r = −1

Problem 37.10

P =

 1 −7 3
−1 −1 1
4 −4 0


Solution.
The characteristic equation is∣∣∣∣∣∣

1− r −7 3
−1 −1− r 1
4 −4 −r

∣∣∣∣∣∣ = −r(r − 4)(r + 4) = 0

Thus, the eigenvalues are r = 0, r = 4, and r = −4

In Problems 37.11 - 37.13, the matrix P has distinct eigenvalues. Using The-
orem 35.4 determine a fundamental set of solutions of the system y′ = Py.

Problem 37.11

P =

[
−0.09 0.02
0.04 −0.07

]
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Solution.
The characteristic equation is∣∣∣∣ −0.09− r 0.02

0.04 −0.07− r

∣∣∣∣ = r2 + 0.16r + 0.0055 = 0

Solving this quadratic equation we find r = −0.11 and r = −0.05. Now,

(P + 0.11I)x =

[
0.02 0.02
0.04 0.04

] [
x1
x2

] [
0.02x1 + 0.02x2
0.04x1 + 0.04x2

]
=

[
0
0

]
Solving this system we find x1 = −x2. Letting x2 = 1 then x1 = −1. Thus,
an eigenvector is

x1 =

[
1
−1

]
Similarly,

(P + 0.05I)x =

[
−0.04 0.02
0.04 −0.02

] [
x1
x2

] [
−0.04x1 + 0.02x2
0.04x1 − 0.02x2

]
=

[
0
0

]
Solving this system we find 2x1 = x2. Letting x1 = 1 then x2 = 2. Thus, an
eigenvector is

x2 =

[
1
2

]
By Theorem 35.4, a fundamental set of solutions is given by {e−0.11tx1, e

−0.05tx2}

Problem 37.12

P =

 1 2 0
−4 7 0
0 0 1


Solution.
The characteristic equation is∣∣∣∣∣∣

1− r 2 0
−4 7− r 0
0 0 1− r

∣∣∣∣∣∣ = (r − 1)(r − 3)(r − 5) = 0
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Solving this equation we find r1 = 1, r2 = 3, and r3 = 5. Now,

(P− I)x =

 0 2 0
−4 6 0
0 0 0

 x1
x2
x3

 2x2
−4x1 + 6x2

0

 =

 0
0
0


Solving this system we find x1 = x2 = 0, and x3 is arbitrary. Letting x3 = 1,
an eigenvector is

x1 =

 0
0
1


Similarly,

(P− 3I)x =

 −2 2 0
−4 4 0
0 0 −2

 x1
x2
x3

 −2x1 + 2x2
−4x1 + 4x2
−2x3

 =

 0
0
0


Solving this system we find x1 = x2 and x3 = 0. Letting x1 = x2 = 1, an
eigenvector is

x2 =

 1
1
0


(P− 5I)x =

 −4 2 0
−4 2 0
0 0 −4

 x1
x2
x3

 −4x1 + 2x2
−4x1 + 2x2
−4x3

 =

 0
0
0


Solving this system we find 2x1 = x2, and x3 = 0. Letting x1 = 1, an
eigenvector is

x3 =

 1
2
0


By Theorem 35.4, a fundamental set of solutions is given by {etx1, e

3tx2, e
5tx3}

Problem 37.13

P =

 3 1 0
−8 −6 2
−9 −9 4
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Solution.
The characteristic equation is∣∣∣∣∣∣

3− r 1 0
−8 −6− r 2
−9 −9 4− r

∣∣∣∣∣∣ = (r − 1)(r − 2)(r + 2) = 0

Solving this equation we find r1 = −2, r2 = 1, and r3 = 2. Now,

(P + 2I)x =

 5 1 0
−8 −4 2
−9 −9 6

 x1
x2
x3

 5x1 + x2
−8x1 − 4x2 + 2x3
−9x1 − 9x2 + 6x3

 =

 0
0
0


Solving this system we find x2 = −5x1. Letting x1 = 1, we find x2 = −5 and
x3 = −6. An eigenvector is

x1 =

 1
−5
−6


Similarly,

(P− I)x =

 2 1 0
−8 −7 2
−9 −9 3

 x1
x2
x3

 2x1 + x2
−8x1 − 7x2 + 2x3
−9x1 − 9x2 + 3x3

 =

 0
0
0


Solving this system we find x2 = −2x1. Letting x1 = 1, we find x2 = −2 and
x3 = −3. An eigenvector is

x2 =

 1
−2
−3


(P− 2I)x =

 1 1 0
−8 −8 2
−9 −9 2

 x1
x2
x3

 x1 + x2
−8x1 − 8x2 + 2x3
−9x1 − 9x2 + 2x3

 =

 0
0
0


Solving this system we find −x1 = x2. Letting x1 = 1, we find x2 = −1, x3 =
0. An eigenvector is

x3 =

 1
−1
0


By Theorem 35.4, a fundamental set of solutions is given by {e−2tx1, e

tx2, e
2tx3}
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Problem 37.14
Solve the following initial value problem.

y′ =

[
5 3
−4 −3

]
y, y(1) =

[
2
0

]
Solution.
The characteristic equation is∣∣∣∣ 5− r 3

−4 −3− r

∣∣∣∣ = (r + 1)(r − 3) = 0

Solving this quadratic equation we find r1 = −1 and r2 = 3. Now,

(P + I)x =

[
6 3
−4 −2

] [
x1
x2

] [
6x1 + 3x2
−4x1 − 2x2

]
=

[
0
0

]
Solving this system we find x2 = −2x1. Letting x1 = 1 then x2 = −2. Thus,
an eigenvector is

x1 =

[
1
−2

]
Similarly,

(P− 3I)x =

[
2 3
−4 −6

] [
x1
x2

] [
2x1 + 3x2
−4x1 − 6x2

]
=

[
0
0

]
Solving this system we find 2x1 = −3x2. Letting x1 = 3 then x2 = −2. Thus,
an eigenvector is

x2 =

[
3
−2

]
By Theorem 35.4, a fundamental set of solutions is given by {e−tx1, e

3tx2}.
The general solution is then

y(t) = c1e
−tx1 + c2e

3tx2.

Using the initial condtion we find c1e
−1 +3c2e

3 = 2 and −2c1e
−1−2c2e

3 = 0.
Solving this system we find c1 = −e and c2 = e−3. Hence, the unique solution
is given by

y(t) = −e1−tx1 + e3(t−1)x2
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Problem 37.15
Solve the following initial value problem.

y′ =

 4 2 0
0 1 3
0 0 −2

y, y(0) =

 −1
0
3


Solution.
The characteristic equation is∣∣∣∣∣∣

4− r 2 0
0 1− r 3
0 0 −2− r

∣∣∣∣∣∣ = (r + 2)(r − 1)(r − 4) = 0

Solving this equation we find r1 = −2, r2 = 1, and r3 = 4. Now,

(P + 2I)x =

 6 2 0
0 3 3
0 0 0

 x1
x2
x3

 6x1 + 2x2
3x2 + 3x3

0

 =

 0
0
0


Solving this system we find x2 = −3x1. Letting x1 = 1, we find x2 = −3 and
x3 = 3. An eigenvector is

x1 =

 1
−3
3


Similarly,

(P− I)x =

 3 2 0
0 0 3
0 0 −3

 x1
x2
x3

 3x1 + 2x2
3x3
−3x3

 =

 0
0
0


Solving this system we find 3x1 + 2x2 = 0 and x3 = 0. Letting x1 = 2, we
find x2 = −3. An eigenvector is

x2 =

 2
−3
0



(P− 4I)x =

 0 2 0
0 −3 3
0 0 −6

 x1
x2
x3

 2x2
−3x2 + 3x3
−6x3

 =

 0
0
0
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Solving this system we find x3 = x2 = 0 and x1 arbitrary. Letting x1 = 1,
an eigenvector is

x3 =

 1
0
0


By Theorem 35.4, a fundamental set of solutions is given by {e−2tx1, e

tx2, e
4tx3}.

The general solution is

y(t) = c1e
−2tx1 + c2e

tx2 + c3e
4tx3.

Using the initial condition we find c1+2c2+c3 = −1, −3c1−3c2 = 0, 3c1 = 3.
Solving this system we find c1 = 1, c2 = −1, c3 = 0. Hence, the unique
solution to the initial value problem is

y(t) = e−2tx1 − etx2 + 0e4tx3

Problem 37.16
Find α so that the vector x is an eigenvector of P. What is the corresponding
eigenvalue?

P =

[
2 α
1 −5

]
, u =

[
1
−1

]
Solution.
We must have Pu = ru for some value r. That is[

2 α
1 −5

] [
1
−1

]
= r

[
1
−1

]
Equating components we find 2 − α = r and 1 + 5 = −r. Solving we find
r = −6 and α = 8

Problem 37.17
Find α and β so that the vector x is an eigenvector of P corresponding the
eigenvalue r = 1.

P =

[
α β
2α β

]
, u =

[
−1
1

]
Solution.
We must have Pu = u. That is[

α β
2α −β

] [
−1
1

]
=

[
−1
1

]
Equating components we find −α+ β = −1 and 2α− β = 1. Solving we find
α = 0 and β = −1
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38 Homogeneous Systems with Constant Co-

efficients: Complex Eigenvalues

Problem 38.1
Find the eigenvalues and the eigenvectors of the matrix

P =

[
0 −9
1 0

]
Solution.
The characteristic equation is∣∣∣∣ −r −9

1 −r

∣∣∣∣ = r2 + 9 = 0

Solving this quadratic equation we find r1 = −3i and r2 = 3i. Now,

(P + 3iI)x =

[
3i −9
1 3i

] [
x1
x2

] [
3ix1 − 9x2
x1 + 3ix2

]
=

[
0
0

]
Solving this system we find x1 = −3ix2. Letting x2 = i then x1 = 3. Thus,
an eigenvector is

x1 =

[
3
i

]
An eigenvector corresponding to the eigenvalue 3i is then

x2 =

[
3
−i

]
Problem 38.2
Find the eigenvalues and the eigenvectors of the matrix

P =

[
3 1
−2 1

]
Solution.
The characteristic equation is∣∣∣∣ 3− r 1

−2 1− r

∣∣∣∣ = r2 − 4r + 5 = 0
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Solving this quadratic equation we find r1 = 2− i and r2 = 2 + i. Now,

(P− (2− i)I)x =

[
1 + i 1
−2 −1 + i

] [
x1
x2

] [
(1 + i)x1 + x2
−2x1 − (1− i)x2

]
=

[
0
0

]
Solving this system we find (1+ i)x1 = −x2. Letting x1 = 1− i then x2 = −2.
Thus, an eigenvector is

x1 =

[
1− i
−2

]
An eigenvector corresponding to the eigenvalue 2− i is then

x2 =

[
1 + i
−2

]
Problem 38.3
Find the eigenvalues and the eigenvectors of the matrix

P =

 1 −4 −1
3 2 3
1 1 3


Solution.
The characteristic equation is∣∣∣∣∣∣

1− r −4 −1
3 2− r 3
1 1 3− r

∣∣∣∣∣∣ = −r3 + 6r2 − 21r = 26 = 0

Using the rational root test one finds that r = 2 is a solution so that the
characteristic equation is (r− 2)(r2− 4r+ 13) = 0. Solving this equation we
find r1 = 2, r2 = 2− 3i, and r3 = 2 + 3i. Now,

(P− 2I)x =

 −1 −4 −1
3 0 3
1 1 1

 x1
x2
x3

 −x1 − 4x2 − x3
3x1 + 3x3
x1 + x2 + x3

 =

 0
0
0


Solving this system we find x1 = −x3 and x2 = 0. Letting x3 = −1 then
x1 = 1. Thus, an eigenvector is

x1 =

 1
0
−1
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Next,

(P−(2−3i)I)x =

 −1 + 3i −4 −1
3 3i 3
1 1 1 + 3i

 x1
x2
x3

 (−1 + 3i)x1 − 4x2 − x3
3x1 + 3ix2 + 3x3

x1 + x2 + (1 + 3i)x3

 =

 0
0
0


Solving this system we find 3ix1 = (4 − i)x2 and x3 = (−1 + 3i)x1 − 4x2.
Letting x2 = 3i then x1 = 4− i and x3 = −1 + i. Thus, an eigenvector is

x2 =

 4− i
3i
−1 + i


An eigenvector corresponding to the eigenvalue 2 + 3i is then

x3 =

 4 + i
−3i
−1− i


In Problems 38.4 - 38.6, one or more eigenvalues and corresponding eigenvec-
tors are given for a real matrix P. Determine a fundamental set of solutions
for y′ = Py, where the fundamental set consists entirely of real solutions.

Problem 38.4
P is a 2× 2 matrix with an eigenvalue r = i and corresponding eigenvector

x =

[
−2 + i

5

]
Solution.
From the given information, a solution to the system is given by

y(t) = eit
[
−2 + i

5

]
=

[
(cos t+ i sin t)(−2 + i)

(cos t+ i sin t)5

]

=

[
(−2 cos t− sin t) + (cos t− 2 sin t)i

5 cos t+ 5i sin t

]

=

[
−2 cos t− sin t

5 cos t

]
+ i

[
cos t− 2 sin t

5 sin t

]
Thus, a fundamental set of solution consists of the vectors

y1(t) =

[
−2 cos t− sin t

5 cos t

]
, y2(t) =

[
cos t− 2 sin t

5 sin t

]
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Problem 38.5
P is a 2×2 matrix with an eigenvalue r = 1+i and corresponding eigenvector

x =

[
−1 + i
i

]
Solution.
From the given information, a solution to the system is given by

y(t) = e(1+i)t
[
−1 + i
i

]
=

[
(et cos t+ iet sin t)(−1 + i)

(et cos t+ iet sin t)i

]

=

[
(−et cos t− et sin t) + (et cos t− et sin t)i

−et sin t+ iet cos t

]

=

[
−et cos t− et sin t
−et sin t

]
+ i

[
et cos t− et sin t

et cos t

]
Thus, a fundamental set of solution consists of the vectors

y1(t) =

[
−et cos t− et sin t
−et sin t

]
, y2(t) =

[
et cos t− et sin t

et cos t

]
Problem 38.6
P is a 4×4 matrix with eigenvalues r = 1+5i with corresponding eigenvector

x =


i
1
0
0


and eigenvalue r = 1 + 2i with corresponding eigenvector

x =


0
0
i
1
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Solution.
From the given information, a solution to the system is given by

y(t) = e(1+5i)t


i
1
0
0

 =


(et cos 5t+ iet sin 5t)i
(et cos 5t+ iet sin 5t)

0
0



=


(−et sin 5t+ iet cos 5t)
et cos 5t+ et sin 5t

0
0



=


−et sin 5t
et cos 5t

0
0

+ i


et cos 5t
et sin 5t

0
0


This yields the two solutions

y1(t) =


−et sin 5t
et cos 5t

0
0

 , y2(t) =


et cos 5t
et sin 5t

0
0


Similarly,

y(t) = e(1+2i)t


0
0
i
1

 =


0
0

(et cos 2t+ iet sin 2t)i
et cos 2t+ iet sin 2t



=


0
0

−et sin 2t+ iet cos 2t
et cos 2t+ iet sin 2t



=


0
0

−et sin 2t
et cos 2t

+ i


0
0

et cos 2t
et sin 2t
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This yields the two solutions

y3(t) =


0
0

−et sin 2t
et cos 2t

 , y4(t) =


0
0

et cos 2t
et sin 2t


Thus, a fundamental set of solutions consists of the vectors y1,y2,y3,y4

Problem 38.7
Solve the initial value problem

y′ =

[
0 −9
1 0

]
y, y(0) =

[
6
2

]
Solution.
By Problem 36.1, an eigenvector corresponding to the eigenvalue r = −3i is

x =

[
3
i

]
Thus, a solution corresponding to this eigenvector is

y(t) = e−3it
[

3
i

]
=

[
(cos 3t− i sin 3t)(3)
(cos 3t− i sin 3t)i

]

=

[
3 cos 3t
sin 3t

]
+ i

[
−3 sin 3t

cos 3t

]
This yields the two solutions

y1(t) =

[
3 cos 3t
sin 3t

]
, y2(t) =

[
−3 sin 3t

cos 3t

]
The general solution is then given by

y(t) = c1y1 + c2y2 =

[
3c1 cos 3t− 3c2 sin 3t
c1 sin 3t+ c2 cos 3t

]
Using the initial condition we find c1 = 2 and c2 = 2. Hence, the unique
solution is

y(t) =

[
6 cos 3t− 6 sin 3t
2 sin 3t+ 2 cos 3t

]
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Problem 38.8
Solve the initial value problem

y′ =

[
3 1
−2 1

]
y, y(0) =

[
8
6

]
Solution.
By Problem 36.2, an eigenvector corresponding to the eigenvalue r = 2− i is

x =

[
1− i
−2

]
Thus, a solution corresponding to this eigenvector is

y(t) = e(2−i)t
[

1− i
−2

]
=

[
e2t(cos t− i sin t)(1− i)
e2t(cos t− i sin t)(−2)

]

=

[
e2t(cos t− sin t
−2e2t cos t

]
+ i

[
−e2t(cos t+ sin t)

2e2t sin t

]
This yields the two solutions

y1(t) =

[
e2t(cos t− sin t
−2e2t cos t

]
, y2(t) =

[
−e2t(cos t+ sin t)

2e2t sin t

]
The general solution is then given by

y(t) = c1y1 + c2y2 =

[
c1e

2t(cos t− sin t)− c2e2t(cos t+ sin t)
−2c1e

2t cos t+ 2c2e
2t sin t

]
Using the initial condition we find c1 = −3 and c2 = −11. Hence, the unique
solution is

y(t) = e2t
[

8 cos t+ 14 sin t
6 cos t− 22 sin t

]
Problem 38.9
Solve the initial value problem

y′ =

 1 −4 −1
3 2 3
1 1 3

y, y(0) =

 −1
9
4
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Solution.
By Problem 36.3, an eigenvector corresponding to the eigenvalue r = 2 is

x1 =

 1
0
−1


Thus, a solution corresponding to this eigenvector is

y1(t) = e2t

 1
0
−1

 =

 e2t

0
−e2t


An eigenvector corresponding to the eigenvalue r = 2− 3i is

x2 =

 4− i
3i
−1 + i


Thus, a solution corresponding to this eigenvector is

y(t) = e(2−3i)t

 4− i
3i
−1 + i

 =

 e2t(cos 3t− i sin 3t)(4− i)
e2t(cos 3t− i sin 3t)(3i)

e2t(cos 3t− i sin 3t)(−1 + i)



=

 e2t(4 cos 3t− sin 3t
3e2t sin 3t

e2t(− cos 3t+ sin 3t

+ i

 −e2t(cos 3t+ 4 sin 3t)
3e2t cos 3t

e2t(cos 3t+ sin 3t)


This yields the two solutions

y2(t) =

 e2t(4 cos 3t− sin 3t
3e2t sin 3t

e2t(− cos 3t+ sin 3t)

 , y3(t) =

 −e2t(cos 3t+ 4 sin 3t)
3e2t cos 3t

e2t(cos 3t+ sin 3t)


The general solution is then given by

y(t) = c1y1(t)+c2y2(t)+c3y3(t) =

 c1e
2t + c2e

2t(4 cos 3t− sin 3t)− c3e2t(cos 3t+ 4 sin 3t)
3c2e

2t sin 3t+ 3c3e
2t cos 3t

−c1e2t + c2e
2t(− cos 3t+ sin 3t) + c3e

2t(cos 3t+ sin 3t)


82



Using the initial condition we find c1 = −2, c2 = 1, and c3 = 3. Thus, the
unique solution is

y(t) = e2t

 −2 + cos 3t− 13 sin 3t
3 sin 3t+ 9 cos 3t

2 + 2 cos 3t+ 4 sin 3t
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39 Homogeneous Systems with Constant Co-

efficients: Repeated Eigenvalues

In Problems 39.1 - 39.4, we consider the initial value problem y′ = Py, y(0) =
y0.
(a) Compute the eigenvalues and the eigenvectors of P.
(b) Construct a fundamental set of solutions for the given differential equa-
tion. Use this fundamental set to construct a fundamental matrix Ψ(t).
(c) Impose the initial condition to obtain the unique solution to the initial
value problem.

Problem 39.1

P =

[
3 2
0 3

]
, y0 =

[
4
1

]
Solution.
(a) The characteristic equation is∣∣∣∣ 3− r 2

0 3− r

∣∣∣∣ = (r − 3)2 = 0

and has a repeated root r = 3. We find an eigenvector as follows.[
0 2
0 0

] [
x1
x2

]
=

[
2x2
0

]
=

[
0
0

]
It follows that x2 = 0 and x1 is arbitrary. Letting x1 = 1 then an eigenvector
is

x1 =

[
1
0

]
(b) The above eigenvector yields the solution

y1 =

[
e3t

0

]
But we need two linearly independent solutions to form the general solution
of the given system and we only have one. We look for a solution of the form

y2(t) = e3t
[
x1
x2

]
+ te3t

[
1
0

]
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where

(P− 3I)

[
x1
x2

]
=

[
0 2
0 0

] [
x1
x2

]

=

[
2x2
0

]
=

[
1
0

]
Solving this system we find x2 = 1

2
and x1 arbitrary. Let x1 = 0 then a

second solution is

y2(t) = e3t
[

0
1
2

]
+ te3t

[
1
0

]
A fundamental matrix is

Ψ(t) =

[
e3t te3t

0 e3t

2

]
(c) Since y(t) = Ψ(t)c, Ψ(0)c = y0 or[

1 0
0 1

2

] [
c1
c2

]
=

[
4
1

]
Solving this system we find c1 = 4 and c2 = 2. Hence, the unique solution to
the initial value problem is

y(t) = e3t
[

2t+ 4
1

]
Problem 39.2

P =

[
3 0
1 3

]
, y0 =

[
2
−3

]
Solution.
(a) The characteristic equation is∣∣∣∣ 3− r 0

1 3− r

∣∣∣∣ = (r − 3)2 = 0

and has a repeated root r = 3. We find an eigenvector as follows.[
0 0
1 0

] [
x1
x2

]
=

[
0
x1

]
=

[
0
0

]
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It follows that x1 = 0 and x2 is arbitrary. Letting x2 = 1 then an eigenvector
is

x1 =

[
0
1

]
(b) The above eigenvector yields the solution

y1 =

[
0
e3t

]
But we need two linearly independent solutions to form the general solution
of the given system and we only have one. We look for a solution of the form

y2(t) = e3t
[
x1
x2

]
+ tet

[
0
1

]
where

(P− 3I)

[
x1
x2

]
=

[
0 0
1 0

] [
x1
x2

]

=

[
0
x1

]
=

[
0
1

]
Solving this system we find x1 = 1 and x2 arbitrary. Let x2 = 0 then a
second solution is

y2(t) = e3t
[

1
0

]
+ tet

[
0
1

]
A fundamental matrix is

Ψ(t) =

[
0 e3t

e3t te3t

]
(c) Since y(t) = Ψ(t)c, Ψ(0)c = y0 or[

0 1
1 0

] [
c1
c2

]
=

[
2
−3

]
Solving this system we find c1 = −3 and c2 = 2. Hence, the unique solution
to the initial value problem is

y(t) = e3t
[

2
2t− 3

]
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Problem 39.3

P =

[
−3 −36
1 9

]
, y0 =

[
0
2

]
Solution.
(a) The characteristic equation is∣∣∣∣ −3− r −36

1 9− r

∣∣∣∣ = (r − 3)2 = 0

and has a repeated root r = 3. We find an eigenvector as follows.[
−6 −36
1 6

] [
x1
x2

]
=

[
−6x1 − 36x2
x1 + 6x2

]
=

[
0
0

]
It follows that x1 = −6x2. Letting x1 = 6 then an eigenvector is

x1 =

[
6
−1

]
(b) The above eigenvector yields the solution

y1 =

[
6e3t

−e3t
]

But we need two linearly independent solutions to form the general solution
of the given system and we only have one. We look for a solution of the form

y2(t) = e3t
[
x1
x2

]
+ tet

[
6
−1

]
where

(P− 3I)

[
x1
x2

]
=

[
−6 −36
1 6

] [
x1
x2

]

=
[
−6x1 − 36x2 x1 + 6x2

]
=

[
6
−1

]
Solving this system we find x1 +6x2 = −1. Let x2 = 0 so that x1 = −1. Then
a second solution is

y2(t) = e3t
[
−1
0

]
+ tet

[
6
−1

]
87



A fundamental matrix is

Ψ(t) =

[
6e3t (6t− 1)e3t

−e3t −te3t
]

(c) Since y(t) = Ψ(t)c, Ψ(0)c = y0 or[
6 −1
−1 0

] [
c1
c2

]
=

[
0
2

]
Solving this system we find c1 = −2 and c2 = −12. Hence, the unique solution
to the initial value problem is

y(t) = e3t
[
−72t

12t+ 2

]
Problem 39.4

P =

[
6 1
−1 4

]
, y0 =

[
4
−4

]
Solution.
(a) The characteristic equation is∣∣∣∣ 6− r 1

−1 4− r

∣∣∣∣ = (r − 5)2 = 0

and has a repeated root r = 5. We find an eigenvector as follows.[
1 1
−1 −1

] [
x1
x2

]
=

[
x1 + x2
−x1 − x2

]
=

[
0
0

]
It follows that x2 = −x1. Letting x1 = 1 then x2 = −1. An eigenvector is

x1 =

[
1
−1

]
(b) The above eigenvector yields the solution

y1 =

[
e5t

−e5t
]
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But we need two linearly independent solutions to form the general solution
of the given system and we only have one. We look for a solution of the form

y2(t) = e5t
[
x1
x2

]
+ tet

[
1
−1

]
where

(P− 5I)

[
x1
x2

]
=

[
1 1
−1 −1

] [
x1
x2

]

=

[
x1 + x2
−x1 − x2

]
=

[
1
−1

]
Solving this system we find x1 +x2 = 1. Let x2 = 0 then a second solution is

y2(t) = e5t
[

1
0

]
+ tet

[
1
−1

]
A fundamental matrix is

Ψ(t) =

[
e5t (t+ 1)e5t

−e5t −te5t
]

(c) Since y(t) = Ψ(t)c, Ψ(0)c = y0 or[
1 −1
1 0

] [
c1
c2

]
=

[
4
−4

]
Solving this system we find c1 = 4 and c2 = 0. Hence, the unique solution to
the initial value problem is

y(t) = e5t
[

4
−4

]
Problem 39.5
Consider the homogeneous linear system

y′ =

 2 1 0
0 2 1
0 0 2

y

(a) Write the three component differential equations of y′ = Py and solve
these equations sequentially, first finding y3(t), then y2(t), and then y1(t).
(b) Rewrite the component solutions obtained in part (a) as a single matrix
equation of the form y = Ψ(t)c. Show that Ψ(t) is a fundamental matrix.
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Solution.
(a) We have

y′1 = 2y1 + y2
y′2 = 2y2 + y3
y′3 = 2y3

Solving the last equation we find y3(t) = c3e
2t. Substituting this into the

second equation we find
y′2 − 2y2 = c3e

2t.

Solving this equation using the method of integrating factor we find

y2(t) = c3te
2t + c2e

2t.

Substituting this into the first equation we find

y′1 − 2y1 = c3te
2t + c2e

2t.

Solving this equation we find

y1(t) = c1e
2t + c2te

2t + c3t
2e2t.

(b)

y(t) =

 e2t te2t t2e2t

0 e2t te2t

0 0 e2t

 c1
c2
c3


Since

W (0) = det(Ψ(0)) =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1

we have Ψ(t) is a fundamental matrix

In Problems 39.6 - 39.8, Find the eigenvalues and eigenvectors of P. Give the
geometric and algebraic multiplicity of each eigenvalue. Does P have a full
set of eigenvectors?

Problem 39.6

P =

 5 0 0
1 5 0
1 0 5
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Solution.
The characteristic equation is∣∣∣∣∣∣

5− r 0 0
1 5− r 0
1 0 5− r

∣∣∣∣∣∣ = (5− r)3 = 0

and has a repeated root r = 5. We find an eigenvector as follows. 0 0 0
1 0 0
1 0 0

 x1
x2
x3

 =

 0
x1
x1

 =

 0
0
0


It follows that x1 = 0, x2 and x3 are arbitrary. Thus,

x = x2

 0
1
0

+ x3

 0
0
1


so that two linearly independent eigenvectors are

x1 =

 0
1
0

 , x2

 0
0
1


Hence, r = 5 has algebraic multiplicity 3 and geometric multiplicity 2. Hence,
P is defective

Problem 39.7

P =

 5 0 0
0 5 0
0 0 5


Solution.
The characteristic equation is∣∣∣∣∣∣

5− r 0 0
0 5− r 0
0 0 5− r

∣∣∣∣∣∣ = (5− r)3 = 0

91



and has a repeated root r = 5. We find an eigenvector as follows. 0 0 0
0 0 0
0 0 0

 x1
x2
x3

 =

 0
0
0

 =

 0
0
0


It follows that x1, x2 and x3 are arbitrary. Thus,

x = x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1


so that the three linearly independent eigenvectors are

x1 =

 1
0
0

 , x2 =

 0
1
0

 , x3

 0
0
1


Hence, r = 5 has algebraic multiplicity 3 and geometric multiplicity 3. Hence,
P has a full set of eigenvectors

Problem 39.8

P =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 1 2


Solution.
The characteristic equation is∣∣∣∣∣∣∣∣

2− r 0 0 0
0 2− r 0 0
0 0 2− r 0
0 0 1 2− r

∣∣∣∣∣∣∣∣ = (2− r)4 = 0

and has a repeated root r = 2. We find an eigenvector as follows.
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0



x1
x2
x3
x4

 =


0
0
0
x3

 =


0
0
0
0
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It follows that x3 = 0, x1, x2 and x4 are arbitrary. Thus,

x = x1


1
0
0
0

+ x2


0
1
0
0

+ x4


0
0
0
1


so that the three linearly independent eigenvectors are

x1 =


1
0
0
0

 , x2 =


0
1
0
0

 , x3


0
0
0
1


Hence, r = 2 has algebraic multiplicity 4 and geometric multiplicity 3. Hence,
P defective

Problem 39.9
Let P be a 2× 2 real matrix with an eigenvalue r1 = a+ ib where b 6= 0. Can
P have a repeated eigenvalue? Can P be defective?

Solution.
P have the two distinct eigenvalues r1 = a+ ib and r2 = a− ib. Thus, P has
a full set of eigenvectors

Problem 39.10
Dtermine the numbers x and y so that the following matrix is real and
symmetric.

P =

 0 1 x
y 2 2
6 2 7


Solution.
Since P is a real symmetric matrix, PT = P. That is,

PT =

 0 y 6
1 2 2
x 2 7

P =

 0 1 x
y 2 2
6 2 7


Equating entries we find x = 6 and y = 1
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Problem 39.11
Dtermine the numbers x and y so that the following matrix is Hermitian.

P =

 2 x+ 3i 7
9− 3i 5 2 + yi

7 2 + 5i 3


Solution.
Since P is a Hermitian matrix, P

T
= P. That is,

P
T

=

 2 9 + 3i 7
x− 3i 5 2− 5i

7 2− yi 3

P =

 2 x+ 3i 7
9− 3i 5 2 + yi

7 2 + 5i 3


Equating entries we find x = 9 and y = −5

Problem 39.12
(a) Give an example of a 2× 2 matrix P that is not invertible but have a full
set of eigenvectors.
(b) Give an example of a 2× 2 matrix P that is invertible but does not have
a full set of eigenvectors.

Solution.
(a) Consider the matrix

P =

[
1 0
0 0

]
Then det(P) = 0 so that P is not invertible. The characterisitc equation of
this matrix is ∣∣∣∣ 1− r 0

0 −r

∣∣∣∣ = r(r − 1) = 0

so that the eigenvalues are r1 = 0 and r2 = 1. Hence, the set P has a full set
of eigenvectors.
(b) Consider the matrix

P =

[
1 1
0 1

]
Then det(P) = 1 so that P is invertible. The characterisitc equation of this
matrix is ∣∣∣∣ 1− r 1

0 1− r

∣∣∣∣ = (r − 1)2 = 0
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so that the r = 1 is a repeated eigenvalue. An eigenvector is found as follows.[
0 1
0 0

] [
x1
x2

]
=

[
x2
0

]
=

[
0
0

]
It follows that x2 = 0 and x1 is arbitrary. Thus, an eigenvector is given

x =

[
1
0

]
It follows that P is defective
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40 NonHomogeneous First Order Linear Sys-

tems

In Problems 40.1 - 40.3, we consider the initial value problem y′ = Py +
g(t), y(t0) = y0.
(a) Find the eigenpairs of the matrix P and form the general homogeneous
solution of the differential equation.
(b) Construct a particular solution by assuming a solution of the form sug-
gested and solving for the undetermined constant vectors a,b, and c.
(c) Form the general solution of the nonhomogeneous differential equation.
(d) Find the unique solution to the initial value problem.

Problem 40.1

y′ =

[
−2 1
1 −2

]
y +

[
1
1

]
, y0 =

[
3
1

]
Try yp(t) = a.

Solution.
(a) The characteristic equation is∣∣∣∣ −2− r 1

1 −2− r

∣∣∣∣ = (r + 3)(r + 1) = 0

Thus, the eigenvalues are r1 = −1 and r2 = −3. An eigenvector correspond-
ing to r1 = −1 is found as follows

(P + I)x1 =

[
−1 1
1 −1

] [
x1
x2

]
=

[
−x1 + x2
x1 − x2

]
=

[
0
0

]
Solving this system we find x2 = x1. Letting x1 = 1 we find x2 = 1 and an
eigenvector is

x1 =

[
1
1

]
Similarly, for r2 = −3 we have

(P + 3I)x2 =

[
1 1
1 1

] [
x1
x2

]
=

[
x1 + x2
x1 + x2

]
=

[
0
0

]
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Solving this system we find x2 = −x1. Letting x1 = 1 we find x2 = −1 and
an eigenvector is

x2 =

[
1
−1

]
Hence,

yh(t) = c1e
−t
[

1
1

]
+ c2e

−3t
[

1
−1

]
(b) Inserting the suggested function yp =

[
a1
a2

]
into the differential equation

leads to y′p = Py + g(t) or[
−2 1
1 −2

] [
a1
a2

]
+

[
1
1

]
=

[
0
0

]

Solving this system we find a1 = a2 = 1. Thus, yp =

[
1
1

]
.

(c) The general solution is given by

y(t) = c1e
−t
[

1
1

]
+ c2e

−3t
[

1
−1

]
+

[
1
1

]
=

[
c1e
−t + c2e

−3t + 1
c1e
−t − c2e−3t + 1

]
(d) Imposing the initial condition we find c1 + c2 + 1 = 3 and c1− c2 + 1 = 1.
Solving this system we find c1 = c2 = 1. Hence, the unique solution to the
initial value problem is

y(t) =

[
e−t + e−3t + 1
e−t − e−3t + 1

]
Problem 40.2

y′ =

[
0 1
1 0

]
y +

[
t
−1

]
, y0 =

[
2
−1

]
Try yp(t) = ta + b.

Solution.
(a) The characteristic equation is∣∣∣∣ −r 1

1 −r

∣∣∣∣ = (r − 1)(r + 1) = 0
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Thus, the eigenvalues are r1 = −1 and r2 = 1. An eigenvector corresponding
to r1 = −1 is found as follows

(P + I)x1 =

[
1 1
1 1

] [
x1
x2

]
=

[
x1 + x2
x1 + x2

]
=

[
0
0

]
Solving this system we find x2 = −x1. Letting x1 = 1 we find x2 = −1 and
an eigenvector is

x1 =

[
1
−1

]
Similarly, for r2 = 1 we have

(P− I)x2 =

[
−1 1
1 −1

] [
x1
x2

]
=

[
−x1 + x2
x1 − x2

]
=

[
0
0

]
Solving this system we find x2 = x1. Letting x1 = 1 we find x2 = 1 and an
eigenvector is

x2 =

[
1
1

]
Hence,

yh(t) = c1e
−t
[

1
−1

]
+ c2e

t

[
1
1

]
(b) Inserting the suggested function yp =

[
ta1 + b1
ta2 + b2

]
into the differential

equation leads to y′p = Py + g(t) or[
0 1
1 0

] [
ta1 + b1
ta2 + b2

]
+

[
t
−1

]
=

[
0
0

]
Letting b1 = b2 = 0 we find a1 = 0 and a2 = −1. Thus, yp =

[
0
−t

]
.

(c) The general solution is given by

y(t) = c1e
−t
[

1
1

]
+ c2e

t

[
1
−1

]
+

[
0
−t

]
=

[
c1e
−t + c2e

t

c1e
−t − c2et − t

]
(d) Imposing the initial condition we find c1 + c2 = 2 and c1 − c2 = −1.
Solving this system we find c1 = 1

2
and c2 = 3

2
. Hence, the unique solution to

the initial value problem is

y(t) =

[
1
2
e−t + 3

2
et

1
2
e−t − 3

2
et − t

]
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Problem 40.3

y′ =

[
−3 −2
4 3

]
y +

[
sin t

0

]
, y0 =

[
0
0

]
Try yp(t) = (sin t)a + (cos t)b.

Solution.
(a) The characteristic equation is∣∣∣∣ −3− r −2

4 3− r

∣∣∣∣ = (r − 1)(r + 1) = 0

Thus, the eigenvalues are r1 = −1 and r2 = 1. An eigenvector corresponding
to r1 = −1 is found as follows

(P + I)x1 =

[
−2 −2
4 4

] [
x1
x2

]
=

[
−2x1 − 2x2
4x1 + 4x2

]
=

[
0
0

]
Solving this system we find x2 = −x1. Letting x1 = 1 we find x2 = −1 and
an eigenvector is

x1 =

[
1
−1

]
Similarly, for r2 = 1 we have

(P− I)x2 =

[
−4 −2
4 2

] [
x1
x2

]
=

[
−4x1 − 2x2
4x1 + 2x2

]
=

[
0
0

]
Solving this system we find x2 = −2x1. Letting x1 = 1 we find x2 = −2 and
an eigenvector is

x2 =

[
1
−2

]
Hence,

yh(t) = c1e
−t
[

1
−1

]
+ c2e

t

[
1
−2

]
(b) Inserting the suggested function yp =

[
sin ta1 + cos tb1
sin ta2 + cos tb2

]
into the dif-

ferential equation leads to y′p = Py + g(t) or[
−3 −2
4 3

] [
sin ta1 + cos tb1
sin ta2 + cos tb2

]
+

[
sin t

0

]
=

[
cos ta1 − sin tb1
cos ta2 − sin tb2

]
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Multiplying and equating coefficients we find

a1 = −2b2 − 3b1
−b1 = −3a1 − 2a2 + 1
a2 = 4b1 + 3b2
−b2 = 4a1 + 3a2

Solving this system we find a1 = 3
2
, a2 = −2, b1 = −1

2
, b2 = 0. Thus,

yp =

[
3.5 sin t− 0.5 cos t

−2 sin t

]
.

(c) The general solution is given by

y(t) = c1e
−t
[

1
−1

]
+ c2e

t

[
1
−2

]
+

[
1.5 sin t− 0.5 cos t

−2 sin t

]

=

[
c1e
−t + c2e

t + 1.5 sin t− 0.5 cos t
−c1e−t − 2c2e

t − 2 sin t

]
(d) Imposing the initial condition we find c1 + c2 = 0.5 and −c1 − 2c2 = 0.
Solving this system we find c1 = 1 and c2 = −0.5. Hence, the unique solution
to the initial value problem is

y(t) =

[
e−t − 0.5et + 1.5 sin t− 0.5 cos t

−e−t + et − 2 sin t

]
Problem 40.4
Consider the initial value problem

y′ =

[
0 2
−2 0

]
y + g(t), y

(π
2

)
= y0.

Suppose we know that

y(t) =

[
1 + sin 2t
et + cos 2t

]
is the unique solution. Determine g(t) and y0.

Solution.
We have

y0 = y
(π

2

)
=

[
1 + sin π
e
π
2 + cos π

]
=

[
1

e
π
2 − 1

]
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Since y(t) is a solution, it satisfies the differential equation so that

g(t) =

[
2 cos 2t

et − 2 sin 2t

]
−
[

0 2
−2 0

] [
1 + sin 2t
et + cos 2t

]

=

[
−2et

et + 2

]
Problem 40.5
Consider the initial value problem

y′ =

[
1 t
t2 1

]
y + g(t), y(1) =

[
2
−1

]
.

Suppose we know that

y(t) =

[
t+ α
t2 + β

]
is the unique solution. Determine g(t) and the constants α and β.

Solution.
We have [

1 + α
1 + β

]
= y(1) =

[
2
−1

]
Thus, 1 + α = 2 and 1 + β = −1. Solving these two equations we find α = 1
and β = −2. Now, inserting y into the differential equation we find

g(t) =

[
1
2t

]
−
[

1 t
t2 1

] [
t+ 1
t2 − 2

]

=

[
−t3 + t

−t3 − 2t2 + 2t+ 2

]
Problem 40.6
Let P(t) be a 2 × 2 matrix with continuous entries. Consider the differ-

ential equation y′ = P(t)y + g(t). Suppose that y1(t) =

[
1
e−t

]
is the

solution to y′ = P(t)y +

[
−2
0

]
and y2(t) =

[
et

−1

]
is the solution to

y′ = P(t)y +

[
et

−1

]
. Determine P(t). Hint: Form the matrix equation

[y′1 y′2] = P[y1 y2] + [g1 g2].
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Solution.
Following the hint we can write[

0 et

−e−t 0

]
= P(t)

[
1 et

e−t −1

]
+

[
−2 et

0 −1

]
or

P(t)

[
1 et

e−t −1

]
=

[
2 0
−e−t 1

]
Solving for P(t) we find

P(t) =

[
2 0
−e−t 1

] [
1 et

e−t −1

]−1
=

[
2 0
−e−t 1

]
(−0.5)

[
−1 −et
−e−t 1

]

=

[
1 et

0 −1

]
Problem 40.7
Consider the linear system y′ = Py + b where P is a constant matrix and b
is a constant vector. An equilibrium solution, y(t), is a constant solution
of the differential equation.
(a) Show that y′ = Py + b has a unique equilibrium solution when P is
invertible.
(b) If the matrix P is not invertible, must the differential equation y′ =
Py+b possess an equilibrium solution? If an equilibrium solution does exist
in this case, is it unique?

Solution.
(a) If P is invertible and y is a constant solution then we must have Py+b =
0 or y = −A−1b. This is the only equilibrium solution.
(b) Since Py + b = 0, Py = −b. This system has a unique solution only
when P is invertible. If P is not invertible then either this system has no
solutions or infinitely many solutions. That is, either no equilibrium solution
or infinitely many equilibrium solutions

Problem 40.8
Determine all the equilibrium solutions (if any).

y′ =

[
2 −1
−1 1

]
y +

[
2
−1

]
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Solution.
Since det(P) = 1, the coefficient matrix is invertible and so there is a unique
equilibrium solution given by

y = −P−1b = −
[

1 1
1 2

] [
−2
1

]
=

[
−1
0

]
Problem 40.9
Determine all the equilibrium solutions (if any).

y′ =

 1 1 0
0 −1 2
0 0 1

y +

 2
3
2


Solution.
Since det(P) = −1, the coefficient matrix is invertible and so there is a unique
equilibrium solution given by

y = −P−1b = −

 1 1 0
0 −1 2
0 0 1

−1  2
3
2

 =

 −1
−1
−2


Consider the homogeneous linear system y′ = Py. Recall that any associ-
ated fundamental matrix satisfies the matrix differential equation Ψ′ = PΨ.
In Problems 40.10 - 40.12, construct a fundamental matrix that solves the
matrix initial value problem Ψ′ = PΨ, Ψ(t0) = Ψ0.

Problem 40.10

Ψ′ =

[
1 −1
−1 1

]
Ψ, Ψ(1) =

[
1 0
0 1

]
Solution.

We first find a fundamental matrix of the linear system y′ =

[
1 −1
−1 1

]
y.

The characteristic equation is∣∣∣∣ 1− r −1
−1 1− r

∣∣∣∣ = r(r − 2) = 0
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and has eigenvalues r1 = 0 and r2 = 2. We find an eigenvector corresponding
to r1 = 0 as follows.[

1 −1
−1 1

] [
x1
x2

]
=

[
x1 − x2
−x1 + x2

]
=

[
0
0

]
It follows that x1 = x2. Letting x1 = 1 then x2 = 1 and an eigenvector is

x1 =

[
1
1

]
An eigenvector corresponding to r2 = 2[

−1 −1
−1 −1

] [
x1
x2

]
=

[
−x1 − x2
−x1 − x2

]
=

[
0
0

]
Solving we find x1 = −x2. Letting x1 = 1 we find x2 = −1 and an eigenvector
is

x2 =

[
1
−1

]
Thus, a fundamental matrix is

Ψ =

[
1 e2t

1 −e2t
]
.

But Ψ = ΨC. Using the initial condition we find I = Ψ(1) = Ψ(1)C and
therefore

C = Ψ
−1

=

[
1 e2

1 −e2
]−1

= 0.5

[
1 1
e−2 −e−2

]
.

Finally,

Ψ =

[
1 e2t

1 −e2t
]

(0.5)

[
1 1
e−2 −e−2

]

= 0.5

[
1 + e2(t−1) 1− e2(t−1)
1− e2(t−1) 1 + e2(t−1)

]
Problem 40.11

Ψ′ =

[
1 −1
−1 1

]
Ψ, Ψ(0) =

[
1 0
2 1

]
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Solution.
From the previous problem, a fundamental matrix is

Ψ =

[
1 e2t

1 −e2t
]
.

But Ψ = ΨC. Using the initial condition we find Ψ(0) = Ψ(0)C and there-
fore

C =

[
1 1
1 −1

]−1 [
1 0
2 1

]
= 0.5

[
3 1
−1 −1

]
.

Finally,

Ψ =

[
1 e2t

1 −e2t
]

(0.5)

[
3 1
−1 −1

]

= 0.5

[
3− e2t 1− e2t
3 + e2t 1 + e2t

]
Problem 40.12

Ψ′ =

[
1 4
−1 1

]
Ψ, Ψ

(π
4

)
=

[
1 0
0 1

]
Solution.

We first find a fundamental matrix of the linear system y′ =

[
1 4
−1 1

]
y.

The characteristic equation is∣∣∣∣ 1− r 4
−1 1− r

∣∣∣∣ = r2 − 2r + 5 = 0

and has eigenvalues r1 = 1 + 2i and r2 = 1 − 2i. We find an eigenvector
corresponding to r1 = 1 + 2i as follows.[

−2i 4
−1 −2i

] [
x1
x2

]
=

[
−2ix1 + 4x2
−x1 − 2ix2

]
=

[
0
0

]
It follows that x1 = −2ix2. Letting x2 = 1 then x1 = −2i and an eigenvector
is

x =

[
−2i

1

]
.
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Thus a solution to the system is

y(t) = et(cos t+ i sin t)

[
−2i

1

]

=

[
2et sin 2t
et cos 2t

]
+ i

[
−2et cos 2t
et sin 2t

]
Thus, a fundamental matrix is

Ψ =

[
2et sin 2t −2et cos 2t
et cos 2t et sin 2t

]
.

But Ψ = ΨC. Using the initial condition we find I = Ψ
(
π
4

)
= Ψ

(
π
4

)
C and

therefore

C = Ψ
−1

=

[
2e

π
4 0

0 e
π
4

]−1
=

[
1
2
e
−π
4 0

0 e−
π
4

]
.

Finally,

Ψ =

[
2et sin 2t −2et cos 2t
et cos 2t et sin 2t

] [
1
2
e
−π
4 0

0 e−
π
4

]

=

[
et−

π
4 sin 2t −2et−

π
4 cos 2t

1
2
et−

π
4 cos 2t et−

π
4 sin 2t

]
In Problems 40.13 - 40.14, use the method of variation of parameters to solve
the given initial value problem.

Problem 40.13

y′ =

[
9 −4
15 −7

]
y +

[
et

0

]
, y(0) =

[
2
5

]
Solution.

We first find a fundamental matrix of the linear system y′ =

[
9 −4
15 −7

]
y.

The characteristic equation is∣∣∣∣ 9− r −4
15 −7− r

∣∣∣∣ = (r − 3)(r + 1) = 0

106



and has eigenvalues r1 = −1 and r2 = 3. We find an eigenvector correspond-
ing to r1 = 0− 1 as follows.[

10 −4
15 −6

] [
x1
x2

]
=

[
10x1 − 4x2
15x1 − 6x2

]
=

[
0
0

]
It follows that x1 = 2

5
x2. Letting x2 = 5 then x1 = 2 and an eigenvector is

x1 =

[
2
5

]
An eigenvector corresponding to r2 = 3[

6 −4
15 −10

] [
x1
x2

]
=

[
6x1 − 4x2

15x1 − 10x2

]
=

[
0
0

]
Solving we find x1 = 2

3
x2. Letting x2 = 3 we find x1 = 2 and an eigenvector

is

x2 =

[
2
3

]
Thus, a fundamental matrix is

Ψ =

[
2e−t 2e3t

5e−t 3e3t

]
.

Therefore,

Ψ
−1

= −0.25

[
−3et 2et

5e−3t −2e−3t

]
.

But the variation of parameters formula is

y(t) = Ψ(t)Ψ−1(0)y(0) + Ψ(t)

∫ t

0

Ψ−1(s)g(s)ds.

Thus,∫ t

0

Ψ−1(s)g(s)ds = 0.25

∫ t

0

[
−3e2s

5e−2s

]
ds = −0.125

[
3(e2t − 1)
−5(e−2t − 1)

]
and

Ψ(t)

∫ t

0

Ψ−1(s)g(s)ds =

[
0.75e−t − 2et + 1.25e3t

1.875e−t − 3.75et + 1.875e3t

]
.
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Hence,

y(t) =

[
2e−t 2e3t

5e−t 3e3t

]
(−0.25)

[
−3 2
5 −2

] [
2
5

]
+

[
0.75e−t − 2et + 1.25e3t

1.875e−t − 3.75et + 1.875e3t

]

=

[
2.75e−t − 2et + 1.25e3t

6.875e−t − 3.75et + 1.875e3t

]
Problem 40.14

y′ =

[
1 1
0 1

]
y +

[
1
1

]
, y(0) =

[
0
0

]
Solution.

We first find a fundamental matrix of the linear system y′ =

[
1 1
0 1

]
y. The

characteristic equation is∣∣∣∣ 1− r 1
0 1− r

∣∣∣∣ = (r − 1)2 = 0

and has repeated eigenvalue r = 1. We find an eigenvector corresponding to
r = 1 as follows. [

0 1
0 1

] [
x1
x2

]
=

[
x2
x2

]
=

[
0
0

]
It follows that x2 = 0 and x1 arbitrary. Letting x1 = 1 an eigenvector is

x =

[
1
0

]
A corresponding solution is

y1(t) =

[
et

0

]
.

A second solution has the form

y2(t) = tet
[
et

0

]
+ et

[
a1
a2

]
Inserting this into the differential equation and solving for a1 and a2 we find
a1 = 0 and a2 = 1. Thus,

y2(t) =

[
tet

et

]
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A fundamental matrix is

Ψ =

[
et tet

0 et

]
.

Therefore,

Ψ
−1

=

[
e−t −te−t
0 e−t

]
.

But the variation of parameters formula is

y(t) = Ψ(t)Ψ−1(0)y(0) + Ψ(t)

∫ t

0

Ψ−1(s)g(s)ds.

Thus,

y(t) =

[
et tet

0 et

] ∫ t
0

[
e−s(1− s)

e−s

]
ds

=

[
et tet

0 et

] [
te−t

1− e−t
]

=

[
tet

et − 1

]
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41 Solving First Order Linear Systems with

Diagonalizable Constant Coefficients Ma-

trix

In Problems 41.1 - 41.4, the given matrix is diagonalizable. Find matrices T
and D such that T−1PT = D.

Problem 41.1

P =

[
3 4
−2 −3

]
Solution.
The characteristic equation is∣∣∣∣ 3− r 4

−2 −3− r

∣∣∣∣ = (r − 1)(r + 1) = 0

Thus, the eigenvalues are r1 = −1 and r2 = 1. An eigenvector corresponding
to r1 = −1 is found as follows

(P + I)x1 =

[
4 4
−2 −2

] [
x1
x2

]
=

[
4x1 + 4x2
−2x1 − 2x2

]
=

[
0
0

]
Solving this system we find x2 = −x1. Letting x1 = 1 we find x2 = −1 and
an eigenvector is

x1 =

[
1
−1

]
Similarly, for r2 = 1 we have

(P− I)x2 =

[
2 4
−2 −4

] [
x1
x2

]
=

[
2x1 + 4x2
−2x1 − 4x2

]
=

[
0
0

]
Solving this system we find x1 = −2x2. Letting x1 = 2 we find x2 = −1 and
an eigenvector is

x2 =

[
2
−1

]
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Therefore

D =

[
−1 0
0 1

]
, T =

[
1 2
−1 −1

]
Problem 41.2

P =

[
2 3
2 3

]
Solution.
The characteristic equation is∣∣∣∣ 2− r 3

2 3− r

∣∣∣∣ = r(r − 5) = 0

Thus, the eigenvalues are r1 = 0 and r2 = 5. An eigenvector corresponding
to r1 = 0 is found as follows

(P + 0I)x1 =

[
2 3
2 3

] [
x1
x2

]
=

[
2x1 + 3x2
2x1 + 3x2

]
=

[
0
0

]
Solving this system we find 2x1 + 3x2 = 0. Letting x1 = 3 we find x2 = −2
and an eigenvector is

x1 =

[
3
−2

]
Similarly, for r2 = 5 we have

(P− 5I)x2 =

[
−3 3
2 −2

] [
x1
x2

]
=

[
−3x1 + 3x2
2x1 − 2x2

]
=

[
0
0

]
Solving this system we find x1 = x2. Letting x1 = 1 we find x2 = 1 and an
eigenvector is

x2 =

[
1
1

]
Therefore

D =

[
0 0
0 5

]
, T =

[
3 1
−2 1

]
Problem 41.3

P =

[
1 2
2 1

]
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Solution.
The characteristic equation is∣∣∣∣ 1− r 2

2 1− r

∣∣∣∣ = (r + 1)(r − 3) = 0

Thus, the eigenvalues are r1 = −1 and r2 = 3. An eigenvector corresponding
to r1 = −1 is found as follows

(P + I)x1 =

[
2 2
2 2

] [
x1
x2

]
=

[
2x1 + 2x2
2x1 + 2x2

]
=

[
0
0

]
Solving this system we find x2 = −x1. Letting x1 = 1 we find x2 = −1 and
an eigenvector is

x1 =

[
1
−1

]
Similarly, for r2 = 3 we have

(P− 3I)x2 =

[
−2 2
2 −2

] [
x1
x2

]
=

[
−2x1 + 2x2
2x1 − 2x2

]
=

[
0
0

]
Solving this system we find x1 = x2. Letting x1 = 1 we find x2 = 1 and an
eigenvector is

x2 =

[
1
1

]
Therefore

D =

[
−1 0
0 3

]
, T =

[
1 1
−1 1

]
Problem 41.4

P =

[
−2 2
0 3

]
Solution.
The characteristic equation is∣∣∣∣ −2− r 2

0 3− r

∣∣∣∣ = (r + 2)(r − 3) = 0
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Thus, the eigenvalues are r1 = −2 and r2 = 3. An eigenvector corresponding
to r1 = −2 is found as follows

(P + 2I)x1 =

[
0 2
0 5

] [
x1
x2

]
=

[
2x2
5x2

]
=

[
0
0

]
Solving this system we find x2 = 0. Letting x1 = 1 an eigenvector is

x1 =

[
1
0

]
Similarly, for r2 = 3 we have

(P− 3I)x2 =

[
−5 2
0 0

] [
x1
x2

]
=

[
−5x1 + 2x2

0

]
=

[
0
0

]
Solving this system we find 5x1−2x2 = 0. Letting x1 = 2 we find x2 = 5 and
an eigenvector is

x2 =

[
2
5

]
Therefore

D =

[
−2 0
0 3

]
, T =

[
1 2
0 5

]
In Problems 41.5 - 41.6, you are given the characteristic polynomial for the
matrix P. Determine the geometric and algebraic multiplicities of each eigen-
value. If the matrix P is diagonalizable, find matrices T and D such that
T−1PT = D.

Problem 41.5

P =

 7 −2 2
8 −1 4
−8 4 −1

 , p(r) = (r − 3)2(r + 1).

Solution.
The algebraic multiplicity of r1 = −1 is 1. An eigenvector corresponding to
this eigenvalue is found as follows.

(P + I)x1 =

 8 −2 2
8 0 4
−8 4 0

 x1
x2
x3

 =

 8x1 − 2x2 + 2x3
8x1 + 4x3
−8x1 + 4x2

 =

[
0
0

]
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Solving this system we find x2 = 2x1 and x3 = −2x1. Letting x1 = 1 an
eigenvector is

x1 =

 1
2
−2


Hence, the geometric multiplicity of r1 = −1 is 1.
The algebraic multiplicity of r2 = 3 is 2. An eigenvector corresponding to
this eigenvalue is found as follows.

(P− 3I)x1 =

 4 −2 2
8 −4 4
−8 4 −4

 x1
x2
x3

 =

 4x1 − 2x2 + 2x3
8x1 − 4x2 + 4x3
−8x1 + 4x2 − 4x3

 =

[
0
0

]
Solving this system we find 2x1 − x2 + x3 = 0. Letting x1 = 1 we find x1

x2
x3

 =

 x1
2x1 + x3

x3

 = x1

 1
2
0

+ x3

 0
1
1


Thus, two linearly independent eigenvectors are

x2 =

 1
2
0

 , x3 =

 0
1
1


Hence, r2 = 3 has geometric multiplicity 2. It follows that P is diagonalizable
with

D =

 −1 0 0
0 3 0
0 0 3

 , T =

 1 0 1
2 1 2
−2 1 0


Problem 41.6

P =

 5 −1 1
14 −3 6
5 −2 5

 , p(r) = (r − 2)2(r − 3).

Solution.
The algebraic multiplicity of r1 = 3 is 1. An eigenvector corresponding to
this eigenvalue is found as follows.

(P− 3I)x1 =

 2 −1 1
14 −6 6
5 −2 2

 x1
x2
x3

 =

 2x1 − x2 + x3
14x1 − 6x2 + 6x3
5x1 − 2x2 + 2x3

 =

[
0
0

]
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Solving this system we find x1 = 0 and x3 = x2. Letting x2 = 1 an eigenvector
is

x1 =

 0
1
1


Hence, the geometric multiplicity of r1 = 3 is 1.
The algebraic multiplicity of r2 = 2 is 2. An eigenvector corresponding to
this eigenvalue is found as follows.

(P− 2I)x1 =

 3 −1 1
14 −5 4
5 −2 3

 x1
x2
x3

 =

 3x1 − x2 + x3
14x1 − 5x2 + 6x3
5x1 − 2x2 + 3x3

 =

[
0
0

]

Solving this system we find x2 = 4x1 and x3 = x1. Letting x1 = 1 we find

x2 =

 1
4
1


Hence, r2 = 2 has geometric multiplicity 1 so the matrix P is nondiagonaliz-
able

Problem 41.7
At leat two (and possibly more) of the following four matrices are diagonal-
izable. You should be able to recognize two by inspection. Choose them and
give a reason for your choice.

(a)

[
5 6
3 4

]
, (b)

[
3 6
6 9

]
, (c)

[
3 0
3 −4

]
, (d)

[
1 3
−1 4

]
Solution.
The matrix (b) is diagonalizable since it is a real symmetric matrix. The
matrix (c) is diagonalizable since it is a lower triangular matrix with distinct
eigenvalues 3 and 4

Problem 41.8
Solve the following system by making the change of variables y = Tz.

y′ =

[
−4 −6
3 5

]
y +

[
e2t − 2et

e−2t + et

]
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Solution.
The characteristic equation is∣∣∣∣ −4− r −6

3 5− r

∣∣∣∣ = (r + 1)(r − 2) = 0

Thus, the eigenvalues are r1 = −1 and r2 = 2. An eigenvector corresponding
to r1 = −1 is found as follows

(P + I)x1 =

[
−3 −6
3 6

] [
x1
x2

]
=

[
−3x1 − 6x2
3x1 + 6x2

]
=

[
0
0

]
Solving this system we find x1 = −2x2. Letting x2 = −1 we find x1 = 2 and
an eigenvector is

x1 =

[
2
−1

]
Similarly, for r2 = 2 we have

(P− 2I)x2 =

[
6 −6
3 3

] [
x1
x2

]
=

[
6x1 − 6x2
3x1 + 3x2

]
=

[
0
0

]
Solving this system we find x1 = −x2. Letting x2 = −1 we find x1 = 1 and
an eigenvector is

x2 =

[
1
−1

]
Therefore

T =

[
2 1
−1 −1

]
Thus,

T−1 =

[
1 1
−1 −2

]
Letting y = Tz we obtain

z′ =

[
−1 0
0 2

]
z +

[
−et
e2t

]
That is,

z′1 = −z1 − et
z′2 = 2z2 + e2t
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Solving this system we find

z(t) =

[
−1

2
et + c1e

−t

te2t + c2e
2t

]
Thus, the general solution is

y(t) = Tz(t) =

[
2 1
−1 −1

] [
−1

2
et + c1e

−t

te2t + c2e
2t

]
=

[
2e−t e2t

−e−t −e2t
] [

c1
c2

]
+

[
−et + te2t
1
2
et − te2t

]
Problem 41.9
Solve the following system by making the change of variables y = Tz.

y′ =

[
3 2
1 4

]
y +

[
4t+ 4
−2t+ 1

]
Solution.
The characteristic equation is∣∣∣∣ 3− r 2

1 4− r

∣∣∣∣ = (r − 5)(r − 2) = 0

Thus, the eigenvalues are r1 = 2 and r2 = 5. An eigenvector corresponding
to r1 = 2 is found as follows

(P− 2I)x1 =

[
1 2
1 2

] [
x1
x2

]
=

[
x1 + 2x2
x1 + 2x2

]
=

[
0
0

]
Solving this system we find x1 = −2x2. Letting x2 = −1 we find x1 = 2 and
an eigenvector is

x1 =

[
2
−1

]
Similarly, for r2 = 5 we have

(P− 5I)x2 =

[
−2 2
1 −1

] [
x1
x2

]
=

[
−2x1 + 2x2
x1 − x2

]
=

[
0
0

]
Solving this system we find x1 = x2. Letting x2 = 1 we find x1 = 1 and an
eigenvector is

x2 =

[
1
1

]
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Therefore

T =

[
2 1
−1 1

]
Thus,

T−1 =
1

3

[
1 −1
1 2

]
Letting y = Tz we obtain

z′ =

[
2 0
0 5

]
z +

[
2t+ 1

2

]
That is,

z′1 = 2z1 + 2t+ 1
z′2 = 5z2 + 2

Solving this system we find

z(t) =

[
−t− 1 + c1e

2t

−2
5

+ c2e
5t

]
Thus, the general solution is

y(t) = Tz(t) =

[
2 1
−1 1

] [
−t− 1 + c1e

2t

−2
5

+ c2e
5t

]
=

[
2e2t e5t

−e2t e5t

] [
c1
c2

]
+

[
−2t− 12

5

t+ 3
5

]
Problem 41.10
Solve the following system by making the change of variables x = Tz.

x′′ =

[
6 7
−15 −16

]
x

Solution.
The characteristic equation is∣∣∣∣ 6− r 7

−15 −16− r

∣∣∣∣ = (r + 1)(r + 9) = 0

Thus, the eigenvalues are r1 = −9 and r2 = −1. An eigenvector correspond-
ing to r1 = −9 is found as follows

(P + 9I)x1 =

[
15 7
−15 −7

] [
x1
x2

]
=

[
15x1 + 7x2
−15x1 − 7x2

]
=

[
0
0

]
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Solving this system we find 15x1 = −7x2. Letting x1 = 7 we find x2 = −15
and an eigenvector is

x1 =

[
7
−15

]
Similarly, for r2 = −1 we have

(P + 1I)x2 =

[
7 7
−15 −15

] [
x1
x2

]
=

[
7x1 + 7x2
−15x1 − 15x2

]
=

[
0
0

]
Solving this system we find x1 = −x2. Letting x2 = −1 we find x1 = 1 and
an eigenvector is

x2 =

[
1
−1

]
Therefore

T =

[
7 1
−15 −1

]
Letting x = Tz we obtain

z′′ +

[
−9 0
0 −1

]
z = 0

That is,
z′′1 = 9z1
z′′2 = z2

Solving we find

z(t) =

[
c1e
−3t + c2e

3t

k1e
−t + k2e

t

]
.

The general solution is

x(t) = Tz =

[
7 1
−15 −1

] [
c1e
−3t + c2e

3t

k1e
−t + k2e

t

]

=

[
7(c1e

−3t + c2e
3t) + k1e

−t + k2e
t

−15(c1e
−3t + c2e

3t)− (k1e
−t + k2e

t)

]
Problem 41.11
Solve the following system by making the change of variables x = Tz.

x′′ =

[
4 2
2 1

]
x
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Solution.
The characteristic equation is∣∣∣∣ 4− r 2

2 1− r

∣∣∣∣ = r(r − 5) = 0

Thus, the eigenvalues are r1 = 0 and r2 = 5. An eigenvector corresponding
to r1 = 0 is found as follows

(P− 0I)x1 =

[
4 2
2 1

] [
x1
x2

]
=

[
4x1 + 2x2
2x1 + x2

]
=

[
0
0

]
Solving this system we find x2 = −2x1. Letting x1 = 1 we find x2 = −2 and
an eigenvector is

x1 =

[
1
−2

]
Similarly, for r2 = 5 we have

(P− 5I)x2 =

[
−1 2
2 −4

] [
x1
x2

]
=

[
−x1 + 2x2
2x1 − 4x2

]
=

[
0
0

]
Solving this system we find x1 = 2x2. Letting x2 = 1 we find x1 = 2 and an
eigenvector is

x2 =

[
2
1

]
Therefore

T =

[
1 2
−2 1

]
Letting x = Tz we obtain

z′′ +

[
0 0
0 5

]
z = 0

That is,
z′′1 = 0
z′′2 = 5z2

Solving we find

z(t) =

[
c1t+ c2

k1 cos (
√

5t) + k2 sin (
√

5t)

]
.
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The general solution is

x(t) = Tz =

[
1 2
−2 1

] [
c1t+ c2

k1 cos (
√

5t) + k2 sin (
√

5t)

]

=

[
(c1t+ c2) + 2[k1 cos (

√
5t) + k2 sin (

√
5t)]

−2(c1t+ c2) + [k1 cos (
√

5t) + k2 sin (
√

5t)]

]

121



42 Solving First Order Linear Systems Using

Exponential Matrix

Problem 42.1

Find eP(t) if P =

[
0 2
−2 0

]
.

Solution.
We find

P2 =

[
−4 0
0 −4

]
= −4I.

Hence,
P4 = (−1)242I, P6 = (−1)343I, P2n = (−1)n4nI.

It follows that
P2n+1 = P2nP = (−1)n4nP.

Now we split the terms of the power series expansion of ePt into even powers
and odd powers of P. We get

ePt =
∑∞

n=0
(Pt)2n

(2n)!
+
∑∞

n=0
(Pt)2n+1

(2n+1)!

=
∑∞

n=0
t2n

(2n)!
(−1)n4nI +

∑∞
n=0

t2n+1

(2n+1)!
(−1)n4nP

= I
∑∞

n=0(−1)n (2t)2n

(2n)!
+ P

2

∑∞
n=0(−1)n (2t)2n+1

(2n+1)!

= I cos 2t+ P
2

sin 2t

=

[
cos 2t sin 2t
− sin 2t cos 2t

]
Problem 42.2
Consider the linear differential system

y′ = Py, P =

[
1 4
−1 −3

]
(a) Calculate ePt. Hint: Every square matrix satisfies its characteristic equa-
tion.
(b) Use the result from part (a) to find two independent solutions of the
differential system. Form the general solution.
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Solution.
(a) Since the characteristic equation of P is p(r) = (r + 1)2, (I + P)2 = 0.
But

ePt = e(−I+(I+P))t

= e−Ite(I+P)t

= e−tI(I + t(I + P) + t2 (I+P)2

2!
+ · · · )

= e−t(I + t(I + P))

= e−t
{[

1 0
0 1

]
+ t

[
2 4
−1 −2

]}

= e−t
[

1 + 2t 4t
−t 1− 2t

]
(b) Since y = ePty(0) is the solution to y′ = Py, y(0) = y0, we generate
two solutions with

y1 = ePt
[

1
0

]
= e−t

[
1 + 2t
−t

]

y2 = ePt
[

0
1

]
= e−t

[
4t

1− 2t

]
Let Ψ(t) = [y1 y2]. Then det(Ψ(0)) = det(I) = 1 then {y1,y2} forms a
fundamental set of solutions. Thus, the general solution is y = c1y1 + c2y2

Problem 42.3
Show that if

D =

 d1 0 0
0 d2 0
0 0 d3


then

eD =

 ed1 0 0
0 ed2 0
0 0 ed3


Solution.
One can easily show by induction on n that

Dn =

 dn1 0 0
0 dn2 0
0 0 dn3

 .
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Thus,

eD =
∑∞

n=0
Dn

n!
=
∑∞

n=0
1
n!

 dn1 0 0
0 dn2 0
0 0 dn3



=


∑∞

n=0
dn1
n!

0 0

0
∑∞

n=0
dn2
n!

0

0 0
∑∞

n=0
dn3
n!



=

 ed1 0 0
0 ed2 0
0 0 ed3


Problem 42.4
Solve the initial value problem

y′ =

[
3 0
0 −1

]
y, y(0) = y0

Solution.
The solution is given by

y(t) = ePty0 =

[
e3t 0
0 e−t

]
y0

Problem 42.5
Show that if r is an eigenvalue of P then er is an eigenvalue of eP.

Solution.
Since r is an eigenvalue of P, there is a nonzero vector x such that Px = rx.
In this case,

ePx =
(
I + P + P2

2!
+ · · ·

)
x

= x + Px + P2x
2!

+ · · ·
= x + rx + r2

2!
x + · · ·

= (1 + r + r2

2!
+ · · · )x = erx

Problem 42.6
Show that det(eA) = etr(A). Hint: Recall that the determinant of a matrix
is equal to the product of its eigenvalues and the trace is the sume of the
eigenvalues. This follows from the expansion of the characteristic equation
into a polynomial.
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Solution.
Suppose r and v are two eigenvalues of A. Then tr(A) = r + v. Hence,
er+v = er · ev. But er and ev are eigenvalues of eA. It follows that etr(A) is the
product of the eigenvalues of eA. But det(eA) is the product of eigenvalues
of eA

Problem 42.7
Prove: For any invertible n× n matrix P and any n× n matrix A

eP
−1AP = P−1eAP

(Thus, if A is similar to B; then eA is similar to eB).

Solution.
One can easily show by induction on n that (P−1AP)n = P−1AnP. Thus,

eP
−1AP =

∑∞
n=0

(P−1AP)n

n!

=
∑∞

n=0
(P−1AnP)

n!

= P−1
(∑∞

n=0
An

n!

)
P

= P−1eAP

Problem 42.8
Prove: If AB = BA then eA+B = eAeB.

Solution.
Since A and B commute, the binomial formula is valid. That is

(A+B)n =
∑
p+q=n

n!

p!q!
ApBq.

Here the sum runs over non-negative integers p and q that sum to n. We
really need commutativity here, in order to put the As on one side and B s
on the other.
Now we can compute

eA+B =
∑∞

n=0
(A+B)n

n!

=
∑∞

n=0
1
n!

∑
p+q=n

n!
p!q!

ApBq

=
∑∞

p=0

∑∞
q=0

ApBq

p!q!

=
(∑∞

p=0
Ap

p!

)(∑∞
q=0

Bq

q!

)
= eAeB
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Problem 42.9
Prove: For any square matrix A, eA is invertible with (eA)−1 = e−A.

Solution.
For any t and s we have (tA)(sA) = (sA)(tA). From the previous problem
we can write etA+sA = etAesA. Now, let t = 1 and s = −1 to obtain I = e0 =
eAe−A. This shows that eA is invertible and (eA)−1 = e−A

Problem 42.10
Consider the two matrices

A =

[
1 0
0 −1

]
, B =

[
0 1
−1 0

]
Show that AB 6= BA and eA+B 6= eAeA.

Solution.
A simple calculation shows that

AB =

[
0 1
1 0

]
, BA =

[
0 −1
−1 0

]
Since A is diagonal, we have

eA =

[
e 0
0 e−1

]
A simple algebra one finds

eB =

[
cos 1 sin 1
− sin 1 cos 1

]
Since

A + B =

[
0 0
0 0

]
we have

eA+B = I

On the other hand,

eAeB =

[
e cos 1 e sin 1
−e−1 sin 1 e−1 cos 1

]
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43 The Laplace Transform: Basic Definitions

and Results

Problem 43.1
Determine whether the integral

∫∞
0

1
1+t2

dt converges. If the integral con-
verges, give its value.

Solution.
We have ∫∞

0
1

1+t2
dt = limA→∞

∫ A
0

1
1+t2

dt = limA→∞ [arctan t]A0
= limA→∞ arctanA = π

2

So the integral is convergent

Problem 43.2
Determine whether the integral

∫∞
0

t
1+t2

dt converges. If the integral con-
verges, give its value.

Solution.
We have∫∞

0
t

1+t2
dt = 1

2
limA→∞

∫ A
0

2t
1+t2

dt = 1
2

limA→∞ [ln (1 + t2)]
A
0

= 1
2

limA→∞ ln (1 + A2) =∞

Hence, the integral is divergent

Problem 43.3
Determine whether the integral

∫∞
0
e−t cos (e−t)dt converges. If the integral

converges, give its value.

Solution.
Using substitution we find∫∞

0
e−t cos (e−t)dt = limA→∞

∫ e−A
1
− cosudu

= limA→∞ [− sinu]e
−A

1 = limA→∞[sin 1− sin (e−A)]
= sin 1

Hence, the integral is convergent
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Problem 43.4
Using the definition, find L[e3t], if it exists. If the Laplace transform exists
then find the domain of F (s).

Solution.
We have

L[e3t = limA→∞
∫ A
0
e3te−stdt = limA→∞ e

t(3−s)dt

= limA→∞

[
et(3−s)

3−s

]A
0

= limA→∞

[
eA(3−s)

3−s −
1

3−s

]
= 1

s−3 , s > 3

Problem 43.5
Using the definition, find L[t− 5], if it exists. If the Laplace transform exists
then find the domain of F (s).

Solution.
Using integration by parts we find

L[t− 5] = limA→∞
∫ A
0

(t− 5)e−stdt = limA→∞

{[
−(t−5)e−st

s

]A
0

+ 1
s

∫ A
0
e−stdt

}

= limA→∞

{
−(A−5)e−sA+5

s
−
[
e−st

s2

]A
0

}
= 1

s2
− 5

s
, s > 0

Problem 43.6
Using the definition, find L[e(t−1)

2
], if it exists. If the Laplace transform

exists then find the domain of F (s).

Solution.
We have ∫ ∞

0

e(t−1)
2

e−stdt =

∫ ∞
0

e(t−1)
2−stdt.

Since limt→∞(t− 1)2 − st = limt→∞ t
2
(

1− (2+s)
t

+ 1
t2

)
=, for any fixed s we

can choose a positive C such that (t−1)2−st ≥ 0. In this case, e(t−1)
2−st ≥ 1

and this implies that
∫∞
0
e(t−1)

2−stdt ≥
∫∞
C
dt. The integral on the right is

divergent so that the integral on the left is also divergent by the comparison
theorem of improper integrals. Hence, f(t) = e(t−1)

2
does not have a Laplace

transform
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Problem 43.7
Using the definition, find L[(t − 2)2], if it exists. If the Laplace transform
exists then find the domain of F (s).

Solution.
We have

L[(t− 2)2] = lim
T→∞

(t− 2)2e−stdt.

Using integration by parts with u′ = e−st and v = (t− 2)2 we find∫ T

0

(t−2)2e−stdt = −
[

(t− 2)2e−st

s

]T
0

+
2

s

∫ T

0

(t−2)e−stdt =
4

s
−(T − 2)2e−sT

s
+

2

s

∫ T

0

(t−2)e−stdt.

Thus,

lim
T→∞

∫ T

0

(t− 2)2e−stdt =
4

s
+

2

s
lim
T→∞

∫ T

0

(t− 2)e−stdt

Using by parts with u′ = e−st and v = t− 2 we find∫ T

0

(t− 2)e−stdt =

[
−(t− 2)e−st

s
+

1

s2
e−st

]T
0

.

Letting T →∞ in the above expression we find

lim
T→∞

∫ T

0

(t− 2)e−stdt = −2

s
+

1

s2
, s > 0.

Hence,

F (s) =
4

s
+

2

s

(
−2

s
+

1

s2

)
=

4

s
− 4

s2
+

2

s3
, s > 0

Problem 43.8
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F (s).

f(t) =

{
0, 0 ≤ t < 1

t− 1, t ≥ 1

Solution.
We have

L[f(t)] = lim
T→∞

∫ T

1

(t− 1)e−stdt.
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Using integration by parts with u′ = e−st and v = t− 1 we find

lim
T→∞

∫ T

1

(t− 1)e−stdt = lim
T→∞

[
−(t− 1)e−st

s
− 1

s2
e−st

]T
1

=
e−s

s2
, s > 0

Problem 43.9
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F (s).

f(t) =


0, 0 ≤ t < 1

t− 1, 1 ≤ t < 2
0, t ≥ 2.

Solution.
We have

L[f(t)] =

∫ 2

1

(t−1)e−stdt =

[
−(t− 1)e−st

s
− 1

s2
e−st

]2
1

= −e
−2s

s
+

1

s2
(e−s−e−2s), s 6= 0

Problem 43.10
Let n be a positive integer. Using integration by parts establish the reduction
formula ∫

tne−stdt = −t
ne−st

s
+
n

s

∫
tn−1e−stdt, s > 0.

Solution.
Let u′ = e−st and v = tn. Then u = − e−st

s
and v′ = ntn−1. Hence,∫

tne−stdt = −t
ne−st

s
+
n

s

∫
tn−1e−stdt, s > 0

Problem 43.11
For s > 0 and n a positive integer evaluate the limits

limt→0 t
ne−st (b) limt→∞ t

ne−st

Solution.
(a) limt→0 t

ne−st = limt→0
tn

est
= 0

1
= 0.

(b) Using L’Hôpital’s rule repeatedly we find

lim
t→∞

tne−st = · · · = lim
t→∞

n!

snest
= 0
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Problem 43.12
(a) Use the previous two problems to derive the reduction formula for the
Laplace transform of f(t) = tn,

L[tn] =
n

s
L[tn−1], s > 0.

(b) Calculate L[tk], for k = 1, 2, 3, 4, 5.
(c) Formulate a conjecture as to the Laplace transform of f(t), tn with n a
positive integer.

Solution.
(a) Using the two previous problems we find

L[tn] = limT→∞
∫

0T tne−stdt = limT→∞

{
−
[
tne−st

s

]T
0

+ n
s

∫
0
Ttn−1e−stdt

}
= n

s
limT→∞

∫ T
0
tn−1e−stdt = n

s
L[tn−1], s > 0

(b) We have
L[t] = 1

s2

L[t2] = 2
s
L[t] = 2

s3

L[t3] = 3
s
L[t2] = 6

s4

L[t4] = 4
s
L[t3] = 24

s5

L[t5] = 5
s
L[t4] = 120

s5

(c) By induction, one can easily shows that for n = 0, 1, 2, · · ·

L[tn] =
n!

sn+1
, s > 0

From a table of integrals,∫
eαu sin βudu = eαu α sinβu−β sinβu

α2+β2∫
eαu cos βudu = eαu α cosβu+β sinβu

α2+β2

Problem 43.13
Use the above integrals to find the Laplace transform of f(t) = cosωt, if it
exists. If the Laplace transform exists, give the domain of F (s).
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Solution.
We have

L[cosωt] = lim
T→∞

−

{
e−st

[
−s cosωt+ ω sinωt

s2 + ω2

]T
0

}
=

s

s2 + ω2
, s > 0

Problem 43.14
Use the above integrals to find the Laplace transform of f(t) = sinωt, if it
exists. If the Laplace transform exists, give the domain of F (s).

Solution.
We have

L[sinωt] = lim
T→∞

−

{
e−st

[
−s sinωt+ ω cosωt

s2 + ω2

]T
0

}
=

ω

s2 + ω2
, s > 0

Problem 43.15
Use the above integrals to find the Laplace transform of f(t) = cosω(t− 2),
if it exists. If the Laplace transform exists, give the domain of F (s).

Solution.
Using a trigonometric identity we can write f(t) = cosω(t− 2) = cosωt cos 2ω+
sinωt sin 2ω. Thus, using the previous two problems we find

L[cosω(t− 2)] =
s cos 2ω + ω sin 2ω

s2 + ω2
, s > 0

Problem 43.16
Use the above integrals to find the Laplace transform of f(t) = e3t sin t, if it
exists. If the Laplace transform exists, give the domain of F (s).

Solution.
We have

L[e3t sin t] = limT→∞
∫ T
0
e−(s−3)t sin tdt

= limT→∞−
{
e−(s−3)t

[
(s−3) sin t+cos t

(s−3)2+1

]T
0

}
= 1

(s−3)2+1
, s > 3
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Problem 43.17
Use the linearity property of Laplace transform to find L[5e−7t + t + 2e2t].
Find the domain of F (s).

Solution.
We have L[e−7t] = 1

s+7
, s > −7, L[t] = 1

s2
, s > 0, and L[e2t] = 1

s−2 , s > 2.
Hence,

L[5e−7t + t+ 2e2t] = 5L[e−7t] + L[t] + 2L[e2t] =
5

s+ 7
+

1

s2
+

2

s− 2
, s > 2

Problem 43.18
Consider the function f(t) = tan t.

(a) Is f(t) continuous on 0 ≤ t < ∞, discontinuous but piecewise contin-
uous on 0 ≤ t <∞, or neither?
(b) Are there fixed numbers a and M such that |f(t)| ≤Meat for 0 ≤ t <∞?

Solution.
(a) Since f(t) = tan t = sin t

cos t
and this function is discontinuous at t = (2n +

1)π
2
. Since this function has vertical asymptotes there it is not piecewise

continuous.
(b) The graph of the function does not show that it can be bounded by
exponential functions. Hence, no such numbers a and M

Problem 43.19
Consider the function f(t) = t2e−t.

(a) Is f(t) continuous on 0 ≤ t < ∞, discontinuous but piecewise contin-
uous on 0 ≤ t <∞, or neither?
(b) Are there fixed numbers a and M such that |f(t)| ≤Meat for 0 ≤ t <∞?

Solution.
(a) Since t2 and e−t are continuous everywhere, f(t) = t2e−t is continuous on
0 ≤ t <∞.
(b) By L’Hôpital’s rule one has

lim
t→∞

t2

et
= 0

Since f(0) = 0, f(t) is bounded. Since f ′(t) = (2t − t2)e−t, f(t) has a
maximum when t = 2. The value of this maximum is f(2) = 4e−2. Hence,
M = 4e−2 and a = 0
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Problem 43.20
Consider the function f(t) = et

2

e2t+1
.

(a) Is f(t) continuous on 0 ≤ t < ∞, discontinuous but piecewise contin-
uous on 0 ≤ t <∞, or neither?
(b) Are there fixed numbers a and M such that |f(t)| ≤Meat for 0 ≤ t <∞?

Solution.
(a) Since et2 and e2t+1 are continuous everywhere, f(t) = et

2

e2t+1
is continuous

on 0 ≤ t <∞.
(b) Since e2t + 1 ≤ e2t + e2t = 2e2t, f(t) ≥ 1

2
et

2
e−2t = 1

2
et

2−2t. But for t ≥ 4

we have t2 − 2t > t2

2
. Hence, f(t) > 1

2
e
t2

2 . So f(t) is not of exponential order
at infinity

Problem 43.21
Consider the floor function f(t) = btc, where for any integer n we have
btc = n for all n ≤ t < n+ 1.

(a) Is f(t) continuous on 0 ≤ t < ∞, discontinuous but piecewise contin-
uous on 0 ≤ t <∞, or neither?
(b) Are there fixed numbers a and M such that |f(t)| ≤Meat for 0 ≤ t <∞?

Solution.
(a) The floor function is a piecewise continuous function on 0 ≤ t <∞.
(b) Since btc ≤ t < et for 0 ≥ t <∞ we have M = 1 and a = 1

Problem 43.22
Find L−1

(
3
s−2

)
.

Solution.
Since L

(
1
s−a

)
= 1

s−a , s > a we have

L−1
(

3

s− 2

)
= 3L−1

(
1

s− 2

)
= 3e2t, t ≥ 0

Problem 43.23
Find L−1

(
− 2
s2

+ 1
s+1

)
.

134



Solution.
Since L[t] = 1

s2
, s > 0 and L

(
1
s−a

)
= 1

s−a , s > a we have

L−1
(
− 2
s2

+ 1
s+1

)
= −2L−1

(
1
s2

)
+ L−1

(
1
s+1

)
= −2t+ e−t, t ≥ 0

Problem 43.24
Find L−1

(
2
s+2

+ 2
s−2

)
.

Solution.
We have

L−1
(

2

s+ 2
+

2

s− 2

)
= 2L−1

(
1

s+ 2

)
+2L−1

(
1

s− 2

)
= 2(e−2t+e2t), t ≥ 0
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44 Further Studies of Laplace Transform

Problem 44.1
Use Table L to find L[2et + 5].

Solution.

L[2et + 5] = 2L[et] + 5L[1] =
2

s− 1
+

5

s
, s > 1

Problem 44.2
Use Table L to find L[e3t−3h(t− 1)].

Solution.

L[e3t−3h(t− 1)] = L[e3(t−1)h(t− 1)] = e−sL[e3t] =
e−s

s− 3
, s > 3

Problem 44.3
Use Table L to find L[sin2 ωt].

Solution.

L[sin2 ωt] = L[
1− cos 2ωt

2
] =

1

2
(L[1]−L[cos 2ωt]) =

1

2

(
1

s
− s2

s2 + 4ω2

)
, s > 0

Problem 44.4
Use Table L to find L[sin 3t cos 3t].

Solution.

L[sin 3t cos 3t] = L[
sin 6t

2
=

1

2
L[sin 6t] =

3

s2 + 26
, s > 0

Problem 44.5
Use Table L to find L[e2t cos 3t].

Solution.

L[e2t cos 3t] =
s− 3

(s− 3)2 + 9
, s > 3
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Problem 44.6
Use Table L to find L[e4t(t2 + 3t+ 5)].

Solution.

L[e4t(t2+3t+5)] = L[e4tt2]+3L[e4tt]+5L[1] =
2

(s− 4)3
+

3

(s− 4)2
+

5

s− 4
, s > 4

Problem 44.7
Use Table L to find L−1[ 10

s2+25
+ 4

s−3 ].

Solution.

L−1[ 10

s2 + 25
+

4

s− 3
] = 2L−1[ 5

s2 + 25
]+4L−1[ 1

s− 3
] = 2 sin 5t+4e3t, t ≥ 0

Problem 44.8
Use Table L to find L−1[ 5

(s−3)4 ].

Solution.

L−1[ 5

(s− 3)4
] =

5

6
L−1[ 3!

(s− 3)4
] =

5

6
e3tt3, t ≥ 0

Problem 44.9
Use Table L to find L−1[ e−2s

s−9 ].

Solution.

L−1[ e
−2s

s− 9
] = e9(t−2)h(t− 2) =

{
0, 0 ≤ t < 2

e9(t−2), t ≥ 2

Problem 44.10
Use Table L to find L−1[ e

−3s(2s+7)
s2+16

].

Solution.

L−1[ e
−3s(2s+7)
s2+16

] = 2L−1[ e−3ss
s2+16

] + 7
4
L−1[ e−3s

4
s2 + 16]

= 2 cos 4(t− 3)h(t− 3) + 7
4

sin 4(t− 3), t ≥ 0
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Problem 44.11
Graph the function f(t) = h(t − 1) + h(t − 3) for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].

Solution.
Note that

f(t) =


0, 0 ≤ t < 1
1, 1 ≤ t < 3
2, t ≥ 3

The graph of f(t) is shown below. Using Table L we find

L[f(t)] = L[h(t− 1)] + L[h(t− 3)] =
e−s

s
+
e−3s

s
, s > 0

Problem 44.12
Graph the function f(t) = t[h(t− 1)− h(t− 3)] for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].

Solution.
Note that

f(t) =


0, 0 ≤ t < 1
t, 1 ≤ t < 3
0, t ≥ 3

The graph of f(t) is shown below. Using Table L we find

L[f(t)] = L[(t− 1)h(t− 1) + h(t− 1)− (t− 3)h(t− 3)− 3h(t− 3)]
= L[(t− 1)h(t− 1)] + L[h(t− 1)]− L[(t− 3)h(t− 3)]− 3L[h(t− 3)]

= e−s

s2
+ e−s

s
− e3s

s2
− e−3s

s
, s > 1
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Problem 44.13
Graph the function f(t) = 3[h(t− 1)− h(t− 4)] for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].

Solution.
Note that

f(t) =


0, 0 ≤ t < 1
3, 1 ≤ t < 4
0, t ≥ 4

The graph of f(t) is shown below. Using Table L we find

L[f(t)] = 3L[h(t− 1)]− 3L[h(t− 4)] =
3e−s

s
− 3e−4s

s
, s > 0

Problem 44.14
Graph the function f(t) = |2− t|[h(t− 1)− h(t− 3)] for t ≥ 0, where h(t) is
the Heaviside step function, and use Table L to find L[f(t)].

Solution.
Note that

f(t) =


0, 0 ≤ t < 1

|2− t|, 1 ≤ t < 3
0, t ≥ 3
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The graph of f(t) is shown below. Using Table L we find

L[f(t)] = L[−(t− 1)h(t− 1) + h(t− 1) + (t− 2)h(t− 2) + (t− 2)h(t− 2)− (t− 3)h(t− 3)− h(t− 3)]
= −L[(t− 1)h(t− 1)] + L[h(t− 1)] + 2L[(t− 2)h(t− 2)]− L[(t− 3)h(t− 3)]− L[h(t− 3)]

= − e−s

s2
+ e−s

s
+ 2e−2s

s2
− e−3s

s2
− e−3s

s
, s > 1

Problem 44.15
Graph the function f(t) = h(2− t) for t ≥ 0, where h(t) is the Heaviside step
function, and use Table L to find L[f(t)].

Solution.
Note that

f(t) =

{
1, 0 ≤ t ≤ 2
0, t > 2

The graph of f(t) is shown below. Using Table L we find

L[f(t)] =

∫ 2

0

e−stdt =

[
e−st

−s

]2
0

=
1− e−2s

s
, s > 0

Problem 44.16
Graph the function f(t) = h(t − 1) + h(4 − t) for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].
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Solution.
Note that

f(t) =


1, 0 ≤ t < 1
2, 1 ≤ t ≤ 4
1, t ≥ 4

The graph of f(t) is shown below. Using Table L we find

L[f(t)] = L[h(t−1)]+L[h(4−t)] =
e−s

s
+

∫ 4

0

e−stdt =
1 + e−s − e−4s

s
, s > 0

Problem 44.17
The graph of f(t) is given below. Represent f(t) as a combination of Heav-
iside step functions, and use Table L to calculate the Laplace transform of
f(t).

Solution.
From the graph we see that

f(t) = (t− 2)[h(t− 2)− h(t− 3)] + [h(t− 3)− h(t− 4)]
= (t− 2)h(t− 2)− [(t− 3) + 1]h(t− 3) + h(t− 3)− h(t− 4)
= (t− 2)h(t− 2)− (t− 3)h(t− 3)− h(t− 4)

Thus,

L[f(t)] = L[(t−2)h(t−2)]−L[(t−3)h(t−3)]−L[h(t−4)] =
e−2s − e−3s

s2
−e
−4s

s
, s > 0
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Problem 44.18
The graph of f(t) is given below. Represent f(t) as a combination of Heav-
iside step functions, and use Table L to calculate the Laplace transform of
f(t).

Solution.
From the graph we see that

f(t) = (t− 1)[h(t− 1)− h(t− 2)] + (3− t)[h(t− 2)− h(t− 3)]
= (t− 1)h(t− 1)− [(t− 2) + 1]h(t− 2) + [−(t− 2) + 1]h(t− 2) + (t− 3)h(t− 3)
= (t− 1)h(t− 1)− 2(t− 2)h(t− 2) + (t− 3)h(t− 3)

Thus,

L[f(t)] = L[(t−1)h(t−1)]−2L[(t−2)h(t−2)]+L[(t−3)h(t−3)] =
e−s − 2e−2s + e−3s

s
, s > 0

Problem 44.19
Using the partial fraction decomposition find L−1

[
12

(s−3)(s+1)

]
.

Solution.
Write

12

(s− 3)(s+ 1)
=

A

s− 3
+

B

s+ 1

Multiply both sides of this equation by s− 3 and cancel common factors to
obtain

12

s+ 1
= A+

B(s− 3)

s+ 1
.

Now, find A by setting s = 3 to obtain A = 3. Similarly, by multiplying both
sides by s + 1 and then setting s = −1 in the resulting equation leads to
B = −3. Hence,

12

(s− 3)(s+ 1)
= 3

(
1

s− 3
− 1

s+ 1

)
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Finally,

L−1
[

12
(s−3)(s+1)

]
= 3L−1

[
1
s−3

]
− 3L−1

[
1
s+1

]
= 3e3t − 3e−t, t ≥ 0

Problem 44.20
Using the partial fraction decomposition find L−1

[
24e−5s

s2−9

]
.

Solution.
Write

24

(s− 3)(s+ 3)
=

A

s− 3
+

B

s+ 3

Multiply both sides of this equation by s− 3 and cancel common factors to
obtain

24

s+ 3
= A+

B(s− 3)

s+ 3
.

Now, find A by setting s = 3 to obtain A = 4. Similarly, by multiplying both
sides by s + 3 and then setting s = −3 in the resulting equation leads to
B = −4. Hence,

24

(s− 3)(s+ 3)
= 4

(
1

s− 3
− 1

s+ 3

)
Finally,

L−1
[

24e−5s

(s−3)(s+3)

]
= 4L−1

[
e−5s

s−3

]
− 4L−1

[
e−5s

s+3

]
= 4[e3(t−5) − e−3(t−5)]h(t− 5), t ≥ 0

Problem 44.21
Use Laplace transform technique to solve the initial value problem

y′ + 4y = g(t), y(0) = 2

where

g(t) =


0, 0 ≤ t < 1
12, 1 ≤ t < 3
0, t ≥ 3
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Solution.
Note first that g(t) = 12[h(t− 1)− h(t− 3)] so that

L[g(t)] = 12L[h(t− 1)]− 12L[h(t− 3)] =
12(e−s − e−3s

s
, s > 0.

Now taking the Laplace transform of the DE and using linearity we find

L[y′] + 4L[y] = L[g(t)].

But L[y′] = sL[y]− y(0) = sL[y]− 2. Letting L[y] = Y (s) we obtain

sY (s)− 2 + 4Y (s) = 12
e−s − e−3s

s
.

Solving for Y (s) we find

Y (s) =
2

s+ 4
+ 12

e−s − e−3s

s(s+ 4)
.

But

L−1
[

2

s+ 4

]
= 2e−4t

and

L−1
[
12 e

−s−e−3s

s(s+4)

]
= 3L−1

[
(e−s − e−3s)

(
1
s
− 1

s+4

)]
= 3L−1

[
e−s

s

]
− 3L−1

[
e−3s

s

]
− 3L−1

[
e−s

s+4

]
+ 3L−1

[
e−3s

s+4

]
= 3h(t− 1)− 3h(t− 3)− 3e−4(t−1)h(t− 1) + 3e−4(t−3)h(t− 3)

Hence,

y(t) = 2e−4t+3[h(t−1)−h(t−3)]−3[e−4(t−1)h(t−1)−e−4(t−3)h(t−3)], t ≥ 0

Problem 44.22
Use Laplace transform technique to solve the initial value problem

y′′ − 4y = e3t, y(0) = 0, y′(0) = 0.
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Solution.
Taking the Laplace transform of the DE and using linearity we find

L[y′′]− 4L[y] = L[e3t].

But L[y′′] = s2L[y]− sy(0)− y′(0) = s2L[y]. Letting L[y] = Y (s) we obtain

s2Y (s)− 4Y (s) =
1

s− 3
.

Solving for Y (s) we find

Y (s) =
1

(s− 3)(s− 2)(s+ 2)
.

Using partial fraction decomposition

1

(s− 3)(s− 2)(s+ 2)
=

A

s− 3
+

B

s+ 2
+

C

s− 2

we find A = 1
5
, B = 1

20
, and C = −1

4
. Thus,

y(t) = L−1[ 1
(s−3)(s−2)(s+2)

= 1
5
L−1

[
1
s−3

]
+ 1

20
L−1

[
1
s+2

]
− 1

4
L−1

[
1
s−2

]
= 1

5
e3t + 1

20
e−2t − 1

4
e2t, t ≥ 0

Problem 44.23
Obtain the Laplace transform of the function

∫ t
2
f(λ)dλ in terms of L[f(t)] =

F (s) given that
∫ 2

0
f(λ)dλ = 3.

Solution.
We have

L
[∫ t

2
f(λ)dλ

]
= L

[∫ t
0
f(λ)dλ−

∫ 2

0
f(λ)dλ

]
= F (s)

s
− L[3]

= F (s)
s
− 3

s
, s > 0
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45 The Laplace Transform and the Method

of Partial Fractions

In Problems 45.1 - 45.4, give the form of the partial fraction expansion for
F (s). You need not evaluate the constants in the expansion. However, if the
denominator has an irreducible quadratic expression then use the completing
the square process to write it as the sum/difference of two squares.

Problem 45.1

F (s) =
s3 + 3s+ 1

(s− 1)3(s− 2)2
.

Solution.

F (s) =
A1

(s− 1)3
+

A2

(s− 1)2
+

A3

s− 1
+

B1

(s− 2)2
+

B2

s− 2)

Problem 45.2

F (s) =
s2 + 5s− 3

(s2 + 16)(s− 2)
.

Solution.

F (s) =
A1s+ A2

s2 + 16
+

B1

s− 2

Problem 45.3

F (s) =
s3 − 1

(s2 + 1)2(s+ 4)2
.

Solution.

F (s) =
A1s+ A2

(s2 + 1)2
+
A3s+ A4

s2 + 1
+

B1

(s+ 4)2
+

B2

s+ 4

Problem 45.4

F (s) =
s4 + 5s2 + 2s− 9

(s2 + 8s+ 17)(s− 2)2
.
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Solution.

F (s) =
A1

(s− 2)2
+

A2

s− 2
+

B1s+B2

(s+ 4)1 + 1
+

B3s+B4

(s+ 4)2 + 1

Problem 45.5
Find L−1

[
1

(s+1)3

]
.

Solution.
Using Table L we find L−1

[
1

(s+1)3

]
= 1

2
e−tt2, t ≥ 0

Problem 45.6
Find L−1

[
2s−3

s2−3s+2

]
.

Solution.
We factor the denominator and split the rational function into partial frac-
tions:

2s− 3

(s− 1)(s− 2)
=

A

s− 1
+

B

s− 2
.

Multiplying both sides by (s− 1)(s− 2) and simplifying to obtain

2s− 3 = A(s− 2) +B(s− 1)
= (A+B)s− 2A−B.

Equating coefficients of like powers of s we obtain the system{
A+B = 2
−2A−B = −3

Solving this system by elimination we find A = 1 and B = 1. Now finding
the inverse Laplace transform to obtain

L−1
[

2s− 3

(s− 1)(s− 2)

]
= L−1

[
1

s− 1

]
+ L−1

[
1

s− 2

]
= et + e2t, t ≥ 0.

Problem 45.7
Find L−1

[
4s2+s+1
s3+s

]
.
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Solution.
We factor the denominator and split the rational function into partial frac-
tions:

4s2 + s+ 1

s(s2 + 1
=
A

s
+
Bs+ C

s2 + 1
.

Multiplying both sides by s(s2 + 1) and simplifying to obtain

4s2 + s+ 1 = A(s2 + 1) + (Bs+ C)s
= (A+B)s2 + Cs+ A.

Equating coefficients of like powers of s we obtain A+B = 4, C = 1, A = 1.
Thus, B = 3. Now finding the inverse Laplace transform to obtain

L−1
[

4s2 + s+ 1

s(s2 + 1)

]
= L−1

[
1

s

]
+3L−1

[
s

s2 + 1

]
+L−1

[
1

s2 + 1

]
= 1+3 cos t+sin t, t ≥ 0.

Problem 45.8
Find L−1

[
s2+6s+8
s4+8s2+16

]
.

Solution.
We factor the denominator and split the rational function into partial frac-
tions:

s2 + 6s+ 8

(s2 + 4)2
=
B1s+ C1

s2 + 4
+
B2s+ C2

s2 + 4
.

Multiplying both sides by (s2 + 4)2 and simplifying to obtain

s2 + 6s+ 8 = (B1s+ C1)(s
2 + 4) +B2s+ C2

= B1s
3 + C1s

2 + (4B1 +B2)s+ 4C1 + C2.

Equating coefficients of like powers of s we obtain B1 = 0, C1 = 1, B2 = 6,
and C2 = 4. Now finding the inverse Laplace transform to obtain

L−1
[
s2+6s+8
(s2+4)2

]
= L−1

[
1

s2+4

]
+ 6L−1

[
s

(s2+4)2

]
+ 4L−1

[
1

(s2+4)2

]
= 1

2
sin 2t+ 6

(
t
4

sin 2t
)

+ 4
(

1
16

[sin 2t− 2t cos 2t]
)

= 3
2
t sin 2t+ 3

4
sin 2t− 1

2
t cos 2t, t ≥ 0
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Problem 45.9
Use Laplace transform to solve the initial value problem

y′ + 2y = 26 sin 3t, y(0) = 3.

Solution.
Taking the Laplace of both sides to obtain

L[y′] + 2L[y] = 26L[sin 3t].

Using Table L the last equation reduces to

sY (s)− y(0) + 2Y (s) = 26

(
3

s2 + 9

)
.

Solving this equation for Y (s) we find

Y (s) =
3

s+ 2
+

78

(s+ 2)(s2 + 9)
.

Using the partial fraction decomposition we can write

1

s+ 2
s2 + 9 =

A

s+ 2
+
Bs+ C

s2 + 9
.

Multipliying both sides by (s+ 2)(s2 + 9) to obtain

1 = A(s2 + 9) + (Bs+ C)(s+ 2)
= (A+B)s2 + (2B + C)s+ 9A+ 2C

Equating coefficients of like powers of s we find A+B = 0, 2B+C = 0, and
9A + 2C = 1. Solving this system we find A = 1

13
, B = − 1

13
, and C = 2

13
.

Thus,

Y (s) =
9

s+ 2
− 6

(
s

s2 + 9

)
+ 4

(
3

s2 + 9

)
.

Finally,

y(t) = L−1[Y (s)] = 9L−1
[

1
s+2

]
− 6L−1

[
s

s2+9

]
+ 4L−1

[
3

s2+9

]
= 9e−2t − 6 cos 3t+ 4 sin 3t, t ≥ 0
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Problem 45.10
Use Laplace transform to solve the initial value problem

y′ + 2y = 4t, y(0) = 3.

Solution.
Taking the Laplace of both sides to obtain

L[y′] + 2L[y] = 4L[t].

Using Table L the last equation reduces to

sY (s)− y(0) + 2Y (s) =
4

s2
.

Solving this equation for Y (s) we find

Y (s) =
3

s+ 2
+

4

(s+ 2)s2
.

Using the partial fraction decomposition we can write

1

(s+ 2)s2
=

A

s+ 2
+
Bs+ C

s2
.

Multipliying both sides by (s+ 2)s2 to obtain

1 = As2 + (Bs+ C)(s+ 2)
= (A+B)s2 + (2B + C)s+ 2C

Equating coefficients of like powers of s we find A+B = 0, 2B+C = 0, and
2C = 1. Solving this system we find A = 4, B = −1, and C = 2. Thus,

Y (s) =
4

s+ 2
− 1

s
+ 2

1

s2
.

Finally,

y(t) = L−1[Y (s)] = 4L−1
[

1
s+2

]
− L−1

[
1
s

]
+ 2L−1

[
1
s2

]
= 4e−2t − 1 + 2t, t ≥ 0

Problem 45.11
Use Laplace transform to solve the initial value problem

y′′ + 3y′ + 2y = 6e−t, y(0) = 1, y′(0) = 2.
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Solution.
Taking the Laplace of both sides to obtain

L[y′′] + 3L[y′] + 2L[y] = 6L[e−t].

Using Table L the last equation reduces to

s2Y (s)− sy(0)− y′(0) + 3(sY (s)− y(0))) + 2Y (s) =
6

s+ 1
.

Solving this equation for Y (s) we find

Y (s) =
s+ 5

(s+ 1)(s+ 2)
+

6

(s+ 2)(s+ 1)2
=

s2 + 6s+ 11

(s+ 1)2(s+ 2)
.

Using the partial fraction decomposition we can write

s2 + 6s+ 11

(s+ 2)(s+ 1)2
=

A

s+ 2
+

B

s+ 1
+

C

(s+ 1)2
.

Multipliying both sides by (s+ 2)(s+ 1)2 to obtain

s2 + 6s+ 11 = A(s+ 1)2 +B(s+ 1) + C
= As2 + (2A+B)s+ A+B + C

Equating coefficients of like powers of s we find A = 1, 2A + B = 6, and
A + B + C = 11. Solving this system we find A = 3, B = −2, and C = 6.
Thus,

Y (s) =
3

s+ 2
− 2

s+ 1
+

6

(s+ 1)2
.

Finally,

y(t) = L−1[Y (s)] = 3L−1
[

1
s+2

]
− 2L−1

[
1
s+1

]
+ 6L−1

[
1

(s+1)2

]
= 3e−2t − 2e−t + 6te−t

Problem 45.12
Use Laplace transform to solve the initial value problem

y′′ + 4y = cos 2t, y(0) = 1, y′(0) = 1.
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Solution.
Taking the Laplace of both sides to obtain

L[y′′] + 4L[y] = L[cos 2t].

Using Table L the last equation reduces to

s2Y (s)− sy(0)− y′(0) + 4Y (s) =
s

s2 + 4
.

Solving this equation for Y (s) we find

Y (s) =
s+ 1

s2 + 4
+

s

(s2 + 4)2
.

Using Table L again we find

y(t) = L−1
[

s
s2+4

]
+ 1

2
L−1

[
2

s2+4

]
+ L−1

[
s

(s2+4)2

]
= cos 2t+ 1

2
sin 2t+ t

4
sin 2t, t ≥ 0

Problem 45.13
Use Laplace transform to solve the initial value problem

y′′ − 2y′ + y = e2t, y(0) = 0, y′(0) = 0.

Solution.
Taking the Laplace of both sides to obtain

L[y′′]− 2L[y′] + L[y] = L[e2t].

Using Table L the last equation reduces to

s2Y (s)− sy(0)− y′(0)− 2sY (s) + 2y(0) + Y (s) =
1

s− 2
.

Solving this equation for Y (s) we find

Y (s) =
1

(s− 1)2(s− 2)
.

Using the partial fraction decomposition, we can write

Y (s) =
A

s− 1
+

B

(s− 1)2
+

C

s− 2
.
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Multipliying both sides by (s− 2)(s− 1)2 to obtain

1 = A(s− 1)(s− 2) +B(s− 2) + C(s− 1)2

= (A+ C)s2 + (−3A+B − 2C)s+ 2A− 2B + C

Equating coefficients of like powers of s we find A+C = 0, −3A+B−2C = 0,
and 2A − 2B + C = 1. Solving this system we find A = −1, B = −1, and
C = 1. Thus,

Y (s) = − 1

s− 1
− 1

(s− 1)2
+

1

s− 2
.

Finally,

y(t) = L−1[Y (s)] = −L−1
[

1
s−1

]
− L−1

[
1

(s−1)2

]
+ L−1

[
1
s−2

]
= −et − tet + e2t, t ≥ 0

Problem 45.14
Use Laplace transform to solve the initial value problem

y′′ + 9y = g(t), y(0) = 1, y′(0) = 0

where

g(t) =

{
6, 0 ≤ t < π
0, π ≤ t <∞

Solution.
Taking the Laplace of both sides to obtain

L[y′′] + 9L[y] = L[g(t)] = 6L[h(t)− h(t− π)].

Using Table L the last equation reduces to

s2Y (s)− sy(0)− y′(0) + 9Y (s) =
6

s
− 6

e−πs

s
.

Solving this equation for Y (s) we find

Y (s) =
s+ 3

s2 + 9
+

6

s(s2 + 9)
(1− e−πs).

Using the partial fraction decomposition, we can write

6

s(s2 + 9)
=
A

s
+
Bs+ C

s2 + 9
.
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Multipliying both sides by s(s2 + 9) to obtain

6 = A(s2 + 9) + (Bs+ C)s
= (A+B)s2 + Cs+ 9A

Equating coefficients of like powers of s we find A + B = 0, C = 0, and
9A = 6. Solving this system we find A = 2

3
, B = −2

3
, and C = 0. Thus,

Y (s) =
s

s2 + 9
+

3

s2 + 9
+ (1− e−πs)

(
2

3

1

s
− 2

3

s

s2 + 9

)
.

Finally,

y(t) = L−1[Y (s)] = cos 3t+ sin 3t+ 2
3
(1− cos 3t)− 2

3
(1− cos 3(t− π))h(t− π)

= cos 3t+ sin 3t+ 2
3
(1− cos 3t)− 2

3
(1 + cos 3t)h(t− π), t ≥ 0

Problem 45.15
Determine the constants α, β, y0, and y′0 so that Y (s) = 2s−1

s2+s+2
is the Laplace

transform of the solution to the initial value problem

y′′ + αy′ + βy = 0, y(0) = y0, y
′(0) = y′0.

Solution.
Taking the Laplace transform of both sides we find

s2Y (s)− sy0 − y′0 + αsY (s)− αy0 + βY (s) = 0.

Solving for Y (s) we find

Y (s) =
sy0 + (y′0 + αy0)

s2 + αs+ β
=

2s− 1

s2 + s+ 2
.

By identification we find α = 1, β = 2, y0 = 2, and y′0 = −3

Problem 45.16
Determine the constants α, β, y0, and y′0 so that Y (s) = s

(s+1)2
is the Laplace

transform of the solution to the initial value problem

y′′ + αy′ + βy = 0, y(0) = y0, y
′(0) = y′0.
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Solution.
Taking the Laplace transform of both sides we find

s2Y (s)− sy0 − y′0 + αsY (s)− αy0 + βY (s) = 0.

Solving for Y (s) we find

Y (s) =
sy0 + (y′0 + αy0)

s2 + αs+ β
=

s

s2 + 2s+ 1
.

By identification we find α = 2, β = 1, y0 = 1, and y′0 = −2
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47 Laplace Transforms of Periodic Functions

Problem 47.1
Find the Laplace transform of the periodic function whose graph is shown.

Solution.
The function is of period T = 2. Thus,

3

∫ 1

0

e−stdt+

∫ 2

1

e−stdt =

[
−3

s
e−st

]1
0

−
[
e−st

s

]2
1

=
1

s
(3− 2e−s − e−2s).

Hence,

L[f(t)] =
3− 2e−s − e−2s

s(1− e−2s

Problem 47.2
Find the Laplace transform of the periodic function whose graph is shown.

Solution.
The function is of period T = 4. Thus,

2

∫ 1

0

e−stdt+

∫ 3

1

e−stdt =

[
−2

s
e−st

]1
0

−
[
e−st

s

]3
1

=
1

s
(2− e−s − e−3s).
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Hence,

L[f(t)] =
2− e−s − e−3s

s(1− e−4s

Problem 47.3
Find the Laplace transform of the periodic function whose graph is shown.

Solution.
The function is of period T = 2. Thus,∫ 2

1

(t−1)e−stdt =

∫ 1

0

ue(1+u)sdu =

[
−e
−s

s2
(su+ 1)e−su

]1
0

= −e
−s

s2
[(s+1)e−s−1].

Hence,

L[f(t)] =
e−s

s2(1− e−2s
[1− (s+ 1)e−s]

Problem 47.4
Find the Laplace transform of the periodic function whose graph is shown.
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Solution.
The function is of period T = 2. Thus,∫ 2

0

te−stdt =

[
− 1

s2
(st+ 1)e−st

]2
0

= − 1

s2
[(2s+ 1)e−2s − 1].

Hence,

L[f(t)] =
1

s2(1− e−2s
[1− (2s+ 1)e−2s]

Problem 47.5
State the period of the function f(t) and find its Laplace transform where

f(t) =


sin t, 0 ≤ t < π

f(t+ 2π) = f(t), t ≥ 0.
0, π ≤ t < 2π

Solution.
The graph of f(t) is shown below.

The function f(t) is of period T = 2π. The Laplace transform of f(t) is

L[f(t)] =

∫ π
0

sin te−stdt

1− e−2πs

Using integration by parts twice we find∫
sin te−stdt = − e−st

1 + s2
(cos t+ s sin t)
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Thus, ∫ π
0

sin te−stdt =
[
− e−st

1+s2
(cos t+ s sin t)

]π
0

= e−πs

1+s2
+ 1

1+s2

= 1+e−πs

1+s2

Hence,

L[f(t)] =
1 + e−πs

(1 + s2)(1− e−2πs)

Problem 47.6
State the period of the function f(t) = 1− e−t, 0 ≤ t < 2, f(t+ 2) = f(t),
and find its Laplace transform.

Solution.
The graph of f(t) is shown below

The function is periodic of period T = 2. Its Laplace transform is

L[f(t)] =

∫ 2

0
(1− e−t)e−stdt

1− e−2s
.

But∫ 2

0

(1−e−t)e−stdt =

[
e−st

−s

]2
0

+

[
e(s+1)t

s+ 1

]2
0

=
1

s
(1−e−2s)− 1

s+ 1
(1−e−2(s+1)).

Hence,

L[f(t)] =
1

s
− 1− e−2(s+1)

(s+ 1)(1− e−2s
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Problem 47.7
Using Example 44.3 find

L−1
[
s2 − s
s3

+
e−s

s(1− e−s)

]
.

Solution.
Note first that

s2 − s
s3

+
e−s

s(1− e−s)
=

1

s
−
(

1

s2
− se−s

s2(1− e−s)

)
.

Using Example 44.3, we find

f(t) = 1− g(t)

where g(t) is the sawtooth function shown below

Problem 47.8
An object having massm is initially at rest on a frictionless horizontal surface.
At time t = 0, a periodic force is applied horizontally to the object, causing
it to move in the positive x-direction. The force, in newtons, is given by

f(t) =


f0, 0 ≤ t ≤ T

2

f(t+ T ) = f(t), t ≥ 0.
0, T

2
< t < T
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The initial value problem for the horizontal position, x(t), of the object is

mx′′(t) = f(t), x(0) = x′(0) = 0.

(a) Use Laplace transforms to determine the velocity, v(t) = x′(t), and the
position, x(t), of the object.
(b) Let m = 1 kg, f0 = 1 N, and T = 1 sec. What is the velocity, v, and
position, x, of the object at t = 1.25 sec?

Solution.

(a) Taking Laplace transform of both sides we find ms2X(s) =
f0
∫ T

2
0 e−stdt

1−e−sT =

f0
s

(
1−e−s

T
2

1−e−sT

)
. Solving for X(s) we find

X(s) =
f0
m
· 1

s3
· 1

1 + e−s
T
2

.

Also,

V (s) = L[v(t)] = sX(s) =
f0
m
· 1

s2
· 1

1 + e−s
T
2

=
1

m
· 1

s
· 1

s(1 + e−s
T
2 )
.

Hence, by Example 44.1 and Table L we can write

v(t) =
1

m

∫ t

0

f(u)du.

Since X(s) = 1
m

1
s2

f0

s(1+e−s
T
2 )

= 1
m
L[t]L[f(t)] = 1

m
L[t ∗ f(t)] we have

x(t) =
1

m
(t ∗ f(t)) =

1

m

∫ t

0

(t− u)f(u)du.

(b) We have x(1.25) =
∫ 1

2

0
(5
4
−u)du+

∫ 5
4

1
(5
4
−w)dw = 17

32
meters and v(1.25) =∫ 5

4

0
f(u)du =

∫ 1
2

0
dt+

∫ 5
4

1
dt = 3

4
m/sec

Problem 47.9
Consider the initial value problem

ay′′ + by′ + cy = f(t), y(0) = y′(0) = 0, t > 0

Suppose that the transfer function of this system is given by Φ(s) = 1
2s2+5s+2

.
(a) What are the constants a, b, and c?
(b) If f(t) = e−t, determine F (s), Y (s), and y(t).
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Solution.
(a) Taking the Laplace transform of both sides we find as2Y (s) + bsY (s) +
cY (s) = F (s) or

Φ(s) =
Y (s)

F (s)
=

1

as2 + bs+ c
=

1

2s2 + 5s+ 2
.

By identification we find a = 2, b = 5, and c = 2.
(b) If f(t) = e−t then F (s) = L[e−t] = 1

s+1
. Thus,

Y (s) = Φ(s)F (s) =
1

(s+ 1)(2s2 + 5s+ 2)
.

Using partial fraction decomposition

1

(s+ 1)(2s+ 1)(s+ 2)
=

A

s+ 1
+

B

2s+ 1
+

C

s+ 2

Multiplying both sides by s + 1 and setting s = −1 we find A = −1. Next,
multiplying both sides by 2s+1 and setting s = −1

2
we find B = 4

3
. Similarly,

multiplying both sides by s+ 2 and setting s = −2 we find C = 1
3
. Thus,

y(t) = −L−1
[

1
s+1

]
+ 2

3
L−1

[
1

s+ 1
2

]
+ 1

3
L−1

[
1
s+2

]
= −e−t + 2

3
e−

t
2 + 1

3
e−2t

Problem 47.10
Consider the initial value problem

ay′′ + by′ + cy = f(t), y(0) = y′(0) = 0, t > 0

Suppose that an input f(t) = t, when applied to the above system produces
the output y(t) = 2(e−t − 1) + t(e−t + 1), t ≥ 0.
(a) What is the system transfer function?
(b) What will be the output if the Heaviside unit step function f(t) = h(t)
is applied to the system?

Solution.
(a) Since f(t) = t, we have F (s) = 1

s2
. Aslo, Y (s) = L[y(t)] = L[2e−t − 2 +

te−t + t] = 2
s+2
− 2

s
+ 1

(s+1)2
+ 1

s2
= 1

s2(s+1)2
. But Φ(s) = Y (s)

F (s)
= 1

(s+1)2
.
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(b) If f(t) = h(t) then F (s) = 1
s

and Y (s) = Φ(s)F (s) = 1
s(s+1)2

. Using
partial fraction decomposition we find

1
s(s+1)2

= A
s

+ B
s+1

+ C
(s+1)2

1 = A(s+ 1)2 +Bs(s+ 1) + Cs
1 = (A+B)s2 + (2A+B + C)s+ A

Equating coefficients of like powers of s we find A = 1, B = −1, and
C = −1. Therefore,

Y (s) =
1

s
− 1

s+ 1
− 1

(s+ 1)2

and
y(t) = L−1[Y (s)] = 1− e−t − te−t

Problem 47.11
Consider the initial value problem

y′′ + y′ + y = f(t), y(0) = y′(0) = 0,

where

f(t) =


1, 0 ≤ t ≤ 1

f(t+ 2) = f(t)
−1, 1 < t < 2

(a) Determine the system transfer function Φ(s).
(b) Determine Y (s).

Solution.
(a) Taking the Laplace transform of both sides we find

s2Y (s) + sY (s) + Y (s) = F (s)

so that

Φ(s) =
Y (s)

F (s)
=

1

s2 + s+ 1
.

(b) But ∫ 2

0
f(t)e−stdt =

∫ 1

0
e−stdt−

∫ 2

1
e−stdt

=
[
e−st

−s

]1
0
−
[
e−st

−s

]2
1

= 1
s
(1− e−s) + 1

s
(e−2s − e−s)

= (1−e−s)2
s
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Hence,

F (s) =
(1− e−s)2

s(1− e−2s)
=

(1− e−s)
s(1 + e−s)

and

Y (s) = Φ(s)F (s) =
(1− e−s)

s(1 + e−s)(s2 + s+ 1)

Problem 47.12
Consider the initial value problem

y′′′ − 4y = et + t, y(0) = y′(0) = y′′(0) = 0.

(a) Determine the system transfer function Φ(s).
(b) Determine Y (s).

Solution.
(a) Taking Laplace transform of both sides we find

s3Y (s)− 4Y (s) = F (s).

Thus,

Φ(s) =
Y (s)

F (s)
=

1

s3 − 4
.

(b) We have

F (s) = L[et + t] =
1

s− 1
+

1

s2
=
s2 + s− 1

(s− 1)s2
.

Hence,

Y (s) =
s2 + s− 1

s2(s− 1)(s3 − 4)

Problem 47.13
Consider the initial value problem

y′′ + by′ + cy = h(t), y(0) = y0, y
′(0) = y′0, t > 0.

Suppose that L[y(t)] = Y (s) = s2+2s+1
s3+3s2+2s

. Determine the constants b, c, y0,
and y′0.
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Solution.
Take the Laplace transform of both sides to obtain

s2Y (s)− sy0 − y′0 + bsY (s)− by0 + cY (s) =
1

s
.

Solve to find
Y (s) = 1

s3+bs2+cs)
+

sy0+y′0+by0
s2+bs+c

=
s2y0+s(y′0+by0)+1

s3+bs2+cs

= s2+2s+1
s3+3s2+2s

.

By comparison we find b = 3, c = 2, y0 = 1, and y′0 + by0 = 2 or y′0 = −1
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47 Convolution Integrals

Problem 47.1
Consider the functions f(t) = g(t) = h(t), t ≥ 0 where h(t) is the Heaviside
unit step function. Compute f ∗ g in two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) We have

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds =

∫ t

0

h(t− s)h(s)ds =

∫ t

0

ds = t

(b) Since F (s) = G(s) = L[h(t)] = 1
s
, (f ∗g)(t) = L−1[F (s)G(s)] = L−1[ 1

s2
] =

t

Problem 47.2
Consider the functions f(t) = et and g(t) = e−2t, t ≥ 0. Compute f ∗ g in
two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) We have

(f ∗ g)(t) =
∫ t
0
f(t− s)g(s)ds =

∫ t
0
e(t−s)e−2sds

= et
∫ t
0
e−3sds =

[
e(t−3s)

−3

]t
0

= et−e−2t

3

(b) Since F (s) = L[et] = 1
s−1 and G(s) = L[e−2t] = 1

s+2
we have (f ∗ g)(t) =

L−1[F (s)G(s)] = L−1[ 1
(s−1)(s−2) ]. Using partial fractions decomposition we

find
1

(s− 1)(s+ 2)
=

1

3
(

1

s− 1
− 1

s+ 2
).

Thus,

(f ∗ g)(t) = L−1[F (s)G(s)] =
1

3
(L−1[ 1

s− 1
]− L−1[ 1

s+ 2
] =

et − e−2t

3
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Problem 47.3
Consider the functions f(t) = sin t and g(t) = cos t, t ≥ 0. Compute f ∗ g in
two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Solution.
(a) Using the trigonometric identity 2 sin p cos q = sin (p+ q)+sin (p− q) we
find that 2 sin (t− s) cos s = sin t+ sin (t− 2s). Hence,

(f ∗ g)(t) =
∫ t
0
f(t− s)g(s)ds =

∫ t
0

sin (t− s) cos sds

= 1
2
[
∫ t
0

sin tds+
∫ t
0

sin (t− 2s)ds]

= t sin t
2

+ 1
4

∫ t
−t sinudu

= t sin t
2

(b) Since F (s) = L[sin t] = 1
s2+1

and G(s) = L[cos t] = s
s2+1

we have

(f ∗ g)(t) = L−1[F (s)G(s)] = L−1[ s

(s2 + 1)2
] =

t

2
sin t

Problem 47.4
Use Laplace transform to compute the convolution P ∗ y, where |bfP (t) =[
h(t) et

0 t

]
and y(t) =

[
h(t)
e−t

]
.

Solution.
We have

(P ∗ y)(t) = L−1
{[

1
s

1
s−1

0 1
s2

] [
1
s
1
s+1

]}

= L−1
{[

1
s

1
s2

+ 1
(s−1)(s+1)

1
s2(s+1)

]}
But

1

(s− 1)(s+ 1)
=

1

2

(
1

s− 1
− 1

s+ 1

)
and

1

s2(s+ 1)
=

1

s2
− 1

s
+

1

s+ 1
.
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Hence,

(P ∗ y)(t) =

[
t+ et

2
− e−t

2

t− 1 + e−t

]
Problem 47.5
Compute and graph f ∗ g where f(t) = h(t) and g(t) = t[h(t)− h(t− 2)].

Solution.
Since f(t) = h(t), F (s) = 1

s
. Similarly, since g(t) = th(t) − th(t − 2) =

th(t)− (t−2)h(t−2)−2h(t−2), G(s) = 1
s2
− e−2s

s2
− 2e−2s

s
. Thus, F (s)G(s) =

1
s3
− e−2s

s3
− 2e−2s

s2
. It follows that

(f ∗ g)(t) =
t2

2
− (t− 2)2

2
h(t− 2)− 2(t− 2)h(t− 2).

The graph of (f ∗ g)(t) is given below

Problem 47.6
Compute and graph f ∗ g where f(t) = h(t)− h(t− 1) and g(t) = h(t− 1)−
2h(t− 2)].

Solution.
Since f(t) = h(t)−h(t−1), F (s) = 1

s
− e−s

s
. Similarly, since g(t) = h(t−1)−

2h(t − 2), G(s) = e−s

s
− 2e−2s

s
. Thus, F (s)G(s) = e−s−3e−2s+2e−3s

s2
. It follows

that

(f ∗ g)(t) = (t− 1)h(t− 1)− 3(t− 2)h(t− 2) + 2(t− 3)h(t− 3).

The graph of (f ∗ g)(t) is given below
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Problem 47.7
Compute t ∗ t ∗ t.

Solution.
By the convolution theorem we have L[t∗t∗t] = (L[t])3 =

(
1
s2

)3
= 1

s6
. Hence,

t ∗ t ∗ t = L−1
[

1
s6

]
= t5

5!
= t5

120

Problem 47.8
Compute h(t) ∗ e−t ∗ e−2t.

Solution.
By the convolution theorem we have L[h(t)∗e−t∗e−2t] = L[h(t)]L[e−t]L[e−2t] =
1
s
· 1
s+1
· 1
s+2

. Using the partial fractions decomposition we can write

1

s(s+ 1)(s+ 2)
=

1

2s
− 1

s+ 1
+

1

2
· 1

s+ 2
.

Hence,

h(t) ∗ e−t ∗ e−2t =
1

2
− e−t +

1

2
e−2t

Problem 47.9
Compute t ∗ e−t ∗ et.

Solution.
By the convolution theorem we have L[t ∗ e−t ∗ et] = L[t]L[e−t]L[et] = 1

s2
·

1
s+1
· 1
s−1 . Using the partial fractions decomposition we can write

1

s2(s+ 1)(s− 1)
= − 1

s2
− 1

2
· 1

s− 1
− 1

2
· 1

s+ 1
.
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Hence,

t ∗ e−t ∗ et = −t+
et

2
− e−t

2

Problem 47.10

Suppose it is known that

n functions︷ ︸︸ ︷
h(t) ∗ h(t) ∗ · · · ∗ h(t) = Ct8. Determine the con-

stants C and the poisitive integer n.

Solution.

We know that L[

n functions︷ ︸︸ ︷
h(t) ∗ h(t) ∗ · · · ∗ h(t)] = (L[h(t)])n = 1

sn
so that L−1[ 1

sn
=

tn−1

(n−1)! = Ct8. It follows that n = 9 and C = 1
8!

Problem 47.11
Use Laplace transform to solve for y(t) :∫ t

0

sin (t− λ)y(λ)dλ = t2.

Solution.
Note that the given equation reduces to sin t ∗ y(t) = t2. Taking Laplace

transform of both sides we find Y (s)
s2+1

= 2
s3
. This implies Y (s) = 2(s2+1)

s3
=

2
s

+ 2
s3
. Hence, y(t) = L−1[2

s
+ 2

s3
] = 2 + t2

Problem 47.12
Use Laplace transform to solve for y(t) :

y(t)−
∫ t

0

e(t−λ)y(λ)dλ = t.

Solution.
Note that the given equation reduces to et ∗ y(t) = y(t)− t. Taking Laplace

transform of both sides we find Y (s)
s−1 = Y (s) − 1

s2
. Solving for Y (s) we find

Y (s) = s−1
s2(s−2) . Using partial fractions decomposition we can write

s− 1

s2(s− 2)
=
−1

4

s
+

1
2

s2
+

1
4

(s− 2)
.

Hence,

y(t) = −1

4
+
t

2
+

1

4
e2t
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Problem 47.13
Use Laplace transform to solve for y(t) :

t ∗ y(t) = t2(1− e−t).

Solution.
Taking Laplace transform of both sides we find Y (s)

s2
= 2

s3
− 2

(s+1)3
. This implies

Y (s) = 2
s
− 2s2

(s+1)3
. Using partial fractions decomposition we can write

s2

(s+ 1)3
=

1

s+ 1
− 2

(s+ 1)2
+

1

(s+ 1)3
.

Hence,

y(t) = 2− 2(e−t − 2te−t +
t2

2
e−t = 2

(
1− (1− 2t+

t2

2
)e−t

)
Problem 47.14
Use Laplace transform to solve for y(t) :

y′ = h(t) ∗ y, y(0) =

[
1
2

]
.

Solution.
Taking Laplace transform of both sides we find sY−y(0) = 1

s
Y. Solving for

Y we find

Y(s) =
s

s2 − 1

[
1
2

]
=

1

2

(
1

s− 1
+

1

s+ 1

)[
1
2

]
.

Hence,

y(t) =
1

2
(et + e−t)

[
1
2

]
= cosh t

[
1
2

]
Problem 47.15
Solve the following initial value problem.

y′ − y =

∫ t

0

(t− λ)eλdλ, y(0) = −1.
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Solution.
Note that y′ − y = t ∗ et. Taking Lalplace transform of both sides we find
sY − (−1) − Y = 1

s2
· 1
s−1 . This implies that Y (s) = − 1

s−1 + 1
s2(s−1)2 . Using

partial fractions decomposition we can write

1

s2(s− 1)2
=

2

s
+

1

s2
− 2

s− 1
+

1

(s− 1)2
.

Thus,

Y (s) = − 1

s− 1
+

2

s
+

1

s2
− 2

s− 1
+

1

(s− 1)2
=

2

s
+

1

s2
− 3

s− 1
+

1

(s− 1)2
.

Finally,
y(t) = 2 + t− 3et + tet
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48 47

49 The Dirac Delta Function and Impulse Re-

sponse

Problem 49.1
Evaluate

(a)
∫ 3

0
(1 + e−t)δ(t− 2)dt.

(b)
∫ 1

−2(1 + e−t)δ(t− 2)dt.

(c)
∫ 2

−1

[
cos 2t
te−t

]
δ(t)dt.

(d)
∫ 2

−1(e
2t + t)

 δ(t+ 2)
δ(t− 1)
δ(t− 3)

 dt.
Solution.
(a)
∫ 3

0
(1 + e−t)δ(t− 2)dt = 1 + e−2.

(b)
∫ 1

−2(1 + e−t)δ(t− 2)dt = 0 since 2 lies outside the integration interval.
(c) ∫ 2

−1

[
cos 2t
te−t

]
δ(t)dt =

[ ∫ 2

−1 cos 2tδ(t)dt∫ 2

−1 te
−tδ(t)dt

]
=

[
cos 0
0× t0

]
=

[
1
0

]
(d) ∫ 2

−1(e
2t + t)

 δ(t+ 2)
δ(t− 1)
δ(t− 3)

 dt
=


∫ 2

−1(e
2t + t)δ(t+ 2)dt∫ 2

−1(e
2t + t)δ(t− 1)dt∫ 2

−1(e
2t + t)δ(t− 3)dt


=

 e−4 − 2
e2 + 1

0
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Problem 49.2
Let f(t) be a function defined and continuous on 0 ≤ t <∞. Determine

(f ∗ δ)(t) =

∫ t

0

f(t− s)δ(s)ds.

Solution.
Let g(s) = f(t− s). Then

(f ∗ δ)(t) =
∫ t
0
f(t− s)δ(s)ds =

∫ t
0
g(s)δ(s)ds

= g(0) = f(t)

Problem 49.3
Determine a value of the constant t0 such that

∫ 1

0
sin2 [π(t− t0)]δ(t− 1

2
)dt = 3

4
.

Solution.
We have ∫ 1

0
sin2 [π(t− t0)]δ(t− 1

2
)dt = 3

4

sin2
[
π
(
(1
2
− t0

)]
= 3

4

sin
[
π
(
(1
2
− t0

)]
= ±

√
3
2

Thus, a possible value is when π
(
(1
2
− t0

)
= π

3
. Solving for t0 we find t0 = 1

6

Problem 49.4
If
∫ 5

1
tnδ(t− 2)dt = 8, what is the exponent n?

Solution.
We have

∫ 5

1
tnδ(t− 2)dt = 2n = 8. Thus, n = 3

Problem 49.5
Sketch the graph of the function g(t) which is defined by g(t) =

∫ t
0

∫ s
0
δ(u−

1)duds, 0 ≤ t <∞.

Solution.
Note first that

∫ s
0
δ(u− 1)du = 1 if s > 1 and 0 otherwise. Hence,

g(t) =

{
0, if t ≤ 1∫ t

1
h(s− 1)ds = t− 1, if t > 1
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Problem 49.6
The graph of the function g(t) =

∫ t
0
eαtδ(t − t0)dt, 0 ≤ t < ∞ is shown.

Determine the constants α and t0.

Solution.
Note that

g(t) =

{
0, 0 ≤ t ≤ t0
eαt0 , t0 < t <∞

It follows that t0 = 2 and α = −1

Problem 49.7
(a) Use the method of integarting factor to solve the initial value problem
y′ − y = h(t), y(0) = 0.
(b) Use the Laplace transform to solve the initial value problem φ′ − φ =
δ(t), φ(0) = 0.
(c) Evaluate the convolution φ∗h(t) and compare the resulting function with
the solution obtained in part(a).
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Solution.
(a) Using the method of integrating factor we find, for t ≥ 0,

y′ − y = h(t)
(e−ty)′ = e−t

e−ty = −e−t + C
y = −1 + Cet

y = −1 + et

(b) Taking Laplace of both sides we find sΦ −Φ = 1 or Φ(s) = 1
s−1 . Thus,

φ(t) = et.
(c) We have

(φ ∗ h)(t) =

∫ t

0

e(t−s)h(s)ds =

∫ t

0

e(t−s)ds = −1 + et

Problem 49.8
Solve the initial value problem

y′ + y = 2 + δ(t− 1), y(0) = 0, 0 ≤ t ≤ 6.

Graph the solution on the indicated interval.

Solution.
Taking Laplace of both sides to obtain sY + Y = 2

s
+ e−s. Thus, Y (s) =

2
s(s+1)

+ e−s

s+1
= 2

s
− 2

s+1
+ e−s

s+1
. Hence,

y(t) =

{
2− 2e−t, t < 1

2 + (e− 2)e−t, t ≥ 1
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Problem 49.9
Solve the initial value problem

y′′ = δ(t− 1)− δ(t− 3), y(0) = 0, y′(0) = 0, 0 ≤ t ≤ 6.

Graph the solution on the indicated interval.

Solution. Taking Laplace of both sides to obtain s2Y = e−s − e−3s. Thus,
Y (s) = e−s

s2
− e−3s

s2
. Hence,

y(t) = (t− 1)h(t− 1)− (t− 3)h(t− 3).

Problem 49.10
Solve the initial value problem

y′′ − 2y′ = δ(t− 1), y(0) = 1, y′(0) = 0, 0 ≤ t ≤ 2.

Graph the solution on the indicated interval.

Solution.
Taking Laplace transform of both sides and using the initial conditions we
find

s2Y − s− 2(sY − 1) = e−s.

Solving for s we find Y (s) = 1
s

+ e−s

s(s−2) = 1
s
− e−s

2s
+ e−s

s−2 . Hence,

y(t) = 1− 1

2
h(t− 1) +

1

2
e2(t−1)h(t− 1)
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Problem 49.11
Solve the initial value problem

y′′ + 2y′ + y = δ(t− 2), y(0) = 0, y′(0) = 1, 0 ≤ t ≤ 6.

Graph the solution on the indicated interval.

Solution.
Taking Laplace transform of both sides to obtain s2Y − 1 + 2sY + Y = e−2s.
Solving for Y (s) we find Y (s) = 1

(s+1)2
+ e−2s

(s+1)2
. Therefore, y(t) = te−t + (t−

2)e−(t−2)h(t− 2)
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49 Solving Systems of Differential Equations

Using Laplace Transform

Problem 49.1
Find L[y(t)] where

y(t) =
d

dt

 e−t cos 2t
0

t+ et


Solution.

L[y(t)] = L


 −e−t cos 2t+ 2e−t sin 2t

0
1 + et


=

 − s+1
(s+1)2+4

+ 4
(s+1)2+4

0
1
s

+ 1
s−1


=

 3−s
(s+1)2+4

0
1
s

+ 1
s−1


Problem 49.2
Find L[y(t)] where

y(t) =

∫ t

0

 1
u
e−u

 du
Solution.

L[y(t)] = L


 t

t2

2

−e−t + 1


=

 1
s2
1
s3

1
s
− 1

s+1
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Problem 49.3
Find L−1[Y(s)] where

Y(s) =

 1
s
2

s2+2s+2
1

s2+s


Solution.
We have

L−1[1
s
] = 1

L−1[ 2
s2+2s+2

] = L−1[ 2
(s+1)2+12

] = 2e−t sin t

L−1[ 1
s2+s

] = L−1[1
s
− 1

s+1
] = 1− e−t

Thus,

L−1[Y(s)] =

 1
2e−t sin t
1− e−t


Problem 49.4
Find L−1[Y(s)] where

Y(s) =

 1 −1 2
2 0 3
1 −2 1

 L[t3]
L[e2t]
L[sin t]


Solution.
We have

Y(s) =

 1 −1 2
2 0 3
1 −2 1

 L[t3]
L[e2t]
L[sin t]



= L


 1 −1 2

2 0 3
1 −2 1

 t3

e2t

sin t


= L


 t3 − e2t + 2 sin t

2t3 + 3 sin t
t3 − 2e2t + sin t


Thus,

L−1[Y(s)] =

 t3 − e2t + 2 sin t
2t3 + 3 sin t

t3 − 2e2t + sin t
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Problem 49.5
Use the Laplace transform to solve the initial value problem

y′ =

[
5 −4
5 −4

]
y +

[
0
1

]
, y(0) =

[
0
0

]
Solution.
Taking Laplace of both sides and using the initial condition we find

sY =

[
5 −4
5 −4

]
Y +

[
0 1

s

]
Solving this matrix equation for Y we find

Y(s) =

[
− 4
s2(s−1)
s−5

s2(s−1)

]
.

Using partial fractions decomposition we find

− 4

s2(s− 1)
=

4

s2
+

4

s
− 4

s− 1

and
s− 5

s2(s− 1)
=

5

s2
+

4

s
− 4

s− 1
.

Hence,

Y(s) =

[
4
s2

+ 4
s
− 4

s−1
5
s2

+ 4
s
− 4

s−1

]
.

Finally,

y(t) =

[
4t+ 4− 4et

5t+ 4− 4et

]
Problem 49.6
Use the Laplace transform to solve the initial value problem

y′ =

[
5 −4
3 −2

]
y, y(0) =

[
3
2

]
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Solution.
Taking Laplace of both sides and using the initial condition we find

sY −
[

3
2

]
=

[
5 −4
3 −2

]
Y

Solving this matrix equation for Y we find

Y(s) = 1
(s−1)(s−2)

[
s+ 2 −4

3 s− 5

] [
3
2

]

= 1
(s−1)(s−2)

[
3s− 2
2s− 1

]
Using partial fractions decomposition we find

3s− 2

(s− 1)(s− 2)
=
−1

s− 1
+

4

s− 2

and
2s− 1

(s− 1)(s− 2)
=
−1

s− 1
+

3

s− 2
.

Hence,

Y(s) =

[ −1
s−1 + 4

s−2
−1
s−1 + 3

s−2

]
.

Finally,

y(t) =

[
−et + 4e2t

−et + 3e2t

]
Problem 49.7
Use the Laplace transform to solve the initial value problem

y′ =

[
1 4
−1 1

]
y +

[
0

3et

]
, y(0) =

[
3
0

]
Solution.
Taking Laplace of both sides and using the initial condition we find

sY −
[

3
0

]
=

[
1 4
−1 1

]
Y +

[
0
3
s−1

]
[
s− 1 −4

1 s− 1

]
Y =

[
3
3
s−1

]
182



Solving this matrix equation for Y we find

Y(s) = 1
(s−1)2+4

[
s− 1 4
−1 s− 1

] [
3
3
s−1

]

= 1
(s−1)2+4

[
3(s− 1) + 12

s−1
0

]
Using partial fractions decomposition we find

3(s− 1) + 12
s−1

(s− 1)2 + 4
= 3

s− 1

(s− 1)2 + 4
+

12

(s− 1)[(s− 1)2 + 4]
.

But
12

(s− 1)[(s− 1)2 + 4]
=

3

s− 1
− 3

s− 1

(s− 1)2 + 4
.

Hence,

Y(s) =

[
3
s−1
0

]
.

Finally,

y(t) =

[
3et

0

]
Problem 49.8
Use the Laplace transform to solve the initial value problem

y′′ =

[
−3 −2
4 3

]
y, y(0) =

[
1
0

]
, y′(0) =

[
0
1

]
Solution.
Taking Laplace of both sides and using the initial condition we find

s2Y − s
[

1
0

]
−
[

0
1

]
=

[
−3 −2
4 3

]
Y

[
s2 + 3 2
−4 s2 − 3

]
Y =

[
s
1

]
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Solving this matrix equation for Y we find

Y(s) = 1
s4−1

[
s2 − 3 −2

4 s2 + 3

] [
s
1

]

= 1
s4−1

[
s3 − 3s− 2
s2 + 4s+ 3

]
Using partial fractions decomposition we find

s3 − 3s− 2

s4 − 1
= − 1

s− 1
+ 2

s

s2 + 1
+

1

s2 + 1

and

s2 + 4s+ 3

(s− 1)(s+ 1)(s2 + 1)
=

s+ 3

(s− 1)(s2 + 1)
=

2

s− 1
− s

s2 + 1
− 1

s2 + 1
.

Hence,

Y(s) =

[
− 1
s−1 + 2 s

s2+1
+ 1

s2+1
2
s−1 −

s
s2+1
− 1

s2+1

]
.

Finally,

y(t) =

[
−et + 2 cos t+ sin t
2et − cos t− sin t

]
Problem 49.9
Use the Laplace transform to solve the initial value problem

y′′ =

[
1 −1
1 −1

]
y +

[
2
1

]
, y(0) =

[
0
1

]
, y′(0) =

[
0
0

]
Solution.
Taking Laplace of both sides and using the initial condition we find

s2Y − s
[

0
1

]
=

[
1 −1
1 −1

]
Y +

[
2
s
1
s

]
[
s2 − 1 1
−1 s2 + 1

]
Y =

[
2
s

1
s

+ s

]
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Solving this matrix equation for Y we find

Y(s) = 1
s4

[
s2 + 1 −1

1 s2 − 1

] [
2
s

1
s

+ s

]

=

[
1
s3

+ 1
s5

1
s

+ 1
s5

]

y(t) =

[
t2

2
+ t3

4!

1 + t4

4!

]
Problem 49.10
Use the Laplace transform to solve the initial value problem

y′ =

 1 0 0
0 −1 1
0 0 2

y +

 et

1
−2t

 , y(0) =

 0
0
0


Solution.
Taking Laplace of both sides and using the initial condition we find

sY =

 1 0 0
0 −1 1
0 0 2

Y +

 1
s−1
1
s

− 2
s2


 s− 1 0 0

0 s+ 1 −1
0 0 s− 2

Y =

 1
s−1
1
s

− 2
s2


Solving this matrix equation for Y we find

Y(s) =

 1
s−1 0 0

0 1
s+1

1
(s+1)(s−2)

0 0 1
s−2

 1
s−1
1
s

− 2
s2



=


1

(s−1)2
s(s−2)−2

s2(s+1)(s−2)
−2

s2(s−2)



185



Using partial fractions decomposition we find

s(s− 2)− 2

s2(s+ 1)(s− 2)
=

1

s2
+

1

2s
− 1

3
· 1

s+ 1
− 1

6
· 1

s− 2

and
−2

s2(s− 2)
=

1

s2
+

1

2s
− 1

2
· 1

s− 2
.

Hence,

Y(s) =

 1
(s−1)2

1
s2

+ 1
2s
− 1

3
· 1
s+1
− 1

6
· 1
s−2

1
s2

+ 1
2s
− 1

2
· 1
s−2

 .
Finally,

y(t) =

 tet

t+ 1
2
− 1

3
e−t − 1

6
e2t

t+ 1
2
− 1

2
e2t


Problem 49.11
The Laplace transform was applied to the initial value problem y′ = Ay, y(0) =

y0, where y(t) =

[
y1(t)
y2(t)

]
, A is a 2× 2 constant matrix, and y0 =

[
y1,0
y2,0

]
.

The following transform domain solution was obtained

L[y(t)] = Y(s) =
1

s2 − 9s+ 18

[
s− 2 −1

4 s− 7

] [
y1,0
y2,0

]
.

(a) what are the eigenvalues of A?
(b) Find A.

Solution.
(a) det(sI−A) = s2 − 9s + 18 = (s− 3)(s− 6) = 0. Hence, the eigenvalues
of A are r1 = 3 and r2 = 6.
(b) Taking Laplace transform of both sides of the differential equation we
find

sY − y0 = AY
Y = (sI−A)−1y0

Letting s = 0 we find

Y(0) = −A−1 =
1

18

[
−2 −1
4 −7

]
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Hence,

A−1 =
1

18

[
2 1
−4 7

]
and

det(A−1) =
1

18
.

It follows that

A = (A−1)−1 =

[
7 −1
4 2

]
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50 Numerical Methods for Solving First Or-

der Linear Systems: Euler’s Method

In Problems 50.1 - 50.3 answer the following questions:
(a) Solve the differential equation analytically using the appropriate method
of solution.
(b) Write the Euler’s iterates: yk+1 = yk + hf(tk, yk).
(c) Using step size h = 0.1, compute the Euler approximations yk, k = 1, 2, 3
at times tk = a+ kh.
(d) For k = 1, 2, 3 compute the error y(tk)−yk where y(tk) is the exact value
of y at tk.

Problem 50.1

y′ = 2t− 1, y(1) = 0.

Solution.
(a) y = t2 − t
(b) yk+1 = yk + h(2tk − 1)
(c)

y1 =y0 + 0.1(2t0 − 1) = 0 + 0.1(2(1)− 1) = 0.1

y2 =y1 + 0.1(2t1 − 1) = 0.1 + 0.1(2(1.1)− 1) = 0.22

y3 =y2 + 0.1(2t2 − 1) = 0.22 + 0.1(2(1.2)− 1) = 0.36

(d)

yerr1 =0.11− 0.1 = 0.01

yerr2 =0.24− 0.22 = 0.02

yerr3 =0.39− 0.36 = 0.03

Problem 50.2

y′ = −ty, y(0) = 1.

Solution.
(a) Using the method of integrating factor we find y = Ce−

t2

2 . Since y(0) = 1,

we find c = 1 so that y = e−
t2

2 .
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(b) yk+1 = yk − h(tkyk)
(c)

y1 =y0 − 0.1(t0y0) = 1− 0.1(0× 1) = 1

y2 =y1 − 0.1(t1y1) = 1− 0.1(0.1)(1) = 0.99

y3 =y2 − 0.1(t2y2) = 0.99− 0.1(0.2× 0.99) = 0.9702

(d)

yerr1 =0.99501− 1 = −0.00499

yerr2 =0.98109− 0.99 = −0.00891

yerr3 =0.95599− 0.9702 = −0.01421

Problem 50.3

y′ = y2, y(0) = 1.

Solution.
(a) Using the method of integrating factor we find − 1

y
= t+C. Since y(0) = 1,

we find c = −1 so that y = 1
1−t .

(b) yk+1 = yk + hy2k
(c)

y1 =y0 + 0.1y20 = 1 + 0.1(12) = 1.1

y2 =y1 + 0.1y21 = 1.1 + 0.1(1.1)2 = 1.221

y3 =y2 + 0.1y22 = 1.221 + 0.1(1.221)2 = 1.370084

(d)

yerr1 =1.1111− 1.1 = 0.0111

yerr2 =1.25− 1.221 = 0.029

yerr3 =1.4286− 1.370084 = 0.058516

In Problems 50.4 - 50.6 answer the following questions:
(a) Write the Euler’s method algorithm in explicit form. Specify the starting
values t0 and y0.
(b) Give a formula for the kth t−value, tk. What is the range of the index k
if we choose h = 0.01?
(c) Use a calculator to carry out two steps of Euler’s method, finding y1 and
y2.
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Problem 50.4

y′ =

[
−t2 t
2− t 0

]
y +

[
1
t

]
, y(1) =

[
2
0

]
, 1 ≤ t ≤ 4.

Solution.
(a)

yk+1 = yk + h

([
−t2k tk

2− tk 0

]
yk +

[
1
tk

])
where t0 = 1 and

y0 =

[
2
0

]
(b) We have tk = 1 + kh. Now, h = b−a

N
→ 0.01 = 3

N
→ N = 300. Thus, the

range of the index k is 0 ≤ k ≤ 300.
(c) We have

y1 =y0 + h

([
−t20 t0

2− t0 0

]
y0 +

[
1
tk

])
=

[
2
0

]
+ 0.01

([
−1 1
1 0

] [
2
0

]
+

[
1
1

])
=

[
1.99
0.03

]
y2 =y1 + h

([
−t21 t1

2− t1 0

]
y1 +

[
1
t1

])
=

[
1.99
0.03

]
+ 0.01

([
−(1.01)2 1.01

0.99 0

] [
1.99
0.03

]
+

[
1

1.01

])
=

[
1.9800
0.0598

]
Problem 50.5

y′ =

 1 0 1
3 2 1
1 2 0

y +

 0
2
t

 , y(−1) =

 1
0
1

 , − 1 ≤ t ≤ 0.

Solution.
(a)

yk+1 = yk + h

 1 0 1
3 2 0
1 2 0

yk +

 0
2
tk


where t0 = 1 and

y0 =

 1
0
1
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(b) We have tk = −1 + kh. Now, h = b−a
N
→ 0.01 = 1

N
→ N = 100. Thus,

the range of the index k is 0 ≤ k ≤ 100.
(c) We have

y1 =y0 + h

 1 0 1
3 2 0
1 2 0

y0 +

 0
2
t0

 =

 1
0
1

+ 0.01

 1 0 1
3 2 0
1 2 0

 1
0
1

+

[
0
2 −1

] =

 1.02
0.06
1.00


y2 =y1 + h

 1 0 1
3 2 0
1 2 0

y1 +

 0
2
t1

 =

 1.02
0.06
1.00

+ 0.01

 1 0 1
3 2 0
1 2 0

 1.02
0.06
1.00

+

 0
2

−0.99

 =

 1.0402
0.1218
1.0015


Problem 50.6

y′ =

[
1
t

sin t
1− t 1

]
y +

[
0
t2

]
, y(1) =

[
0
0

]
, 1 ≤ t ≤ 6.

Solution.
(a)

yk+1 = yk + h

([
1
tk

sin tk
1− tk 1

]
yk +

[
0
t2k

])
where t0 = 1 and

y0 =

[
0
0

]
(b) We have tk = 1 + kh. Now, h = b−a

N
→ 0.01 = 5

N
→ N = 500. Thus, the

range of the index k is 0 ≤ k ≤ 500.
(c) We have

y1 =y0 + h

([
1
t0

sin t0
1− t0 1

]
y0 +

[
0
t20

])
=

[
0
0

]
+ 0.01

([
1 sin 1
0 1

] [
0
0

]
+

[
0
1

])
=

[
0

0.01

]
y2 =y1 + h

([
1
t1

sin t1
1− t1 1

]
y1 +

[
0
t21

])
=

[
0

0.01

]
+ 0.01

([
1

1.01
sin 1.01

0.01 1

] [
0

0.01

]
+

[
0

(1.01)2

])
=

[
0.0000845
0.020301

]
In Problems 50.7 - 50.8 answer the following questions.
(a) Rewrite the given initial value problem as an equivalent initial value
problem for a first order system, using the substitution z1 = y, z2 = y′, z3 =
y′′, · · · .
(b) Write the Euler’s method algorithm zk+1 = zk + h[P (tk)zk + g(tk)], in
explicit form. Specify the starting values t0 and z0.
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(c) Using a calculator with step size h = 0.01, carry out two steps of Euler’s
method, finding z1 and z2 What are the corresponding numerical approxi-
mations to the solution y(t) at times t = 0.01 and t = 0.02?

Problem 50.7

y′′ + y′ + t2y = 2, y(1) = 1, y′(1) = 1.

Solution.
(a) Let z1 = y and z2 = y′ so that z′1 = z2 and z′2 = y′′. Thus,

z′1 =z2

z′2 =y′′ = 2− t2y − y′ = 2− t2z1 − z′1
=− z2 − t2z1 + 2

Thus,

Z′(t) =

[
z1
z2

]
=

[
z2

−t2z1 − z2 + 2

]
=

[
0 1
−t2 −1

] [
z1
z2

]
+

[
0
2

]
with

Z(1) =

[
1
1

]
.

(b) We have

Zk+1 = Zk + h

([
0 1
−t2k −1

]
Zk +

[
0
2

])
with t0 = 1 and

Z0 =

[
1
1

]
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(c) We have

Z1 =Z0 + h

([
0 1
−t20 −1

]
Z0 +

[
0
2

])
=

[
1
1

]
+ 0.01

([
0 1
−1 −1

] [
1
1

]
+

[
0
2

])
=

[
1.01

1

]
Z2 =Z1 + h

([
0 1
−t21 −1

]
Z1 +

[
0
2

])
=

[
1.01

1

]
+ 0.01

([
0 1

−(1.01)2 −1

] [
1.01

1

]
+

[
0
2

])
=

[
1.02

0.99969

]
Problem 50.8

y′′′ + 2y′ + ty = t+ 1, y(0) = 1, y′(0) = −1, y′′(0) = 0.

Solution.
(a) Let z1 = y, z2 = y′ and z3 = y′′. Then

z′1 =z2

z′2 =y′′ = z3

z′3 =y′′′ = t+ 1− ty − 2y′ = t+ 1− tz1 − 2z2

Thus,

Z′(t) =

 z1
z2
z3

 =

[
z2

−t2z1 − z2 + 2

]

=

[
0 1
−t2 −1

] [
z1
z2

]
+

[
0
2

]
with

Z(1) =

[
1
1

]
.
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(b) We have

Zk+1 = Zk + h

([
0 1
−t2k −1

]
Zk +

[
0
2

])
with t0 = 1 and

Z0 =

[
1
1

]
(c) We have

Z1 =Z0 + h

([
0 1
−t20 −1

]
Z0 +

[
0
2

])
=

[
1
1

]
+ 0.01

([
0 1
−1 −1

] [
1
1

]
+

[
0
2

])
=

[
1.01

1

]
Z2 =Z1 + h

([
0 1
−t21 −1

]
Z1 +

[
0
2

])
=

[
1.01

1

]
+ 0.01

([
0 1

−(1.01)2 −1

] [
1.01

1

]
+

[
0
2

])
=

[
1.02

0.99969

]

194


