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A bstract

The Boundary Element Method (BEM), based on the displacement Boundary Integral 

Equation (BIE), is now well established as an efficient numerical tool for engineering 

analysis. However, in some linear elastostatic problems, if the distance from an inte­

rior point to the surface of the solution domain, or between two points on two parts 

of the surface close by in a thin, slender body, is relatively small, it will give rise to 

near singularities of the kernel functions of the BIE as they are singular with respect 

to this distance. For these problems, the conventional BEM is not well suited as very 

siginificant mesh refinement becomes necessary. In this study, a self-regularization 

BEM scheme previously applied in two-dimensional (2D) elastostatics is extended 

to three dimensions (3D). It is first implemented for the evaluation of the displace­

ments and stresses at an interior point. Several numerical examples are presented to 

demonstrate the veracity of the scheme, for accurate solutions are obtained even for 

interior points very close to the surface without using refined mesh. A similar self­

regularized traction-BIE extended from the corresponding 2D scheme to the 3D case 

is then investigated for the thin-body problems. It is not met with success, however, 

due to the lack of C 1,a continuity across element boundaries. A new self-regularized 

displacement-BIE which does not require this continuity requirement is developed for 

treating the thin-body problem. Using this scheme, preliminary tests show that very 

accurate results can still be obtained for the boundary stresses and displacements 

even when the cross section of the domain is very thin indeed. More extensive tests 

will still be necessary to fully establish the general applicability of this new scheme.
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C hapter 1

Introduction

The Boundary Element Method (BEM) is a more recently developed numerical 

method for engineering analysis. The characteristic feature of this computational 

technique is that only the boundary or the surface of the solution domain needs to 

be discretized, unlike the commonly used finite element method (FEM). The BEM 

has now been well established as a very efficient computational tool for solving 

a large class of problems, in particular, those involving rapidly varying solution 

variables. In elastostatics, such problems occur in solids with stress concentrations 

and cracks. The BEM is based on the boundary integral equation (BIE) that gives 

its characteristic feature as a boundary solution technique. The BIE is derived 

using the fundamental solutions to the governing differential equations (also known 

as the Green’s functions) and the reciprocal work theorem. These fundamental 

solutions, which form the kernel functions of the BIE, are singular with respect to 

the distance between the source (or load) point and the field point of the solution 

domain. In the development of the BEM over the years, numerous efforts have been 

made in the literature to eliminate or “regularize” the singular integrals to allow 

accurate numerical evaluation of these integrals. They include analytical as well as 

numerical procedures. The analytical approaches are, generally, relatively complex 

mathematically, while the numerical approaches tend to involve algorithms that are

1
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relatively cumbersome to implement or are only suitable for specific applications.

A “self-regularization” technique was proposed by Cruse and Richardson (1996) 

in a BEM formulation for the evaluation of the displacements and stresses at 

interior points very close to the boundary of the domain in two-dimensional (2D) 

elastostatics, via Somigliana’s displacement and stress identities, respectively. A 

near-singularity condition in the integrals arises in this case as the interior point gets 

closer and closer to the boundary. This makes the accurate numerical evaluation 

of the integrals over the boundary elements close to these interior points a very 

serious issue. The self-regularization technique they had proposed overcomes this 

difficulty with relative ease, as it is mathematically quite straightforward and its 

implementation into existing BEM codes is also relatively simple. The usefulness of 

such a scheme has been demonstrated by Yu (2006), Shah et al. (2006) and Shah 

(2007) for obtaining interior point solutions required in the  determination of the 

T-stress in fracture mechanics studies. In this study, this technique is extended to 

the BEM analysis of three-dimensional (3D) bodies by modifying an existing BEM 

code based on the quadratic isoparametric element formulation. It will be explained 

in Chapter 3 and its successful implementation demonstrated by some examples.

The Somigliana’s stress identity was extended using this technique to the boundary 

in Richardson and Cruse (1999) to form the self-regularized traction-BIE for 

boundary solutions. A requirement for convergence of the numerical solution in 

the BEM implementation is displacement-gradient (or C l,a) continuity between the 

boundary elements at the inter-element nodes. These authors showed that despite 

using conforming C° elements, but employing a “relaxed continuity” approach, good 

results could still be obtained. They do, however, recommend the use of higher 

order conforming elements beyond the quadratic variation. It should be noted that
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the quadratic isoparametric element formulation is the most commonly used one in 

BEM analysis.

Further reports by Martin et al. (1998) and Ribeiro et al. (2002) show that 

this self-regularized traction-BIE scheme could not always give good results unless 

higher order or non-conforming elements are used. The use of non-conforming 

elements have been used before in BEM analysis, see, e.g. Dominguez and Ariza 

(2000), where collocation is carried out at points inside the elements instead 

of at the nodes associated with the elements, thereby ensuring the satisfaction 

of the continuity requirements. Both these “relaxed continuity” approach of 

Richardson and Cruse (1999) and the use of non-conforming elements in the 

traction-BIE have been tested only in 2D or part of a 3D BEM analysis of elastic 

bodies, and in potential theory, and show promising results. To the author’s 

knowledge, there are no reports of applying this self-regularization BEM scheme 

for the analysis of three dimensional elastic solids. Another focus of this thesis is 

thus to extend the scheme wholly with the approaches tried in 2D, to 3D elastostatics.

Another class of problems involving near-singularities in the integrals deals 

with thin, slender domains, commonly referred to as the thin-body problem. Exam­

ples of such problems are thin aerofoils and turbine blades as well as thin laminates. 

It is suggested in Richardson and Cruse (1999) that the self-regularized traction-BIE 

mentioned above, can provide a suitable solution tool for such problems as well. It 

will be shown later in Chapter 4, however, that this is not the case for the reason 

which will be explained then. A self-regularized displacement-BIE, similar to the 

approaches in Chapters 3 and 4, is proposed instead in Chapter 5 for the 3D BEM, 

specifically to treat the thin-body problem. It has not been introduced previously in 

the literature.
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First, however, it is useful to provide a brief review of the BEM for 3D elas­

tostatics based on the conventional displacement-BIE. This is presented in the 

next chapter. The basic analytical formulations and the numerical implementation 

will be described. The near-singularity issue arising in problems requiring interior 

point solutions very close to the surface of the domain and when treating thin-body 

problems will also be discussed.



C hapter 2

R eview  o f B oundary E lem ent M eth od

2.1 Introduction

The boundary element method (BEM) is an alternative numerical method to, e.g., 

the conventional finite element method which has been applied to solve problems in 

many branches of engineering. It has been established as an efficient and accurate tool 

especially when treating certain types of problems, such as those involving cracks and 

stress concentrations in elastostatics. This chapter introduces the basic concepts of 

BEM, and describes the boundary integral equations (BIE) tha t form the analytical 

basis of the BEM. Some problems that arise due to the singularities of the kernel 

functions in the BIE are discussed, as well as possible strategies to solve them. The 

traction-BIE is also introduced as an alternative boundary integral equation to the 

conventionally used displacement-BIE; it is typically used for treating crack problems 

but has gained attraction beyond applications to fracture mechanics.

5
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2.2 The Boundary E lem ent M ethod in 

Elastostatics

In the attempts to determine the stress distribution and deformation of solid bodies, 

pressure distribution over a surface in an incoming fluid flow, or temperature and 

flux distribution within a body under the influence of a heat source, numerical 

methods are often employed. This can help reduce the time and cost considerably 

in the design and performing experiments where required. It can also help improve 

the design of engineering components before they are manufactured. In order to 

serve this purpose, several numerical methods have been developed since the 1940’s 

and are widely used in various fields in engineering. Among these techniques, the 

boundary element method (BEM) is a more recently-developed method. It has been 

proven to be an efficient and accurate numerical method when compared with other 

conventional methods such as the finite element method (FEM), the finite difference 

method (FDM), and the finite volume method (FVM).

In solid mechanics, the geometry and the displacements are continuous all 

over the domain of a problem. In order to numerically analyze the problem, the 

domain often needs to be divided into a mesh of small elements, over each of which 

the geometry, tractions and displacements are represented by certain polynomials 

in terms of intrinsic coordinates, which axe related to global coordinates by certain 

relationships. In domain-solution method, i.e. FEM, FDM and FVM, both the 

surface and interior of the domain are discretized. In BEM, however, only the surface 

is discretized, leaving the interior continuous. This reduces the dimensional order 

of elements that are used by one, i.e., line elements are used for two-dimensional 

problems, and surface elements are used for three-dimensional problems. Typical 

FEM and BEM meshes used for two- and three-dimensional problems are shown in
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Figure 2.1.

Since the interior of the domain remains continuous in BEM, less of the do­

main is discretized or approximated compared to domain-solution methods. The 

results will also be more accurate because of the use of singular fundamental 

solutions. Thus, one can afford to use fewer number of elements than in other 

methods for a particular model. This will become more evident when calculating 

stresses and displacements at an interior point inside the domain; they can be 

directly obtained from known boundary values in BEM as a secondary procedure, 

while in FEM they need to be interpolated by the element that contains the interior 

point if it is not exactly on an interior node. All these features thus significantly 

reduce the number of elements and nodes on which tractions and displacements 

are to be calculated, thus reducing the amount of numerical modeling work as 

well as computational time. It also makes BEM more suited for preliminary de­

sign since a surface mesh is easy to modify locally when the outer geometry is changed.

Both BEM and FEM calculate nodal values by forming a system matrix which is 

to be inverted to get the unknowns. In FEM the matrix is symmetric and sparsely 

populated. In BEM, however, the matrix is unsymmetric and fully populated with 

non-zero coefficients. However, it should be noted that the size of the matrix is very 

much smaller than that in FEM, thus this disadvantage of fully-populated matrix is 

more than compensated for by the smaller amount of matrix coefficients that need 

to be stored. A severe drawback of BEM is that it is better suited for problems 

with a relatively small surface/volume ratio, but not for thin body problems where 

the distance between two nodal points can be small. This is due to the singularity 

of the kernel functions in the boundary integral equations, which will be evident 

later below. Also when an interior point is close to the boundary, the results will



again suffer because of the near singularities of the integrands. The FEM therefore 

is generally more efficient in treating thin-body problems. These issues are the focus 

of this study and will be treated in the chapters that follow.

2.3 Boundary Integral Equations

The well-known displacement-boundary integral equation (displacement-BIE) is de­

rived from Betti’s reciprocal work theorem and the use of the fundamental solution to 

the Kelvin’s problem in elasticity. The process of this derivation is described in the lit­

erature, see, e.g., Tan (1987), Becker (1992) and Kane (1994). The displacement-BIE 

can be expressed as:

C i j ( P ) u j ( P ) +  f  T i j ( P , Q ) n i ( Q ) d S ( Q )  =  f  C / „ ( P , Q ) i , ( Q ) < i S ( Q )  (2 .1 )
Js Js

where P  and Q are the source point and field point, respectively, and the free-term 

Cij is a constant, second-order tensor whose values depend on the geometry of the 

boundary at P. Also, Ui(Q) and U(Q) are the displacements and tractions at the 

boundary point Q, respectively. Uji and T)j in Equation (2.1) are the kernel functions 

corresponding to the Kelvin’s fundamental solutions for displacements and tractions, 

respectively. They represent the displacements and tractions, respectively, in the i-th 

direction due to a point load at P  in the j -th direction. In three dimensions, they are 

expressed as

Uii =  16^ ( 1  -  v ) r 1(3 “  iv)5ti +  r’,rj] <2'2)
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where r  is the distance between P  and Q , and n, is the unit outward normal at Q. 

The comma index denotes derivative with respect to coordinates x t, i.e. r t =  dr/dxi,  

and the normal derivative is expressed by

d r =  dr dx t
dn dxi dn  1 '

The displacements and tractions are the primary solution unknowns that need to be 

computed in order to solve an elasticity problem. For a particular load case, either 

the displacement or traction is known in one direction on a part of the surface, with 

the other quantity remaining unknown. The surface S  of the  domain is generally 

divided into two categories: one with displacements prescribed, denoted by Su, the 

other with tractions prescribed, denoted by St , as shown in Figure 2.2.

2.4 Num erical Integration

The analytical solution to Equation (2.1) is usually not possible to obtain for 

arbitrary geometries. Numerical methods must therefore be employed. In order 

to do this, the surface of the solid is divided into a mesh of small elements. The 

integration in Equation (2.1) is replaced by the summation of integrals over each of 

the elements.

As mentioned earlier, line elements are used for two-dimensional problems and 

surface elements are used in three dimensions. Over each element, the variations of 

both the geometry and field variables (displacements and tractions) are assumed; 

they can be constant, linear, quadratic, cubic or higher order. The geometry and 

the field variables can be described in different orders as well. However, based on 

experience in both FEM and BEM, quadratic variation for both geometry and field
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variables has been shown to be very efficient while providing good accuracy. Elements 

using the same variation for geometry and field variables are called isoparametric 

elements. Thus, in boundary element analysis, the most commonly used elements 

are isoparametric quadratic elements having quadrilateral or triangular shapes 

with either eight or six nodes at the corners and mid-points of the sides. Each 

element is defined by a set of intrinsic coordinates £1 and £2 varing from — 1 to 1 

for quadrilateral element and 0 to 1 for triangular element, as shown in Figure 2.3. 

The global coordinates of a point lying on an element are mapped by a set of shape 

functions iVc(£i,£i) and global coordinates of the nodes as follows:

6 or 8

H  (2-5)
c ~  1

Since the element is isoparametric, displacements and tractions are expressed in the 

same way:
6 or 8

(2 .6)
C—1

and
6 or 8

< i« i.& ) =  £  (2-7)
c =  1



For quadrilateral elements, the shape functions are:

— t K 1 — £ 0 ( 1  ~  £2X 1 +  6  +  £2)

% ( & ,{ 2) =  i ( l - © ( 1 - 6 )

^ 3 (^ 1 ,  ^2) =  +  £ 0 ( 1  ~~ C2)(1 “  £ l  +  £2)

-^4(£i ,£2) =  |(1  +  £ i)(l -  £|)
(2.8)

•^ s(£ i)  £2) =  - 4 X 1 +  £ i ) ( 1 +  £2) (1 -  £1 — £2)  

iV6(£ x, £ 2) =  | ( l  - £ ? ) ( l  +  £2)

■^7(£i ? £2) =  x  ~  £ i ) ( !  +  £ 2 X 1  +  £1 — £2)

iV8(£1,£2) =  | ( l - £ 1) ( l - £ 22)

The shape functions for triangular elements are:

M ( £ i , £ 2) =  (1  -  £1 -  £2) ( 2 ( 1  -  6  -  £a) -  1) 

Ar2(£i,£2) - 4 £ 1( l - £ 1 - £ 2)

Ar3 ( £ i , £ 2) =  £ i ( 2 £ i  -  l )
(2.9)

Wi(£i) £2 ) =  4£i£2

iV5(£1,£2) = £ 2(2£2 - l )

^6(£i)£2) =  4£2(1 — £1 — £2)

The shape function JVc(£i,£2) of node c equals to 1 at node c, and 0 at all other 

nodes. The coordinates and field variables in the global coordinate system at a point 

within the element are now explicitly expressed by the nodal values.
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In order to integrate over the element, Gaussian quadrature is used for quadrilateral 

elements while the Hammer-Stroud formula is used for triangular elements. Both 

integration schemes select several integration points on the element whose intrinsic 

coordinates are pre-determined by a series of known abscissae, at which the values 

are calculated. They are then multiplied by a weight function, and summed to obtain 

the approximate value of the integral, as follows (Becker 1992):

for triangular elements, where Gm and Gn are the number of Gaussian points in the 

two directions, which are usually set to be identical; N  the number of Hammer-Stroud 

integration points; and Ui the weight functions. A large number of integration points 

provides better accuracy, but at the expense of computing time. Therefore a balance 

between accuracy and efficiency needs to be found. In the computer code used in this 

study, as used in Tan and Fenner (1978), 4 x 4  (Gm = Gn =  4) integration points for 

quadrilateral elements and 13 points for triangular elements are employed for most 

cases. They provide very good results while taking relatively low computing time.

A transformation from the elemental coordinates £1 , ^ 2  to the global coordinates Xi 

is needed, i.e.

(2 .10)

for Gaussian quadrature, and

(2 .11)

(2.12)
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where J(£ i ,£2) is the Jacobian of transformation. It may be expressed as

0(6 . 6 )

_  , .d x 2 dx3 dx:i dx2 „ dx3 dxi d x 2dx3 d x 2d x 2 dx2 d x l .J
' n d (2 d(2 8 6  0 6 J ^0 6  0 6  8 6  8 & ' l 0 6  0& 8 6  0 f2

(2.13)

where
f a . - ‘^ ‘ 0 ^ 6 , 6 )

96  t ?  ’

is the derivative of global coordinate x* with respect to intrinsic coordinate The 

unit outward normal, ni3 is then expressed by:

" •  =  ( 2 ' 1 5 )

When P  is a node of a quadrilateral element, integrating over the integrand with Tl3 

in Equation (2.3) is singular and varies very rapidly. Thus a somewhat different inte­

gration scheme has to be adopted. This was done by dividing quadrilateral elements 

into either two or three triangular sub-elements depending on whether the node is a 

corner node or mid-side node. A set of local system of coordinates and linear shape 

functions are introduced to transfer coordinates from the sub-element to the parent 

element (Lachat and Watson 1976) as follows:

U.ri) = i ( l + m < ,)(l +  W 2m)«<m>, m  — 1,4 (2.16)

In Equation (2.16), rf£ are the intrinsic triangular coordinates of the m th node of the 

sub-element, and are the intrinsic coordinates of the vertices of the triangular 

sub-element. At the vertex where P  is located, ^  ^  ■ The Jacobian from the

sub-elemental coordinate system r)a to the elemental coordinate system £Q is then
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expressed as:

d(£i>&2)
d(m,v2)
d t i i v u m )  & _  &(rji,ri2) d&jrjurii)

dr)i dt)2 dr)x dr)2

(2.17)

Then the integral over a quadrilateral element containing source point P  becomes

/I/I f (P,Q)dS(Q)  =  /I/I
■ I I

(2 ,18)

Substituting Equations (2.6 ),(2.7),(2.10) and (2.12) into Equation (2.1), the following 

expression is obtained for a model meshed using n nodes and M  elements:

M  8 o r  6 „

cij(F“K(p°) + E E
b= 1 c = l  ,'S(-

M 8 o r  6 «

= E  E  tAP*b'c)) /  tiij(i”.Q(«i,6))iV“(«1,6)|Jto,f2)K1<iea
6=1 c=  1 ^ Sl>

(2.19)

where P a is the node number ranging from 1 to n, b is the element number ranging 

from 1 to M,  and P d(6>c) denotes the c-th node of the 6 -th element. The displacements 

and tractions at the Gaussian points are interpolated by nodal values of Ui(P) and 

t,(P ) using the shape functions, which are fixed for an element so they are taken 

outside the integration. Note that the nodal displacements are the same on different 

elements sharing the node, but tractions can vary from element to element according 

to the boundary conditions imposed on that element.
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There was no simple explicit formula for the CV, terms in 3-D until very re­

cently, see, e.g., Dangla et al. (2005). The approach proposed in this paper is to 

analytically calculate the terms based on the local geometry of the node. How­

ever, an indirect approach is widely practised in the boundary element community as 

generally there is no need to obtain these values analytically. This indirect approach 

uses the rigid-body motion condition, where the tractions tJ(P) on the right-hand 

side of Equation (2.19) are all zero. The diagonal sub-matrix can then be obtained 

by:

M  8 o r  6 »

cti(n+Yi E  4«< / rji(i~.Q(f,,6))w‘i({i,&)iJ«i,6)i<ieii«2
6=1 c=  1 J S b

M  8 o r  6

= ~ X̂  XZ ~ âd)
6=1 c = l

(2 .20)

Equation (2.19) represents a set of 3n equations. It can be expressed in matrix form 

as:

[A]{u> =  [B]{t} (2.21)

where [A] and [B] are matrices storing coefficients of displacements and tractions, 

respectively, and {u} and {t} are vectors that contain displacements and tractions 

at all the nodes.

The boundary conditions imposed on the boundaries are transfered to the ele­

ments, with either prescribed displacements or tractions. In some cases, nodal 

constraints are also applied when displacement constraints on the surface are not 

present to prevent rigid body motion. Therefore at each boundary node, in each 

direction, either the displacement or the traction is known. Whenever there is an

Jsb
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known value, it is multiplied by the corresponding coefficient and put into a second 

member {b}, and the coefficient of the unknown will remain in matrix [A]. After 

this step, Equation (2.21) becomes

[A]{x} =  {b} (2.22)

where vector {x} stores all the unknown displacements or tractions. Now the set of 

equations axe ready to be solved by, say Gauss elimination. After solving for {x}, 

the displacements and tractions at all boundary nodes axe known. The boundary 

stresses are obtained from the displacements and tractions a t each node. This is 

well-established in literature and will not be repeated here.

2.5 Stress and D isplacem ent Solution  for Interior 

Points

After solving the system equations in Equation (2.22), the displacements and stresses 

at the boundary nodes are known. The displacements Ui(p) and stresses oy,'(p) at an 

interior point p can now be obtained, if required, using the calculated values of the 

displacements and tractions at the boundary nodes via Somigliana identities:

ui(p) = ~  [  ui(Q)Tji(p,Q)dS(Q) + f  ti(Q)Uji(p,Q)dS(Q)  (2.23) 
Js  Js

and

0 y(p) =  -  f  uk(Q)Skij(p,Q)dS(Q) + f  tk(Q)Dkij(p,Q)dS(Q) (2.24)
Js Js
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where Uij and Ti3 are defined before and Skij(p,Q) and Dkij (p ,Q ) axe third-order 

tensors expressed as:

H dv
Ski j(p,  Q)  =  4 ^ ( 1 Z"zyyr 3 ^3 ^ [ ( 1 -  2 u ) sa r ,k +  +  Sk jr ti ) -  5r.iT-jr,fc]

4- r i i [ 3 u r j r tk +  (1 -  2u)Skj]

+  nj [3uriir tk +  ( l - 2 v ) 6 ki]

+  nfc [3(1 -  2 u)rtird -  (1 -  4i/)<Sy ]}

(2.25)

and

2 — 2 i/
D k i j (p j Q )  — _  y^j.2 ^ k i r ,j +

3

(2.26)

These third-order tensors are obtained from the derivative form of Equation (2.23) 

and using Hooke’s Law. The integrals are evaluated by Gaussian quadrature on each 

element as before.

Interior point solutions are typically even more accurate than boundary solu­

tions since the interior of the domain is not discretized or approximated. However, 

when the interior point is close to the boundary, due to the so-called near-singularities 

of the kernels SklJ and DklJ which are of order of r~3 and r -2, respectively, the 

integrands over the element close to the interior point will vary very rapidly. This 

can cause the results to deteriorate, especially the stresses, if a fixed quadrature 

scheme is employed. This is known as the “boundary layer effect” in the BEM
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literature. A direct way of solving this problem is to refine the surface mesh near 

the interior point, or to significantly increase the number of Gauss points. As can be 

seen in Li (2003), however, this method often requires a very refined mesh, which 

is impractical when multiple interior points are needed, and even more cumbersome 

in three dimensions. A similar approach is seen in Jun et al. (1985) where a simple 

partition of element close to the point is used.

Other methods of removing the singularity are by “regularization”, such as by 

analytically integrating over each element close to the interior point. For example, 

Granados and Gallego (2001) used regularization in a complex plane, and Niu 

et al. (2005) proposed a semi-analytical approach to transfer the singular surface 

integral into a series of line integrals by using integration by parts. Other analytical 

approaches can be seen in Ma and Kamiya (2001), Zhou et al. (2008), and Xie 

et al. (2011). These approaches can provide very accurate results in two dimensions, 

but are either analytically and/or numerically, very complex and difficult to apply 

to general three-dimensional problems. A very simple approach was proposed by 

Cruse and Richardson (1996) in which simple solutions of a rigid body motion and 

constant stress state are added and subtracted back into Equations (2.23) and (2.24), 

respectively. Detailed analysis of this scheme can be seen in Richardson (1998). 

Compared to other approaches, this method is relatively simple both analytically 

and numerically. This method was implemented for two-dimensional elastostatics 

in Cruse and Richardson (1996), Richardson and Cruse (1999). A similar approach 

was employed for potential theory by Sladek et al. (1993). It has also been employed 

in the evaluation of T-stress in fracture mechanics where interior points on the 

integration path can be located close to the crack surface or interface between 

two subregions (Yu 2006, Shah et al. 2006, Shah 2007). No implementation for 

three-dimensional problems, however, has been reported to the author’s knowledge.
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It will be extended to three dimensions in this study, and will be presented in 

Chapter 3.

2.6 Traction-BIE and H ypersingular-B IE

Besides the conventional displacement-BIE, another category of boundary integral 

equations is sometimes also used in BEM, known as the traction-BIE. It is often 

used in conjunction with displacement-BIE for crack problems, as in the dual 

boundary element method, see e.g., Mi and Aliabadi (1992). It greatly simplifies the 

discretization process as well as improving the accuracy (Dominguez and Ariza 2000).

Traction-BIE is formed by differentiating conventional displacement-BIE with 

respect to the coordinates and multiplying unit outward normals at the source point. 

For P  lying on a smooth surface, the following equation (Jin et al. 2011) is obtained:

^ ( P )  +  n j (P) j  S kij(P, Q)uk(Q)dS(Q)  +  nj iP)  j  Dkij{P, Q)tk(Q)dS(Q)  (2.27)

where n*(P) is the unit outward normal at source point P.  The third-order tensors 

S kij  and Dkij are given in Equations (2.25) and (2.26); they are of order of r - 3  and 

r~2 respectively. They are hypersingular, which imposes a difficulty to the numerical 

method if standard integration is to be used. This is especially so when the source 

point belongs to the element being integrated over. The sub-division of element as 

in conventional BIE will not work since the singularity of the kernels in traction-BIE 

are one order higher than that in displacement-BIE; this process only yields order r  

as P  —> Q.
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A common approach to reduce the singularities of the integrands of the inte­

grals in Equation (2.27) is to analytically compute the singular integrals, such as 

in Chien et al. (1991) where superposition of rigid body motion was implemented, 

thereby leading to the need to evaluate integrals in Cauchy principal value sense. The 

idea of subtracting and adding back terms of known stress state or terms in Taylor 

series from the density function to reduce the singularities has also been used in sev­

eral papers. Rudolphi (1991) first introduced the use of simple solutions to regularize 

hypersingular integrals; Cruse and Suwito (1993) subtracted and added back terms 

which were then analytically computed; Liu and Rizzo (1992), Li and Huang (2010) 

applied this idea in three-dimensional acoustic problems. In Richardson and Cruse 

(1999), the self-regularization for interior point is extended to traction-BIE by taking 

the interior point to the boundary in Somigliana identity for stresses. It follows 

the similar process as that for interior point, and no analytical solution is involved. 

This method is thus both analytically and numerically simple, and is easy to be im­

plemented in an existing computer code. This will be discussed in detail in Chapter 4.

Another difficulty of the hypersingular-BIE is the requirement of displacement- 

gradients or stress continuity on the boundary, known as the C 1,Q: Holder continuity. 

A detailed discussion of the continuity requirement can be seen in Martin and 

Rizzo (1996). In conventional BIE, the most commonly used quadratic elements are 

only C0,a continuous, i.e. displacement are continuous all over the boundary, but 

displacement derivatives and stresses are discontinuous across the element boundary. 

Several papers deal with this problem, mostly in two dimensions, however. Jin 

et al. (2 0 1 1 ) used an adaptive meshing scheme to make sure that the source point 

is always the mid-point of an element where stresses are continuous; Wang and 

Li (2009) developed a set of novel shape functions to relate nodes on different 

elements sharing the source point to ensure continuity of displacement derivatives
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at the source point; Jorge et al. (2003) added extra equations to the system matrix 

to enforce displacement derivatives to be the same on different elements sharing 

the source point. These methods are efficient and accurate in 2-D, but are not as 

straightforward to implement into 3-D. For example, in 2-D every extreme node is 

shared by two elements, while in 3-D, only the mid-point nodes are shared by two 

elements, but the corner nodes are shared by at least three elements, usually four 

or more. The idea by Jin et al. (2011) thus cannot be easily extended to 3-D in a 

general way. Due to the same reason, the shape functions developed in Wang and Li 

(2009) will be much more complex in 3-D. In the continuity enforcement strategy, 

for a node shared by m  elements, m  set of extra equations are to be written to be 

placed in the system matrix. Even for a simple block with one element on each face 

with a total of 2 0  nodes, hundreds of extra equation will be added to the matrix 

while the original system matrix is only 60 x 60.

Based on their earlier analysis in Cruse and Richardson (1996), Richardson 

and Cruse (1999) proposed a “relaxed continuity” strategy to  approximate continuity 

across element boundaries. This scheme takes the average of the displacement 

derivatives at a node according to the element it belongs to. They showed some 

results of simple two-dimensional elasticity problems, but suggested tha t higher 

order elements are still preferable to using quadratic elements. This issue was also 

discussed in detail in Martin et al. (1998). However, Ribeiro et al. (2002) have 

argued that this relaxed continuity approach is the main source of error when using 

conforming elements. They showed that the use of non-conforming elements, whose 

collocation points are located inside the element instead of at the boundary nodes, 

provides better results just as well as with the use of higher-order elements. The use 

of both non-conforming elements, which increases the size of the system matrix since 

collocations are done at interior of the elements, and higher-order elements, will
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increase computing time significantly particularly in three dimensions. A strategy 

similar to the use of non-conforming element but with the same size of system 

matrix as in displacement-BIE, was used in two-dimensional elastodynamics by 

Gallego and Dominguez (1996). Ribeiro et al. (2009) implemented this scheme for 

two-dimensional potential problems, and 3-D acoustic problems were treated in Liu 

and Chen (1999) using the scheme. Dominguez and Ariza (2000) and Dominguez 

et al. (2 0 0 0 ) adopted this strategy for three-dimensional fracture problem where 

traction-BIE is only applied to elements on the crack surface while for the other 

elements in the problem, the displacement-BIE is applied. In this study, the 

self-regularization scheme is adopted, along with the collocation strategy applied 

to the entire surface of the domain. The relaxed continuity will also be tested and 

discussed in Chapter 4.

As mentioned previously, a class of problems that BEM is not very well suited for are 

those that involve thin bodies. In these problems, the distance between source point 

and field point, r, can be small when two surfaces are close to each other, making 

the kernel functions vary rapidly over the elements. This leads to errors in numerical 

integration if a fixed quadrature scheme is employed. The methods to solve this 

problem in the literature are, again, mostly to analytically integrate the singular 

kernels, see, e.g., Ye and Liu (1985), Liu (1987), and Krishnasamy et al. (1994). Liu

(1998) proposed a non-degeneracy approach by adding and subtracting a term to the 

conventional displacement-BIE which was analytically calculated by line-integrals 

using Stokes’ theorem, and obtained good results. Cruse and Aithal (1993) also 

proposed an approach to solve thin-body problems by the use of regularization of 

integral operators and a theta integration algorithm. All these analytical approaches 

are, again, mathematically complex and not that simple to implement. It was 

suggested in Richardson and Cruse (1999) that the self-regularized traction-BIE
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should be well-suited for thin-body problems. The self-regularized traction-BIE is 

also a focus of this thesis. It will be dealt with in greater detail in Chapter 4.

2.7 Concluding Rem arks

This Chapter has reviewed the concepts of boundary element method and its 

advantages over some other numerical methods. The steps in the derivation of the 

displacement-BIE were presented. How interior point solutions can be obtained as a 

secondary procedure has also be described. The traction-BIE was then introduced 

as an alternative boundary integral equation. Two main difficulties due to the 

singularity of the kernel functions were discussed. They are, (a) the loss of accuracy 

of the results of displacement and stress at the interior points close to boundary, 

and (b) hypersingularity of the integrals involved in the traction-BIE. These two 

problems are the main topics of the next two chapters.



a) BEM mesh for 2D problem, 13 element, 26 nodes

c) BEM mesh for 3D problem, 114 element, 344 nodes

b) FEM for 2D problem, 39 elements, 146 nodes

d) FEM for 3D problem, 392 elements, 1925 nodes 

Figure 2.1: Typical BEM and FEM meshes for 2D and 3D problems

to
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Figure  2 .2 : Boundary conditions imposed on surface of domain
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Figure  2.3: Local coordinate system of quadrilateral and triangular elements



C hapter 3

Self-regularization for Interior P oin ts

3.1 Introduction

In this chapter, the self-regularization scheme for interior point solutions proposed 

by Cruse and Richardson (1996) in two dimensions is extended to three dimensions. 

Using this method, when an interior point is close to the boundary, the near-singular 

kernels are regularized, therefore standard integration scheme can be used without any 

mesh refinement or special analytical transformation. The details of the regularization 

process are described in this chapter. Several numerical examples are presented to 

show the accuracy obtained by this method.

3.2 Self-regularization o f Interior P oints in Three 

Dim ensions

The Somigliana identities provides the displacements and stresses at an interior point 

p in terms of surface tractions and displacements. They are presented here again, as 

follows:

Uj(p) = -  f  ui(Q)Tji(p,Q)dS(Q)  +  [  t i(Q)Uji(p,Q)dS(Q) (3.1)
Js Js

27
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and

Vijip) = - J s uk(Q)Skij(p, Q)dS(Q) + j  tk(Q)Dkij(p, Q)dS(Q)  (3.2)

where the kernel functions Tij, UtJ, Dkij and Sklj are given in Chapter 2. When an 

interior point is close to the boundary, results from the numerical evaluation of the 

integrals will deteriorate due to the rapid variation of these singular kernels. The self­

regularized displacement identity for two dimensions subtracts and adds back terms 

of a rigid body motion as follows (Cruse and Richardson 1996):

uj ( p ) - u j (P) = -  f  [ui( Q ) - u i(P)}Tji(p,Q)dS(Q)+ f  ti(Q)Uji(p,Q)dS(Q) (3.3)
Js Js

where p is the interior point, P  the regularization point at the boundary, and Q the 

field point. Similarly, a regularized stress identity is proposed in Richardson and 

Cruse (1999). This regularized form is obtained by subtracting and adding back 

simple solutions corresponding to a constant stress state where the stress field is 

constant throughout the elastic body and the displacements axe linearly distributed.

The regularized stress identity is expressed as

= ~  [  K (Q ) “  u%(Q)]Skij(p,Q)dS(Q)+ [  [tk(Q) -  t%(Q)]Dkij(p,Q)dS(Q)  
Js Js

(3.4)

where u%(Q) and t%(Q) are displacement and traction solutions to the constant stress 

state, respectively. They are expressed as

4 ( Q )  = M P )  + -  Xm(P)] (3.5)

and

t£(Q) = 0 km(P)nm(Q) (3,6)
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where nm(Q) is the unit outward normal at integration point Q and Ufc,m(P) are 

displacement gradients at the regularization point P , which will be obtained from 

the boundary values later.

The self-regularized displacement and stress identities has been tested success­

fully on simple two-dimensional elasticity problems by Richardson and Cruse (1999). 

It should be noted, however, that the singularity of all the kernel functions are one 

order higher in three dimensions than the corresponding ones in two dimensions. 

In Equation (3.3), Uij(P,Q) on the right-hand side is not regularized, since it is 

only of the order of ln( l / r)  in two dimensions. In three dimensions, however, this 

kernel is one order higher and becomes of order r _1. It is useful for this kernel to 

be regularized as well, even though the associated integral is only weakly singular. 

Using the same form of adding and subtracting constant stress state terms to the 

stress identity, the following expression is obtained:

« j ( p ) - ^ ( p )  =  -  /  M < ? )  -nf(Q)]Tji(p,Q)dS(Q)+ f  [U (Q ) - t fm U n( p ,Q )d S ( Q)  
Js Js

(3.7)

where u f (Q) and t f  (Q) are given before, and uf(p)  is defined similarly as

u f  (p) =  Uj(P) +  Ujtm(P)[xm(p) -  x m(P)} (3.8)

where Uj^m{P) is again the displacement derivatives at point P.  Now all the kernels 

are completely regularized and the interior points can be taken close to the boundary 

without any concerns of the singularities.

The process for two-dimensional problems can be seen in Richardson and Cruse

(1999), Yu (2006), and Shah (2007). Here the process is extended to three dimensions
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as it is slightly different than that in two dimensions.

At point P , tractions and displacements are interpolated by the nodal values 

of the element containing P  using the shape functions, i.e.:

ti = teiN c(£1,&)  c =  1,8 or 6  (3.9)

The relation between tractions and displacement gradients is

tj =  (JijTlj ~  [— "T 1-1 j,i) (3.10)

The relation between the displacement gradients in local and elemental coordinate

systems is
d«i(6,6) &s r ' d N c(£,i,f2), N dui d x k

=  5  — a&— W -  =  a& ( 3 ' n )

Combining the above two equations, a set of nine equations to obtain Uk,m can be

expressed in matrix form as follows:
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2M(1 - * ) „  
1—2* 741 /m2 M«3 p n 2

^
1—2* ^ 0 f i n 3 0

1 *

U l , l

^2
2 u.u _  

1 -2 *  n 2 p n i 0 / t « i
2m( 1 - * ) „  

1 - 2 *  2 t m 3 0 f j . n 3
2a«/ ~  

1 - 2 *  n 2 u 2 ,l

*3 1 -2 *  743 0 / m i 0
2ui/ 

1 - 2 * ^ 2 H n 2 f j . n i \ i n 2 1 - 2 *  743 ^ 3,1

8m
0 ( i

d x \
0 ( i 0 0 dX2

0 ( i 0 0 0 X3
o ( i 0 0 ^ 1 .2

d u 2
o i l

► = 0 d x \
% 0 0 dX 2

0 * 1
0 0 dx%

0 ( i 0 <
U 2 ,2

du:i
Oil 0 0

d x \
d ix 0 0 3 X2

0 ( i 0 0 0 X3
U 3 ,2

8m
0(2

d x \
0 0 9 X2 0 0 d x 3 0 0 ^ 1,3

duy
0(2 0

d x \
0 0 3 X2 0 0 d x s

0 ( 2
0 ^ 2,3

0 u 3 
0 ( 2  „ 0 0 8xi

0 ( 2
0 0 dX 2

0 ( 2
0 0 8x3

0 ( 2 u 3 ,3
K J

=  [A*]uk,m (3.12)

Inversion of the (9 x 9) matrix [A*] gives values of Uk,m in terms of nodal displace­

ments and tractions of the element containing the regularization point. They are 

then used in Equation (3.5) to get uf.  The t f  terms are computed using Equations 

(3.10) with rij being the unit outward normal at point Q  as in Equation (3.6).

In two-dimensional analysis, the regularization point is simply chosen as the 

node closest to the interior point (Yu 2006, Shah 2007). In three dimensions, 

however, it was found out that the nearest node cannot always be chosen as the 

regularization point due to the fact that the kernels are one order higher than those 

in two dimensions, making their variations more rapid. This is especially true when 

the interior point is very close to the boundary. This can be further explained 

here. Figure 3.1 shows a two-dimensional element on which regularization point P  

is the closest to the interior point p. If one takes the example of which is of
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order of r~2(p,Q), the singularity is regularized by the term [ut(Q) — Ui(P)] and 

the Jacobian /(£  i , ^) -  As the interior point gets close to the boundary, r(p,Q) will 

tend to equal to r(P , Q), which cancels the singularity precisely. However, if P  is 

located somewhere else, for example a boundary node P ' in Figure 3.1, r(P' ,Q)  

may not be small enough to minimize the large quantity produced by 1 / r 2 in the 

Tij terms. Therefore the closest point has to be found so tha t the r(p, Q) is the 

smallest distance from p to the boundary. In other words, the normalized vector ~ct 

from p to P  should be parallel to the outward normal at P. This is done by making 

components in each direction of these two vectors equal, i.e.

a* =  n;(P) (3.13)

An algorithm has been developed to find such a point, which first identifies the closest 

element to the interior point, then divides the element into 1 0  by 1 0  grids, search for 

the closest intersection point P\ on the grid, then divides a smaller area around that 

point into a smaller grid in which a closer point P2 is searched for. This process is 

repeated until the difference between a, and n ,(P ) falls under a certain threshold, 

so that these two vectors are sufficiently parallel. In this study, this threshold was 

set to be 0.00001. This process is illustrated in Figure 3.2. Using this algorithm, 

the regularization point is mostly located inside an element where the displacement 

derivatives and stresses are continuous, so that the smoothness requirement of the 

regularization point is met, as discussed in Cruse and Richardson (1996).



3.3 Num erical Exam ples

The self-regularization scheme described above has been implemented into the BEM 

code based on displacement-BIE as used in Tan and Fenner (1978) for general three- 

dimensional isotropic elastostatics. 4 x 4  Gaussian and 13-point Hammer-Stroud 

quadrature are employed for quadrilateral and triangular elements, respectively. To 

verify this technique, several numerical problems involving different geometries and 

boundary conditions are tested. For all the cases, Young’s modulus is set to 1000 units 

and Poisson’s ratio is 0.3 unless specified otherwise. In each case, interior points are 

located so that the distance to the surface is gradually decreased. For comparison, 

the results without using self-regularization are also presented for some cases so that 

one can observe the deterioration of the solutions without the regularization of the 

singular kernels. The results are also compared with the exact solutions that can be 

found in literature to demonstrate the accuracy obtained with this method.

(A) A Cube under Uniform  Stress

A simple solid cube with a dimension of 1 unit in each direction under uniform 

applied stress on its sides is tested first. The block is meshed by only 6  elements 

and 20 nodes, as shown in Figure 3.3. Two cases, one with uniform tensile stresses 

crn  =  1, ai 2 — 2 ,0-33 =  3 and one with shear stresses a12 = a \ 3 =  a23 =  1 are tested. 

In the first case, three surfaces are constrained in three directions and the other 

three corresponding parallel surfaces are loaded with tensile stresses. In the shear 

loading case, the appropriate nodal constraints are applied.

Several interior points are located at positions ranging from the center of the 

block to close to the surfaces, as shown in Figure 3.3. The stresses are uniform 

within the domain, and the displacements are obtained from Hooke’s law and
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strain-displacement relations as:

(3.14)

where dj is the distance from a fixed point, set at the origin. The calculated stresses 

and displacements at the interior points are presented in Tables 3.1 through 3.4 for 

the two cases, both with and without self-regularization, and are compared with exact 

solutions.

(B) Cantilever Beam  under a Shear Load

The second problem is a cantilever beam with one end fully constrained and the other 

subject to an unit shear load. Poisson’s ratio is set to zero to enable comparison with 

the results of one-dimensional simple beam theory. The beam has a length of 8  units 

and its height and width are both 1 unit. The interior points are located at a cross- 

section whose distance from the fixed end is 3, and are positioned from the lower 

surface to the upper surface, as shown in Figure 3.4 (a). Figure 3.4 (b) shows the 

mesh of the beam with 72 elements and 218 nodes. According to the beam-bending 

theory, the axial stress ax and lateral displacement v at a point with distance x  from 

the fixed end and distance y from the neutral axis are:

respectively, where F  is the shear load applied at the free end, I the total length of 

the beam, and I  the moment of inertia of the cross-section.

M y  F(l  -  x)y
(3.15)

and
F x 2(3l -  x)

( 3 . 1 6 )
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Table 3.5 presents the axial stress and vertical displacement at these interior 

points obtained, with and without self-regularization. The exact solutions calculated 

from the above two equations are also listed for comparison.

(C) Internally Pressurized Cylinder and Sphere

Two pressurized vessels are tested here in the shapes of a cylinder and a sphere. The 

case considered are for outer to inner radius ratio, K  — r0/ r i , of 2 and 1.5 for the 

cylinder and the sphere, respectively, where the inner radius r* is arbitrarily taken to 

be 1 , and rQ is the outer radius. Due to symmetry, only 1/4 of the cylinder and 1/8 

of the sphere are modeled. Meshes for the problems are shown in Figure 3.5 (b) and 

(c). The cylinder is meshed with 32 elements and 92 nodes; the mesh for the sphere 

has 48 elements and 146 nodes. For both cases, interior points are located on a radial 

line from the inner radius to the outer radius, as shown in Figure 3.5 (a). The exact 

solutions for hoop stress distribution in a pressurized cylinder can be expressed as:

P i - P o K 2 K 2(Po- Pi) f ris2 
a° = K 2 _  x ^ 2 ----— ( t )  (3-17)

and radial stress as
P i - p 0K 2 K 2(p0 — Pi) rri^2

R 2 _ l  + - ^  —  (7 ) (3.18)

where pi and pa are internal and external pressure, respectively, and r  is the radial 

distance. In this example, the upper and lower end surfaces of the cylinder are 

constrained in the axial direction, so that the axial stress cra is obtained for plane- 

strain state from:

a a =  v {<?9 +  oy) (3.19)
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For a pressurized sphere, the hoop stress and radial stress are given by:

_ _  - PoK 3 +  Pi ( p o -  P i ) K \ r is3
-  k 3- i -  "2(k3 -1) (7 ) (3'20)

and
 - P o K 3 + P i  , (Po -  P i ) K Z 3
° T ~  I S 3  1 +  I S 3 1 V „  ;i s : 3 — i  i s : 3  — i  r

The radial displacement ur can be obtained from hoop strain, i.e.

where

or in case of the cylinder,

eg =  — (3.22)r

eg = ~ [ < J g -  v(ar +  <Tg)} (3.23)

eg = ^[(Tg -  u(ar + aa)} (3.24)

The displacements and stresses at the interior points obtained from self-regularization 

for the cases are presented in Tables 3.6 and 3.7, respectively, and are compared with 

the exact solutions obtained from the above equations.

(D) Stress Concentration Problem s

Stress concentrations are commonly seen in many engineering situations involving 

rapid changing geometries such as notches, grooves or holes. Two examples are given 

here to demonstrate the accuracy and efficiency of the self-regularization technique 

for interior point solution. In both cases, the boundary solutions from BEM and the 

interior point solutions are compared to a finite element analysis using ANSYS on 

the same numerical solution domain.
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The first problem being treated is a double-notched bar under tension, as 

shown in Figure 3.6. The notch radius-to-height ratio, r /H,  is set to 0.5 where r =  1. 

The thickness t is 2. Due to symmetry, only one quarter of the model is meshed, 

as indicated by the shaded area in Figure 3.6, although the numerical problem can 

be further reduced by taking advantage of symmetry about the other planes. The 

partial model being treated is shown in Figure 3.7, whose modeled length is 10 units. 

The boundary element mesh shown in Figure 3.8 has 172 elements and 518 nodes. 

The corresponding finite element mesh, as shown in Figure 3.9, has 552 SOLID186 

20-node brick quadratic elements and 3035 nodes.

Two groups of interior points are investigated. The first group is located close 

to the line of stress concentration along the thickness of the bar, through which the 

stress distribution is plotted in Figure 3.10. Also shown in the figure are the stress 

variations extracted at the boundary nodes along the thickness of both BEM and 

FEM meshes. The second group of interior points lie at the middle plane of the bar 

(z = 0) and are located from the line of stress concentration (y =  1) to the plane 

of symmetry (y = 2), whose stresses are calculated using the self-regularization 

technique. The “path operation” function in ANSYS is used to map the first 

principal stress onto these interior points. The stress variations from BEM interior 

point solution and FEM path results are plotted in Figure 3.11. The maximum 

stress occurring at the middle plane is 3.403 from BEM boundary solution and 3.386 

from interior point solution, while in FEM it is 3.452. As seen in Figure 3.11, the 

deviation of the first principal stresses between the BEM and FEM is less than 2% 

along the designated path.

The second stress concentration problem is a long cylindrical bar with a spherical 

cavity subject to tension at the ends, as shown in Figure 3.12. The diameter ratio



38

d/h  is 0.4, where h =  1. The modeled length of the bar is 6 units. Only a quarter of 

the domain is modeled due to symmetry. The boundary element mesh is shown in 

Figure 3.13; it has 380 nodes and 126 elements. The finite element mesh is shown in 

Figure 3.14; it has 5516 nodes and 1092 SOLID186 brick elements.

The first principal stress at the point of stress concentration obtained from 

nodal values of BEM and FEM are shown in Table 3.8, along with that at an interior 

point very close to the concentration point using the self-regularization technique. 

They are compared with the analytical solution presented in Pilkey (2008) here in 

Figure 3.15. The stress variation through a series of inteior points inside the body is 

plotted in Figure 3.16, whose radial position r  range from the cavity surface (r — 0.4) 

to the free surface (r =  1). Path operation is again used in ANSYS to recover 

stresses at these points. Figure 3.16 shows the stress variations from the BEM and 

FEM interior point solution. At the cavity surface, the maximum stresses obtained 

from the BEM and FEM are as in Table 3.8, with the former being more accurate.

3.4 D iscussion o f R esu lts

As can be seen in the results of the numerical examples, the self-regularization 

technique successfully cancelled the singularities of the kernels. With this scheme, 

less than 2% errors in stresses and less than 0.2% errors in displacements are ob­

tained, regardless of the distances from the boundary. The errors in the stresses are 

generally higher than that of the displacements due to the higher order singularities 

in the kernels. Note that in Table 3.6, the percentage errors for the radial stresses 

at points close to the external surface are not of practical significance because these 

stresses are almost close to zero. As comparison, the original BEM algorithm without 

self-regularization starts to fail very sharply as the distance from the boundary
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reaches to around 10% of the thickness of the local cross-section, especially for the 

stresses.

The stress concentration problems demonstrated that this regularization tech­

nique recovers very accurate results near or at the surface. The boundary element 

method is well-known to give more accurate results for the boundary solutions than 

the finite element method for the same level of surface discretization. Using a very 

coarse mesh, the self-regularization scheme with the boundary element method gives 

a stress distribution very close to that obtained from finite element analysis, which 

had employed significantly more elements and nodes. The interior point solution 

using the self-regularization provides even better results than the primary boundary 

solutions due to the fact that the interior of the domain remains continuous, and 

no approximation therein is assumed. This enables the investigation of stress 

distribution inside a body with very high accuracies without any modification to the 

surface meshes.

The algorithm for locating the regularization point in this study always searches 

for a surface point so that the vector from the interior point to this point is always 

perpendicular to the surface at P. This point is, in most cases, located within an 

element where stress continuity is satisfied. More importantly, it never locates the 

regularization point at a corner, where stress discontinuity is most severe. It was 

found out in this study that if an interior point is adjacent to  an element boundary 

or even a boundary node, so that the regularization point has to be located there, 

among the elements sharing this boundary or the node, no effect on the final 

results has been found no matter which element the regularization point belongs 

to. This means that although displacement gradients are discontinuous across 

element boundaries, the stresses and displacements at interior points obtained using
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self-regularization are still very accurate. The variety of geometries and loading 

cases of the numerical examples above illustrated the successful application of the 

self-regularization scheme in BEM for the stress analysis of 3D elastostatics.

3.5 Summary

In this chapter, the self-regularization for the displacement-BIE proposed in Cruse 

and Richardson (1996) and Richardson and Cruse (1999) has been implemented in 

three-dimensional elastostatics, with some modifications to the simple solutions that 

are added and subtracted from the displacement identity. The detailed process of 

the procedure is described, including derivation of the displacement derivatives and 

consequently the constant stress state terms, as well as locating the regularization 

point on the boundary. Several numerical examples were presented to demonstrate 

the accuracy of this technique. They showed that the displacement and stress 

solutions for interior points remain very accurate even when they are very close to 

the surface. Unlike the original formulation without the self-regularization, neither 

mesh refinement nor special transformations are required to  obtain such accurate 

results for these interior points.

The next chapter will discuss the traction boundary integral equation (TBIE) 

combined with self-regularization technique applied to three-dimensional problems. 

This can be seen as an extension of this regularization method.



F igu re  3.1: Schematic of regularization point



42

n(P)

F igu re  3.2: Locating of the regularization point
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a) Mesh of a elastic cubic

Interior

points

b) Interior points in a typical mid-plane

c) Applied uniform stress d) Applied uniform shear stresses

F igu re  3.3: Schematic of the cubic body - Problem (A)
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h

L=8

Interior
points

- i

a) A cantilever beam-problem (B)

b) BEM mesh of the cantilever beam-problem (B)

Figure  3.4: Definition and mesh of the cantilever beam - Problem (B)
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Interior
points

a) Schematic of the pressure vessels

b) Mesh of the cylinder c) Mesh o f the hollow sphere

Figure 3.5: Interior point locations and meshes of the pressurized vessels - Problem
(C)
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Figure 3.6: Schematic diagram of the double-notched bar - Problem (D-l)
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Figure 3.7: The modeled region of the double-notched bar - Problem (D-l)
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F igure  3.9: Finite element mesh of the double-notched bar Problem (D-l)
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Figure 3.10: Stress variation along thickness of the double-notched bar - Problem (D-l)
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Figure 3.11: Stress variation at interior of the double-notched bar - Problem (D-l)
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Figure 3.13: BEM mesh of the cylindrical bar with a spherical cavity - Problem 
(D-2 )
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(D-2)
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Figure 3.15: Analytical solution for the cylinder with spherical cavity (Pilkey 2008)
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Figure 3.16: Stress distribution at the interior points of the cylinder with cavity by BEM and FEM - Problem (D-2)



With self-regularization Without self-regularization

Coordinates ctii (722 (733 (712 (723 (713 (711 <722 (733 (712 (723 (713

(0.5,0.5,0.5) 1.000 2.000 3.000 -8E-05 6E-05 -IE-05 0.999 2.000 3.001 -8E-05 6E-05 -IE-05

(0.9,0.5,0.5) 1.001 2.000 3.000 IE-04 9E-06 7E-05 -5.376 3.302 4.398 -1.16 8E-06 -3.05

(0.99,0.5,0.5) 1.000 2.001 3.001 IE-04 -9E-06 -4E-05 -7E+03 1E+03 1E+03 -9E+02 -3E-07 -2E+03

(0.999,0.5,0.5) 1.000 2.001 3.001 IE-04 -IE-05 -4E-05 -7E+06 1E+06 1E+06 -9E+05 -6E-07 -2E+06

(0.9999,0.5,0.5) 1.000 2.001 3.001 IE-04 -IE-05 -4E-05 -7E+09 1E+09 1E+09 -9E+08 -6E-07 -2E+09

(0.5,0.9,0.5) 1.000 2.000 3.000 2E-05 -2E-05 -9E-06 -1.78 13.27 0.41 7E-01 -3.05 -8E-06

(0.5,0.99,0.5) 1.000 2.000 3.000 IE-04 -IE-04 -8E-06 -2E+03 1E+04 -2E+03 6E+02 -2E+03 -6E-06

(0.5,0.999,0.5) 1.000 2.000 3.000 IE-04 -IE-04 -8E-06 -2E+06 1E+07 -2E+06 6E+05 -2E+06 -6E-06

(0.5,0.9999,0.5) 1.000 2.000 3.000 IE-04 -IE-04 -8E-06 -2E+09 1E+10 -2E+09 6E+08 -2E+09 -6E-06

(0.5,0.5,0.9) 0.999 1.999 2.999 -2E-05 -IE-04 -7E-05 -5.773 -4.677 31.909 -2E-05 -1.16 7E-01

(0.5,0.5,0.99) 0.999 1.999 2.999 -IE-05 -IE-04 IE-05 -5E+03 -5E+03 3E+04 -IE-05 -9E+02 6E+02

(0.5,0.5,0.999) 0.999 1.999 2.999 -9E-06 -IE-04 IE-05 -5E+06 -5E+06 3E+07 -IE-05 -9E+05 6E+05

(0.5,0.5,0.9999) 0.999 1.999 2.999 -9E-06 -IE-04 IE-05 -5E+09 -5E+09 3E+10 -IE-05 -9E+08 6E+08

Table 3.1: Interior point stress results for the cube under tensile stresses - Problem (A)

Cn



With self-regularization Without self-regularization

Coordinates CTll <722 <733 C7i2 <723 (713 <7l 1 (722 (733 (712 <723 (713

(0.5,0.5,0.5) -7E-07 8E-07 -4E-08 1.000 1.000 1.000 -6E-07 IE-06 -IE-07 0.999 0999 0999

(0.9,0.5,0.5) -8E-07 9E-08 -IE-06 1.000 1.000 1.000 17.05 -3.96 -3.96 -4.83 0.84 -4.83

(0.99,0.5,0.5) -8E-07 -6E-08 -IE-06 1.000 1.000 1.000 2E+04 -3E+03 -3E+03 -5E+03 0.54 -5E+03

(0.999,0.5,0.5) -8E-07 -5E-08 -IE-06 1.000 1.000 1.000 2E+07 -3E+06 -3E+06 -5E+06 0.50 -5E+06

(0.9999,0.5,0.5) -8E-07 -5E-08 -IE-06 1.000 1.000 1.000 2E+10 -3E+09 -3E+09 -5E+09 0.50 -5E+09

(0.5,0.9,0.5) 5E-07 6E-07 3E-07 1.000 1.000 1.000 -4E+00 2E+01 -4E+00 -5E+00 -5E+00 8E-01

(0.5,0.99,0.5) IE-06 4E-07 6E-07 1.000 1.000 1.000 -3E+03 2E+04 -3E+03 -5E+03 -5E+03 5E-01

(0.5,0.999,0.5) IE-06 3E-07 6E-07 1.000 1.000 1.000 -3E+06 2E+07 -3E+06 -5E+06 -5E+06 5E-01

(0.5,0.9999,0.5) IE-06 3E-07 6E-07 1.000 1.000 1.000 -3E+09 2E+10 -3E+09 -5E+09 -5E+09 5E-01

(0.5,0.5,0.9) -4E-07 7E-07 2E-07 1.000 1.000 1.000 -4E+00 -4E+00 2E+01 8E-01 -5E+00 -5E+00

(0.5,0.5,0.99) 9E-08 8E-07 8E-08 1.000 1.000 1.000 -3E+03 -3E+03 2E+04 5E-01 -5E+03 -5E+03

(0.5,0.5,0.999) IE-07 8E-07 7E-08 1.000 1.000 1.000 -3E+06 -3E+06 2E+07 5E-01 -5E+06 -5E+06

(0.5,0.5,0.9999) IE-07 8E-07 7E-08 1.000 1.000 1.000 -3E+09 -3E+09 2E+10 5E-01 -5E+09 -5E+09

Table 3.2: Interior point stress results for the cube under shear stresses - Problem (A)



Ul U2 U3

Coordinates Exact Self-reg. No self-reg. Exact Self-reg. No self-reg. Exact Self-reg. No self-reg.

(0.5,0.5,0.5) 2.500E-04 -2.498E-04 -2.498E-04 4.000E-04 3.999E-04 3.999E-04 1.050E-03 1.045E-03 1.050E-03

(0.9,0.5,0.5) 4.500E-04 -4.496E-04 -7.003E-04 4.000E-04 4.001E-04 3.861E-04 1.050E-03 1.050E-03 1.013E-03

(0.99,0.5,0.5) 4.950E-04 -4.945E-04 -4.163E-02 4.000E-04 4.001E-04 4.193E-03 1.050E-03 1.050E-03 1.100E-02

(0.999,0.5,0.5) 4.995E-04 -4.990E-04 -4.206E+00 4.000E-04 4.001E-04 3.976E-01 1.050E-03 1.050E-03 1.043E+00

(0.9999,0.5,0.5) 5.000E-04 -4.995E-04 -4.212E+02 4.000E-04 4.001E-04 3.972E+01 1.050E-03 1.050E-03 1.042E+02

(0.5,0.9,0.5) 2.500E-04 -2.498E-04 -2.411E-04 7.200E-04 7.199E-04 1.139E-03 1.050E-03 1.050E-03 1.013E-03

(0.5,0.99,0.5) 2.500E-04 -2.498E-04 -2.616E-03 7.920E-04 7.919E-04 6.948E-02 1.050E-03 1.050E-03 1.100E-02

(0.5,0.999,0.5) 2.500E-04 -2.498E-04 -2.481E-01 7.992E-04 7.991E-04 6.769E+00 1.050E-03 1.050E-03 1.043E+00

(0.5,0.9999,0.5) 2.500E-04 -2.498E-04 -2.479E+01 7.999E-04 7.998E-04 6.750E+02 1.050E-03 1.050E-03 1.042E+02

(0.5,0.5,0.9) 2.500E-04 -2.500E-04 -2.413E-04 4.000E-04 3.998E-04 3.858E-04 1.890E-03 1.889E-03 2.979E-03

(0.5,0.5,0.99) 2.500E-04 -2.500E-04 -2.619E-03 4.000E-04 3.997E-04 4.187E-03 2.079E-03 2.078E-03 1.806E-01

(0.5,0.5,0.999) 2.500E-04 -2.500E-04 -2.484E-01 4.000E-04 3.997E-04 3.970E-01 2.098E-03 2.097E-03 1.774E+01

(0.5,0.5,0.9999) 2.500E-04 -2.500E-04 -2.482E+01 4.000E-04 3.997E-04 3.967E+01 2.100E-03 2.099E-03 1.771E+03

Table 3.3: Interior point displacement results for the cube under tensile stresses - Problem (A)



Ul U2 U3

Coordinates Exact Self-reg. No self-reg. Exact Self-reg. No self-reg. Exact Self-reg. No self-reg.

(0.5,0.5,0.5) 1.300E-03 1.302E-03 1.302E-03 1.300E-03 1.297E-03 1.297E-03 1.300E-03 1.299E-03 1.299E-03

(0.9,0.5,0.5) 1.300E-03 1.302E-03 1.942E-03 1.820E-03 1.817E-03 1.744E-03 1.820E-03 1.817E-03 1.744E-03

(0.99,0.5,0.5) 1.300E-03 1.302E-03 1.106E-01 1.937E-03 1.934E-03 2.085E-02 1.937E-03 1.934E-03 2.085E-02

(0.999,0.5,0.5) 1.300E-03 1.302E-03 1.099E+01 1.949E-03 1.945E-03 1.940E+00 1.949E-03 1.945E-03 1.940E+00

(0.9999,0.5,0.5) 1.300E-03 1.302E-03 1.099E+03 1.950E-03 1.947E-03 1.933E+02 1.950E-03 1.947E-03 1.933E+02

(0.5,0.9,0.5) 1.820E-03 1.823E-03 1.749E-03 1.300E-03 1.297E-03 1.934E-03 1.820E-03 1.821E-03 1.748E-03

(0.5,0.99,0.5) 1.937E-03 1.940E-03 2.091E-02 1.300E-03 1.297E-03 1.101E-01 1.937E-03 1.939E-03 2.090E-02

(0.5,0.999,0.5) 1.949E-03 1.951E-03 1.946E+00 1.300E-03 1.297E-03 1.095E+01 1.949E-03 1.950E-03 1.945E+00

(0.5,0.9999,0.5) 1.950E-03 1.953E-03 1.939E+02 1.300E-03 1.297E-03 1.094E+03 1.950E-03 1.952E-03 1.938E+02

(0.5,0.5,0.9) 1.820E-03 1.825E-03 1.751E-03 1.820E-03 1.815E-03 1.742E-03 1.300E-03 1.299E-03 1.938E-03

(0.5,0.5,0.99) 1.937E-03 1.942E-03 2.093E-02 1.937E-03 1.932E-03 2.082E-02 1.300E-03 1.299E-03 1.103E-01

(0.5,0.5,0.999) 1.949E-03 1.954E-03 1.948E+00 1.949E-03 1.943E-03 1.938E+00 1.300E-03 1.299E-03 1.097E+01

(0.5,0.5,0.9999) 1.950E-03 1.955E-03 1.941E+02 1.950E-03 1.944E-03 1.931E+02 1.300E-03 1.299E-03 1.096E+03

Table 3.4: Interior point displacement results for the cube under shear stresses - Problem (A)
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Axial stresses

y Exact Self-reg. Error % W ithout self-reg. Error %

0.4999 -29.994 -29.640 -1.180 -7879.0 26168.6

0.499 -29.940 -29.586 -1.182 -7791.4 25923.4

0.49 -29.400 -28.804 -2.027 -1537.3 5128.9
0.4 -24.000 -23.538 -1.925 -103.7 332.17
0 . 2 -1 2 . 0 0 0 -11.786 -1.783 -11.875 -1.042

0 0 . 0 0 0 9.054E-05 - 4.9E-05 -
-0 . 2 1 2 . 0 0 0 11.786 -1.783 11.875 -1.042

-0.4 24.000 23.539 -1.921 103.72 332.17

-0.49 29.400 28.805 -2.024 1537.3 5128.9

-0.499 29.940 29.587 -1.179 7791.4 25923.4

-0.4999 29.994 29.641 -1.177 7879.0 26168.6

Vertical displacements

y Exact Self-reg. Error % W ithout self-reg. Error %

0.4999 0.378 0.380 0.529 0.191 -49.5

0.499 0.378 0.380 0.529 0.197 -47.8
0.49 0.378 0.380 0.529 0.269 -28.7
0.4 0.378 0.380 0.529 0.381 0.79
0 . 2 0.378 0.380 0.529 0.380 0.529

0 0.378 0.380 0.529 0.380 0.529

-0 . 2 0.378 0.380 0.529 0.380 0.529
-0.4 0.378 0.380 0.529 0.381 0.79
-0.49 0.378 0.380 0.529 0.269 -28.7
-0.499 0.378 0.380 0.529 0.197 -47.8

-0.4999 0.378 0.380 0.529 0.191 -49.5

Table 3.5: Results for the cantilever beam - Problem (B)



oe ar ur

r Self-reg. Exact Error % Self-reg. Exact Error % Self-reg. Exact Error %

1 .0 0 0 1 1.6537 1.6664 -0.76 -1.0035 -0.9997 0.38 1.905E-03 1.907E-03 -0.0895

1 .0 0 1 1.6525 1.6640 -0.69 -1.0023 -0.9973 0.49 1.903E-03 1.905E-03 -0.0902

1 .0 1 1.6413 1.6404 0.05 -0.9891 -0.9737 1.58 1.889E-03 1.891E-03 -0.0978

1 .1 1.4510 1.4353 1.09 -0.7560 -0.7686 -1.63 1.762E-03 1.766E-03 -0.2442

1.5 0.9254 0.9259 -0.06 -0.2570 -0.2593 -0 . 8 8 1.414E-03 1.416E-03 -0.1348

1.9 0.6873 0.7027 -2.19 -0.0308 -0.0360 -14.50 1.240E-03 1.242E-03 -0.1690

1.99 0.6630 0.6700 -1.06 -0.0004 -0.0034 -87.20 1.215E-03 1.216E-03 -0 . 1 0 0 0

1.999 0.6615 0.6670 -0.82 0 . 0 0 1 2 -0.0003 -44.74 1.212E-03 1.214E-03 -0.0979

1.9999 0.6614 0.6667 -0.80 0.0013 -3.3E-05 -3969.71 1.212E-03 1.213E-03 -0.0973

Table 3.6: Results of the internally pressurized cylinder - Problem (C)



O’ 1 0 2

r Exact Self-reg. Error %. Exact Self-reg. Error %

2 . 0 0 1 1.131 1 . 1 2 1 -0 . 8 8 6 1.131 1.099 -2.761

2 . 0 1 1 . 1 2 1 1.115 -0.502 1 . 1 2 1 1.095 -2.366
2 .1 1.035 1.046 1.060 1.035 1.038 0.316

2.5 0.785 0.792 0.925 0.785 0.790 0.593
2.9 0.654 0.653 -0.217 0.654 0.648 -0.996

2.99 0.634 0.641 1.105 0.634 0.634 0.063

2.999 0.632 0.640 1.236 0.632 0.633 0.192

03 Ur-
r Exact Self-reg. Error % Exact Self-reg. Error %

2 . 0 0 1 -0.998 -0.980 -1.831 2.183E-03 2.180E-03 -0 . 1 1 2

2 . 0 1 -0.979 -0.969 -1.031 2.168E-03 2.164E-03 -0.171
2 .1 -0.807 -0.812 0.694 2.029E-03 2.025E-03 -0 . 2 2 1

2.5 -0.307 -0.326 6.190 1.603E-03 1.598E-03 -0.323

2.9 -0.045 -0.040 -10.596 1.367E-03 1.364E-03 -0.205
2.99 -0.004 -0.008 91.094 1.330E-03 1.328E-03 -0.193

2.999 0 . 0 0 0 -0.006 1276.582 1.327E-03 1.324E-03 -0.225

Table 3.7: Results of the internally pressurized sphere - Problem (C)
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Error %

Analytical(Pilkey 2008) 2.185 -

BEM boundary solution 2.2217 1.67

BEM interior point solution 2.1803 0.215

FEM 2.2368 2.37

Table 3.8: Stress concentration factors obtained from BEM and FEM solutions - 
Problem (D-2)



C h ap ter 4

Self-regularized T raction-B IE

4.1 Introduction

In this chapter, the self-regularization technique for interior points in Chapter 3 is 

extended to obtain a traction-BIE by taking the interior point to the boundary. This 

scheme was proposed by Richardson and Cruse (1999) in two dimensions and will be 

again extended to three dimensions in this study. Two approaches to treat the stress 

continuity issue, as discussed in Chapter 2, are employed, and are described in more 

detail. Numerical examples are given after the analytical treatment in which results 

from traction-BIE and displacement-BIE are compared.

4.2 Self-regularized Traction-BIE

In Equation (3.4), the stresses at an interior point p are regularized by the constant 

stress state terms at the regularization point P  on the boundary. If the interior point 

is taken to the boundary so that p and P  coincide, Equation (3.4) becomes:

0 = -  f  [uk( Q ) - 4 ( Q ) ] S kij(P,Q)ni(P )dS (Q)+f  [tk(Q) -  ^ (Q )]D fc<i(P ,Q )ni(P)d5(Q) 
Js Js

(4.1)
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where u£(Q) and t^(Q) are given in Equations (3.5) and (3.6), respectively, and the 

outward normal rii(P) is used to reduce the redundancy produced by the index i. 

Numerical evaluations of the integrals will no longer be an issue since they are fully 

regularized. The process of sub-division of elements employed in displacement-BIE 

when evaluating singular integrals is therefore eliminated.

The constant stress terms u%(Q) and t£(Q) need to be expressed by the vari­

ables on the surface nodes so that the corresponding coefficients of these terms can 

be put into the system matrix. Following the same steps as for 2D described in 

Richardson and Cruse (1999), the displacement gradients at P  can be expressed by 

nodal tractions and displacements for 3D as:

8 or 6

u„„(P)  =  Ak m tr( i i ,  ) +  B kmr J 2  K K . ?2P) (4.2)
i = l

where Akmr contains the first three rows of [A* ] - 1  and Bkmr contains the last six rows, 

and N- are the derivatives of shape functions at local coordinates £i, £ 2  corresponding
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to P.  The constant stress displacements u^(Q)  can now be expressed as

H i

«t(Q)=M^)+[D][AT1< S i
£1

H3.
£1

H i
£2

Ha
£2

Ha
£2

8 or 6

i=l

(4.3)

where Ckm,r and Dkrnr contain first three rows and subsequent six rows, respectively, of 

product of the matrices [D] and [A*]-1. The matrix [D] contains the terms [xm(Q) — 

Xm(P)},  and is shown in Equation (4.4). Similarly, the constant stress tractions t%(Q) 

are expressed by multiplying the matrix [S] in Equation (4.5) to the inverse matrix 

of [A*].
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Then t%(Q) can be expressed by nodal values as:

4 (Q ) =  [SI [A*

h

H i
6

Hi

Ha
ft

H i
&2

H i
$2

Uz
, & J

8 or 6

(?)  + Fkmr Y ,  N[<{(?, (?)  (4.6)
i = l

where E kmr contains the first three rows of the product of [S] and [A*]-1, and Fkmr 

contains the remaining six rows. Substituting Equations (4.3) and (4.6) into Equation

(4.1) and rearranging the coefficients, the following expression is obtained:

J s [uk(Q)Ski](P,Q) -  Uk(P)Skij(P, Q)]rii(P)dS

+ /  [FkmrDkij(P, Q) -  DkmrSkij(P, Q)]iV'(£f, ^ ) n t{P)uk{PM)dS
Js

= [  tk(Q)Dkij(P,Q)dS + [ [CkrnrSkij(P,Q) -  Ek7nrDkij(P,Q)}rii(P)tk(PM)dS
Js Js

(4.7)

The symbols uk(PM) and tk(PM) denote that their coefficients will be put into the 

matrix depending on the element M  that contains the regularization point P. This
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will be discussed in the next section as this element will be taken differently by 

the two approaches in the attem pt to satisfy displacement-gradient continuity. The 

coefficients on the left-hand side of Equation (4.7) will be stored in matrix [A] in 

Equation (2.21) while coefficients on the right-hand side are stored in matrix [B], 

The singularities of the kernels are no longer of concern as they are fully regularized. 

The regularization is done before discretization so that the same mesh can be used 

as in displacement-BIE. It is evident from the above, however, that the matrix 

operations are significantly more involved in the 3D case here as compared to those 

in 2D.

With the quadratic elements used, the displacement gradients required in Equation

(4.1), as well as the stresses, are linearly distributed within the elements. However, 

there could be a discontinuity across the element boundaries. As briefly described 

in Chapter 2, several analytical schemes have been proposed to solve this problem, 

but are not easy to implement, efficient nor practical in three dimensions due to 

their complexity. Two strategies, namely, the relaxed continuity method, proposed 

by Richardson and Cruse (1999), and the collocation strategy by Gallego and 

Dominguez (1996) are adopted in this study and will be described in detail in the 

next section.

4.3 Treatm ents of D isplacem ent-gradient D iscon­

tinuity

4 . 3 . 1  R e l a x e d  C o n t i n u i t y

In Richardson and Cruse (1999), the boundary point P  becomes a boundary node 

after discretization. The displacement gradients thus would be discontinuous from
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one element to another sharing the node. It was suggested th a t the displacement 

gradients in Equation (4.3) can be expressed by the average of each of respective 

values from the elements sharing the node, i.e.,

In Equation (4.8), M  is the number of elements sharing the node P , A S  the element 

being integrated, and the displacement gradients Uk,m(PJ ) are expressed by the nodal 

tractions and displacements that belong to the J-th  element. When A S  is one of the 

M  elements, no average is taken but only nodal values belonging to A S  are involved.

4 . 3 . 2  C o l l o c a t i o n  S t r a t e g y

The collocation strategy moves the collocation point into the interior of the elements 

where the continuity requirement is satisfied, instead of at the boundary nodes. The 

intrinsic coordinates of the collocation points are set as, for example, £1 , ^ 2  =  ±0.9 

rather than ± 1  for quadrilateral elements, as illustrated in Figure 4.1. This approach 

is different from the use of discontinuous elements which form a much larger system 

matrix since the number of collocation points are much greater than the number of 

boundary nodes. In the present approach, the displacement gradients at the colloca­

tion point inside an element, and consequently the constant stress state displacements 

and tractions, are expressed in terms of the boundary values of the element containing 

the collocation point. For each node shared by M  elements, there will be M  colloca­

tion points around it, each producing one set of 3 equations. Thus for each node, there 

will be M  set of equations written onto it to yield only one set of equations, as when 

continuous elements are used. This is known as the Multiple Collocation Approach

(

«£ +  Uk,m{P^S)[Xm{Q) ~  Xm(P)]

Uk +  []k  Y!j=l Uk,m(PJ)][Xm(Q) ~  Xm(P)] f  OT P  £ A S

fo r  P  e  A S
(4.8)
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(MCA) (Dominguez et al. 2000). This scheme will be applied to the whole surface 

of the body instead of partial application as in Dominguez et al. (2000), Dominguez 

and Ariza (2000).

4.4 Num erical Exam ples

In this section, the self-regularized traction-BIE is implemented for some three- 

dimensional elasticity problems. Both the relaxed continuity approach and collocation 

strategy are tested. For the collocation method, a study was conducted first to find 

the best location of the collocation points inside the elements. This was established 

to be at £i, £ 2  =  ±0.9 for most cases. This location will be used for all the following 

numerical examples. The calculated boundary values, along with those obtained from 

conventional displacement-BIE, are compared with the exact solutions.

4 . 4 . 1  T h i n  P l a t e  u n d e r  U n i f o r m  S t r e s s

The first example is a rectangular plate whose material properties are the same as 

those used in Chapter 3. It is subject to uniform stresses of a n  = 1, 0 2 2  =  2, 0 3 3  =  3. 

The dimensions in xi  and x% directions are taken to be unity, while the thickness 

in £ 3  direction is gradually decreased from 1 to 0.01 to form a thin plate. Both 

relaxed continuity and collocation strategy are employed. Figures 4.2 and 4.3 show 

the maximum errors in stresses and displacement, respectively, obtained from both 

traction-BIE and displacement-BIE against the thickness.

As can be seen in the results, the traction-BIE combined with collocation 

method provides very accurate results, while those with the relaxed continuity 

start to deteriorate slightly when the thickness reduces to 0.01. In comparison, the 

conventional displacement-BIE starts to fail when the thickness decreases to 0.3.
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The collocation method in conjunction with traction-BIE thus provides a possible 

solution to this thin plate problem under uniform stresses.

4 . 4 . 2  T h i c k - w a l l e d  C y l i n d e r  u n d e r  A x i a l  L o a d  a n d  I n t e r n a l  

P r e s s u r e

The second example is a hollow cylinder with a radius ratio of 2 subject to axial 

loading and internal pressure. A |-m odel is first tested; the relatively coarse mesh 

used is shown in Figure 4.4. A series of nodes along two vertical lines on the inner 

and outer surfaces are observed, whose vertical location range from 0  to 1 with 1 

being the total height. For the axial loading case, both approaches give very good 

results, as shown in Table 4.1. This is due to the applied uniform stress which has 

no discontinuity issues, as also seen above in the thin plate example. For the internal 

pressure case, however, the relaxed continuity approach was found to produce severe 

erroneous results, possibly caused by discontinuity at the corners; these results are not 

presented here. The results at these nodes obtained from the collocation method and 

displacement-BIE are shown in Table 4.2. This method better satisfies continuity at 

the corners, since collocation points are always within elements. However, the results 

are still not uniformly accurate, and contain more than 1 0 % errors at some nodes. 

This is, again, caused by the presence of the corners in the model. Another fully- 

modeled cylinder is then tested, as shown in Figure 4.5, to reduce the effect of corners. 

The results are listed in Table 4.3, which are somewhat better than the |-model, but 

the maximum errors are still relatively high. This suggests that neither of these 

two methods can sufficiently ensure displacement-gradient continuity across element 

boundaries, especially at the corners. No further tests on a thin-walled cylinder are 

therefore conducted.
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4 . 4 . 3  I n t e r n a l l y  P r e s s u r i z e d  S p h e r e

The final example is a hollow sphere under internal pressure, whose dimensions and 

material properties are the same as in Chapter 3. A fully-modeled sphere is used 

instead of the |-model in Chapter 3 to avoid the corners. The boundary element 

mesh is shown in Figure 4.6, with 48 elements and 148 nodes. Figures 4.7 and 4.8 

present the variation of maximum error in stresses and displacements, respectively, 

with the radius ratio K  ranging from 1.1 to 2.

The results show that with the absence of corners, the traction-BIE can pro­

vide even better results (less than 2% error) than the displacement-BIE (3.3% error) 

when K  is high, with either relaxed continuity or collocation strategy. When the 

thickness of the hollow sphere reduces, however, the traction-BIE starts to fail at 

K  =  1.4 while displacement-BIE gives good results until K  — 1.1. Refinement 

of the mesh for small thicknesses could provide better accuracy but this would 

defeat any general purpose for using the traction-BIE instead of commonly used 

displacement-BIE since the latter can give good results with slightly refined mesh. 

Indeed, no convergence of the results is observed with mesh refinement with the 

traction-BIE in this case. This suggests tha t when stresses are not uniformly 

distributed within the body, the traction-BIE is not able to recover good results for 

the thin-walled sphere.

4 . 4 . 4  D i s c u s s i o n

The numerical examples shown in the previous section exposed the problems which 

arise when using the self-regularized traction-BIE. When treating problems with 

uniform stresses, the traction-BIE gives excellent results even for very thin-body 

problems, since no stress-discontinuity is involved. For more general cases, the two
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approaches for eliminating stress-discontinuity in the formulation only works when 

no corner is present. When corners are involved, the displacement gradients and 

stresses cannot be ensured to be continuous at the nodes there across the elements. 

This causes the deterioration of the results. The self-regularized traction-BIE 

is thus not well-suited for general three-dimensional problems unless some other 

methods, which are analytically and numerically simple, can be developed to treat 

the displacement-gradient discontinuity issue.

Contrary to what is suggested in Richardson and Cruse (1999), the proposed 

self-regularized traction-BIE, unfortunately, does not seem well-suited for thin-body 

problems either. The reason of this deficiency can be explained as follows: when 

the integration point Q shares the same element with the source point P , the 

singularities of the kernels are cancelled by the constant stress terms calculated at 

P, i.e., when the regularization point coincides with the source point itself. However, 

when dealing with thin-body problems, another surface would approach P. This is 

illustrated in Figure 4.9 where an interior point lies between boundaries Sa and Sb, 

but its regularization point will be located on Sa since it is closer. If the boundary 

Sb is close to p, the singularities in the integrals over a field point Q' on Sb cannot 

be regularized by the constant stress terms on point P . In Equations (3.4) and

(4.1), the regularization terms are obtained by applying simple solutions to the 

problem being treated, thus only one regularization point can be chosen. Therefore, 

if two surfaces are both close to interior point p, only integrals on one surface 

are regularized, leaving those on the other surface near-singular. For this reason, 

when p  is taken to P  to form the traction-BIE, it is still not well-suited for solving 

thin-body problem unless some other special regularization scheme is used to reduce 

the near-singularities due to the presence of the second near surface.
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4.5 Summary

In this chapter, the self-regularized traction-BIE is formed by taking an interior 

point to the boundary using the self-regularization scheme for Somigliana’s stress 

identity in Chapter 3. Two approaches, i.e. the relaxed continuity approach and the 

collocation strategy, were tested in attem pt to treat the discontinuity in displacement 

gradients that occur at inter-element boundaries when using conforming isoparamet­

ric quadratic elements. Several numerical examples were presented. For problems 

subject to uniform stresses, the traction-BIE can provide excellent results with both 

continuity treatments, as well as treating thin-body problems. However, for more 

general cases where stresses are not uniform and in the presence of geometric corners, 

the traction-BIE fails to give consistently good results. When no corners are involved 

in a non-slender body, the traction-BIE combined with the two methods can provide 

better results than the conventional displacement-BIE. For thin-body problems, the 

present traction-BIE fails again due to the fact that near-singularities at the second 

near surface are not regularized. This is contrary to the statement in Richardson and 

Cruse (1999) that the whole-body regularization should be well suited for thin-body 

problems.

Inspired by the simplicity of the numerical implementation of the self-regularization 

scheme, and the analysis in the previous section showing the failure of the 

traction-BIE to solve thin-body problem, a new scheme is proposed using the 

displacement-BIE. This will be discussed in the next chapter.
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F igu re  4.4: BEM mesh of the 1 / 4  cylinder (K = 2 )
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F igure  4.5: BEM mesh of the fully-modeled cylinder (K=2)
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F igure  4.6: BEM mesh of the fully-modeled sphere (K=2)
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F igure  4.9: Schematic of the interior point between two surfaces
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Relaxed continuity

Location Outer surface Inner surface

z <72 (73 ° i (72 <73
0 1.003 -6.5E-04 -6.5E-04 1 . 0 1 0 -1.4E-03 -1.4E-03

0.125 1.016 4.4E-03 4.4E-03 1.003 -1.1E-03 -1.1E-03

0.25 1 . 0 0 0 -3.1E-03 -3.1E-03 1.004 -1.9E-03 -1.9E-03

0.375 0.998 -3.2E-03 -3.2E-03 1.004 -9.6E-04 -9.6E-04

0.5 0.999 -8.0E-04 -8.0E-04 0.981 -1.2E-02 -1.2E-02

0.625 0.999 -8.1E-04 -8.1E-04 0.996 3.5E-03 3.5E-03

0.75 1 . 0 0 0 -4.4E-04 -4.4E-04 1.009 1.1E-02 1.1E-02

0.875 1 . 0 0 0 -1.9E-03 -1.9E-03 1.009 1.2E-02 1.2E-02

1 1 . 0 0 2 -1.9E-03 -1.9E-03 1.009 1.3E-02 1.3E-02

Exact 1 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0

Collocation strategy

Location Outer surface Inner surface

z °2 <73 (7l (72 (73
0 1 . 0 0 0 -2.4E-05 -2.4E-05 1 . 0 0 0 7.8E-05 7.8E-05

0.125 1 . 0 0 0 -1.8E-05 -1.8E-05 1 . 0 0 0 -1.2E-05 -1.2E-05

0.25 1 . 0 0 0 -1.2E-05 -1.2E-05 1 . 0 0 0 1.8E-06 1.7E-06

0.375 1 . 0 0 0 -1.0E-05 -1.0E-05 1 . 0 0 0 6.0E-07 5.1E-07

0.5 1 . 0 0 0 -1.3E-05 -1.3E-05 1 . 0 0 0 3.7E-07 2.8E-07

0.625 1 . 0 0 0 -1.5E-05 -1.5E-05 1 . 0 0 0 -2.5E-06 -2.6E-06

0.75 1 . 0 0 0 -7.7E-06 -7.8E-06 1 . 0 0 0 1.2E-07 3.0E-08

0.875 1 . 0 0 0 6.8E-07 5.9E-07 1 . 0 0 0 -3.7E-07 -4.6E-07

1 1 . 0 0 0 -2.7E-05 -2.7E-05 1 . 0 0 0 1.3E-05 1.3E-05

Exact 1 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0

T able 4.1: Stress results for the thick-walled cylinder under axial load
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Location Displacement-BIE Collocation method

z ci c 2 c 3 Cl c 2 c 3

0 0.6745 0.1960 0.0372 0.7237 0.1913 -0.0186
0.125 0.6640 0.1993 0 . 0 0 0 1 0.7587 0.2175 0 . 0 0 0 1

0.25 0.6639 0.1984 0 . 0 0 0 1 0.7547 0.2295 0 . 0 0 0 1

0.375 0.6640 0.1992 0 . 0 0 0 1 0.7732 0.2422 0 . 0 0 0 1

Outer surface 0.5 0.6639 0.1991 0 . 0 0 0 1 0.7624 0.2444 0 . 0 0 0 1

0.625 0.6640 0.1992 0 . 0 0 0 1 0.7732 0.2422 0 . 0 0 0 1

0.75 0.6639 0.1984 0 . 0 0 0 1 0.7547 0.2295 0 . 0 0 0 1

0.875 0.6640 0.1993 0 . 0 0 0 1 0.7587 0.2175 0 . 0 0 0 1

1 0.6745 0.1960 0.0372 0.7237 0.1913 -0.0185
Exact 0.6667 0 . 2 0 0 0 0 . 0 0 0 0 0.6667 0 . 2 0 0 0 0 . 0 0 0 0

0 1.6851 0.1890 -0.9197 1.7846 0.3325 -0.8697
0.125 1.6639 0.1991 -0.9995 1.9903 0.3106 -0.9994

0.25 1.6640 0 . 2 0 1 1 -0.9995 1.8673 0.2443 -0.9994

0.375 1.6633 0.1994 -0.9995 2.0797 0.3108 -0.9994
Inner surface 0.5 1.6632 0.1991 -0.9995 1.8719 0.2488 -0.9995

0.625 1.6633 0.1994 -0.9995 2.0797 0.3108 -0.9994

0.75 1.6640 0 . 2 0 1 1 -0.9995 1.8672 0.2443 -0.9995
0.875 1.6639 0.1991 -0.9995 1.9902 0.3105 -0.9994

1 1.6851 0.1890 -0.9197 1.7846 0.3326 -0.6264
Exact 1.6667 0 . 2 0 0 0 - 1 . 0 0 0 0 1.6667 0 . 2 0 0 0 - 1 . 0 0 0 0

Table 4.2: Stress results for the 1 /4-model of the thick-walled cylinder under internal 
pressure
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Location Displacement-BIE Collocation method

z o-i 0 2 03 0 2 <73
0 0.6744 0.1933 0.0367 0.6573 0.1904 0.0267

0.125 0.6647 0.1988 0 . 0 0 0 1 0.6663 0.1922 0 . 0 0 0 1

0.25 0.6656 0.2007 0 . 0 0 0 1 0.6870 0.2124 0 . 0 0 0 1

0.375 0,6655 0.2003 0 . 0 0 0 1 0.6997 0.2176 0 . 0 0 0 1

Outer surface 0.5 0.6653 0.1997 0 . 0 0 0 1 0.6975 0.2189 0 . 0 0 0 1

0.625 0.6654 0.2003 0 . 0 0 0 1 0.6996 0.2176 0 . 0 0 0 1

0.75 0.6656 0.2007 0 . 0 0 0 1 0.6869 0.2125 0 . 0 0 0 1

0.875 0.6647 0.1989 0 . 0 0 0 1 0.6661 0.1922 0 . 0 0 0 1

1 0.6744 0.1934 0.0367 0.6570 0.1900 0.0264
Exact 0.6667 0 . 2 0 0 0 0 . 0 0 0 0 0.6667 0 . 2 0 0 0 0 . 0 0 0 0

0 1 . 6 8 8 6 0.1857 -0.9017 1.7298 0.3583 -0.7312
0.125 1.6631 0.1991 -0.9995 1.7260 0.2377 -0.9995
0.25 1.6635 0 . 2 0 0 2 -0.9995 1.7051 0.2019 -0.9995
0.375 1.6631 0.1992 -0.9995 1.7797 0.2147 -0.9994

Inner surface 0.5 1.6631 0.1990 -0.9995 1.7180 0.1869 -0.9995

0.625 1.6742 0.2031 -0.9995 1.7797 0.2147 -0.9994

0.75 1.6635 0 . 2 0 0 1 -0.9995 1.7051 0.2015 -0.9995
0.875 1.6634 0.1991 -0.9995 1.7251 0.2373 -0.9995

1 1.6889 0.1861 -0.9003 1.7295 0.3607 -0.7251
Exact 1.6667 0 . 2 0 0 0 - 1 . 0 0 0 0 1.6667 0 . 2 0 0 0 -1 . 0 0 0 0

Table 4.3: Stress results for the fully-modeled thick-walled cylinder under internal 
pressure



C h ap ter 5

Self-regularized D isp lacem en t-B IE  for 

T hin-body P roblem s

5.1 Introduction

In the previous chapter, the self-regularized traction-BIE proposed by Richardson 

and Cruse (1999) was shown to be not suitable for treating thin-body problems. 

This is due to the near singularity arising from the second near surface for which 

the scheme could not accommodate. In this chapter, a modified scheme similar to 

the self-regularized traction-BIE, but through a different approach applied to the 

displacement-BIE, is proposed. This new scheme is first described and a prelimi­

nary study is carried out with some simple examples to establish the veracity of the 

formulation and its implementation.

5.2 Self-regularized D isplacem ent-B IE

As discussed in Section 4.4.4, there are two groups of integrals that need to be 

regularized when treating thin-body problems, i.e. those over Sa and the others over 

Sf,, as in Figure 4.9. The self-regularized traction-BIE in the  previous chapter only

89
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regularized the integrals over the elements on Sa, but provides no means to regularize 

those on Sb. The method proposed in this chapter uses the displacement-BIE along 

with the sub-division of elements, as discussed in Chapter 2, to regularize integrals 

on Sa, and then adopts the idea of self-regularization to regularize other integrals on 

Sb.

Following the development in Chapter 3, for a reference boundary point P0 on 

Sb, the displacement-BIE for constant stress state expression at P0 may be written 

as:

C„(ul {Q)-uf(P„,P))+ [ Til(P,Q)(uj (Q)-u$(Po,Q))dS(Q) = f  Uis(P, Q m ( Q ) - t f ( , P 0, Q))di
Js Js

(5.1)

where

uf(PQ, P) =  Uj(P0) + Ujtm[xm(P) -  Xm(PQ)]

Uj (PofQ') — Uj(Po) T  Uj,m[Xm(,Q') *^m(Fo)] 

tf{Po,Q) = crjm(P0)nm(Q)

(5.2)

Subtracting Equation (5.1) from Equation (2.1) yields:

Cij[uj ( P ) - u f ( P 0,P)}+  [  Ti:j(P, Q)[uj(Q) -  Uj(P0, Q)}dS(Q)
Js

= [  Uij(P, Q)[tj(Q) — t f (P 0, Q))dS(Q)
Js

(5.3)

Similar to the self-regularized traction-BIE, the constant stress terms Uj(P0,Q)  and 

tj(Po, Q) are expressed by the displacements and tractions at the nodes of the element
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containing P0, i.e.

8 or 6 8 or 6

uf(P0, P o r Q )  = Y  N iU ) ( t f , g ° )  + Ck m tr( g \ g ) + D kmr Y
i=l i=l

(5.4)

and
8 or 6

t f ( P„ , Q )  =  + Fhnr Y  N K ( ^ . i 2 ° )  (5.5)
1 = 1

Note that in the matrix [D] in Equation (4.4), point P  is now P0 and Q  is either Q  

or P ,  while the matrix [S] in Equation (4.5) remains unchanged.

Rearranging the coefficients so that those corresponding to the displacements 

are placed into the matrix [A] in Equation (2.21) and those corresponding to the 

tractions placed into [B], the system of equations is now ready to be solved.

In conventional displacement-BIE, as described in Chapter 2, the free terms 

C i j ( P )  are calculated indirectly by considering the rigid-body motion condition. 

In Equation (5.3), however, the C i j ( P )  terms appear not only at the diagonal 

sub-matrices of the system matrix [A], they are also placed in columns corresponding 

to Po with the negative sign. If the off-diagonal coefficients in each line of the matrix 

[A] are summed up, the Cij terms at these two places will cancel each other out. 

The use of rigid-body motion conditions is thus not appropriate for calculating the 

terms here. An alternative approach of direct evaluation of the free terms is thus 

employed. This will be discussed in the next section.

Using the above self-regularized displacement-BIE, the integrals over the boundary 

elements on the surface containing P  and on the surface near P  can be regularized 

at the same time. No singularity issues are of concern now and this BIE should thus
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be able to solve problems involving thin bodies.

5.3 Evaluation of th e  Free Terms Cij

As discussed above, the CtJ terms at source point P  cannot be calculated indirectly 

by considering the rigid-body motion condition as is usually done in conventional 

displacement-BIE. An alternative way is to evaluate these terms analytically, although 

it is numerically not as simple. Such an approach has been proposed by Dangla et al. 

(2005), and is adopted in this study. The expression for C is given as follows:

CiiiP) = ^  -  s ^ h lT )  XJ «"<?)W"? + 6X )  (5-6)

where E  is the number of elements sharing the node P, 9e is the angle formed by 

the two edges of element e at P, be% is the unit vector of the bisecting line of these 

two edges, and n\ is the unit outward normal of element e. These quantities are 

illustrated in Figure 5.1, with a unit sphere centered at P.

The solid angle, t/>, can be calculated using

E

ip =  +  'Pt +  'ipl -  7T) (5.7)
e = l

where ipf are the angles formed by the planes of the trihedron as shown in Figure 

5.2. This trihedron is formed by the two edges of element e, the semi-axis in the 

direction of —n(P), and the part of the unit sphere cut off by these three lines, where 

n(P) is an arbitrarily chosen normal at P, usually taken as the average of outward 

normals of the elements sharing P. It was stated in Dangla et al. (2005) that the 

choice of this n (P ) does not affect the accuracy of the free terms since the solid angle
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will be recovered whatever the n (P ) is. Since n(P) is the average of the normals of 

the elements sharing P, it will always be located between the edges of the elements. 

Thus, the sum of will become 27r, and Equation (5.7) becomes

E

+  i ’l) + 2 i r - E n  (5.8)
e = l

To obtain the angles tpl, we need the vectors v; as shown in Figure 5.2. These vectors 

are obtained as follows:

Vi =  ne x ai 

v2 =  ax x (n(P) x ai) 

v3 =  a2 x ne 

v4 =  a2 x (n(P) x a2)

(5.9)

where ai and a2 are the unit vectors of the two edges. W ith vj, ipi can be obtained 

by:

/ - 1 /  V 1 V 2  x
^  =  cos (i— n— r) lVl | |V2 |

, - x ,  V 3V 4
=  C O S  * ( |  n r)

lV 3 | | V 4 |

(5.10)

Once all the quantities in Equation (5.6) are obtained, the free terms Cij can be 

computed and appropriately placed into the matrix [A], corresponding to the node 

P  and nodes of the element containing Pq.

The algorithm for locating the regularization point in Chapter 3 has been
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modified so that it searches for a surface point P0 whose outward normal is parallel 

to the vector from source point P  to P0. Note that P0 and P  do not belong to 

the same boundary element. This can ensure the regularization point is located on 

the second near surface containing near singularities, when dealing with thin-body 

problems. Using the self-regularization technique, the displacement-BIE in Equation

(5.3) can be used for treating such problems without the need of very significant 

mesh refinement as in conventional BEM analysis.

5.4 Num erical Exam ples

Some numerical examples involving thin bodies are presented here to support the self­

regularized displacement-BIE proposed in this chapter. These examples are similar 

to those used in the previous chapters but are made thinner across the solid cross- 

sections.

5 . 4 . 1  T h i n  P l a t e  u n d e r  U n i f o r m  S t r e s s e s

The simple thin plate problem in Chapter 4 is tested again here; Figure 5.3 shows the 

BEM mesh of the problem, with one element on each surface. The material properties 

and loadings are the same as before. The thickness of the l x l  plate is gradually 

reduced from 1 to 0.0001. The maximum errors in stresses and displacements are 

plotted with variation of the thickness in Figure 5.4. As can be seen in the figure, 

the errors are very low until the thickness reaches 0 .0 0 0 1 ; this is in contrast to the 

results from using the conventional displacement-BIE seen in the previous chapter, 

where the errors increase significantly when the relative thickness is decreased below 

0.3 using the same mesh. The deterioration at t = 0.0001 was established to be 

caused by the large aspect ratio of the elements across the thickness, rather than the 

algorithm itself. This issue will be further discussed later.
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5 . 4 . 2  T h i n - w a l l e d  C y l i n d e r  a n d  S p h e r e

The internally pressurized cylinder and sphere problems tha t the self-regularized 

traction-BIE failed in Chapter 4 are tested again, but only in the category of 

thin-walled vessels. The Young’s modulus is set to 1000 units and Poisson’s ratio is

0.3. The requirement for C 1 ’"-continuity in the traction-BIE formulation is no longer 

an issue here. Thus, a quarter-model for the cylinder and an one-eighth model for 

the sphere are used instead of full models. The regularization points of the nodes on 

the inner/outer surface are located on the opposing surface to regularize the singular 

kernels.

The initial mesh for the thin-walled cylinder is shown in Figure 5.5; it has 28 

elements and 8 6  nodes. The inner radius of the cylinder remains at 1 while 

the outer radius is reduced from 1 .1  to 1 .0 0 1 , so that the thickness t decreases 

from 0.1 to 0.001. The results at a series of nodes on the inner surface, located 

from the bottom (z / H  = 0) to the top surface ( z / H  =  1), are examined. The 

errors in stresses are shown in Figures 5.6, 5.7 and 5.8. It can be seen that 

the errors at the nodes on the smooth surface are within 2% until t = 0 .0 0 1 . 

The degeneration of the accuracy at t — 0.001 is possibly due to the relatively 

coarse mesh, thus a refined mesh is then tested for this case, as shown in Figure 

5.9. The refined mesh has 160 elements and 482 nodes. The variation of errors 

along a vertical line on the inner surface is shown in Figure 5.10. The errors at 

smooth surface have now been reduced to within 2 % again, which demonstrates 

that with an appropriate mesh refinement, the method can still give very good results.

In all the results presented above, at the corner nodes, i.e., where vertical lo­

cation is 0 or 1 , the radial stresses have very high errors. The possible reason for



96

this is, again, the very large aspect ratio (up to 1 0 0 0 ) of the elements presenting 

the wall thickness. This problem is actually experienced in FEM as well, where 

elements with large aspect ratios are not considered to be desirable. To verify that 

this is indeed the source of error, a quick investigation is conducted where the mesh 

is refined progressively by dividing the length of the cylinder and the quarter arcs 

into more elements, for both BEM and FEM. 20-node brick elements are used in the 

FEM analysis for direct equivalent comparison. Figure 5.11 shows the variation of 

radial stresses at the corner adjacent to inner surface obtained from BEM solution, 

as well as those obtained at an arbitrary node from the FEM solution. As the aspect 

ratio decreases, the errors in the radial stress decrease in both BEM and FEM, 

but with a very slow convergency; a very refined mesh will be needed to recover 

the correct radial stress. Due to this reason, no more tests were conducted below 

the aspect ratio of 6.66667 which gives the radial stresses of error of 20%, but a 

partially-refined mesh, as shown in Figure 5.12, is tested for t =  0.1. The mesh is 

only refined around the corners so that the aspect ratio has been reduced to around

1. Using this mesh, the errors of radial stresses at the corners are found to be within 

3%. This shows that by eliminating the large aspect ratio, the approach can give 

accurate results everywhere on the surface. Notwithstanding the percentage errors 

in the radial stress discussed above, it should be emphasized tha t for the thin-walled 

cylinder, the hoop stress is at least an order of magnitude larger that the radial stress.

It should be noted that for the FEM analysis, all the nodes on the inner/outer 

surface have the same principal stresses since the interior of the body is meshed 

by elements having surfaces of large aspect ratio. In the BEM, on the other hand, 

since the interior of the body remains continuous, the error only occurs at corners 

with elements having large aspect ratios, while the nodes on the smooth surface still 

give very accurate radial stresses. This shows that when using BEM for a particular
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problem, mesh refinement might be only needed for elements with relatively large 

aspect ratios. In FEM, however, every element having surfaces with large aspect ratio 

needs to be refined as the elements are three-dimensional. This would significantly 

increase the number of elements and nodes, as well as computing resources required.

The mesh of the |- th  model for the pressurized sphere is shown in Figure 

5.13. It has 36 elements and 110 nodes. The inner radius is kept at unity, and the 

thickness t is reduced from 0.1 to 0.001 so that the thickness ratio K  decreases 

from 1.1 to 1.001. As discussed above, the stresses at the corners have relatively 

high errors due to the large aspect ratio, thus only those on the smooth surface are 

investigated. Figure 5.14 shows the maximum error of the circumference stresses at 

an arbitrary node on the inner surface with the variation of thickness ratio K.  The 

regularized displacement-BIE gives less than 3% errors for thickness up to 0.005 and 

starts to deteriorate at t = 0.001. This is, again, due to the large aspect ratio of 

the elements across the wall thickness. Note that in Chapter 4, the conventional 

displacement-BIE starts to fail at t =  0.1 and the self-regularized traction-BIE fails 

at f =  0.4. This example demonstrates again the accuracy and efficiency of the 

proposed self-regularized displacement-BIE when dealing with thin-body problems, 

as long as due care is taken to avoid elements with large aspect ratios at the points 

of interest.

5.5 Concluding Rem arks

In this chapter, a self-regularized displacement-BIE for thin-body problems has 

been proposed similar to the traction-BIE, but through a different approach. The 

Cij terms have to be computed analytically rather than using rigid body motion 

considerations as in conventional BEM analysis. The numerical examples have
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demonstrated that the thickness of a thin-walled vessel can be reduced to a very 

small value, if the mesh is refined so that the aspect ratio of elements across thickness 

remains in a reasonable range.

The proposed self-regularized displacement-BIE is relatively simple to imple­

ment, unlike most of the regularization algorithms that have hitherto been employed 

in BEM. The preliminary tests carried out and presented in this chapter show 

very promising results indeed for this formulation to be used in the elastic stress 

analysis of thin bodies in BEM. Clearly, a more extensive range of tests involving 

complex boundary conditions and geometries need to be conducted to finally 

establish the veracity of this scheme. The issue of having an appropriate aspect 

ratio of the elements at corners of the numerical solution domain also needs to be 

further investigated for perhaps a better remedy than more mesh refinement. The 

key advantage of the proposed scheme is that the same numerical algorithm and 

type of elements (C'°-continuous) can be employed to treat physical problems with 

cross-sections varying from relatively thick to very thin, such as aircraft turbine 

blades with the root attachments.
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e = l
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Figure  5.1: Schematic of elements sharing source point P
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n(P)

F igure  5.2: Illustrative figure for solid angle ip



Figure 5.3: Boundary element mesh of the thin plate problem
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Figure 5.4: Variation of the percentage errors of the numerical results for the thin-plate problem with thickness



Figure  5.5: Initial boundary element mesh of the thin-walled cylinder
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Figure 5.6: Percentage errors in the stresses of the pressurized thin-walled cylinder problem (t=0.1)
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Figure 5.7: Percentage errors in the stresses of the pressurized thin-walled cylinder problem (t=0.01)
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Figure 5.8: Percentage errors in the stresses of the pressurized thin-walled cylinder problem (t=0.001)
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Figure 5.10: Percentage errors in the stresses in the refined BEM mesh for the thin-walled cylinder (t=0.001)
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F ig u re 5.12: P a r t l y  refined mesh for the case of t =  <U
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F igure  5.13: BEM mesh of the thin-walled sphere problem
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C hapter 6

C onclusion

In this thesis, the self-regularization technique in BEM analysis as proposed in Cruse 

and Richardson (1996) and Richardson and Cruse (1999) is extended from 2D to 

3D elastostatics. Two types of problems involving near singularities of the kernel 

functions in the integral equation have been treated in this study. They are (i) the 

evaluation of displacements and stresses at interior points very close to the surface of 

the domain, and (ii) thin-body problems where two or more parts of the surface are 

relatively close to one another. The issue arises because the kernel functions contain 

the fundamental solutions to the governing differential equations in elasticity; they 

are singular with respect to the distance between the field point and the source point 

of the domain.

A brief review of the conventional BEM has been provided in Chapter 2. Fol­

lowing this, the self-regularization BEM scheme for numerically evaluating the 

displacements and stresses at interior points very close to the surface of a 3D elastic 

solid has been successfully implemented in this study. The process of the regulariza­

tion has been described in detail in Chapter 3 and the veracity of the technique and 

implementation has been demonstrated with several numerical examples. Accurate 

numerical solutions for such points very close to the surface could not be obtained in

113



114

conventional BEM unless very refined meshes are employed. The usefulness of this 

scheme may be found in, for example, fracture mechanics analysis for the T-stress 

at a crack front which requires the computation of contour and domain integrals, 

or when detailed stress distributions within a domain near a stress concentration is 

required.

For treating thin-body problems, the self-regularized traction-BIE developed 

by Richardson and Cruse (1999) for 2D BEM analysis and using a “relaxed conti­

nuity” approach, has also been extended to 3D in this study. It has been found, 

however, that the discontinuity of the displacement gradients across the inter-element 

boundaxies of the boundary elements remain a serious source of error when using the 

quadratic conforming elements in the 3D analysis. An alternative approach involving 

collocation at points within the element where the C 1,a continuity requirement is 

theoretically met, have also been implemented but yielded only very limited success. 

For the general case of a problem with corners and non-uniform stress distributions, 

the traction-BIE implemented has been found not to produce accurate results because 

of the displacement-gradient discontinuity at the corners; a  numerical formulation 

employing elements which possess this inter-element continuity requirement will need 

to be employed. Thus the present wholly traction-BIE scheme is not considered to 

be an efficient one for general 3D analysis.

A “new” self-regularized displacement-BIE has been developed and proposed 

instead, in Chapter 5, to treat thin-body problems. Using the ideas from the 

preceding chapters, the scheme involves regularizing the integrals over both parts of 

the surface of the domain which are very close to each other. With this formulation, 

the components of the free terms, CV,, in the BIE cannot be indirectly obtained 

numerically by considering the rigid body motion condition as is normally adopted
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in BEM algorithms. Instead, an analytical expression for obtaining the values 

is implemented; it has been derived in the literature fairly recently. Preliminary 

tests with some examples show that very accurate results can be obtained with the 

self-regularized displacement-BIE BEM algorithm with the C° continuous quadratic 

isoparametric elements that neither the conventional displacement-BIE nor the 

self-regularized traction-BIE have been able to achieve with. This is especially true 

for the results at smooth surfaces. For problems with external corners, care should be 

exercised in the numerical modeling to ensure that the aspect ratio of the elements 

around the corners are not too large so that accurate results could still be obtained.

6.1 Suggestions for Future W ork

(a) Clearly, a more extensive range of tests involving more complex boundary 

conditions and geometries need to be carried out to firmly establish the veracity 

of the displacement-BIE scheme developed in Chapter 5. This could include 

discontinuous load conditions over parts of the solid surface as well as different 

constraint conditions. The geometries can also be extended to those varying from 

thick cross-sections to thin ones. Some criterion could be developed to establish 

when the self-regularization scheme is required in the BEM algorithm.

(b) Further investigation is also needed to reduce the effect of large aspect ra­

tio of the boundary element around corners on the solution accuracy instead of 

requiring significant mesh refinement there.

(c) The self-regularization BEM scheme can also be extended to treat thermoelastic 

problems and those involving body forces.
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