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ABSTRACT 

A bewildering variety of devices for communication from humans to 
computers now exists on the market. In this article, we propose a descriptive 
framework for analyzing the design space of these input devices. We begin 
with Buxton's (1983) idea that input devices are transducers of physical 
properties in one, two, or three dimensions. Following Mackinlay's semantic 
analysis of the design space for graphical presentations, we extend this idea to 
more comprehensive descriptions of physical properties, space, and trans- 
ducer mappings. In our reformulation, input devices are transducers of any 
combination of linear and rotary, absolute and relative, position and force, in 
any of the six spatial degrees of freedom. Simple input devices are described 
in terms of semantic mappings from the transducers of physical properties 
into the parameters of the applications. One of these mappings, the resolution 
function, allows us to describe the range of possibilities from continuous 
devices to discrete devices, including possibilities in between. Complex input 
controls are described in terms of hierarchical families of generic devices and 
in terms of composition operators on simpler devices. The description that 
emerges is used to produce a new taxonomy of input devices. The taxonomy 
is compared with previous taxonomies of Foley, Wallace, and Chan (1984) 
and of Buxton (1983) by reclassifying the devices previously analyzed by these 
authors. The descriptive techniques are further applied to the design of 
complex mouse-based virtual input controls for simulated three-dimensional 

Authors'presmt address: Jock Mackinlay, Stuart K.  Card, and George G. Robertson, 
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304. 



MACKINLAY, CARD, ROBERTSON 

CONTENTS 

1. INTRODUCTION 
2. INPUT DEVICES 

2.1. A Simple Device 
2.2. Primitive Input Devices 
2.3. Connections 
2.4. Generic Dovices 
2.5. Comporition Operators for Input Devices 

Exampler of Cornpored Input Devices 
2.6. A Taxonelay of Input Devices 

AND GENERATION 
3.1. Egocentric Motion 
3.2. Analyrir of an Existing Egocentric Motion Design 
3.3. Generation of Novel 3D Movement Controls: 3D Booms 

Step 1: Application h - t y  
Step 2: Chooring Input Devices 
Step 3: Dcrigning Comporite Input Controls 

4. DISCUSSION 
5.  CONCLUSION 
APPENDIX. DETAILED DSWBIPTION OF INSECT CONTROLS 

Apldicotion Parameters 
Bmic Input Devices 
Connections 
Composite Insect Device 

(3D) egocentric motion. One result is the design of a new virtual egocentric 
motion control. 

1. INTRODUCTION 

Over the last 20 years, the technology of human-computer interface has 
been evolving from a loose collection of techniques toward an engineering 
discipline. Advances in interface technology have led to a remarkable 
improvement in the quality of human-computer interfaces, although, of 
course, important shortcomings remain. The development of interface 
techniques is now at a point where it is appropriate to systematize existing 
research results and craft into a body of engineering and design knowledge. 
This is just part of the normal early development of a new engineering area. 

Input devices are a case in point. A bewildering variety of devices for 
communication from humans to computers now exists on the market (see, 
e.g., Sherr, 1988). The range of input devices includes typewriter keyboards, 
mice, pens, tablets, "headmice," dialboxes, Polhemus cubes, gloves, and body 
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suits. Making sense of this hodgepodge of devices and systematizing the 
knowledge about them is certainly a challenge. 

A popular approach to systematizing knowledge about input devices is the 
organization of human-computer dialogue techniques into collections of 
prebuilt interface modules called user intqfiace toolkits or user interface mamgmunt 
system. User interface toolkits help with a wide range of problems, including 
the construction, runtime execution, and postruntime analysis of a user 
interface (Tanner & Buxton, 1985). For example, a toolkit may provide a 
library of prebuilt interface modules to control physical input devices (Olsen, 
Kasik, Rhyne, & Thomas, 1987; Pfaff, 1985), architecture and specification 
techniques for combining these modules (Anson, 1982; van den Bos, 1988), 
or postprocessing analysis tools (Olsen & Halversen, 1988). 

User interface toolkits help in the construction of interfaces and sometimes, 
as in Anson (1982), they provide architectural models of input device 
interactions. But the device models implicit in them sketch only a limited 
picture of the design space of input devices and their properties. Even for the 
construction of interfaces, they present interface designers with many design 
alternatives but do little to help with the design decisions themselves. The 
interface designer must still choose the appropriate modules from the toolkit 
library and decide how to combine them effectively (McCormack & Asente, 
1988). 

These design issues must also be addressed by the developer of a user 
interface toolkit, who must also deal with the size and complexity of the full 
design space of input devices. What should the toolkit library contain? How 
are interface modules going to be combined? Will it be easy to incorporate 
other physical or logical devices, such as the devices used to control 3D 
graphical applications? And, of course, what about input controls to 
nonworkstation devices such as radios, VCRs, or automobiles? 

To achieve a systematic framework for input devices, toolkits need to be 
supported by technical abstractions about the nature of the task an input 
device is performing (Mackinlay, 1988; Newell & Card, 1986). In particular, 
these abstractions should help with both the generation of alternative designs 
and the evaluation of these alternatives. Of initial concern should be the 
generation of alternatives from the design space of input devices. Design 
alternatives cannot be evaluated until they are generated. 

Two recent attempts have been made to provide abstractions that system- 
atize the design space of input devices. Foley et al. (1984) focused on 
computer graphics subtasks. They developed trees like those shown in Figure 
1 to describe the relationship between computer graphics tasks at the roots of 
the trees and input devices at the leaves. They also reviewed experimental 
evaluations of input devices. Buxton (Baecker & Buxton, 1987; Buxton, 1983) 
has shown that most input devices can be classified according to the physical 
properties and the number of spatial dimensions they sense, as in Figure 2. 
We can summarize Buxton's insight as: 
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P i p =  1. Trees, adapted from Foley, Walkwe, and Chan (1984), show the 
relationrhip between some computer grpphic input q@bthns and various 
input devices. From "The Human Factors of Co~~putcr Gnghler lnkraction 
Techniqntr" by J. D. Folcy, V. L. W d b e ,  and P. Cbon, I%, I .  C o w  
G++ics BrA#&cratiow, 4(ll), pp. 21-22. Copyright I984 by IEEE. Adapted by 
pennirsion. 
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Basically, an input device contains a transducer for an elementary 
physical property it can sense in one, two, or three spatial dimensions. 

The elementary physical properties Buxton identified are position, motion, 
and pressure. 

Both the Buxton (1983) and the Foley et al. (1984) taxonomies allow us to 
relate individual input devices to the space of possible designs. Foley, 
Wallace, and Chan's trees are the cross product of graphics tasks with input 
devices. This relates devices to tasks, but because single devices appear many 
times in the leaves of their trees, it is not easy to understand the similarities 
among devices. Their purpose was to give some initial organization to the 
major input devices that exist, rather than to claim that their collection of 
input devices is complete or systematically generated. Buton's taxonomy 
takes a major step forward. By analyzing input devices as the transduction of 
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Figure 2. Table for input device classification adapted from Buxton (1983), 
which is based on the property sensed, the number of dimensions sensed, and the 
sensing type, which distinguishes between Type T for devices that work by touch 
and Type M for devices that require a mechanical intermediary. From "Lexical 
and Pragmatic Considerations of Input Structures" by W. Buxton, 1983, 
Computer Graphics, 17(1), p. 34. Copyright 1983 by W. Buxton. Adapted by 
permission. 
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basic physical properties, he is able to organize part of the basic design space. 
Although his coverage is systematic, it is limited to continuous physical 
devices. Neither taxonomy deals with the combination of individual input 
devices into complex input controls. 

This article extends Buxton's analysis using an approach developed by 
Mackinlay (1986a, 198613) to describe the design space for graphical presen- 
tations of relational data (e.g., bar charts, scatter plots, and connected 
graphs). Mackinlay treated graphical presentations as sentences of artificial 
languages. A semantic analysis of these graphical languages was used to 
develop two combinatoric techniques (see Figure 3) for describing a wide 
variety of alternative designs. The first technique was to develop a set of 
primitive graphical languages based on orthogonal graphical properties, such 
as position, color, and shape, derived from the cartographer Bertin (1983). 
These graphical languages act as generic building blocks for describing the 
design space. The second technique was to develop composition operators for 
combining these building blocks to convey a rich set of meanings. Using this 
approach, we reformulate and extend Buxton's properties to propose a new 
basis set of physical properties that underly most input devices. We then 
follow mappings of information from the raw physical transducers of an input 
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device through the device and into the semantics of an application. Following 
Mackinlay, these mappings can be evaluated in terms of two types of 
evaluation criteria for comparing alternative designs: cxpr~s~iuness (the sen- 
tence conveys exactly the intended meaning) and ej5d~tivnress (the sentence 
conveys the intended meaning with felicity). In this article, we evaluate the 
mappings for expressiveness. The result is a semantic task analysis that gives 
a new ciassification for a wide variety of input controls, including the previous 
taxonomies of Buxton (1983), Foley et al. (1984), and some mouse-based 
input controls for simulated 3D egocentric motion. The evaluation of 
effectiveness is left for future work (Card, Mackinlay, & Robertson, 1990). 

2. INPUT DEVICES 

An input device is part of the means used to engage in dialogue with a 
computer or other machine. The dialogue is not, of course, in natural 
language but is conducted in ways peculiarly suited to interaction between 
human and machine. Unlike human-human conversation, the dialogue is 
between fundamentally dissimilar agents- in terms of both perception and 
processing. The human makes utterances to the machine by twisting dials, 
pressing buttons, moving a mouse, or performing other manipulations of the 
physical world. These are signals easily communicated to the circuitry of the 
machine. The machine may reply in displays or sounds easily communicated 
to the perceptual apparatus of the human. The dialogue may be organized to 
simulate interaction through an "agent," or it may be organized to simulate 
the use of a "tool." The principle job of the designer of such machines is the 
design of artificial languages to communicate meaning between the human 
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and the machine. Twisting a dial or pressing a sequence of buttons represents 
sentences in these languages. 

Following Mackinlay (1986a, 1986b), we assume that the designer develops 
languages so as to fulfill expressiveness and effectiveness criteria. In general, 
understanding these two criteria requires different supporting sciences: 

1. To analyze expressiveness, we use results from formal language theory 
in computer science. In particular, we say: 

A human-machine artificial language can be used to express some 
information when it can encode exactly the input information, that is, 
all the information and only the information. (Mackinlay, 1986a, 
1986b) 

One of the most difficult parts of artificial language design is to prevent the 
language from expressing additional, unintended information (Mackinlay & 
Genesereth, 1985). 

2. To analyze effectiveness, we use results from the human sciences. 
Various approaches are possible. For example, we could use psychology for 
expected errors or speed in receiving the information or for difficulty of 
learning the language. We could use cognitive models if available or just data 
if necessary and generalizable enough. We could also use results from the 
social sciences. Or, we could use other criteria, such as cost or panel space. 
Finally, the pragmatics of the application itself might be used to weigh the 
importance of different effectiveness criteria. Although effectiveness of input 
devices is beyond the scope of this article (however, see Card, Mackinlay, & 
Robertson, 1990), there are clearly defined complementary roles for both 
machine and human sciences in the design of artificial languages. 

In this article, we concentrate on the expressiveness of an input device - on 
the ways in which physical manipulation can communicate meanings (in this 
case, parameter values) to an application. The resulting semantic analysis of 
the flow of information from a user's manipulations through an input device 
to an application reveals the basic structure of the design space of input 
devices. We start with a simple set of controls that encapsulate the important 
issues. 

2.1. A Simple Device 

Figure 4 contains a picture of a radio with three knobs for controlling its 
volume, selecting power off and frequency band, and tuning in a station. The 
easiest of these to describe is the volume knob. Physically, the user manipu- 
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Now consider the selection knob in Figure 4, which selects OFF, AM, or 
FM. This selection knob also rotates about the Z axis, but it senses this 
rotation with a discrete resolution. To model this, we use a resolutionfunction 
that maps the continuous domain of the control into only certain values 
(refinements are possible to model controls that spring to different positions): 

SelectorKnob is defined as 
a rotation about the Z axis 
between O0 and 90' 
with a resolution that maps the continuous region 
into the discrete set (0°, 45O, 90°]. 

This device is connected to a discrete application parameter: 

The connection from the SelectorKnob to the radio AMTuner and 
FMTuner 

maps from a rotation of (0°, 45O, 90°j 
to the set (OFF, ON) for both tuners. 

Finally, consider the more complicated station knob. It works through a 
string mechanism that connects it to the slider shown in Figure 4, which in 
turn is connected to the tuners. The result is a knob that continues to rotate 
even when the slider has been moved to its maximum or minimum position; 
yet when the direction of knob rotation is reversed, the position of the slider 
immediately begins to change. Here it is not the absolute angle of the knob 
that is important but the relative change of the angle during manipulation: 

StationKnob is defined as 
a relative rotation about the Z axis 
between - 03 and + 00 degrees 
with a continuous resolution. 

Instead of being mapped onto an application dirrectly, the station knob is 
cascaded onto another input device, the station slider: 

The connection from the StationKnob to the StationSlider 
maps from change in rotation in degrees 
to position in inches. 

StationSlider is defined as 
a positioning on the X axis 
between 0 in. and 5 in. 
with a continuous resolution. 
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Figure 5. Physical properties sensed by input devices. 
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2.2. Primitive Input Devices 
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Our simple radio example informally illustrates some of the important 
parts of an input device: the geometry of the transducers of physical 
manipulation, the domain of values that the transducer can produce, device 
resolution, and connections among devices. Now we are ready to make these 
distinctions more precise, to which purpose we propose a theory that formally 
describes a wide range of input devices. The theory focuses on the semantic 
information that must be communicated by input devices from a user to the 
application. We start with Buxton's taxonomy described in Figure 2. The 
virtue of Buxton's scheme is that it relates input devices back to the 
elementary physical and spatial properties these devices transduce. This 
allows us to trace a manipulation language from its roots in the elementary 
properties of physical objects and space, to manipulations of those physical 
properties, to the delivery of meaningful sentences of information to an 
application. We extend Buxton's scheme to further abstract the set of physical 
and spatial properties and to be able to describe discrete, composite, and 
virtual devices. Our set of elementary physical properties includes all possible 
combinations of linear and rotary as well as absolute and relative values of 
spatial position and force, as shown in Figure 5. Instead of just counting the 
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number of dimensions involved as Buxton did, we distinguish the particular 
dimensions in a six-dimensional, user-based coordinate system: three linear 
and three rotational dimensions. Thus, the VolumeKnob on our radio 
example senses absolute rotation about the Z axis. A mouse, on the other 
hand, senses relative position in X and Y. 

Abstractly, an input device is sensitive to user manipulation of physical 
properties in an input range, and it transduces a given input value into an 
output range. We define an input device to be a 6-tuple: 

<M, In, S, R, Out, W>.  

The components of the "sixtuplen are defined as follows: 

1. M is a manipulation operator. A manipulation operator corresponds to the 
physical property vector in Figure 5 that the device senses. We name 
manipulation operators by the corresponding physical property and use 
subscripts to describe the components of the sensed property. For example, 
R, represents a rotation manipulation around the Z axis. 

2. In is the input domain set over which a manipulation operator will sense a 
value. For example, the input domain for the VolumeKnob previously 
described is angles of the knob between O0 and 270'. 

3. S is the current state of the device, including the external state of its input 
and output and the internal state used by the device. 

4. R is a resolutionfunction that maps from the input domain set to the output 
domain set. This allows us to model detents and variable device resolution. 
For example, the SelectorKnob previously described has a resolution func- 
tion that maps from the set of real numbers representing angles of the knob 
to the set (0°, 45O, 90°J. The resolution function can be the identify function 
I, in which case the values in the input domain set In are mapped directly to 
the output domain set Out. (This happened for the VolumeKnob previously 
described.) 

5. Out is the output domain set, which describes the range of the resolution 
function, the set of values into which the input domain set is mapped by the 
device. 

6. W is a general purpose set of device properties that describes additional 
aspects of how the input device works, such as its physical characteristics or its 
internal mechanism. In particular, W contains a list of production rules that 
trigger on internal and external states of the device and allow us to describe 
common properties of input devices, such as the detents of a knob, or 
spring-loaded push buttons. For example, a production can describe the 
spring of a conventional "return-to-zero" joystick. If we assume that the 
device state includes two Booleans, Grasp and Release, that indicate when the 
user starts and stops manipulating the device, the following rule describes the 
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effect of the spring, where In represents the instantaneous input state of the 
joystick: 

if (Release = True) then In : = 0 

That is, whenever the user releases the device, its input state returns to 0 .  
Another use for the productions is to describe an input device that 

interprets a manipulation in a relative manner. Abstractly, a relative input 
device is calculating Out : = Int, - In,, ,, that is, the difference of the value 
In of the input state of the device at two successive times t, - and 1,. 

However, the value of a past state is not available unless it is stored in an 
internal state variable. We can use a production to describe the mechanism 
that updates this internal variable. 

The following is a formal description of the volume knob defined infor- 
mally in Equation 1 (tuple arguments are labeled for ease of understanding): 

VolumeKnob = 
< Manipulation R,, 

InputDomain: [0° ,  270°], 
State: 6 ,  
ResolutionFn: I, 
OutputDomain: [0° ,  270°], 
Works: 9 

where I is the identity function. As a shorthand notation, we typically write 
Equation 3 compactly as: 

VolumeKnob = 
R,: [0° ,  270°]-I- [0° ,  270°]. 

This shorthand notation reflects the fact that input devices are essentially 
functions from input domains to output domains. The notation also allows the 
inclusion of additional information about the resolution function, as in the 
following description of the radio station knob: 

StationKnob = 
R,: [0° ,  90°]-f -  < 0 ° ,  45", 90°> 

where AZn) = 
[0°, 22.5") -- < 0 ° >  
[22.5O, 67.5") -- <45O> 
[67.5", 90°) -- < 9 0 ° > .  
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We write In with italics to refer to the value of the input device at a particular 
instant in time-its input state. Helios is used for device names and sets. 
Thus, In refers to the set of values the input device can take- its input domain 
set. 

2.3. Connections 

Now that we have a notation for describing devices, the next step is to 
describe the connections between devices and application parameters. Be- 
cause we are interested in describing virtual and composite devices, as well as 
physical devices, we treat connections (and, in fact, applications such as the 
radio) as just other specialized devices and use the same formal machinery. In 
these cases, we no longer require that the manipulation operators represent 
manipulations of physical properties. We use the term device in the general 
case and reserve the term input device for cases where the operators do 
represent manipulations of physical properties (which includes virtual input 
devices). 

Although it is possible to describe connections and application parameters 
with full sixtuples, it is sometimes convenient to omit details irrelevant to the 
discussion. For the application devices, the input domain is generally 
sufficient for our needs. So we use: 

Volume = 
< InputDomain: [O, 251 decibels>, 

to refer to the loudness of sound the radio actually makes. As a notational 
convenience, we often use the name of the device to refer to this domain set, 
in this case Volume. 

For connection devices, which map the output domain set of one device to 
the input domain set of the other device, we only need three parameters that 
specify the output domain of the first device, the mapping function, and the 
input domain of the second device. For example, the connection between the 
VolumeKnob input device and the radio Volume application parameter, 
given informally in Equation 2, can be formally described as: 

Connect = 
< InputDomain: [0°, 270'1, 

ResolutionFn: f, 
OutputDomain: [O, 251 decibels> 

As a notational convenience, we avoid the repetition of domain set descrip- 
tions in the input devices and the connection and use the following ternary 
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predicate, where the name of the device is used to refer to the corresponding 
domain set, so the aforementioned expression could be written as: 

Connect(VolumeKnob, Volume, 
A8 degrees) = C, x 8 decibels). 

This expression can be read "the connection device maps from the output 
domain set of VolumeKnob to the input domain set of Volume using the 
functionJ0) = C, x 8," where C, is a constant of proportionality determined 
by the gain of the control and conversion factors among the units of 
measurement. 

Given the following application parameters for the radio: 

Volume: [O, 251 decibels 
AMTuner: [530, 16101 kHz X {OFF, O N  
FMTuner: f88.1, 107.31 MHz X {OFF, ON),  

we can formally describe the radio connections as follows: 

RADIO DEVICE CONNECTIONS: 
Connect (VolumeKnob, Volume, 

A8 degrees) = C, x 8 decibels), 
Connect (SelectionKnob, AMTuner, 

A6 degrees) = 
{45") -- ON 
(0°, 90°j - OFF), 

Connect (SelectionKnob, FMTuner, 
A8 degrees) = 

(90°) - ON 
go0, 45O) -- OFF), 

Connect (StationKnob, StationSlider, 
j78 degrees = C, x 8 inches) 

Connect (StationSlider, AMTuner, 
AX inches) = C, x x Hz) 

Connect (Stationslider, FMTuner, 
AX inches) = Cf x x MHz). 

The connections are shown diagrammatically in Figure 6. 
Note that although our radio exarnpie has scaling occurring in the 

connections, it is possible for devices to do scaling in the device itself or even 
in the application. All three cases can be modeled in this notation by moving 
the mapping function to the appropriate location. 
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Figure 6. The devices and connections for the simple radio. 
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2.4. Generic Devices 

We use the idea of generic input devices to describe families of similar 
devices in the design space of input devices. The radio knobs in our example, 
for instance, are all similar. They represent specializations of a prototypical 
knob, 

GenericKnob, = R,: In -I- Out, ( 5 )  

which senses rotation around a Z axis - different specializations of this generic 
knob lead to different knobs. The device in Equation 5 is a generic device, a 
device sixtuple where some of the arguments have not been completely 
specified. We define specific devices as instantiations of the generic device, 
using the predicate: 

Instantiate (GenericDevice, DeviceArguments). 

Partially specified tuple arguments lead to additional arguments that must be 
specified when the generic device is instantiated. The extended notation thus 
has an object-oriented character. The In and Out sets in the generic knob in 
Equation 5 could be partially specified with additional arguments Min, and 
Max, to describe a generic knob that has bounds on its input values: 

GenericBoundedKnob, = R,: [Min, Mw,] -f-lf(Min,), f(Maxz)]. 

The VolumeKnob previously specified in Equation 3 can be described as an 
instantiation of this generic bounded knob: 

VolumeKnob = 
Instantiate (GenericBoundedKnob, 

In: [0°, 270°], R: I ) .  

The idea of generic devices is a useful design aid for exploring the design 
space of input devices before having to contend with the details of specific 
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input devices. For example, knobs can also rotate freely, sample from a fured 
range, or only take on discrete input values: 

GenericFreeKnob, = 
R,: Real - f-- Real, 

GenericSamplingKnob, = 
R,: [Min, Max,] 
- s- < ~(Min,), . . . , s(Mar,) > 

GenericDiscreteKnob, = 
R,: <Min,, . . . , Max,> 
- f- CXMin,), . . . , XMw,) > . 

Note that physical knobs do not actually have a discrete input domain set 
because they must always be manipulated through a continuous range. 
However, physical knobs often include springs that force the knob to the 
closest discrete detent, giving the user the feedback of a discrete knob. 
(Formally, this is modeled with a production that changes the input state when 
the user stops manipulating the knob.) We use the tuple notation for a device's 
input domain set as a shorthand to indicate the existence of such feedback. 

The only other generic device needed to describe the radio input devices is 
the following generic slider: 

Genericslider, = P,: [Min, Max,] - f-- KMin,), XMar,)]. 

Sampling and discrete generic sliders can be specified in the obvious way. 
We can now redescribe the devices that appear in our venerable radio 

example as follows: 

RADIO DEVICES: 
VolumeKnob = 

Instantiate (GenericKnob,, In: [0° ,  270°], R: I)  
SelectionKnob = 

Instantiate (GenericDiscreteKnob,, In: [0° ,  90°] ,  
Out: <0° ,  45O, 90° >) 

StationKnob = 
Instantiate (GenericFreeKnob,) 

Stationslider = 
Instantiate (Genericslider,, In: [ O ,  5 ] ) ,  

where some device arguments have been omitted. For example, the Out set of 
VolumeKnob is clearly [0° ,  270'1. 

Before we turn to the description of composite input devices, including 
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two-dimensional devices, we describe the following two one-dimensional 
generic devices: 

GenericButton, = 
P,: [0, Max,] - f - < Up, Down > 

Generic1 D-Tablet, = 
P,: [Min, Max,] - f - If(Min,), f (Mar,)] U 

RestState - f- Null. 

Tablets are sensitive over their entire input range to the position of a touch. 
Some tablets are sensitive only to the touch of specialized pens. 

One difference between a tablet and a slider is that the tablet has a special 
input RestState when the user is not manipulating the device, and it reports a 
Null value when the device is at rest. By contrast, sliders maintain their input 
state when the user stops manipulating the slider. 

In fact, tablets raise some interesting issues that have not yet been covered 
by our formal analysis. In particular, the state of a tablet can change without 
having to pass through intermediate values between the previous state and the 
new state, as was the case for the knobs we discussed-That is, the tablet is 
sensitive over its entire input range, not just in the neighborhood of the 
current state. This property is different from the one Buxton (1983) used in 
his taxonomy, where he distinguished between devices that require a mechan- 
ical intermediary instead of touch. A light pen requires a mechanical 
intermediary and is still sensitive over its entire input range. Three issues are 
raised by these considerations: 

1. Component acquisition. Some devices require additional movement to a 
specific location to acquire a component of the device that is required for 
manipulation (e.g., a light pen, a mouse, or a slider knob). The need for 
additional movement is important for evaluating the effectiveness of input 
devices. 

2. Persistant state feedback. Some devices maintain and feed back their state 
even when they are not being manipulated. For example, a slider knob 
indicates the slider's current state. Not all hand-movement devices, however, 
have this property. A mouse, for example, is sensitive to relative position, but 
its location at rest may not reveal any interesting state. Also, when a knob can 
be rotated through more than 360°, its current position does not reveal its 
state unless there is additional feedback. State feedback is an important 
effectiveness property. 

3. Sensitivity over input domain. Some devices are sensitive over their entire 
input domain; that is, the user can specify a new disjoint value without 
passing through the set of values on the way to the new value (as would 
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happen with a radio volume control). This property is distinct from the other 
two. 

These distinctions can be captured in our formalism using the works W 
argument of the device tuple. 

2.5. Composition Operators for Input Devices 

The discussion so far has focused on simple radio controls and various 
one-dimensional devices. But simple input devices can also be composed into 
a bewildering variety of high-dimensional devices and elaborate input 
controls. Given our semantic analysis of input devices, we have identified the 
following three composition operators for generating controls in the design 
space of input devices: (a) Two devices can be connected, as we have seen, so 
that the output of one is cascaded to the input of the other. The station knob 
and station slider compositions are examples of connection composition; (b) 
several independent devices can be laid out together in a control panel. For 
example, the radio has a panel of three knobs. The best known example of this 
sort of device is a typewriter, which comprises a set of more or less identical 
button devices laid out together, each associated with a different letter; or (c) 
two devices can be composed so that their domain sets are merged. For 
example, the position sensor of the mouse is a merged composition of two 
relative position sensors combined orthogonally. Our formalism allows us to 
describe each of these composition operators more precisely: 

1. Connection composition. Devices are connected by cascading the output of 
one device to the input of the other. In this sort of composition operator, the 
output domain set from one device is mapped via a connection to the input 
domain set of another device. An example is the station knob cascade 
described previously in Equation 4, 

Connect (StationKnob, Stationslider, 
f(t9 degrees) = C, x 8 inches). 

For convenience, we shorten this still further to: 

StationKnob + Stationslider. 

2. Layout composition. The layout of devices on a panel can be described with 
a mapping of the local coordinates of a device to the coordinates of the panel, 
usually involving translations and rotations. This mapping can be described 
as one of the physical properties of the composite device. Formally we use the 
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symbol @ to indicate a layout composition. For example, the layout of the 
left, middle, and right buttons to the top of a mouse can be described as: 

LMouseButton T,(z) @ 

MMouseButton T2(t) @ 

RMouseButton T3(z), 

where the transformation functions TI,  T2, and T3 transform the coordinates 
of the respective button devices to the top of the mouse. (See the Appendix for 
details about the instantiation of these buttons from the GenericButton, 
device.) 

3 .  Merge composition. The final form of device composition is a special case 
of layout composition where the two devices are merged such that their 
combined domain sets are treated as higher dimensional sets. Formally, we 
indicate merge composition with the standard cross-product symbol X for 
generating higher dimensional sets. For example, a tablet can be described as 
the cross product of two one-dimensional tablets, as defined in Equation 6, 
that have independent axes: 

GenericTablet, = Genericl D Tablet, X Genericl D Tablet,, 

which is shorthand for: 

GenericTablet, = 
P,: [Min, Mar,] X [Min,, Max,] 
-f- HMin,), AMaX)l  X HMin,), -@fax,)] U 

RestState - f - Null, 

which is, in turn, shorthand for: 

GenericTablet, = 
< Manipulation: PAY 

InputDomain: [Min, Max,] X [Min,, Mar,] U 
< RestStatc, RestState, > , 

State: < x , Y > ,  
ResolutionFn: f, 

OutputDomain: 

<Null,, Null, > 
Works: ( ) > .  
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Figure 7. The combination of a three-button mouse and cursor can be described 
with the merge, layout, and connect composition operators. 

Merge: Mouse,X M o u q  

Layout: BlJttonL~(,) ... 

Connect: Mouse =@Cursor 

A two-dimensional slider can be described in a similar manner: 

GenericSDSlider, = Genericslider, X Genericslider,. 

The notation also suggests other combinations of input device designs, such as 
a discrete slider crossed with a 1D tablet, which might be appropriate for two 
related application parameters where one is discrete and the other warrants 
sensitivity over the entire input range. 

The result of connection, layout, or merge composition is still formally an 
input device. For a connection composition, the composite device is composed 
of the input domain set of the first device, the output domain set of the second 
device, and the composition of the two resolution functions. For a layout or 
a merge composition, the domain sets are combined with a cross product and 
the resolution functions with a union. 

Examples of Composed Input Devices 

Mouse. The description of a three-button mouse and cursor combination 
requires all three composition operators (see Figure 7). The Mouse is a 
composite device that involves a merge composition of two relative position 
sensors: 

Mouse = dP,: Real X Real; -f-- Integer X Integer, 

where dPxy means relative position on the XY plane. The Mouse3Button 
device is described with layout compositions: 

Mouse3Button = 
Mouse @ 

LMouseButton TI@) @ 

MMouseButtonT&) @ 

RMouseButton Tdz), 



DESIGN SPACE OF INPUT DEVICES 165 

where the coordinates of the buttons are relative to the mouse. 
The mouse is typically connected (in the sense of a device composition) to 

a virtual input device called the Cursor, which simulates a 2DSlider device for 
pointing on the display. The cursor on a bitmapped screen can be described 
as follows, given that Screen, and Screen, are the pixel width and height of the 
screen: 

Cursor = 
dP,: lnteger X lnteger 
- f -- < 0, . . . , Screen, > X < 0, . . . , Screen, > 

The cursor interprets the output of the mouse as relative positional values, 
updates an internal state description of a location on the screen accordingly, 
and reports the new location. Because the output of the mouse and the input 
of the cursor are the same type, their connection typically involves no more 
than a constant scale factor and clipping, although more elaborate connection 
functions are sometimes used. Typically, we ignore such issues and write: 

Mouse * Cursor 

to indicate the cascade from Mouse to Cursor. 

Joystick. A joystick, Joystick,, is a rotary device that senses rotation 
around two axes, conventionally the X and Y axes. A Joystickxy can be 
described as follows: 

Joystick, = I D  Joystick, X 1D Joystick, 

1 D Joystick, = R, [Min, Max,] - f -- V(Min,), f (Max,)]. 

An interesting issue raised by comparing joysticks and knobs is whether an 
input device requires grasping. Knobs often require grasping, whereas 
joysticks often require only touch. Graspable is a physical property of a device 
that is important for effectiveness evaluation. We can also have a delta 
joystick with dR, and a force joystick with T,, where T stands for torque. We 
use the works part of our formalism to describe joysticks that spring back to 
zero rotation. 

It should be obvious how to describe 3D versions of some of these devices. 
One can also describe hybrid versions where one dimension is rotary and the 
other is linear. 
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Figure 8. This diagram describes an input device taxonomy that is b a d  on the 
analysis presented in this article. Circles are used to indicate that a &vice senses 
one of the physical praperties shown on the vertical axis along one of the linear 
or rotary dimensions shown on the horizontal axis. For example, the volume 
circle indicates a device that senses angle around the z axis. The position in a 
column indicates the number of values that are senred (i.e., the measure of the 
domain set). For example, the selection circle represents a discrete device. Lines 
are used to connect the circles of composite devices. The double line represents a 
connection composition, such an for the radio station composite device. A black 
line represents a merge composition, such as the x andy components of the mouse. 
The dashed line represents a layout composition, such as the buttons on a mouse, 
which are represented by a circle with a 3 in it (because they are identical 
devices). 

2.6. A Taxonomy of Input Devices 

We can now give our equivalent to Foley et al.'s (1984; see Figure 1) and 
Buxton's (1983; see Figure 2) taxonomies. Our classification is displayed in 
Figure 8. Devices are classified according to (a) which physical property they 
transduce, (b) which of the six degrees of freedom they sense, and (c) the 
measure of the input domain set, which is the number of elements in the 
domain set. A device is represented in the figure as a set of circles connected 
together. Each circle represents a transducer in the device, plotted according 
to the cannonical physical property it transduces. Each line indicates a 
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Figure 9. Foley et al.'s (1984) devices plotted on the taxonomy (see Figure 1). 

composition operator: connection composition (double line), layout composi- 
tion (dotted line), or merge composition (black line). 

We have plotted the devices of our radio example and the mouse on this 
diagram to illustrate its use. The radio volume knob is in the cell in Figure 8 
for sensors of angles relative to the Z axis. It is located on the right side of the 
cell, showing that it is continuous. The selection knob is similar, but it is 
located nearer the left side showing that it has just a few values. The station 
knob is located in the cell for relative angle and is connected to a slider for the 
tuning mechanism. A mouse is depicted in the figure as a circle on X 
Movement, a circle on Y Movement, and a circle containing the number 3 on 
Z Positioning. This says that the mouse is a layout composition of four 
devices: one device that is itself the merge composition of two elementary 
devices sensing change in X and Y and three other devices, which are simple 
buttons. The placement of the X and Y circles to the right of the column 
indicates nearly continuous resolution. The location of the button circles to 
the left indicates controls with only two states. 

We demonstrate the coverage of this taxonomy by showing that it can 
classify the devices described in the previous taxonomies and by showing that 
it can classify even unusual devices. Our reclassification of the devices listed 
by Foley et al. (1984) in Figure 1 is given in Figure 9. The idea of a voice 
recognizer device, which is considerably more sophisticated than the other 
devices, is the only one that does not fit in the new taxonomy. Compared with 
their classification, however, our scheme is more compact, because we have 
separated the classification of devices from the classification of tasks (which 
we would include as part of the application), and it is more systematic. We 
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Figure 10. Buxton's devices plotted on the taxonomy (see Figure 2). 

have not, however, attempted in this article to analyze the graphics subtasks 
or review the performance literature as they did. The figure shows many 
devices that use absolute or relative linear or rotary position, few that use 
force or torque, and none that use relative force or torque. Our reclassifica- 
tion of the devices listed by Buxton (see Figure 2) is shown in Figure 10. Our 
classification improves Buxton's to handle a larger and more systematic set of 
physical properties, and we can handle both discrete and continuous devices. 
Except for buttons, all the devices classified by both Buxton's and Foley et al.'s 
taxonomies were continuous. 

Figures 9 and 10 show typical computer input devices. But what about 
more unusual devices, such as a typewriter keyboard? Figure 11 plots devices 
that are unusual or extreme in some way. 

In addition to the typewriter keyboard, Figure 11 includes the controls for 
an interesting pair of toys: Etch-a-Sketch and Skedoodle. Buxton (1986) 
argued that these toys seem "semantically identical," in the sense that they 
draw using a similar stylus mechanism and even have the same "erase" 
operator (turn the toy upside down and shake it). But they have very different 
properties for drawing. Etch-a-Sketch is operated with two knobs, one for X 
and one for Y. Skedoodle is operated with a joystick for integrated control of 
X and Y. Both of these points come out in Figure 11. Both toys are connection 
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Figure 11. Some interesting input devices plotted on the taxonomy. 

composed to the same sort of cursor device, which we have included in the 
figure, leading to the appearance that they are semantically identical, but 
Etch-a-Sketch controls plot as two separate knobs that rotate about 2, whereas 
the Skedoodle controls plot as two merged controls. 

The Polhemus cube is a device that uses magnetic fields to measure the 
absolute location and orientation of a cube that can be either held or attached 
to some other object such as a glove or helmet. On the diagram, this control 
plots as a merge of all the linear and rotary degrees of freedom. 

Minsky's (1984) force and position sensitive screen has transducers for 
position in X and Y but, in addition, can sense force in X, Y, and Z. These 
transducers allow information on gestures to be captured. The device has a 
relatively large number of degrees of freedom. Interestingly, this device has 
transducers for both position in X and Y and force in X and Y. 

The VPL glove has transducers to sense the flexing of the fingers. Basically 
the glove can be seen as a separate set of sensors about an axis of rotation (this 
depends on the orientation of the hand, but we plot it as if it were the X axis). 
This gives many degrees of freedom under direct user control. The VPL glove 
is often composed with the Polhemus cube to provide a large number of 
degrees of freedom. 

Finally, we can plot virtual devices in addition to physical devices. Menus 
are virtual devices for selecting among alternatives. Most menus would plot as 
circles in the linear Y position cell. A more exotic sort of menu is a pie menu 
(Callahan, Hopkins, Weiser, & Shneiderman, 1988). A pie menu is a circular 
structure divided into slices like a pie (this allows more items to be closer to the 
starting position of the mouse). The user indicates a selection by moving in a 
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Figure 12. Sets and their measure. 

Set 

Discrete - nominal or ordinal 
(a, b} or <a, b> 
{a, b, c) or <a, b. c> 
{al, a2, ..., an} or <min, ..., max} 
{al, a2, ...) or < ..., al ,  a2, ... > 

Continuous 
[min, max] 
Real 

Measure 

2 
3 
Bounded 
Unbounded 

Bounded 
Unbounded 

particular direction. The pie menu itself plots onto the diagram in the same 
place as a rotary switch (assuming eight positions for each). We have not 
shown it on the diagram, but the pie menu is actually cascaded from the 
cursor virtual device (which, in turn, is cascaded from the mouse). In this way 
it is different from a simple rotary switch. 

2.7. Evaluating the Expressiveness of an Application's Input 
Devices 

We have said that one of the criteria for the design of artificial languages 
for human-machine interaction is that they be able to express some intended 
meaning. Input devices are one of the components used in the human- 
machine portion of the dialogue, and they make their own contribution to 
expressiveness. 

If we compose the chain of resolution and connection functions from the 
user to the application, we can compare the semantics of the users manipu- 
lations with the desired semantics of the corresponding application parameter. 
The goal is to satisfy the following principle: 

An input device should allow the user to express exactly the 
information acceptable to the application: neither more nor less. 

Formally, the connection among input devices and applications involves the 
mapping from an Out set of an input device to the In set of an application or 
another input device. 

One kind of expressiveness problem arises when the measure (Figure 12) of 
the Out set does not match the measure of the In set to which it is connected. 
This leads to a loss of information. If the projection of the Out set includes 
elements that are not in the In set, the user can specify illegal values; if the In 
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set includes values that are not in the projection, the user cannot specify legal 
values. 

As an example, consider the Volume parameter in our radio example. It is 
a continuous, bounded domain set, which means the corresponding knob 
should have a continuous, bounded Out set that lets the user specify every 
decibel value in the Volume input domain set. If the Out set is discrete or the 
bounds are too small, the user will not be able to express some decibel levels. 
If the Out set is unbounded or the bounds are too large, the user will be able 
to express decibel levels outside the range of the radio. 

Another sort of expressiveness problem arises if a device has relative 
semantics, but the application interprets it in an absolute manner. If v is the 
value and p is the application parameter, an absolute interpretation is: 

Absolute: p : = v 

and a relative interpretation is: 

Relative: p : = p + v. 

(If nonlinear effects are desired, a function can be wrapped around 0 . )  Input 
devices, as we have seen, can sense manipulations with either absolute or 
relative semantics. When an application makes an absolute interpretation of 
a relative device, there is no simple relationship between a user's manipulation 
and the application's interpretation. The dual case of absolute device seman- 
tics and relative application interpretation is not a problem, because the 
semantics is simply that of a device controlling a delta or velocity application 
parameter. 

It is interesting to note that applications can also interpret a device value as 
an acceleration, which can be implemented with p as a special velocity 
application parameter and p' as the ultimate application parameter to be 
changed: 

Accelerated: p' : = p' + p .  

Velocity and acceleration are interpretations that typically cause users to have 
strong semantic expectations of the corresponding input device because, in 
the real world, velocity and acceleration tend to start from zero and vary 
smoothly. Given this expectation, it is important to check if the input device 
supports this sort of behavior. For example, a tablet allows sudden changes in 
its output, but a spring-return joystick always starts from zero and varies 
smoothly. Clearly, the joystick is the better device for velocity or acceleration 
parameters. 
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3. SIMULATED 31) EGQICENTBkEC M63TION CON'FIELOLS: 
ANALYSIS AND GENERATION 

We now turn to the use of our theory and taxonomy of input devices in the 
analysis and innovation of design. Theories and taxonomies often achieve 
their influence in design as tools for thought. Even formal theories can 
sometimes be deployed informally to give the designer representations in 
which to pose and manipulate the design. To this point, we have concentrated 
on a description of simple, physical input devices, largely in isolation. We 
now consider the design of more complex virtual input devices in relation to 
an application. Our application is the design of egocentric motion (movement 
of the viewpoint) controls as part of a 3D interface. We consider an existing 
3D egocentric motion control from the point of view of our theory and 
taxonomy. We then give a brief case study in which the theory and taxonomy 
was used to aid in the design of a novel set of movement controls. 

3.1. Egocentric Motion 

As a user moves about in a simulated 3D world, there is continuous change 
to the location and gaze of the user's viewpoint relative to an origin 
maintained at the point of view. The six usual degrees of freedom of position 
and orientation lead to 12 application parameters: 

Body position 
Move-Right Move-Left 
Move-U p Move-Down 
Move-Forward Move-Back 

Body orientation 
Rotate-Right Rotate-Left 
Rotate-Up Rotate-Down 
Rotate-Clockwise Rotate-Counterclockwise. 

When a coordinate axis is placed at the point of view origin, these 12 
parameters can be reduced to six parameters by combining the parameters 
that have the obvious inverse relationships: 

Bo+ position 
Move-Right-Left 
Move-Up-Down 
Move-Forward-Back 
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Body orientation 
Rotate-Right-Left 
Rotate-Up-Down 
Rotate-Clockwise-Counterclockwise. 

We use the convention that Move-Right-Left means that positive values 
indicate how far to move right and negative values indicate how far to move 
left. 

Although control of six degrees of freedom is sufficient for specifying any 
position and orientation of the viewpoint, more degrees of freedom can be 
used to support a metaphor of walking, thereby allowing the user to transfer 
to the virtual world movement techniques from the real world. In this 
metaphor, there are two coordinate axes at the point of view, one for the body 
and one for the gaze. Of the six body parameters, functionality associated 
with the body coordinates is typically limited to the position parameters and 
the left-right rotate parameters. Of the six gaze parameters, functionality is 
typically limited to four-The parameters in parentheses are not used: 

Gaze orientation 
Gaze-Right Gaze-Left 
Gaze-Up Gaze-Down 
(Gaze-Clockwise) (Gaze-CountercIockwise). 

Like any application, an egocentric motion application can interpret values 
from input devices as absolute change, relative change (which can be thought 
of as velocity), or acceleration change to its application parameters. The most 
common choice for egocentric motion application is relative change, which is 
the interpretation assumed in the following application descriptions unless 
otherwise stated. 

3.2. Analysis of an Existing Egocentric Motion Design 

An example of input controls for egocentric motion is based on the 
demonstration program Insect, written by Thant Tessman from Silicon 
Graphics, Inc. (see Figure 13). The insect is impressively animated and walks 
about more or less under control of the user. The user can move about to view 
the insect from different places. It gives an elegant demonstration of the 
interactive graphics capabilities of the Iris series of computers. 

Insect uses three physical input devices for egocentric motion: the mouse, 
the Control key, and the Left Shift key. The virtual devices are the cursor 
connected to the mouse and two instantiations of the following generic device, 
which can be characterized as a window-centered tablet device: 
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Figure 13. Tessman's Insect demo has an insect walking on a checkerboard grid. 

? 

WinTablet = 
P,: <0,  . . . , Win,> X < 0 ,  . . . , Win,> 

-f- < - Win,/2, . . . , +Win,/2> X 
< -Win,,/2, . . . , +Win, /2>,  

where the device is sensitive over its input range and springs back to zero 
when not in use. Win, and Win, represent the width and height of the Insect 
window and the function f maps from window coordinates to window- 
centered coordinates. Although we call this device a tablet because of its input 
range sensitivity, it is also like a joystick in that the output state is reset to zero 
when the user stops manipulating it. Virtual devices often blend the 
properties of common physical devices. 

The left mouse button activates one instantiation LMWinTablet, and the 
middle mouse button activates the other MMWinTablet. Formally, these 
activations can be modeled as connections from the mouse buttons to (ON, 
OFF) inputs that have been added to the corresponding virtual tablet 
descriptions (see the Appendix for details). The insect virtual controls are 
plotted on our taxonomy diagram in Figure 14. The first thing to notice is that 
the virtual controls for these applications become quite complex. Figure 15 
describes the connections to the application parameters. Such diagrams help 
us to keep track of the relationships among the composed input devices. 

We evaluate the expressiveness of the Insect egocentric motion controls by 
following the control's resolution and connection mappings from the physical 
device manipulations to the application parameters, which results in the 
following table: 



DESIGN SPACE OF INPUT DEVICES 175 

Figure 14. The composite device for the Insect demo plotted on the taxonomy. 

Linear 

I X I Y I Z  

Rotary 

Figure 15. The devices and connections for the movement controls of the Insect 
demo. 

LMouseButton 
LMWinTablet ~ ~ ~ : # f & ~ ~ $ [  

Mouse Cursor 
MMWinTablet 4 Gaze-Down-Up Rotate-Right-Left 

MMouseButton 

ControlButton -$Constant-Accel-Gaze-Forward 

LShiftButton -$Constant-Accel-Gaze-Back 

LMouseButton LMWinTablet 
forward-back ............. Move-Up-Down 
right-left .................. Move-Right-Left 
MMouseButton MMWinTablet 

forward-back ............. Gaze-Down-U p 
7ight-left .................. Rotate-Right-Left 
ControlButton .......... Constant-Accel-Gaze-Forward 
LShiftButton ............ Constant-AcceI-Gaze-Back 

This table can be read as follows: The left mouse button LMouseButton turns 
on LMWinTablet mode: Moving the mouse forward or back moves the 
viewpoint up or down by an amount corresponding to the distance of the 
mouse from the center of the window. The other entries in the table are read 
similarly. The ControlButton causes the viewpoint to be accelerated a 
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constant amount forward along the axis of the gaze and similarly for the 
LShiftButton. Although not indicated in the table, movement stops when the 
keys or buttons are released; LShiftButton input dominates the 
ControlButton when both are pressed. 

The right side of the table shows that the Insect controls allow the user to 
express the basic functionality of walking around a 3D space. Our analysis, 
however, suggests some of the reasons why even experienced users have 
difficulties with the Insect movement controls. 

The first problem has to do with the use of tablets. Because tablets are 
sensitive over their entire input range, abrupt movements are possible, which 
can be distracting and confusing. Inasmuch as the semantics of these tables 
are velocity parameters, it is particularly problematic that the Insect uses 
virtual tablets. 

The second problem has to do with the MMouseButton control of rotating 
the gaze down and up. The semantics of this control is not consistent with the 
other MMouseButton control of rotating the body right and left (it is 
reversed). It is also inconsistent with the LMouseButton control of body 
movement up and down (it is also reversed). It is possible that the designer of 
this device reversed this control so that the combined operation of 
LMouseButton and MMouseButton up and down would give a certain effect 
(moving the body up while looking down or moving down while looking up). 
However, the more common uncombined operations are much harder to use 
because of the inconsistencies. In addition, the mixture of gaze rotation and 
body rotation on the same control (middle mouse) can be confusing. 

A third problem is the lack of limits on movement. For example, the gaze 
can be turned 180° and leave the user looking upside down. Another example 
is that the user can rotate either the body or the gaze so that the plane of 
interest (the checkerboard that the insect walks on) is out of sight. When that 
happens, it is very easy for the user to get totally lost. 

3.3. Generation of  Novel 3D Movement Controls: 3D Rooms 

In the previous section, our theory of input devices was used to comprehend 
and critique the design of an existing virtual input control. In this section, we 
sketch a short case study of the use of the theory for designing novel input 
controls for egocentric motion in a 3D world as part of the design of a 
prototype for a 3D version of Rooms (Henderson & Card, 1986; Robertson, 
Card, & Mackinlay, 1989; see Figure 16). The design steps of the case study 
proceeded roughly as follows: (a) identify application functionality, (b) assign 
input devices to the application's parameters in a manner consistent with the 
expressiveness criteria, and (c) compose these devices together in a manner 
consistent with the expressiveness criteria. This case study does not include 
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Figure 16. An exploratory room in the 3D Rooms system. Two movement icons 
are presented to the user in a heads-up display. The arrow icon is used to move 
in the plane of the body. The eye icon is used to rotate the gaze. The user can 
specify walking movement by pointing elsewhere in the window. 

the formal evaluation of effectiveness criteria, which might require an 
additional design step to test the completed design (Mackinlay, 1986a, 
1986b). 

Step 1: Application Functionality 

The first step was to identify the application functionality to be controlled 
by the user. We decided to provide movement functionality based on the 
metaphor of human movement around a room. To  carry out this metaphor, 
the user is placed in an environment matched to human scale, and the viewer 
corresponds to human body orientation. In the default position, the user's 
eyes are 5' 4" above the floor, looking forward and slightly down. We 
identified the following six application parameters associated with the walking 
metaphor: 

Body 
Move-Right-Left 
Move-Up-Down 
Move-Forward-Back 
Rotate-Right-Left 

Gaze 
Gaze-Right-Left 
Gaze-Up-Down 
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Body constraints are mirrored in movement constraints: (a) body position is 
restricted by the room's walls, and (b) gaze orientation is restricted to angles 
that are natural for the human head. Additional application functionality was 
added for common movements such as standing up and centering the gaze. 

Step 2: Choosing Input Devices 

The next step was to choose appropriate input devices for each parameter. 
Expressiveness suggests that an important variable in this choice is the 
measure of the ranges of the various application parameters. Again, in line 
with the metaphor of walking, some ranges are fured and limited, such as the 
gaze orientation; some ranges are variable, such as the sizes of different 
rooms; and some ranges are unbounded, such as body rotation. Fixed limited 
ranges can be assigned to input devices with connections that support a direct 
correspondence between the input device state and the state of the application 
parameter. For example, gaze orientation could be assigned to an absolute 
joystick where the position of the stick corresponds directly to the position of 
the gaze. Variable and unbounded ranges, on the other hand, require a 
different design. A good design is to have the application interpret the input 
value as a relative change and use an input device that has properties similar 
to a joystick-a range from negative to positive and a spring back to zero 
when the user stops manipulating the device. The Insect controls use this type 
of design. We decided to use the relative interpretation uniformly for the six 
walking application parameters even though the gaze could be handled in a 
different way, because our physical input devices consisted of a keyboard and 
a mouse. A two-dimensional virtual device was developed that converts screen 
coordinates to joystick style coordinates: 

VirtualJoystick = 
P,: <0, . . . , Screen,> X < 0 ,  . . . , Screay> 
-f-- <Minx, . . . , Maw,> X <Miny, . . . , Max,>. 

The zero location of the virtual joystick is determined at instantiation time, 
which occurs when the MMouseButton is pushed. In this way, the other 
mouse buttons are freed for other application functionality, and specific 
virtual joysticks can be tied to icons. The user moves the Cursor over a 
transparent movement icon, pushes the MMouseButton, and begins manip- 
ulating a virtual joystick device positioned at the cursor. Although these 
virtual devices are not technically joysticks in that they do not sense rotation, 
they are similar to physical joysticks, and we use the graphical feedback 
shown in Figure 17 that suggests a joystick device. The mapping function f 
has a flat spot around zero to keep the control from being too sensitive. 
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Figure 27. Joystick feedback is provided by drawing a line from the current 
mouse ~osition. as indicated bv the mouse cursor. to the cursor ~osition at the 
time the joystick was instantiated. In this case, the user is moving in the plane 
of the body. 

Step 3: Designing Composite Input Controls 

Given choices of input devices for the individual application parameters, 
the next step was to design a composite control, mindful of the application 
semantics. The merge composition of the two gaze parameters into a single 
joystick was obvious. The connect of left-right, forward-back, and up-down 
to mouse movements to the corresponding directions on the mouse was also 
obvious and fairly conventional. The only remaining question was, should 
Move-Forward-Back be merged with Rotate-Right-Left or Move-Right-Left. 
We tried both and found that the tanklike Rotate-Right-Left combination 
worked better. The Move-Right-Left combination is not a common walking 
movement. Therefore, our design has three virtual joystick devices. Two of 
these are tied to icons and the third virtual joystick (the most common) is 
instantiated whenever the middle mouse button is pressed when the cursor is 
not over one of the movement icons (Figure 18). The result is the following 
expressiveness relationship between virtual joystick devices and mouse move- 
ment: 

MMouseButton: 3D Rooms Navigation 
No icon: TankVirtJoy 

forward-back .............. Move-Forward-Back 
right-left ................... Rotate-Right-Left 
Arrows icon: BodyVirtJoy 
forward-back .............. Move-Up-Down 
nght-left ................... Move-Right-Left 
Eye icon: GazeVirtJoy 

forward-back .............. Gaze-Up-Down 
right-left ................... Gaze-Right-Left 
Click on icon StandUp and CenterGaze 

The virtual joysticks are also sensitive to quick clicks of the mouse button so 
that the user can stand back up to the default height and center the gaze. The 
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Figure 18. The composite device for our 3D Rooms application plotted on the 
taxonomy, 

resulting connectivity for the input devices of 3D rooms is given in Figure 19. 
In this case, the theory was used as tools of thought for conceptualizing the 
design space. Part of the actual process of design consisted of proposing 
alternative composition operators by writing down short forms of the notation 
on the whiteboard. 

4. DISCUSSION 

Let us summarize our semantic analysis of the design space of input 
devices. We began with Buxton's (1983) notion that input devices are 
transducers of physical properties in one, two, or three dimensions. We 
augmented his set of three elementary physical properties- position, motion, 
and pressure- to include all eight possible combinations of linear and rotary, 
absolute and relative, position and force (Figure 5). Although exotic input 
devices might be imagined that transduce other physical properties (e.g., 
galvanic skin response), and some input devices may require very complex 
signal processing (e.g., speech recognition or hand-print recognition), this 
seems to be the basic, canonical set of physical properties available for sensing 
and communication with the machine. 

We also augmented Buxton's description of space. To his three linear 
dimensions, we added three rotational dimensions (and relative values- 
essentially the first derivative with respect to time). We traced the mappings of 
the physical transducer through the device and into the semantics of the 
application. One of these mappings, the resolution function, allowed us to go 
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Figure 19. The devices and connections for the movement controls for our 3D 
Rooms application. 

TankVirtJoy 4 Move-Forward-Back 
Rotate-Left-Right 

Mouse +Cursor BodyVirtJoy s@ l~;E:#pdh9pr$~ 
GareVirtJoy 4 8i:g:ipdh9pr$t 

beyond the continuous devices Buxton was able to describe to discrete devices 
and, in fact, devices in between. 

In order to be able to describe a wide range of devices, we deployed two 
basic combinatoric techniques. One was to define hierarchical families of 
generic devices, and the other was to define composition operators. Both 
allowed the description of more complex devices in terms of simpler devices. 
In the analysis, the object was to give an account of a broad range of different 
input device designs-including discrete, composite, physical, and virtual 
devices-and to do so in terms of a small set of primitive and combinatorial 
operations. These combinatoric techniques can also be used as technical 
abstractions to quickly explore design alternatives before the details of a 
specific design must be decided. 

With this description in place, we exercised it in several ways. One was to 
produce a simple taxonomy of input devices. We compared that taxonomy 
with other taxonomies by showing that we could handle those devices 
previously classified by other systems as well as new devices not previously 
classified, including some that are mildly exotic. In another exercise, we 
applied our description to the design of virtual input controls in a frontier area 
of user interface technology- the design of egocentric motion controllers for 
virtual 3D worlds. There we used our techniques to help us understand and 
critique an existing controller. We then used them to help design a new 
controller of our own. 

The semantic analysis and taxonomy described in this article suggest a 
number of directions for future work on input devices and user interfaces. 

One direction is the development of user interface toolkit software. For 
example, Anson's (1982) device model results in a particularly receptive 
toolkit architecture. His toolkit uses a PASCAL-like notation to specify simple 
devices, which consist of (a) state, (b) events, and (c) actions, and composite 
devices, which are devices connected together by CHANNEL statements. A 
device's actions are sensitive to events and the states of devices. When an 
action triggers, it can change the device state and signal events to other 
devices. This architecture could be used to implement a library of useful input 
devices using concepts developed in our analysis. Resolution functions could 
be implemented by device actions that convert input states to output states. 
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The physical properties of our taxonomy itemize the types of input states that 
must be supported by the library. Our generic devices could be supported by 
extending Anson's programming language in an object-oriented manner. 
Input device composition could be implemented with this object-oriented 
extension and his CHANNEL statements. In short, our analysis and a basic 
toolkit architecture could be used to develop a useful library of modules for 
designing input devices. 

Another direction is suggested by Mackinlay's (1986a, 1986b) work on 
graphical presentation, which motivated the approach taken in this article. 
Mackinlay identified expressiveness and effectiveness criteria for evaluating 
the designs of graphical presentations. In this article, we have concentrated on 
the expressiveness of input devices, which allowed us to understand more 
about the design space of input devices. Research on input device effective- 
ness addresses the human science issues associated with designing input 
controls, such as how devices fit the shape of the hand and how easy devices 
are to manipulate within given ranges. The ultimate goal is to devise 
effectiveness criteria that allow the direct comparison of alternatives from the 
design space of input devices. This can be very useful. Given such effective- 
ness criteria for graphical presentation, Mackinlay used artificial intelligence 
techniques to develop a program called "A Presentation Tool" (APT), which 
automatically designed graphical presentations of information. APT used 
primitive graphical languages, composition operators, and various evaluation 
criteria to generate and test alternative designs of graphical presentations 
The semantic analysis described in this article develops the primitive and 
composition operators to generate alternative designs of input devices. Given 
appropriate effectiveness criteria for input devices, it should be possible to 
build systems that assist in the design of an application's input controls or even 
design them automatically. 

An input device is part of the means used to engage in dialogue with a 
computer or another machine. There are, of course, other components that 
must be described. We have treated input device actions as sentences in a 
simple artificial language for conveying meaning from a human into a 
machine. These simple artificial languages can be composed to be parts of 
more complex artificial languages. Our study began with very simple 
single-transducer languages. These were composed into multitransducer 
languages capable of more complex expression. In Mackinlay's (1986a, 
1986b) study, he went in the opposite direction and analyzed machine to 
human communication. Thus we have two studies, using similar techniques, 
one going in each direction. We are mindful of the many steps to go in the 
analysis of human-machine interaction: a treatment of time, of feedback, of 
discourse control structure, and many other topics. Yet, although this is 
scientifically daunting, the task is mitigated by the likelihood that useful 
engineering techniques will occur with each step. 
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5. CONCLUSION 

Computer science has always been a curiously asymmetrical discipline, 
with a large amount of work on the machine side, but little on the human side, 
despite the fact that many computer science systems areas (e.g., program- 
ming languages, operating systems, software engineering, or computer 
graphics) depend critically on properties of human performance. Partially, we 
think, this is because it has been difficult to get a common technical 
framework for computational and human sciences (Newel1 & Card, 1985). 
The approach used in this article has the virtue that each of these has a 

- - 

well-defined complementary role. Advances on either side can be exploited: 
We can exploit advances in the technical representation of diagrams or 
advances in unified theories of cognition (Newell, 1987). 

Work on these foundational issues of user interface component semantics 
can lead to several practical outcomes. First, technical abstractions about the 
user interface can support the design of effective user interfaces and effective 
user interface toolkits. Second, there is the possibility of user-situated designs, 
designs done at the time of need. Users may be able to use theory-based 
toolkits directly, or agents might be developed that automatically adjust the 
interface design to the needs of the user. Third, combinatorial complexity of 
application functionality is one of the fundamental problems of user interface 
design. The ability to analyze semantic properties of the interface allows the 
technical design of consistency for the interface, and it allows the control of 
combinatoric functionality with interface features. Fourth, a user interface 
design developed for the basic functionality of an application rarely supports 
the incorporation of new objects and operators as application functionality 
grows. A technical model of interface semantic properties could allow the 
construction of user interfaces capable of at least limited self-adjustment. 
But, most important, improvements in the technical foundations of interface 
design should help in the systematization of the body of engineering and 
design knowledge for human-machine interfaces. 
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APPENDIX. DETAILED DESCRIPTION OF INSECT 
CONTROLS 

This appendix shows that the formalism developed in this article can be 
used to describe the complex input controls of a real application, namely, the 
Insect demo written by Thant Tessman from Silicon Graphics, Inc. We 
describe the application parameters of the Insect demo, the basic physical and 
virtual input devices used in the Insect demo, the connections among these 
devices, and the resulting composite input device. 

Application Parameters 

The following six application parameters describe the egocentric motion 
functionality of the Insect demo: 

Move-Up-Down 
Move-Right-Left 
Gaze-Down4.Jp 
Rotate-Right-Left 
Constant-Accel-Gaze-Forward 
Constant-Accel-Gaze-Back 

Formally, these parameters represent devices (not input devices) that are part 
of the Insect application. 

For example, the application device Move-Up-Down interprets input values 
as a vertical distance to be moved relative to the Y axis position of the body. 
The resolution function f of the Move-Up-Down device depends both on the 
value to move and on the current body position: 
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Move-Up-Down = 
MoveUD X Body, -f- Body,, 

where f(MoveUD, heY) = Body, + MoveUD. 

In this expression, the domain sets MoveUD and Body, refer respectively to 
the distance to move up or down and to the Y axis position of the body. 
MoveUD and Body, refer to the corresponding state variables of the device. 
Because the resolution function f maps to the domain set Body,, the 
corresponding state variable Body, is changed when f is computed by the 
device. Move-Right-Left, Gaze-Down-Up, and Rotate-Right-Left can be 
described in a similar manner. 

The application device Constant-Ac~Eel-Oa~e-For~~d interprets its value 
as a switch that causes a constant acceleration relative to the Z axis of the gaze 
coordinate system. Because acceleration is involved, we need the internal state 
variable, velocity, to hold the current velocity. Given the internal state 
variable, Gate,, for the body position relative to the gaze's Zaxis, the following 
describes the Constant-Accel-Gaze-Forward device: 

Constant-Accel-Oazs-Forwetrd = 
Switch X Gaze, X Velocity -f- Gaze, X Velocity, 

where f (Switch, Gate,, Vclocily) = 
(Switch = On) - < Gaze, f Velocity, 

Velocity + Const,,> 
(Switch = O f l  -- < Gaze, + Velocity, 

mau(0, Velocity - Constace,) > . 

When the switch is on a constant acceleration, ConstA, is added to the 
velocity; when the switch is off a constant deceleration, ConstDrcCI is subtracted 
until the velocity returns to zero. As we shall see, the Switch input to this 
device is connected to the output of the Control key, which is a button device. 
Constant-A~cel-Gaze-Back can be described in a similar manner, where the 
velocity is subtracted rather than added. 

Basic Input Devices 

Five physical and three virtual input devices can be used to describe the 
egocentric motion control of the Insect demo. The generic input device: 

GenericButton, = P,: [0, Mar,] - f- < Up, Down > 

can be used to describe four of the Insect's physical input devices: 
LMouseButton, MMoumButton, ControlButton, and LShiftSutton, which 
are the left and middle mouse buttons and the Control and Left Shift keys. 
For example, the left mouse button can be instantiated as follows: 
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LMouseButtonTI, = Instantiate (GenericButton,, In: [0,  MaxTI,]). 

The final physical input device is the Mouse device, which has already been 
described in the body of this article. The Mouse is connected to the Cursor 
virtual input device, which has also already been described. 

The other two virtual devices are the two window-based tablets: 
LMWinTablet and MMWinTablet. Although these tablets are based on the 
WinTabletdevice that is described in the text, the two window tablets have an 
additional input connected to the appropriate mouse button that is used to 
activate the tablet. The following describes the generic switched window 
tablet: 

SwitchedWinTablet = 
P,: <O, . . . , Winx> X <0, . . . , Winy> @ Switch 
-f- < - Winx/2, . . . , + Win,l2> X 

< - Winy/2, . . . , + Wtny/2> 
where f (X, Y,  Switch) = 

(Switch = O f l  - <0, O >  
(Switch = On) -- < X - Win&?, Y - Win, 12 > . 

The values Win, and Win,, refer to the width and height of the Insect window. 
The tablet returns zero when the switch is off and converts the input to 
window centered coordinates when the switch is on. The following instanti- 
ations describe the tablets used in the Insect demo: 

LMWinTablet = Znstantiate(S~it~hedWinTablet,S~it~h: LMSwitch) 

MMWinTablet = Znstantiate(S~it~hedWinTablet,S~it~h: MMSwitch), 

where each tablet has a unique domain set for its switch. 

Connections 

Given a description of the application parameters and basic input devices of 
the Insect demo, the next step is to describe how these devices are connected. 
In this article, we used the ternary relation Connect to describe the mapping 
from the output domain set of one device to the input domain set of another, 
which is sufficient for simple connections. When dealing with composite 
devices and real applications, however, the connections can easily be among 
subdimensions of the domain sets. For example, the connection from the 
three-button mouse to the cursor device is from the subdimension of the 
mouse sensor to the cursor input domain set. Therefore, we extend our 
notation for connection devices to include a subscript of the corresponding 
device's name of the subdimension. For example, the connection between the 
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control button and the forward acceleration application parameters can be 
described as follows: 

CAGF = Con~~dct(ControlButton~~~, 
Constant-Accel-Gaze-FomardSWItCh, 

f (ControlButton,,) = 
(Controlfitton,, = UP) - <Off> 
(ControiButton,,, = Down) - < On > . 

The subscripted C~ntrolButton~,, refers to entire output domain set of the 
control button, and Constant-Accel-Gaze-Forwardsw,,,, refers to the switch 
part of the corresponding application device. The connection function 
converts the Up, Down of the button to the < Ofi On> of the switch domain 
set. We name this connection device with the acronym CAGF, which is based 
on the connection's output domain set. We use similar mnemonics for the 
other connection to reduce the length of the description of the composite 
insect device. The connection CAGB from LShiftButtono,, to Constant- 
Accel-Gaze-Backs,,,,, can be described in a similar manner. 

The connection from the mouse sensor to the cursor uses the identity 
function : 

where ThreeButtonMousesOnSOr = Cursor,, = Integer X Integer. 
The connection from the cursor to the left mouse window tablet is only 

defined when the cursor is over the window. If the window is bounded by 
< Min, Min, > and <Mar,  Max, > , the connection converts the cursor 
position from screen coordinates to window coordinates: 

The connection MWTxY from the cursor to MMWinTabletxy can be described 
in a similar manner. 

The connection from the left mouse button to the corresponding window 
tablet switch can be described as follows: 

LWT, = Connect(LMouseButtonout, LMWinTabtetS,,,,,, 
f (LMouseButtono~) = 

(LMoweBu~on~,, = Up) - < O#> 
(LMoweBu&~n~~, = Down) - < On >). 
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The connection MWTs canbe described in a similar manner. 
The two virtual tablets are connected to four application parameters, and 

these connections use constants to scale from window coordinates to the 
appropriate distances to be moved: 

MUD = Connect(LMWinTablet,, Move-Up-DownMoveu,, 
f (Y) = Y x MUDConstant), 

MRL = Connect(LMWinTablet,, Move-Right-Left,,,,,,, 
f (X )  = X x MRLConstant), 

GDU = Connect(MMWinTablet,, Gaze-Down-Up,,,,,, 
f (Y) = Y x GDUConstant), 

RRL = Connect(MMWinTablet,, Rotate-Right-Left,,,,,, 
f (X )  = X x RRLConstant). 

Composite Insect Device 

Finally, we describe the composite insect input device, which maps from 
the physical properties that the user can manipulate to the appropriate 
application parameters. This description takes advantage of the functional 
formalism developed in this article, which allows us to use the function 
composition operator o to combine devices. The input domain set is the cross 
product of the mouse cursor and four buttons for the two mouse buttons and 
the two keyboard keys. We use the constant D to represent the maximum 
depth of a button press and the constant C to represent the threshold of a 
button press after which the button is considered to be down: 

INSECT = 
Real X Real @ [0, Dl @ [0, Dl @ [0, Dl @ [0, D] 

-f - 
Move-Up-DownM,,,u, X 
Move-Right-LeftMoveRL X 
Gaze-Down-Up,,,,, X 
R0tate-Right-LeftROtRL X 
Constant-Accel-Gaze-ForwardSW,tCh X 
Constant-Accel-Gaze-BacksWItCh 

where f(X, Y,  LMB, MMB, CB, LSB) = 
<MUD o LMWinTablet( 

LWTXY o Cursor o CM o Mouse (X, Y), 
LWTs o LMouseButton (LMB)), 

MRL o LMWinTablet( 
LWTXYO Cursor o CM o Mouse (X, Y), 
LWTs o LMouseButton (LMB)), 

GDU o MMWinTablet( 
MWTxy oCursor o CM o Mouse (X, Y), 
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M W s  o MMouseButton (MMB)), 
RRL o MMWinTablet( 

MWTxy o Cursor o CM o Mouse (X, T), 
M W S  o MMouseButton (MMB)), 

(CB > C and LSB > = C) - 
CAGF o Contrcthtton (CB) the <Off>, 

(LSB > C )  -- CAGB o LShiftButton (LSB) > 

This description indicates that the Insect demo prefers Left Shift key over the 
Control key. 




