A semantic framework for UAV interoperability based on STANAG 4586 standard

MSc thesis presentation Konstantina A. Zafeiriadou S.N: M1450

> Supervisor: Stathes Hadjiefthymiades, Professor

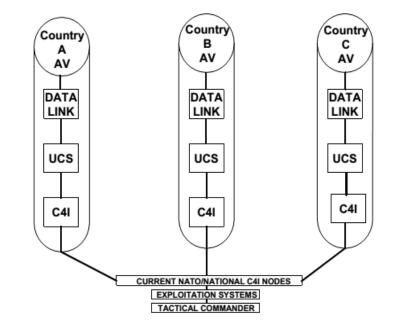
Athens, October 2018

Outline

- Introduction
- Problem Description
- Proposed Framework
- Application
- Implementation Details
- Simulation Results
- Conclusion

Introduction

- An Unmanned Aerial Vehicle (UAV) aims for the accomplishment of mission objectives.
 - operates autonomously or under remote control
 - alternative to manned aircrafts
 - cost effective
 - low risk
- However, a UAV is more that a mechanical device designed to accomplish a task.
 - Is part of a combined service environment of various deployed UAV systems (UAS)


Problem Description

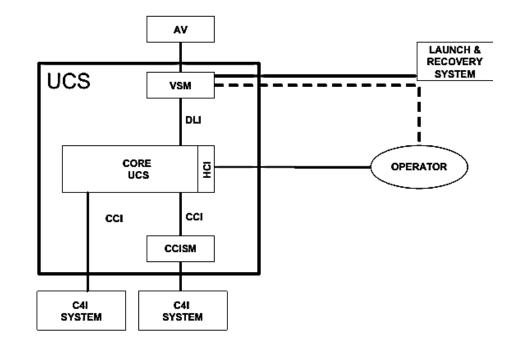
Current UAS are "stove-piped"

- proprietary software and architecture
- system-specific datalinks
- unique communication protocols

• Heterogeneity of diverse UASs

- impedes communication
- hinders cooperation
- requires complex infrastructures

Interoperability is emerged as the most important policy to be achieved.


The concept of Interoperability

- Interoperability is characteristic of a system that can work with other systems
 - without restrictions
 - by the use of standards
- Armed Forces defines military interoperability
 - ability of nations to operate effectively together
 - achievement of a common task
- NATO proceeded to specification of STANAGs
 - address technical issues for UAV interoperability

NATO STANAG 4586

• The STANAG 4586 standard

- specifies the architecture of an interoperable UAV Control System(UCS)
 - interfaces
 - functional elements
- defines DLI and CCI interfaces
 - common data elements
 - generic message formats
- Increases efficiency to mission accomplishment
 - mutual control
 - integration
 - joint utilization of information

Thesis Proposal

- Objective
 - Implementation of a STANAG 4586 compliant Ground Control Station (GCS)
 - capable of communication with different UAVs and GCSs
 - via STANAG DLI protocol
- Solution
 - A semantic framework for STANAG message (de)serializing
 - based on an OWL ontology
 - enables semantic interoperability between UAS elements
 - leveraged by STANAG 4586 specification
 - applicable by different UAV platforms e.g. ROS, JAUS, MAVLINK

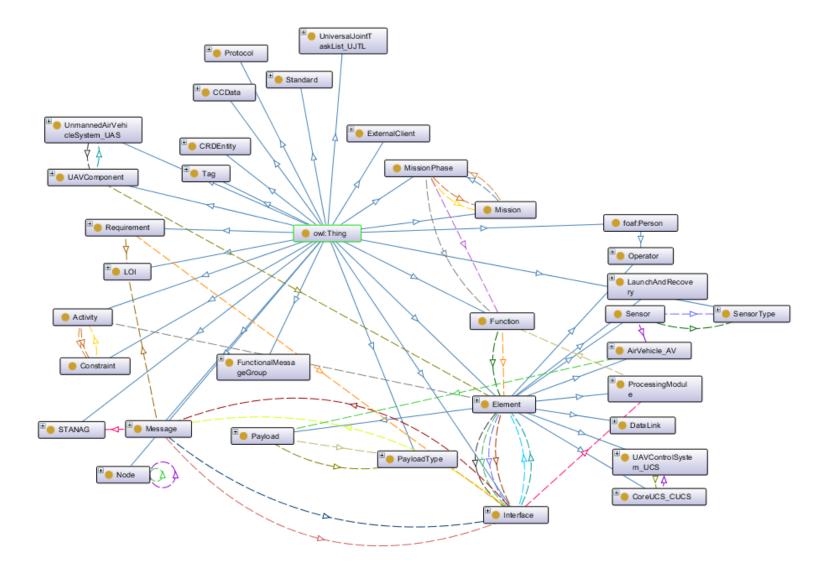
Application

- A proof-of-concept system implementation that sends STANAG messages to control a MAVLink protocol UAV (MAV)
 - STANAG to MAVLink translation
 - borrows from UCS architecture

Challenges

- Analysis of STANAG 4586 specification
 - extensive documentation
 - avionics, military and technical terminology
- STANAG to MAVLink bridge implementation
 - familiarization with MAVLink protocol
 - STANAG to MAVLink message mapping
 - not direct match
 - much of STANAG information is redundant to MAVLink

Domain Knowledge


- Methodology
 - Knowledge acquisition
 - about concepts on the domain of UAV systems
 - collection of informational sources
 - NATO STANAG 4586 specification document
 - technical manuals and STANAGs e.g. STANAG 7085
 - Specification and vocabulary construction
 - name entities extraction for the ontology design
 - based on the terminology of STANAG 4586
 - best practices for the naming of terms
 - Conceptualization
 - Models the domain concepts and identifies the relations between them
 - Definition of axioms and constraints
 - · Universal, existential, cardinality and hasValue restrictions
 - Equivalent and disjoint classes
 - Specialization and field-specific relation types e.g. identity, reversibility
 - Ontology evaluation
 - By domain experts and automated reasoning tools (e.g. FaCT++)
 - Criterions e.g. clarity, consistency, coherence and minimal encoding bias

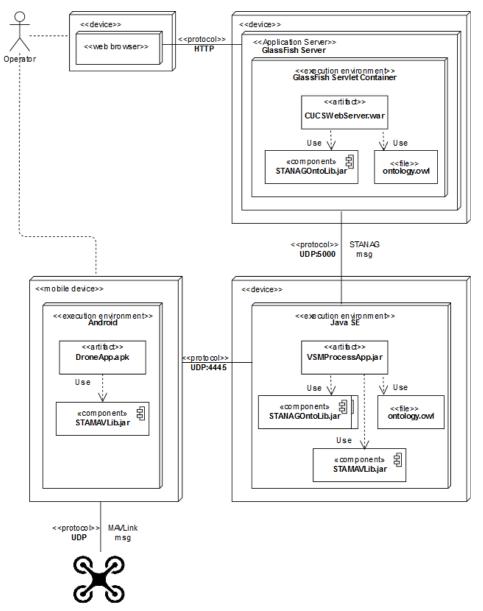
Ontological Model

ONTO_STANAG_4586 ontology

- A common formal vocabulary for:
 - architecture of a UCS
 - messages exchanged with UAV/external agents
 - level of interoperability each communication achieves
 - operational elements of a UAS
- Developed for use in the message communication between a GCS and a UAV
 - describes the structure of a message type and the information it stores
- Expressed in OWL
 - added expressiveness compared to other representation languages e.g. UML
 - reliable check using OWL reasoners
- Edited using Protégé
- Some metrics: 116 concepts, classified in 25 main classes, related by 45 object properties and 30 data attributes

The ONTO_STANAG_4586 ontology

STANAGOntoLib (1/2)

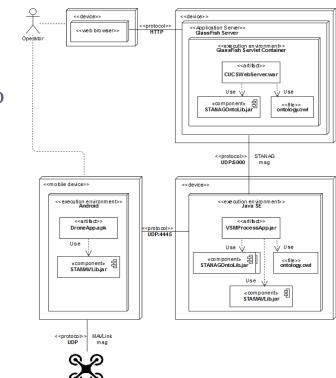

- A Semantic Web library for (de)serializing DLI messages
 - an encoded STANAG message as result of serialization process
 - given the input control data
 - a structure with the message's data as result of deserialization process
 - given the encoded STANAG packet
- Enables communication between diverse UAVs
 by exchanging STANAG messages
- Exploits the ONTO_STANAG_4586 ontology
 - to extract the schema of a certain message type
 - by SPARQL queries execution

STANAGOntoLib (2/2)

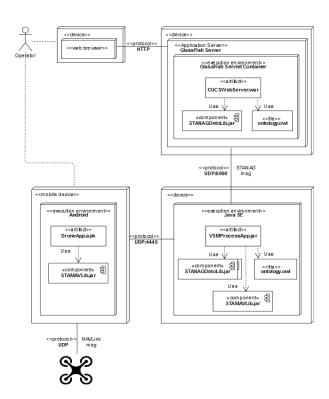
Implementation

- A Java library with dependencies of:
 - .owl file of ONTO_STANAG_4586 ontology
 - ONT-API framework
 - a implementation of OWL-API over Apache Jena
 - solves the request of SPARQL query execution on an OWL ontology graph
- Conformed to the STANAG 4586 specification for the representation of data
 - standards e.g. time or earth position references
 - packaging, i.e. byte ordering
 - format e.g. the ID number of a UAS element
 - metric units

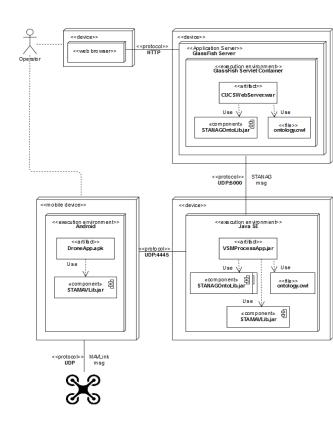
System Architecture


CUCSWebServer

- A web graphical interface that imitates a STANAG 4586 compliant GCS
 - enables operator to control different types of UAVs
 - by sending the appropriate DLI messages
- Integrates functionality of STANAGOntoLib
- Communicates with VSMProcessApp over UDP/IP
 - through transmission of STANAG packets

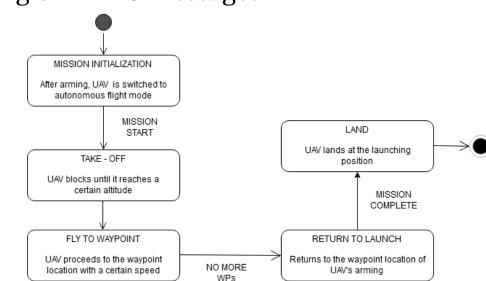

VSMProcessApp

- An intermediate processing node for vehiclespecific operation
 - STANAG to MAVLink message translation
 - First-half matching from a STANAG message to a STAMAVMessage object
- A Java UDP client/server
 - receives encoded STANAG messages
 - transmits vehicle-specific packets
- Integrates
 - STANAGOntoLib
 - STAMAVLib
- Overcomes compatibility problems of STANAGOntoLib's integration to an Androidbased mobile device


STAMAVLib

- A STANAG to MAVLink mapping library
 - definition of STAMAVMessage class
 - a common interface
 - implements Java Serializable class
 - a translation bridge from STANAG to MAVLink
 - binary data unit with control data of a STANAG message
- Translation issues:
 - not a 1 to 1 matching
 - different parameters for each protocol
 - much of STANAG information is redundant to MAVLink
- Enables communication

DroneApp


- An android application that acts as a hand-held mobile GCS
 - communicates with the UAV's autopilot
 - via MAVLink protocol
- Performs the "second half" of STANAG to MAVLink translation
 - from a STAMAVMessage object to a MAVLink message
- An UDP server:
 - 1. receives serialized STAMAVMessage packets
 - 2. implements the matchings based on the type of serialized object
 - 3. generates the MAVLink messages and sends them to the UAV
- Integrates
 - STAMAVLib
 - DroneKit SDK
- DroneApp GCS implements Waypoint sub-protocol of MAVLink

Evaluation

- Simulation of a flight mission in which operator controls a quadcopter MAVLink protocol UAV by sending STANAG messages
 - using SITL simulator
 - MAVProxy
- A predefined flight scenario

 based on the capabilities of implemented software
- Experimentations check system's:
 - proper functioning
- Positive flight tests validate system for:
 - feasibility
 - stability during protocol translation

Conclusion (1/2)

Contributions

- An ontology-based system by means of Semantic Web technologies
 - addresses the achievement of interoperability among UAVs
 - proposes an innovative approach to the development of a UCS

ONTO_STANAG_4586 ontology

- comprehensive representation model
 - consistent and logically sound based on reasoning tools applied
 - first attempt in recent research
- applicable in the STANAG 4586 message communication

STANAGOntoLib

- an important asset for compliance with STANAG 4586
 - enables the ability of interpreting STANAG messages
 - increases semantic interoperability
 - integrable as external library

Conclusion (2/2)

Contributions (cont'd)

- Verification of STANAG 4586 practicability
 - achievable communication protocol, yet highly complex
 - heavily demanding in terms of compliance
 - strong investment
 - a network-enabled architecture without considering constraints in communication

Future Work

- Extension of ONTO_STANAG_4586 ontology with domain knowledge of existing ontologies
- Integration of the already implemented STANAG to MAVLink bridge
 - system performance improvement

