
A Semantic Web Enabled Form Model and RESTful Service Implementation

Armin Haller and Florian Rosenberg
CSIRO ICT Centre

GPO Box 664, Canberra, ACT 2601, Australia
firstname.lastname@csiro.au

Abstract—We propose an RDF-based user interface language
called RaUL and a RESTful service called ActiveRaUL that
interprets the language and produces XHTML+RDFa in re-
turn. The RaUL markup language separates the purpose (data
publishing) of a Semantic Web form from its presentation.
ActiveRaUL operates and generates RaUL markup, that sep-
arates the control elements on a Web form from the data that
the form controls operate on. The relation between the form
controls and the data model is achieved through a data binding
mechanism. The form elements include references to an RDF
graph defining the data. The rendering of the instances of a
RaUL model on the client-side are displayed as XHTML+RDFa
elements.

I. INTRODUCTION

Linked Data technologies have rapidly gained momentum
in the last years as a way to create typed links between
data from different sources [1]. The uptake of Linked Data
technologies has lead to the extension of the Web with a
public Linked Data space. This data space is increasingly
being used for both research efforts and real-world applica-
tions. Linked Data can be seen as a step on the road to the
Semantic Web [2] by providing a method for publishing data.
This encourages reuse, reduces redundancy and maximizes
the inter-connectedness of its data. Currently, HTML is the
predominant way of publishing information on the Web.
However, this information is mostly semi-structured and
does not provide a means to publish structured information.
To overcome this limitation, RDFa [3] proposes a language
that allows the user to embed structured information in the
format of RDF (Resource Description Framework) triples
within HTML documents. However, there is still a gap
between representing structured information using RDFa
and processing this information in a Web application. In
traditional Web applications this problem is addressed by a
number of different frameworks that bind a relational data
model or object-oriented data model to templates (e.g. Ruby
on Rails1, GWT2, Apache Struts3, Sprin4 etc.). Another ap-
proach for a data binding mechanism is XForms [4], a model
that replaces traditional Web forms with an XML-based
model. XForms were introduced to separate sections that

1http://rubyonrails.org/
2http://code.google.com/webtoolkit/
3http://struts.apache.org/
4http://www.springsource.org/

describe what the form does (data editing/publishing), and
how to render the form. It includes a form model in XML
that is bound to data described in XML. With the advent
of RDFa and Linked Data a similar framework is needed
that separates the data from its presentation. Currently, when
publishing Linked Data one needs to first define a Web page
in HTML and then uses RDF to annotate the data with
semantic concepts. Using RDF to present data requires a
mechanism to bind data to the presentation. In this paper we
present an RDF-based user interface language that separates
the purpose (data publishing) of a Semantic Web application
from its presentation. This markup language will be used
to describe the structure of the model and separates this
markup from the presentation layer. This approach allows
the definition of the presentation layer independent of the
underlying model and as such, allows the user to maintain
both, the model and its presentation in the editing tool. For
rendering the user interface, we need to develop a processor
that generates the presentation logic and the data from the
markup language.

In this paper we introduce RaUL, the RDFa User In-
terface Language, and a generic RESTful Web service
(ActiveRaUL) that generates a user interface in form of a
XHTML+RDFa page from RaUL. The RaUL model (on-
tology) itself is described in RDF(s). This rendering allows
the created page to be displayed in any Web browser. When
the user fills a Web form and submits the data to the server
a generic JavaScript processor parses the file, extracts the
RDF triples and binds the input values to the RDF model
and forwards the data to the ActiveRaUL Web service. The
back-end only deals with RDF triples. Since the user input is
automatically bound to the respective RDF concepts there is
no need to write glue code that binds the data to the form. An
RDF triple store manages all application specific RDF data
and acts as the main input for dynamically generating the
client user interface pages. Although we chose a particular
rendering model, RaUL has the capability to work in a
variety of ways to display the model in the user interfaces
and to transfer the data to the server. A different approach to
what we propose in this paper would be to create RDF/XML
instead of XHTML+RDFa and include AJAX rendering code
on the client that translates it for displaying in the browser.

The remainder of the paper is structured as follows. In
Section II, we compare our solution to related work. Section

III presents a motivating example which is modeled through-
out the paper in our RaUL language. Section IV introduces
the RaUL language, including the form model and the
data binding mechanism. Section V presents ActiveRaUL,
its architecture and the interaction model. In Section VI
we benchmark the overhead of the semantic annotations
introduced by RaUL. We conclude and discuss future work
in Section VII.

II. RELATED WORK

Automatically generating annotations from RDF ontolo-
gies is a relatively new research topic in the Web engineering
realm. We are aware of some earlier attempts concerning
form-based editing of RDF data [5] as well as mapping
between RDF and forms [6]. None of the approaches pro-
poses a generic RESTful Web service to seamlessly combine
data binding with the processing and generation of semantic
annotations in Web applications.

In [7], [8] the authors proposed a read/write-enabled Web
of Data through utilizing RDForms [9]. It provides a way
for a Web browser to communicate structured updates to a
SPARQL endpoint. RDForms consists of an XHTML form,
annotated with the RDForms vocabulary5 in RDFa [3], and
an RDForms processor that gleans the triples from the form
to create a SPARQL Update6 statement, which is then sent to
a SPARQL endpoint. The difference to our approach is that
RDForms does not propose an ontology for form controls
and it is bound to a domain-agnostic model – that is, it
describes the fields as key/value pairs – requiring a mapping
from the domain ontology (FOAF, DC, SIOC, etc.).

Dietzold [10] propose a JavaScript library, which provides
a way for viewing and editing RDFa semantic content
independently from the rest of the application. Further,
they propose update and synchronization methods based on
automatic client requests. Their model is restricted to a fixed
environment (the Wiki), and they only present the client
in-memory modification of the model, but the execution of
these atomic add / delete actions as performed in our case
by ActiveRaUL is not discussed.

Further more there are other approaches such as
SWEET [11], which deals with semantic annotations of
Web APIs. Fresnel [12] provides a vocabulary to customize
the rendering of RDF data in specific browser. At time
of writing, there are implementations for five browsers
available.

Related work in regard to the client-side processing of
RDFa are the backplanejs libraries [13]. These JavaScript
libraries provide cross-browser code for XForms, RDFa, and
SMIL as well as a Fresnel integration and jSPARQL, a JSON
serialization of SPARQL. This work is complimentary to
ours, since with JQuery we reuse an existing RDFa parser for

5http://rdfs.org/ns/rdforms
6http://www.w3.org/TR/sparql11-update/

our client-side implementation. The RDFa API provided by
the RdfaDomApi, which is part of the backplanejs project,
could be used instead of JQuery to implement the binding
between the DOM input values and the RDF triples encoded
in RDFa. Other approaches related to the client-side part of
the RaUL framework are XForms and XUL which propose
a mechanism to bind input data to a model, but the model is
expressed in XML rather than in RDF. Like RaUL, XForms
relies on a client-side AJAX implementation for interpret-
ing the language to generate the XML instances. Multiple
XForms compatible JavaScript libraries such as FormFaces,
AJAXForms, XSLTForms, Chiba etc. are available. XUL
on the other hand is natively supported by Firefox and
interpreted in the browser natively. However, there is no
support in the other mainstream browsers.

III. MOTIVATING EXAMPLE

Interaction with forms is ubiquitous on the Web as we
experience it every day. The following example is essentially
a slightly simplified version of the common user registration
forms of social networking sites, such as Facebook or
MySpace. Figure 1 shows a Web form on the left side and its
encoding in pure XHTML on the right side. This motivating
example is used in Section IV-A to present RDF statements
according to the RaUL vocabulary that encode the same
DOM as the one defined by the XHTML statements shown
in Figure 1.

IV. THE RDFA USER INTERFACE LANGUAGE (RAUL)

The RDFa user interface language provides a standard set
of visual controls to define a form in RDF. The RaUL form
controls are directly usable to define a form model, such
as the “registerAccount” form in our motivating example.
The ActiveRaUL Web service implements an interface to
load, manipulate and post form models to the server. The
service returns a page rendered in XHTML+RDFa from the
RDF statements for a form model (e.g. “registerAccount”)
and data instances (e.g. a particular user) for a particular
form model.

The form model and data instances make RaUL forms
more tractable, since a data binding mechanism in the RDF
statements and in the generated XHTML+RDFa rendering
ensures that the values submitted in a form are linked with
the statements defining the data.

In the following sections we elaborate on the RaUL form
model that describes how forms are to be presented, and on
the data model, describing the structure of the data used in
the form model.

A. Form Controls (RaUL Ontology)

RaUL defines a device-neutral, platform-independent set
of form controls suitable for general-purpose use. We have
implemented a mapping to XHTML form elements. How-
ever, the form controls can be bound to other languages

<html>
<head><title>Registration</title></head>
<body>
<form method=”post” action=”” id=”register”>
First Name: <input type=”text” class=”inputtext” id=”firstname” name=”firstname” />

Last Name: <input type=”text” class=”inputtext” id=”lastname” name=”lastname” />

Your Email: <input type=”text” class=”inputtext” id=”reg email” name=”reg email”/>

Password: <input type=”password” class=”inputpassword” id=”reg pwd” name=”reg pwd” />

I am: <input type=”radio” name=”gender” value=”male” />Male<input type=”radio” name=”gender” value=”female” />Female

 Birthday: <select id=”birthday day” name=”birthday day”><option value=”0”>Day:</option> /∗ List of days ∗/</select>
<select id=”birthday month” name=”birthday month”><option value=”0”>Month:</option> /∗ List of months ∗/</select>
<select name=”birthday year” id=”birthday year”><option value=”0”>Year:</option> /∗ List of years ∗/</select>

<input type=”submit” name=”submit” value=”Submit” onClick=”javascript:parseDom(rdf)” typeof=”raul:Button” />
</form>
</body>
</html>

Figure 1. Example social networking registration form.

than XHTML forms as well. A user interface described
in RDF statements according to the RaUL vocabulary is
not hard-coded to, for example, display radio buttons as
they are in XHTML, but it can be bound to any host
language (e.g. proprietary UIs for mobile devices). Our
current implementation of the ActiveRaUL processor that is
part of the ActiveRaUL Web service supports the rendering
of XHTML+RDFa.

A form control in RaUL is an element that acts as a direct
point of user interaction and provides write access to the
triples in a data instance. The controls are bound to the RDF
statements defining the data via a binding mechanism. Every
form control element has a value property that is associated
with a reified triple or named graph (see section IV-B).
Form controls, when rendered by the ActiveRaUL processor,
display the underlying data values to which they are bound.
While the data presented to the user through a form control
must directly correspond to the bound triples describing the
data, the display representation is not required to match the
value of the bound instance data. For example a date can be
displayed as 10/10/2008, but bound to a timestamp of type
xsd:string.

RaUL form controls are defined in an RDF ontology.
Figure 2 shows a class diagram like overview of the main
classes in the ontology. The full ontology can be found at:
http://purl.org/NET/raul#.

Page: The Page class defines the main container of a
RaUL document. In case of the mapping to XHTML a Page
instance maps to a <body> element. The Page class defines
some common attributes such as class, id and title which are
also inherited by all sub-classes of the Page class in RaUL.
The class and id attribute can be used to reference a CSS
style identifier to specify the display size of a form control.
A Page contains one or many WidgetContainers which are
referenced by a widgets property.

Figure 3 shows how a Page class is mapped to its
XHTML+RDFa representations. This mapping is imple-
mented in our ActiveRaUL processor. The three statements
in the RDF graph on the left of the figure (in N3 notation)
are mapped to a head and body element in the XHTML
document. The title statement is mapped to the title
element in the head, the raul:id property is mapped to a

Figure 2. RaUL form model

@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix raul: <http://purl.org/NET/raul#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/#> .

:registerAccount a raul:Page ;
raul:title ”Registration” ;
raul:id ”maindiv” .
raul:widgets :registerContainer

<html xmlns=”http://www.w3.org/1999/xhtml”
xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”
xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”
xmlns:raul=”http://purl.org/NET/raul#”
xmlns:foaf=”http://xmlns.com/foaf/0.1/”>

<head>
<meta about=”#registerAccount” property=”raul:title” content=”Registration”

/>
<title>Registration</title>
</head>
<body>
<div id=”maindiv” about=”#registerAccount” typeof=”raul:Page”>

</div>
</body>

Figure 3. Page RDF triples and the rendering in XHTML+RDFa

div container and the raul:widgets property references
the #registerContainer.

Widget: All form controls are a subclass of the Widget
class inheriting its standard properties, a label and a name.
It also defines the value property which is used to associate
triples defining the form model to the RDF statements
defining the data.

WidgetContainer: A WidgetContainer groups Widgets
together. The ActiveRaUL processor renders every Widget-
Container as a form in XHTML. It defines a method and
action property to define the form submission.

Figure 4 defines the statements for the WidgetContainer
from our motivating example in RDF N3 notation on the
left and the mapping to its XHTML+RDFa rendering on
the right side. In the mapping algorithm implemented in
the ActiveRaUL processor we make extensive use of the
notion of chaining in RDFa which combines statements
together to avoid unnecessary repetition of mark-up. For
example, we use a div container that assigns the subject
#registerContainer for all subsequent nested statements (ie.
raul:action, raul:id, raul:method, raul:list).

The ordering of the form controls in a WidgetContainer
is defined with an RDF collection. When rendering the
XHTML+RDFa code, the ActiveRaUL processor determines
the positioning of the control elements based on this RDF
collection. For example, in our registration form, as de-
scribed in Figure 4, the inputbox (see below) for the first-
name would be rendered first, followed by a lastname input
box etc.

:register a raul:WidgetContainer;
raul:id ”register”;
raul:method :PostRegistrationDetail;
raul:list :RegisterContainerList (
:firstname
:lastname
:reg email
:reg pwd
:gender 1
:gender 2
:birthday day
:birthday month
:birthday year) .

<form method=”post” action=”parseDom(rdf)” id=”register” typeof=”raul:
WidgetContainer”>

<div about=”#registerContainer”>

<ol about=”#registerContainerList” typeof=”rdf:Seq”>
<li rel=”raul:list” resource=”#firstname”/>
<li rel=”raul:list” resource=”#lastname”/>
<li rel=”raul:list” resource=”#reg email”/>
<li rel=”raul:list” resource=”#reg pwd”/>
<li rel=”raul:list” resource=”#gender 1”/>
<li rel=”raul:list” resource=”#gender 2”/>
<li rel=”raul:list” resource=”#birthday day”/>
<li rel=”raul:list” resource=”#birthday month”/>
<li rel=”raul:list” resource=”#birthday year”/>

</div>

Figure 4. WidgetContainer RDF triples and the rendering in
XHTML+RDFa

Textbox: The Textbox form control enables free-form
data entry. The constraints on the input type are obtained
from the XSD data type of the associated RDF statement
defining the data. However, a type check of the input data
in the ActiveRaUL controller is future work. The rendering
in XHTML generated by the ActiveRaUL processor maps
a Textbox to an input box of type text. Properties of the
Textbox are, disabled, hidden, isPassword, maxlength, row
and size. These properties are straightforwardly mapped to
their equivalents in the XHTML model. Figure 8 shows
the rendering of the firstname textbox from our motivating
example.

Listbox: This form control allows the user to make one
or many selections from a set of choices. Special properties
include options, multiple, row and disabled. In case of the
row and multiple properties the rendering in XHTML is
straightforward. In both cases it is rendered as a select input
box displayed as a multirow selection box (row) and with
the ability to select more than one value (multiple).

The options property is used to associate the Listbox to
a collection of Listitems. Listitems are required to define a
value and label property and can be defined as checked. Fig-
ure 5 defines the “birthday day” Listbox from our motivating
example (please note that for space considerations only
two Listitems (ie. #birthday day 1 and #birthday day 2) are
shown).

<ol about=”#birthday day options” typeof=”rdf:Seq”>
<li style=”display:none;” rel=”raul:options” resource=”#birthday day 1”/>
<li style=”display:none;” rel=”raul:options” resource=”#birthday day 2”/>

Figure 5. XHTML+RDFa rendering of the “Birthday” Listbox.

After the submission of the Listbox control element the
JavaScript processor creates a checked relation for all se-
lected Listitems. If the Listbox is a multi select one, defined
by its multiple property, the referenced reified triple in the
value property must be an RDF collection.

Button: The Button form control is used for actions,
either triggering or non-triggering. Beyond the common
attributes inherited from its superclasses it defines the fol-
lowing properties, checked, command, disabled and group.
The mapping to XHTML creates either a normal push button
(ie. an input field of type button) or a submit button in case

the command property is set to “submit”. A submit button
is used to trigger the action defined in the form element.

The Radiobutton and the Checkbox are subclasses of
a Button in the RaUL vocabulary. They are mapped to
their respective counterparts in XHTML as input controls
of type radio or of type checkbox, respectively. Whereas
radiobuttons let a user select only one option, checkboxes
let a user select one or more options of a limited number
of choices. To group buttons together and determine the
selected values, the group property of the Button class can
be used. Figure 6 shows the “gender selection” Radiobutton
from our motivating example.

<span about=”#gender 1” typeof=”raul:Radiobutton”

typeof=”raul:Radiobutton”>
<input type=”radio” name=”gender” value=”male”/>
Male

<span about=”#gender 2” typeof=”raul:Radiobutton”

typeof=”raul:Radiobutton”>
<input type=”radio” name=”gender” value=”male”/>
Female

Figure 6. XHTML+RDFa rendering of the “Select Gender” Radiobutton.

After the submission of the Button control element the
JavaScript processor creates a checked relation for all se-
lected Checkboxes or for the selected Radiobutton and
assigns the value defined for the button to the RDF statement
referenced in the property value (e.g. #valuegender). If the
Button is of type Checkbox, the referenced reified triple in
the value property must be an RDF collection.

CRUDOperation: Each RaUL WidgetContainer per-
mits one CRUDOperation, such as adding the content of
a field as an RDF statement to the model. In order to
understand which WidgetContainer is mapped to which RDF
statement, we must flag it somehow. The process of defining
which CRUD operation should be applied on which fields
is called binding and is described in section IV-B.

The CRUD operations are mapped onto the HTTP verbs
(CREATE = HTTP POST, READ = HTTP GET, UPDATE =
HTTP PUT, DELETE = HTTP DELETE) and processed in
the ActiveRaUL Web service.

B. Data model

The purpose of XHTML forms is to collect data and
submit it to the server. In contrast to the untyped key/value
pairs in XHTML forms, in RaUL this data is submitted
in a structured way as RDF data according to some user
defined schema and typed with XSD schema types. The data,
defined as reified RDF statements, is also encoded in the

generated XHTML+RDFa document. This approach gives
the user full flexibility in defining the structure of the model.
Empty rdf:object fields serve as place-holders in the
RDF statement describing the data for a control element (see
the rdf:object property in Figure 7) and are filled at runtime
by the JavaScript processor with the user input. Initial values
can be provided in the rdf:object field which is used by
the ActiveRaUL processor in the initial rendering to fill the
value field of the XHTML form. The subject of the reified
triple (ie. http://raul.deri.ie/forms/registerAccount#123) was
created by the ActiveRaUL Web service at submission time
of the form model (i.e. when executing the POST method
of the ActiveRaUL service).

In our motivating example, the data in the firstname
element is of type foaf:firstName, defined in the
FOAF ontology [14], a vocabulary to describe persons, their
activities and their relations to each other. We use RDF
reification to associate this triple in the RaUL form model
in the firstname textbox. Reification in RDF describes the
ability to treat a statement as a resource, and hence to
make assertions about that statement. Listing 7 shows how
the triple <http://raul.deri.ie/forms/registerAccount#123><foaf:name><””>

is described as a resource itself using RDF reification.

<span rel=”rdf:subject” resource=”http://raul.deri.ie/forms/registerAccount

#123” />

Figure 7. RDFa reified triple stating a foaf:firstName relation for the
#valuefirstname.

This new resource is then associated in the form model
with the raul:value property as shown in Listing 8.

First Name:

Figure 8. Value association in the firstname textbox.

The JavaScript processor directly submits the data col-
lected as RDF triples. It keeps track of the state of the
filled form through this instance data. Initial values for the
instance data may be provided or left empty. As such, the
data model essentially holds a skeleton RDF document that
gets updated as the user fills out the form. It gives the
author full control on the structure of the submitted RDF
data model, including the reference of external vocabulary.
When the form is submitted, the instance data is serialized
as RDF triples.

V. ARCHITECTURE & INTERACTION

In this section we elaborate in detail on the architecture
and interaction model of our proposed solution. The general

overview of the proposed architecture is depicted in Figure 9.
The architecture follows the Model-View-Controller (MVC)
pattern [15] with the following components:

• RDF as the general model, whereby the RaUL ontology
defines the form model and arbitrary RDF statements
defining the data that the form controls operate on. The
model is stored and managed in an RDF triple store and
can be accessed via an API;

• the ActiveRaUL processor that controls the view part
generating the XHTML+RDFa rendering that is for-
warded to the

• ActiveRaUL Web service acting as the controller that
operates upon the CRUD operations specified in the
request and instructs the action on the model.

Client

BrowserBrowser

JavaScript processorJavaScript processor

M
od

el

Vi
ew

C
on

tro
lle

r

ActiveRaUL
Web service
ActiveRaUL
Web service

HTTP
Get

HTTP
Post

HTTP
Put

HTTP
Delete

ActiveRaUL
processor
ActiveRaUL
processor

Figure 9. Architectural approach

The general sequence of interactions starts with an HTTP
request from the client. The request submit action invokes
the parseDom(rdf) function of the AJAX client which han-
dles the RDFa parsing. The request is processed by a
generic JavaScript RDFa parser on the client that parses
the XHTML DOM and extracts the RDF content together
with the specified HTTP request method. The HTTP requests
corresponding to the CRUD operation on a widget element
are executed, ie. one of the following: CREATE, READ,
UPDATE or DELETE as defined in the RaUL vocabulary,
along with its binding data model. The content is then
encoded in a CRUD operation in a RESTful manner and
submitted to the ActiveRaUL Web service. The mapping
of the four HTTP terms to its corresponding Web service
operations and the sequence of interactions are shown in
the diagram in Figure 10.

Client ActiveRaUL
Web service

ActiveRaUL
Processor Triple Store

Request: GET
queryFormInstance(URI)

getRaULFormInstance(URI)

FormInstance

200 Ok
application: xhtml+xml

createRaULFormInstance(URI)
Request: POST

201 Created
Location: URI

updateRaULFormInstance(URI)
Request: PUT

201 Created

deleteRaULFormInstance(URI)

Location: URI

Request: DELETE

200 Ok

Figure 10. CRUD operations and sequence of interaction

The ActiveRaUL Web service handles the RDF input
and the related HTTP response message. The input content,
which contains the structure/form and instance information
which are necessary, will be validated and processed ac-
cording to the domain-logic (implemented in the back-end
application by the service provider). The response of this
process is modeled again in RDF and forwarded to the
ActiveRaUL processor which controls the rendering of the
response view.

The ActiveRaUL processor controls the presentation of
the response at the server side. The output RDF of the
controller is rendered by the ActiveRaUL processor and the
generated XHTML+RDFa representation is streamed back
to the client. This allows not only browsers to interact with
the server but also Web crawlers or automated agents to
ingest the data since they receive the full XHTML+RDFa
content. A client-side implementation with JavaScript is also
possible, but would not enable this feature out-of-the box.

VI. EVALUATION

To evaluate the performance of our approach it is of
interest how much overhead in the data size is added by the
RDFa annotated forms. The processing and parsing speed
of the page content depends on the file size wrt. to two
factors. 1) The resulting upload and download times (file
size / available bandwidth) and 2) how efficient an RDFa
parser can handle the content; the RDFa parser used in our
implementation – as with most other RDFa parsers – needs
to parse the whole DOM structure into memory to recreate
the RDF structure.

In [16] we have evaluated the overhead caused by the
semantic annotations of form elements with the RaUL
vocabulary. The overhead we measured is relevant for the
response message, as it contains the XHTML+RDFa content
in the body of the HTTP response and it influences the

parsing time as the client-side RDFa parser is required to
parse the whole DOM tree. In the following we focus on the
additional data transferred over the wire for HTTP requests.
We need to distinguish between the different HTTP methods
with respect to the data transferred. DELETE actions do
not add any data overhead, since the message body is
empty in the request as well as in the response message.
GET requests are unchanged as well, only a URI is send,
similar to DELETE requests. The additional overhead for
GET responses corresponds to the size of the annotations as
described in [16], since the message body returned contains
XHTML plus the RDFa annotations according to the RaUL
vocabulary.

PUT and POST actions cause the same overhead since
on the client-side it is not known which form elements have
been updated in the case of a PUT request and thus all
elements have to be resend as with the POST request. For
PUT and POST actions the overhead depends on the method
called and we can distinguish two cases: 1) Creating or
updating a new RaUL form model instance (e.g. creating
the “registerAccount” form), and 2) creating or updating
data of a RaUL form model instance (e.g. submitting or
editing a user account). We compare the data transferred over
the wire for those two methods with an implementation in
pure XHTML. Table I shows the overhead for the upload of
form elements in XHTML compared with their serialization
in RDF/XML when calling the “createRaULFormInstance”
or “updateRaULFormInstance” method of the ActiveRaUL
Web service.

Minimal (min) in the table denotes the minimal RaUL
model to upload and create the respective form element
(or page). The maximal (max) value denotes a model that
uses all properties of the respective form element in its
annotation. The number of triples column denotes how many
RDF triples are required in the backend and are encoded in
the resulting Web page as annotations. Whenever instance
identifiers are required in the RDFa annotations we assumed
a two digit identifier (which allows a page to include at least
3844 identifiers if we consider case sensitive alphanumeric
combinations).

Results: The serialization of form elements in RDF/XML
causes, depending on the element, an overhead of minimal
69% and maximal 159%. The RDF/XML send over the
wire to the ActiveRaUL Web service is generated from the
RDFa annotations by the client-side JavaScript processor.
Although the overhead seems to be significant in size when
all properties of a form control element are used, for the
minimally required annotations, for all elements, but the
listbox, the size of the HTTP POST or PUT request does
not even double. In comparison, stylesheet annotations in
HTML also cause significant overhead, but still the majority
of website’s use CSS.

As there are potentially many form controls in a Web
form, the user has the trade-off between the depth of the

XHTML RDF/XML JSON

Size (in byte) 13 559 547

Table II
HTTP POST/PUT REQUEST SIZES.

annotations and the size they consume. The more triples are
used for a form control the richer its annotations. However,
adding the structure of the page as semantic relations (RDF
statements) yields the benefits we described earlier which
are:

• Support for full machine understandable structured
form data;

• Structured data is encoded directly in the Web page and
usable to any Semantic Web application;

• No XHTML manipulation in the backend required;
• Full manipulation freedom of form controls in the

backend in RDF;
• Browser agnostic approach via rendering in XHTML +

RDFa.
Further, once a form model is created or updated, when

adding data, ie. when a user or agent is filling out a form,
only the instance data and the reference to its corresponding
form model is transferred. This case corresponds to point 2)
of our evaluation criteria as described above. Table II shows
the total size in bytes of a POST or PUT request including
one filled form element encoded as “application/x-www-
form-urlencoded” data for HTML forms and as RDF/XML
or JSON for RaUL models. For the evaluation we assumed
the values to be a three digit alphanumeric string. Further,
as seen in Figure 11 we used a foaf#firstName for
the property of the triple and defined the subject to be a
URI in the http://raul.deri.ie domain. Although the size of
the RDF/XML and JSON encoding is considerably bigger,
as there are typically only a few fields to fill in a form,
the absolute size of the HTTP request in kilobyte will be
in most cases in a low two digit range. Further, instead of
untyped key/value pairs the submitted data is typed through
an ontological model and unambiguously defined with URIs.

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”>
<rdf:Description rdf:nodeID=”123”>
<rdf:subject rdf:resource=”http://raul.deri.ie/forms/123#123”/>
<rdf:predicate rdf:resource=”http://xmlns.com/foaf/0.1/firstName”/>
<rdf:object />
<rdf:type resource=”http://www.w3.org/1999/02/22−rdf−syntax−ns#

Statement”/>
</rdf:Description>
</rdf:RDF>

Figure 11. RDF/XML submission data for a form field.

VII. CONCLUSION AND FUTURE WORK

In this paper we introduced ActiveRaUL, a generic REST-
ful Web service for managing Semantic Web enabled forms
and their processing. ActiveRaUL operates on RaUL, an

Form Element XHTML RDF/XML # triples Overhead in %
min max min max min max min max

Page 234 284 397 542 1 5 %69.65 %90.84
WidgetContainer 278 321 525 617 3 6 %88.84 %92.21
Textbox 239 298 454 613 2 7 %89.95 %105.7
ListBox 274 323 656 758 5 9 %139.41 %134.67
Button 245 278 459 720 2 8 %87.34 %158.99

Table I
ADDED OVERHEAD BY RDFA MARKUP IN HTTP POST/PUT REQUESTS FOR A FORM SUBMISSION/UPDATE.

RDFa user interface language, which provides a standard
set of visual controls that are replacing the XHTML form
controls. The RaUL form controls are directly usable to
define a web page in the back-end with RDF statements
according to the RaUL ontology. RaUL form controls sepa-
rate the functional aspects of the underlying control from
the presentational aspects. The data expressed as RDFa
triples is referenced from the form model via a data binding
mechanism. For the rendering of the instances of a RaUL
model we propose ActiveRaUL, a Web service that generates
XHTML+RDFa elements for displaying the model on the
client. When data is submitted to the server a a client-side
Javascript function parses RDFa and submits the extracted
RDF triples to the ActiveRaUL Web service. Summarized,
the advantages of RaUL in comparison to standard XHTML
forms are:

1) Non-ambiguous model: Instead of untyped key value
pairs the submitted data is typed through an ontological
model.

2) RDF data submission: The data submitted to the
ActiveRaUL service is encoded in RDF.

3) Explicit form structure: The form elements are ex-
plicitly modeled as RDF statements. The back-end can
manipulate and create forms by editing and creating
RDF statements only.

4) External schema augmentation: This enables the
RaUL web application author to reuse existing schemas
in the modeling of the input data.

Future Work. Our current RaUL vocabulary (ontology)
covers form controls only. As a future work we intend to
provide a widget language that encompasses the entire DOM
tree of XHTML. We also plan to build the ActiveRaUL Web
service in a way that it consumes and produces different
RDF serializations.

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data – The
Story So Far,” International Journal on Semantic Web and
Information Systems (IJSWIS), 2009.

[2] N. Shadbolt, T. Berners-Lee, and W. Hall, “The Semantic
Web Revisited,” IEEE Intelligent Systems, vol. 21, no. 3, pp.
96–101, 2006.

[3] B. Adida, M. Birbeck, S. McCarron, and S. Pemberton,
“RDFa in XHTML: Syntax and Processing,” http://www.w3.
org/TR/rdfa-syntax/, W3C Semantic Web Deployment Work-
ing Group, W3C Recommendation 14 October 2008, 2008.

[4] “XForms Working Groups,” http://www.w3.org/MarkUp/
Forms/, 2010.

[5] M. Baker, “RDF Forms,” http://www.markbaker.ca/2003/05/
RDF-Forms/, 2003.

[6] B. de hOra, “Automated mapping between RDF and forms,”
http://www.dehora.net/journal/2005/08/automated mapping
between rdf and forms part i.html, 2005.

[7] O. Ureche, A. Iqbal, R. Cyganiak, and M. Hausenblas, “On
Integration Issues of Site-Specific APIs into the Web of
Data,” in Semantics for the Rest of Us Workshop (SemRUs)
at ISWC09, Washington DC, USA, 2009.

[8] T. Berners-Lee, R. Cyganiak, M. Hausenblas, J. Presbrey,
O. Sneviratne, and O.-E. Ureche, “On Integration Issues of
Site-specific APIs into the Web Of Data,” DERI, NUI Galway,
Ireland, Tech. Rep., 2009.

[9] M. Hausenblas, “RDForms Vocabulary,” http://rdfs.org/ns/
rdforms/html, 2010.

[10] S. Dietzold, S. Hellmann, and M. Peklo, “Using javascript
rdfa widgets for model/view separation inside read/write
websites,” in Proceedings of the 4th Workshop on Scripting
for the Semantic Web, 2008. [Online]. Available: http:
//www.semanticscripting.org/SFSW2008/papers/15.pdf

[11] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Semantic
Annotation of Web APIs with SWEET,” in Proceedings of the
6th Workshop on Scripting and Development for the Semantic
Web, 2010.

[12] “Fresnel, Display Vocabulary for RDF,” http://www.w3.org/
2005/04/fresnel-info/, 2005.

[13] M. Birbeck, “backplanejs,” http://code.google.com/p/
backplanejs/, 2010.

[14] D. Brickley and L. Miller, “FOAF Vocabulary Specification
0.91,” Namespace Document, Nov. 2007. [Online]. Available:
http://xmlns.com/foaf/spec/

[15] T. Reenskaug, The original MVC reports, February 2007.

[16] A. Haller, J. Umbrich, and M. Hausenblas, “RaUL: RDFa
User Interface Language – A data processing model for
web applications,” in Proceedings of the 10th International
Conference on Web Information Systems Engineering, 2010.

