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Abstract

In this paper, we present a knowledge-driven Markov Ran-
dom Field (MRF) model for the segmentation of organs in
medical images with particular emphasis on the incorpo-
ration of shape constraints into the segmentation problem.
We cast the problem of image segmentation as the Maximum
A Posteriori (MAP) estimation of a Markov Random Field
which, in essence, is equivalent to the minimization of the
corresponding Gibbs energy function. We then incorporate
a set of constraints into the Gibbs energy function that col-
lectively force the resulting segmentation contour/surface to
have a shape similar to that of a given shape template. In
particular, we introduce a flux-maximization constraint and
a generalized template-based star-shape constraint that are
encoded into the first- and second-order clique potentials of
the Gibbs energy function, respectively. Our main contribu-
tion is in the translation of a set of global notions about the
shape of the desired segmentation contour into a set of local
measures that can be conveniently encoded into the Gibbs
energy function and used in combination with other tradi-
tionally used constraints derived from image information.
In our experiments, we demonstrate the application of the
proposed method to the challenging problem of heart seg-
mentation in non-contrast computed tomography (CT) data.

1. Introduction

Image segmentation is, in general, an ill-posed problem and
additional constraints must be imposed in order to achieve
the desired solution. Commonly used constraints include
the traditional regularization constraints and those based
solely on image information such as edges. Better solu-
tions to the segmentation problem can be obtained by tak-
ing advantage of any prior information available about the
class of images being segmented and the objects of interest
present in them. In particular, while segmenting organs in

medical images, which is our objective in this paper, a sig-
nificant amount of prior knowledge about the shape, appear-
ance and location of the organs is available that can be used
to constrain the solution space of the segmentation prob-
lem. However, it is challenging to unify the information
from such a wide variety of sources into a single framework.

A variety of approaches have been proposed, both for im-
age segmentation in general [16] and for medical image seg-
mentation in particular [17]. Among the proposed methods,
Markov Random Field (MRF) models provide a principled
and elegant way to incorporate a wide variety of constraints
into the segmentation problem [13]. Despite the attractive
properties associated with these models, they remained rel-
atively less popular due to the lack of efficient discrete opti-
mization techniques. Recently, there has been a renewed in-
terest both in discrete optimization in general and in MRF-
based models in particular due to the introduction of graph-
cuts [2, 9, 11]. Graph-cuts refers to a class of algorithms that
use the max-flow/min-cut algorithms to solve discrete opti-
mization problems. There exist certain limitations on the
type of energies/models that can be solved using graph-cut
based approaches [10]. However, they are far more com-
putationally efficient than existing methods and also pro-
vide very attractive guarantees on the optimality of the ob-
tained solution. Recently, there have been a number of ef-
forts to incorporate various types of prior information into
MRF-based segmentation models in such a way that they
can be minimized using graph-cuts [1, 4, 8, 5, 15, 12, 14].
Among the various types of prior information, the incorpo-
ration of shape, in particular, is very challenging. How-
ever, if used, it can make the segmentation more robust,
particularly when there are neighboring objects with similar
appearance, which is often the case in organ segmentation
problems. This is precisely the issue that we address here.

Specifically, in this paper, we present a knowledge-driven
MRF model for the segmentation of organs in medical im-
ages with particular emphasis on the incorporation of shape
constraints into the segmentation problem. We cast the
problem of image segmentation as the Maximum A Poste-
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riori (MAP) estimation of a Markov Random Field which,
in essence, is equivalent to the minimization of the corre-
sponding Gibbs energy function. We then incorporate a set
of constraints into the Gibbs energy function that collec-
tively force the resulting segmentation contour/surface to
have a shape similar to that of a given shape template. In
particular, we introduce a flux-maximization constraint and
a generalized template-based star-shape constraint that are
encoded into the first- and second-order clique potentials
of the Gibbs energy function, respectively. Central to both
of these constraints is the gradient vector field of the shape
template’s signed distance map, which we refer to as the
shape prior vector field. The flux-maximization constraint
favors a segmentation contour that is locally orthogonal to
the shape prior vector field. The template-based star-shape
constraint restricts the solution space to a set of contours
for which the flux of the shape prior vector field is posi-
tive all along the contour. Our main contribution is in the
translation of a set of global notions about the shape of the
desired segmentation contour into a set of local measures
that can be conveniently encoded into the Gibbs energy
function and used in combination with other traditionally
used constraints derived from image information. Note that
even though the proposed shape constraints can be easily
extended to the problem of segmenting multiple, even inter-
acting, organs, we limit our discussion in this paper to the
single organ (foreground/background) segmentation prob-
lem.

This paper is organized as follows: In Section 2, we de-
scribe in detail the theory underlying the proposed method.
We present in Section 3 an outline of the steps involved in
our segmentation algorithm. In Section 4, we demonstrate
the application of the proposed method to the challenging
problem of heart segmentation in non-contrast CT data and
present our segmentation results. Finally, we present our
conclusions in Section 5.

2. Theory

In this section, we present the theory underlying the pro-
posed method. Specifically, we begin by formulating the
segmentation problem as the minimization of the Gibbs en-
ergy function in Section 2.1. We then demonstrate how
to incorporate various types of prior information into the
Gibbs energy function in Section 2.2. Finally, in Sec-
tion 2.3, we discuss the minimization of the Gibbs energy
function using graph-cuts.

2.1. Formulation of the segmentation problem

The image segmentation problem is a labeling problem.
Specifically, consider an image I and let P = {1, 2, ...,M}

be the set of M pixels (or voxels) of the image and
L = {l1, ..., lH} be the set of H labels corresponding to the
H objects to be segmented. The goal of image segmentation
now is to find a mapping φ : P → L that is optimal in some
sense. The Markov Random Field (MRF) theory provides
an elegant mathematical framework for solving this prob-
lem [13]. Using the MRF framework, we define the map-
ping φ as a field F = (F1, ..., FM ) of random variables de-
fined on the set of pixels P , where Fi is the random variable
associated with the pixel i ∈ P and takes on a value from
the set of labels L. Any possible assignment of labels to the
field of random variables is called a labeling or configura-
tion, which we denote by the vector f = (f1, ..., fM ), where
fi is the label assigned to the random variable Fi. Note that
every configuration f defines a segmentation and we denote
the set of all possible configurations as F. We also define a
neighborhood system N = {Ni|∀i ∈ P} for the set of pix-
elsP , whereNi is the set of all neighbors of the pixel i ∈ P .
For example, this can be a 4- or 8-neighborhood system for
2D images and a 6- or 26-neighborhood system for 3D im-
ages. The random field F qualifies as an MRF with respect
to the neighborhood system N if and only if it satisfies the
following two properties:

Positivity :
Pr(f) > 0, ∀f ∈ F

Markovianity :

Pr(fi| {fj : j ∈ P − {i}}) = Pr(fi| {fj : j ∈ Ni}),∀i ∈ P.

Note that, here, we refer to Pr(F = f) by Pr(f) and
Pr(Fi = fi) by Pr(fi). Also, note that the event of as-
signing a label fi to a random variable Fi is equivalent to
assigning the label fi to the corresponding pixel i ∈ P . The
Markovian property dictates that the label fi assigned to a
pixel i depends only on the labels assigned to its neighbor-
ing pixels defined by the setNi. This condition is generally
true for medical images: the statistics of a pixel in a medical
image are related to the statistics of the pixels in a small lo-
cal neighborhood around it [3]. Now that we have an MRF,
we need to find a way to model the probability Pr(f |D) of a
particular labeling configuration f given the observed image
data D. The Hammersley-Clifford theorem [6] provides an
elegant solution to this problem. According to this theo-
rem, an MRF is equivalent to a Gibbs random field (GRF)
which includes an interesting and beneficial property: the
random field F qualifies as a Gibbs random field if it obeys
the Gibbs distribution that can be specified as follows:

Pr(f |D) = Z−1 · exp [−E(f |D)] , (1)

where Z is a normalizing constant and E(f |D) is the Gibbs
energy function. The Gibbs energy function

E(f |D) =
∑
c∈C

Vc(fc|D) (2)



is essentially a sum of clique potentials Vc(fc|D) over the
set C of all possible cliques. A clique c, in our case, can
be defined as a subset of the set P of pixels such that each
member of the set is a neighbor of all the other members.
The value of Vc(fc|D) depends on the local configuration fc
of the clique c. The number of pixels in a clique defines the
order of the clique and the corresponding clique potential.
For the purposes of this work, we only consider first- and
second-order cliques. In this case, the Gibbs energy can be
expressed as follows:

E(f |D) =
∑
i∈P

Vi(fi|D) +
∑
i∈P

∑
j∈Ni

Vij(fi, fj |D), (3)

where Vi(fi|D) and Vij(fi, fj |D) are the first- and second-
order clique potential functions, respectively. The first-
order clique potential Vi(fi|D) in Eq. 3 measures the cost or
penalty incurred in assigning a label fi to the pixel i given
the image data D. The second-order clique potential func-
tion Vij(fi, fj |D) in Eq. 3 measures the cost or penalty in-
curred in jointly assigning a label fi to the pixel i and a label
fj to the pixel j ∈ Ni given the image data D.

Now that we have found a convenient way to model
Pr(f |D), the optimal or MAP labeling f∗ of the MRF can
be defined as

f∗ = argmax
f∈F

Pr(f |D), (4)

which is equivalent to minimizing the Gibbs energy func-
tion E(f |D) that we will later refer to as the segmentation
energy. Note that, in our case, L = {0, 1} because we
are concerned with a single organ (foreground/background)
segmentation problem. Specifically, the label 0 corresponds
to the background object and the label 1 corresponds to the
foreground object. In order to achieve the desired segmen-
tation, our next challenges are to define the segmentation
energy E(f |D) and then to find an efficient way to mini-
mize this energy. In Section 2.2 we present our definition
of the segmentation energy E(f |D) and in Section 2.3 we
show how to minimize it using graph-cuts.

2.2. Definition of the segmentation energy E(f |D)

We represent the segmentation energy as a combination of
three energy functions, each modeling a specific type of
prior information, as shown below:

E(f |D) = EA(f |D) + EL(f |D) + ES(f |D). (5)

The energy functions EA(f |D), EL(f |D) and ES(f |D)
model prior information about the appearance, location and
shape of the organ being segmented, respectively. Each of
the three energy functions are in turn expressed as first-
or second-order clique potentials or a combination of both.

Our main contribution in this paper is in the definition of the
shape prior energy ES(f |D). Further details about the def-
initions of EA(f |D), EL(f |D) and ES(f |D) are available
in Sections 2.2.1, 2.2.2, and 2.2.3, respectively.

2.2.1 Appearance prior EA(f |D)

The energy function EA(f |D) in Eq. 5 models prior infor-
mation about the appearance of the object/organ being seg-
mented. We define EA(f |D) as a combination of first- and
second-order clique potentials as:

EA(f |D) =
∑
i∈P

V A
i (fi|D)+

∑
i∈P

∑
j∈Ni

V A
ij (fi, fj |D), (6)

where V A
i (fi|D) and V A

ij (fi, fj |D) are the first- and
second-order clique potentials modeling regional and
boundary appearance information, respectively.

We define the first-order clique potential V A
i (fi|D) proba-

bilistically [12] as shown below:

V A
i (fi|D) = −log [p (x = di;θfi)] , (7)

where p(x;θfi) is a probability density function (pdf) of the
feature values of the object Ofi associated with the label fi,
θfi is a vector of parameters governing this density func-
tion and di is the feature vector corresponding to the pixel
i. For most scenarios in organ segmentation, a Gaussian
mixture model serves as a good choice for the probability
density function. The parameters of the pdf can either be
learned a priori or estimated from a set of user provided or
automatically computed seed regions inside the object.

We define the second-order clique potential V A
ij (fi, fj |D)

as a piecewise constant prior using a Generalized Potts In-
teraction model [1] as shown below:

V A
ij (fi, fj |D) = K(i, j|D) · [1− δ(|fi − fj |)]

=

{
K(i, j|D) if fi 6= fj
0 otherwise , (8)

where K(i, j|D) represents the cost associated with object
boundaries, that we define as follows:

K(i, j|D) = exp

[
− (di − dj)

TΣ−1(di − dj)

2

]
, (9)

where the feature vectors of the pixels i and j are denoted
as di and dj , respectively. The term Σ is the covariance
matrix that represents the amount of variability allowed be-
tween the feature vector values of two neighboring pixels
within an object. This function assigns a higher penalty if
two neighboring pixels with similar feature vector values



are assigned different labels. Specifically, if the dissimi-
larity between the two pixels i and j in the feature space
is within the amount of variability allowed by Σ, then the
event of assigning different labels to them is highly penal-
ized.

2.2.2 Location prior EL(f |D)

The energy function EL(f |D) in Eq. 5 models prior infor-
mation about the location of the objects being segmented.
This information is encoded into the first-order clique po-
tential and can be defined as follows:

EL(f |D) =
∑
i∈P

V L
i (fi|D), (10)

where V L
i (fi|D) measures the cost of assigning the label

fi to the pixel i given prior information about the location
of the object associated with the label fi. This can be de-
fined in a hard-manner (hard-constraints [1]) based on a set
of user defined or automatically computed seed regions that
are known to be inside the object. Alternatively, one can de-
fine it in a soft manner based on atlas-registration or in terms
of fuzzy spatial relationships with neighboring objects [4].
In this paper, we define V L

i (fi|D) in a hard-manner as fol-
lows:

V L
i (fi|D) =

{
∞ if ∃l ∈ L − {fi} s.t. i ∈ Rl

0 otherwise , (11)

where Rl is a seed region that is known a priori to be inside
the object with label l ∈ L. In other words, V L

i (fi|D) is
assigned an infinite cost if pixel i is inside the seed region
of any object whose label is not equal to fi.

2.2.3 Shape prior ES(f |D)

The energy function ES(f |D) in Eq. 5 models prior in-
formation about the shape of the object being segmented.
Given a shape template of the object/organ being seg-
mented, our objective here is to design a set of constraints
that will force the resulting segmentation contour/surface to
attain a shape similar to that of the shape template. The
biggest challenge here is to translate this global notion of
shape similarity into a set of local measures/constraints that
can be encoded into the first- or second-order clique poten-
tials of the Gibbs energy function.

We model ES(f |D) as a combination of three energy func-
tions, each of them enforcing a specific type of shape con-
straint, as shown below:

ES(f |D) = EF (f |D) + EC(f |D) + ED(f |D), (12)

where EF (f |D) models the flux-maximization constraint,
EC(f |D) models the template-based star-shape constraint,
and ED(f |D) models the distance-to-closest-iso-contour
constraint. Central to these three constraints is the gradient
vector field of the shape template’s signed distance map,
which we will refer to as the shape prior vector field and
denote by the symbol t. Before computing the shape prior
vector field t, the shape template first needs to be aligned
to the target image. Further details about the template pose
estimation and the definitions of the three shape constraints
in Eq. 12 are presented below.

A. Flux-maximization constraint EF (f |D)

The flux-maximization constraint favors a segmentation
contour that is locally orthogonal to the shape prior vector
field t. Let S be an arbitrary segmentation contour/surface
in the target image space, then the flux of the vector field t
through the segmentation contour S is

flux(S) =

∫
S

〈n̂, t〉 dS, (13)

where 〈,〉 denotes an inner product and n̂ denotes the unit
outward normal at each point on the contour S. It can be
easily inferred that a contour S has maximal flux if the unit
outward normals along the contour align perfectly with the
vector field t, which can happen only when the contour S
has the same shape as that of the template. Also, among two
contours with the same shape, the flux through the contour
with a bigger size is greater than the one with a smaller size.
This can serve as a good counter force to the shrinking prob-
lem of graph-cut based segmentation methods [19]. Note
that the concept of flux maximization has been used earlier
in image analysis by a few researchers [1, 18]. However,
we are the first to thoroughly explore its effectiveness as a
template-driven shape-prior within the MAP-MRF pixel la-
beling formulation of the segmentation problem.

In order to show how to incorporate this constraint into the
Gibbs energy function, we will use the divergence theorem
for differentiable vector fields that can be stated as:

flux(S) =

∫
S

〈n̂, t〉 dS =

∫
R

div(t) dR, (14)

where R is the region enclosed within the contour S. The
divergence theorem states simply that the flux of a vector
field through a contour is equal to the integral of its diver-
gence within the region enclosed by the contour. Note that
this theorem is applicable under the condition that the asso-
ciated vector field is differentiable. In our case, it is known
that the shape-prior vector field t is discontinuous at the
skeletal points. In order to address this, we smooth the dis-
tance map of the aligned shape template before computing



the shape prior vector field t. By virtue of this theorem, it
can be easily seen that the flux-maximization constraint can
be incorporated into the Gibbs energy function in the form
of a first-order clique potential. Based on the above discus-
sion, we define the flux-maximization constraint EF (f |D)
as shown below:

EF (f |D) =
∑
i∈P

V F
i (fi|D), (15)

where V F
i (fi|D) is defined as follows:

V F
i (fi|D) = −div(ti) if fi = 1. (16)

B. Template-based star-shape constraint EC(f |D)

The template-based star-shape constraint restricts the solu-
tion space to a set of contours for which the flux of the shape
prior vector field t is positive all along the contour. In other
words, it allows only those segmentation contours that are
star/convex with respect to the pre-aligned shape template.

In general, a convex shape is one in which, for any point p
inside the shape, a line joining p to any other point inside
the shape lies entirely inside the shape. A star shape, on the
other hand, is defined with respect to a center point [19].
Specifically, an object is said to have a star shape if, for
any point p inside the object, the line joining p to the center
point lies totally inside the object. We refer to such shapes
as being convex/star with respect to a center point. As can
be seen, a convex shape is a special case of a star shape,
where in any point inside the shape can act as the center
point.

We provide an alternative definition to a star shape based on
the gradient vector field q of the signed distance map of its
center point. From this point of view, an object is said to
have a star shape if the flux of the vector field q is positive
all along the boundary of the object. This definition turns
out to be a very interesting way to describe a star shape.
Based on this interpretation, we generalize/extend the star
shape to a given shape template. Given the shape prior vec-
tor field t of the pre-aligned shape template, an object is said
to have a template-based star-shape if the flux of the shape
prior vector field t is positive all along the boundary of the
object. Since this is a constraint related to the boundary
of the object, it can be incorporated into the Gibbs energy
function in the form of a second-order clique potential.

Based on the above discussion, we define the template-
based star-shape constraint EC(f |D) as shown below:

EC(f |D) =
∑
i∈P

∑
j∈Ni

V C
ij (fi, fj |D), (17)

where V C
ij (fi, fj |D) is defined as follows:

V C
ij (fi, fj |D) =


∞ if (fi, fj) = (0, 1), 〈êij , ti〉 > 0
∞ if (fi, fj) = (1, 0), 〈êij , ti〉 ≤ 0
0 otherwise

,

where êij is a unit vector representing the direction of the
edge between pixels i and j. The term V C

ij (fi, fj |D) heav-
ily penalizes any part of the object boundary with a negative
flux, and hence enforces the template-based star-shape con-
straint discussed above.

C. Distance-to-closest-iso-contour constraint ED(f |D)

The energy function ED(f |D) softly penalizes any devi-
ation of the segmentation contour from the iso-contour of
the shape template that is closest in distance to the true ob-
ject boundary. However, since the true object boundary is
not known, we first solve the segmentation problem using
the other two shape constraints. We then compute the iso-
contour that is closest to this segmentation result. Next,
we penalize any deviation of the segmentation contour from
this iso-contour where the cost of deviation is equal to the
amount of deviation. Let ρ be the signed distance associated
with this iso-contour and let Y denote the signed distance
map of the pre-aligned shape template, then we define the
energy function in the form of a second-order clique poten-
tial as shown below:

ED(f |D) =
∑
i∈P

∑
j∈Ni

V D
ij (fi, fj |D), (18)

where V D
ij (fi, fj |D) is defined as follows:

V D
ij (fi, fj |D) =

 |Y (i)− ρ| if (fi, fj) = (1, 0),
〈êij , ti〉 > 0

0 otherwise
.

D. Template Pose Estimation

Central to all the shape constraints described above is the
shape prior vector field t. Before computing t, the shape
template must first be aligned to the target image. In order
to do this, we first segment the image without any shape
constraints and then align the shape template to the result-
ing segmentation contour/surface using an image registra-
tion procedure. This alignment can be achieved in sev-
eral ways: one common way is to register the binary im-
ages of the shape template and the segmentation result ob-
tained without shape constraints. Alternatively, we register
the shape prior vector fields of the shape template and the
segmentation result obtained without shape constraints un-
der an affine transformation. The registration is performed
using the Elastix registration toolkit [7] with an adaptive
stochastic gradient descent optimizer and a mutual infor-
mation metric.



2.3. Minimizing E(f |D) using graph-cuts

Minimizing the energy function E(f |D) is a significant
part of the challenge in solving an image segmentation
problem. Graph-cuts provides an efficient way to opti-
mize such energy functions owing to certain constraints.
Particulary in the case of a binary segmentation prob-
lem (L = {0, 1}), which is our focus in this pa-
per, graph-cuts provides us with a globally optimal so-
lution provided that Vij is a sub-modular function (i.e.,
Vij(0, 0) + Vij(1, 1) ≤ Vij(0, 1) + Vij(1, 0)) [10]. It can
be easily proven that all constraints that we have incorpo-
rated are sub-modular in nature, and hence the energy func-
tion can be minimized using graph-cuts.

3. Segmentation algorithm

Our segmentation algorithm consists of three stages, and
different constraints are put into effect in different stages.
In the first stage, we solve the segmentation problem using
only appearance (Section 2.2.1) and location priors (Sec-
tion 2.2.2). In the second stage, we first align the shape tem-
plate to the segmentation result obtained in the first stage,
as described in Section 2.2.3.D. We then solve the seg-
mentation problem by adding in the flux-maximization and
template-based star-shape constraints, as described in Sec-
tions 2.2.3.A and 2.2.3.B, respectively. Finally, in the third
stage, we add the distance-to-closest-iso-contour constraint
(Section 2.2.3.C) and solve the segmentation problem using
all constraints described. Invariance to template pose can
be achieved to an extent by performing multiple iterations
of the second and third stages until the segmentation result
converges to a steady state. A brief outline of the steps in-
volved in our algorithm is provided below:

Algorithm 1 Outline of proposed segmentation algorithm
Stage-1: Solve the segmentation problem using only
appearance and location priors, as described in Sec-
tions 2.2.1 and 2.2.2, respectively.
repeat

Stage-2: Align the shape template to the current
segmentation result, as described in Section 2.2.3.D.
Solve the segmentation problem by adding in the
flux-maximization and template-based star-shape con-
straints, as described in Sections 2.2.3.A and 2.2.3.B,
respectively.
Stage-3: Add the distance-to-closest-iso-contour con-
straint as described in Section 2.2.3.C and solve the
segmentation problem using all the constraints.

until convergence is reached

4. Experiments: Heart Segmentation

In this section, we demonstrate how to apply the proposed
method to the challenging problem of heart segmentation
in non-contrast CT data. Specifically, we use the proposed
method to segment the heart in a coronal slice approx-
imately bisecting the ascending aorta (mid-aorta coronal
slice). However, in order to use the proposed method, we
first need to create a shape template of the heart. We gener-
ate it by manually annotating the heart in one of the coronal
slices. Figure 1(b) depicts the manually annotated heart in
the coronal slice depicted in Figure 1(a). We now describe
in detail the steps involved in using the proposed method
to segment the heart in a sample test image shown in Fig-
ure 1(c).

(a) (b)

(c) (d)
Figure 1. (a) Coronal CT slice used to create the heart template, (b)
Manually annotated heart (red) that is used as the heart template,
(c) Coronal CT slice of the test image, and (d) Location priors or
hard-constraints of the foreground (green) and background (red),
respectively.

First, we obtain an initial segmentation using appearance
and location priors only. To obtain the location priors, we
first segment the lungs using simple thresholding and con-
nected component analysis. We then use the union of the
two lung masks to define the location prior of the back-
ground. We define the foreground location prior as a small
circular region around a point midway between the line
joining the centroids of the two lungs. Figure 1(d) depicts
the foreground and background location priors computed
as described above. We use a Gaussian distribution of the
intensity values to define the probability density functions,
modeling the regional appearance of the foreground and
background objects (Eq. 7). The parameters of these Gaus-
sian distributions are estimated from the respective seed re-
gions depicted in Figure 1(d). Figures 2(a,b) depict the
first-order clique potentials V A

i modeling the regional ap-
pearance of the foreground and background objects, respec-
tively. Figures 2(c-f) depict the second-order clique poten-
tials V A

ij (Eq. 8) between neighboring pixels within an 8-
neighborhood system. The parameter Σ is defined as the
variance of the difference between intensity values of the
neighboring pixels within the foreground and background



seed regions depicted in Fig. 1(d). Figure 3(a) depicts the
Stage-1 segmentation result obtained using just appearance
and location priors as described above.

In the second stage of the algorithm, we first align the
heart template to the Stage-1 segmentation result using the
procedure described in Section 2.2.3.D. Figure 3(b) de-
picts the aligned heart template. We then enforce the flux-
maximization and the template-based star-shape constraints
as described in Sections 2.2.3.A and 2.2.3.B, respectively.
Figure 3(c) depicts the segmentation result at the second
stage. Note that, the segmentation result confirms to both
the shape constraints, but it appears to have a tendency to
“jump” across towards larger iso-contours of the shape tem-
plate in the region inferior to the heart. This problem can
be attributed to two reasons: (i) there exists no edge infor-
mation in this region, and (ii) an iso-contour with a larger
perimeter has a higher outward flux. This issue is addressed
by the distance-to-closest-iso-contour constraint used in the
next stage of our algorithm.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Appearance Priors: (a-b) Depiction of the first-order
clique potentials V A

i (Eq. 7) for foreground and background, re-
spectively, (c-f) Depiction of the second-order clique potentials
V A
ij (Eq. 8) between neighboring pixels along the 0◦ , 90◦, 45◦,

and 135◦ directions, respectively.

Finally, in the third stage, we add the distance-to-closest-
iso-contour constraint as described in Section 2.2.3.C. Fig-
ure 3(d) depicts the segmentation result at this stage. As
is evident, the distance-to-closest-iso-contour constraint re-
stricts the result to stay close to a single iso-contour and
hence addresses the problem faced in stage-2.

We evaluated the proposed method on the mid-aorta coro-
nal slices obtained from non-contrast cardiac CT scans of 12
patients. We randomly selected one of the 12 coronal slices
to create the heart template and then used it to segment the
heart in all the other slices. We evaluated the accuracy of
the segmentation results obtained by measuring the degree

(a) (b)

(c) (d)
Figure 3. (a) Stage-1: segmentation result obtained using only ap-
pearance and location priors, (b) A shrinked version of the shape
template (blue) after aligning it to the segmentation result (red)
obtained in stage-1, (c) Stage-2: segmentation result obtained by
adding in the flux-maximization and the template-based star-shape
constraint, (d) Stage-3: segmentation result obtained using all
the constraints including the distance-to-closest-iso-contour con-
straint.

of overlap with manual segmentation performed by an ex-
pert where the degree of overlap was estimated using the
Dice similarity coefficient (DSC). The mean and standard
deviation DSC values were 0.95 and 0.04, respectively. The
minimum and maximum DSC values were 0.84 and 0.98,
respectively. Figure 4 depicts the segmentation results ob-
tained on six test images from our dataset.

5. Conclusion

In this paper, we have presented a knowledge-driven, MRF
model for the segmentation of organs in medical images
with particular emphasis on the incorporation of shape con-
straints into the segmentation problem. Given a shape
template of the object/organ, our goal was to design a
set of constraints that will force the resulting segmenta-
tion contour/surface to attain a shape similar to that of
the shape template. To that end, we have explored the
incorporation of three types of shape constraints, namely,
the flux-maximization constraint, the generalized template-
based star-shape constraint and the distance-to-closest-iso-
contour constraint. Our main contribution is the transla-
tion of a set of global notions about the shape of the de-
sired segmentation contour into a set of local measures that
can be conveniently encoded into the Gibbs energy func-
tion and used in combination with other traditionally used
constraints based on image information. Future work will
focus on the incorporation of shape constraints derived from
a statistical shape model built from multiple templates.
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