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Linear Regression as Descriptive Measure

Observations taken on two features - say height (x) and weight (y) of
individuals.

Situations when (x) and (y) show no interrelationships - no point doing
regression.
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Figure: Artificially simulated dataset showing no dependence between x and y .
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Linear Regression as Descriptive Measure

Fortunately, most of the time x and y turns out to be dependent!
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Figure: (x) car speed in miles per hour vs (y) stopping distance in feet.

Want an approximate formula (y ≈ f (x)) of stopping distance (y) in terms of
car speed (x) - regression problem.

Why?
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Linear Regression as Descriptive Measure

To understand the nature of dependence between (x) and (y).

Sometimes (y) may be costly/difficult to measure (total annual income) but (x)
may be measured easily (total annual expenditure) - can use the formula to
predict y∗ using x∗.

What type of formula? - f (x) = ax3 + b
√

x + c?

No, we want a formula of form f (x) = a + bx - equation of a straight line.

Reason?(i) Mathematically simple.

(ii) Most of the time linear regression perform quite well!

How to get the value of a, b? - a line that pass through the most middle -
obtained by minimizing

∑n
i=1(yi − a− bxi )

2.

Closed form solution available -
f (x) = (ȳ − Cov(x,y)

Var(x)
x̄) + Cov(x,y)

Var(x)
x = ȳ + Cov(x,y)

Var(x)
(x − x̄).
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Linear Regression as Descriptive Measure

xi , yi - given data. Yi = f (xi ) is fitted values and ei = yi − Yi - residuals.
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Figure: Scatter plot with the regression line, fitted values and residuals.

Minimizing
∑n

i=1(yi − a− bxi )
2 wrt a, b - Principle of least squares (LS) - LS

regression line.

LS regression line is highly vulnerable to outlying observation.
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Linear Regression as Descriptive Measure
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Figure: Effect of a single outlier on LS regression line.

Two possibilities : (i) detect and drop the outlier (ii) apply an outliers resistant
regression.

Minimizing
∑n

i=1(yi − a− bxi )
2 wrt a, b equivalent minimizing

1
n
∑n

i=1(yi − a− bxi )
2 (mean of (yi − a− bxi )

2) wrt a, b.

Why not minimize Median of (yi − a− bxi )
2 wrt a, b? - least median square

(LMS) regression.
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Linear Regression as Descriptive Measure

LMS regression line is less affected by outliers - outliers resistant.
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Figure: Effect of outlier on LMS regression line.

So far only descriptive statistics.

Want to understand reliability/accuracy of this regression lines - require
specifying suitable statistical model for the data.
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Linear Regression Models

Simple linear regression model :

[Y1 = y1, · · · ,Yn = yn|X1 = x1, · · · ,Xn = xn] ∼ ( 1√
2πσε

)ne
− 1

2
∑n

i=1
(yi−a−bxi )2

σ2
ε

Model parameters - a, b, σε.

The model looks unfamiliar?

The model is nothing but a family of MVN distributions indexed by unknown
parameters a, b, σε.

More familiar specification - Y = Xβ + ε; ε ∼ MVN(0, σ2
ε In).

Y =


y1
y2
...

yn

, X =


1 x1
1 x2
...
1 xn

 and ε =


ε1
ε2
...
εn

 are unobserved random errors.

β =

(
β0
β1

)
=

(
a
b

)
.
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Linear Regression Models

The model is fitted using maximum likelihood method.

Inferential goal - estimating β and σ2
ε .

mle of β is given by β̂ = QXy = (X′X)−1X′y - same as LS regression values.

mle of σ2
ε is given by σ̂2

ε =
∑n

i=1 e2
i

n - biased.

An unbiased estimator σ̃2
ε =

∑n
i=1 e2

i
n−2 .

Only concentrate on β̂ from now on.

How good/reliable are these estimates? - calculate standard errors.

Var(β̂) = Var(QXy) = QXVar(y)Q′X = QXσ
2
ε InQ′X = σ2

εQXQ′X =

σ2
ε(X′X)−1X′X(X′X)−1 = σ2

ε(X′X)−1.

Estimate of Var(β̂) is σ̃2
ε(X′X)−1 (we use the unbiased estimator σ̃2

ε not mle
σ̂2
ε .

Its diagonal entries - estimate of standard error ŝe(β̂0) and ŝe(β̂1).
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Linear Regression Models

Another inferential goal - testing for β.

Individual test of significance H0 : β0 = 0 vs H1 : β0 6= 0 (test of intercept).

Test statistic T =
β̂0

ŝe(β̂0)
.

Null distribution of test statistic ∼ tn−2 - Cutoff is obtained using
tn−2-distribution table.

Practitioners prefer p-value - P(T > |Tobserved |) where T ∼ tn−2.

Individual test of significance H0 : β1 = 0 vs H1 : β1 6= 0 (test of slope).

Test statistic T = β̂1

ŝe(β̂1)
.

Null distribution of test statistic ∼ tn−2 - Cutoff is obtained using
tn−2-distribution table.

Joint test of significance H0 : β = 0 vs H1 : β 6= 0

Test statistic F = β̂′(X ′X)β̂

2σ̃2
ε

.

Null distribution of test statistic ∼ F2,n−2 - Cutoff is obtained using
F2,n−2-distribution table.

p-value - P(F > Fobserved ) where F ∼ F2,n−2.
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ŝe(β̂1)
.

Null distribution of test statistic ∼ tn−2 - Cutoff is obtained using
tn−2-distribution table.

Joint test of significance H0 : β = 0 vs H1 : β 6= 0

Test statistic F = β̂′(X ′X)β̂

2σ̃2
ε

.

Null distribution of test statistic ∼ F2,n−2 - Cutoff is obtained using
F2,n−2-distribution table.

p-value - P(F > Fobserved ) where F ∼ F2,n−2.

10 / 29



Linear Regression Models

Another inferential goal - testing for β.

Individual test of significance H0 : β0 = 0 vs H1 : β0 6= 0 (test of intercept).

Test statistic T =
β̂0
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Linear Regression Models

Confidence interval for β0 can be obtained by inverting the test statistic β̂0

ŝe(β̂0)
.

Confidence interval for β1 can be obtained by inverting the test statistic β̂1

ŝe(β̂1)
.

Confidence interval
[
β̂1 − tn−2,α2

ŝe(β̂0), β̂1 + tn−2,α2
ŝe(β̂0)

]
.

tn−2,α2
upper α2 -cutoff point.

Ellipsoidal joint confidence set for β is obtained by inverting the test statistic
β̂′(X′X)β̂

2σ̃2
ε

.

Confidence ellipsoid - P(β : (β − β̂)′(X′X)(β − β̂) ≤ 2σ̃2
εF2,n−2,α) = 1− α.

F2,n−2,α upper α-cutoff point.

All of the above findings are useless if model fit is poor - need to check if the
model is appropriate for the data.

Model diagnostic checking.
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Linear Regression Models

Appropriateness of Gauss-Markov assumption :
(i) Linearity: The relationship between X and the mean of Y is linear

(E(Y|X) = Xβ).
(ii) Homoscedasticity: The variance of residual is the same for x1, x2, · · · , xn.

(iii) Uncorrelatedness: Observations are uncorrelated of each other.

Normality: For any fixed value xi , [Yi |Xi = xi ] is normally distributed.

Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other
⇒ Observations are independent of each other.

Check for potentially bad points which may lead to poor model fit :
(i) Outliers: An outlier is defined as an observation that has a large residual. In

other words, the observed value for the point is very different from that
predicted by the regression model.

(ii) Leverage points: A leverage point is defined as an observation that has a
value of xi that is far away from the mean of x1, x2, · · · , xn.

(iii) Influential observations: An influential observation is defined as an
observation that changes the slope of the line. Thus, influential points have a

large influence on the fit of the model.
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Linear Regression Models

Linearity - Check the fitted value Yi vs residual ei plot for any pattern -
randomly and closely distributed around x − axis indicates linearity.

Homoscedasticity - Check the fitted value Yi vs residual ei plot to see if the
spread is changing as we move along x − axis - changing means
heteroscedastic.
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Figure: Clear indication of nonlinearity and heteroscedasticity.
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Linear Regression Models

Homoscedasticity - Check the fitted value Yi vs square root of absolute

standardised residual
√
| ei
σ̃ε
√

1−hii
| plot to see if the spread is changing as we

move along x − axis - changing means heteroscedastic.
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Figure: Clear indication of heteroscedasticity.

This plot is more appropriate for homoscedasticity checking as Var(ei ) are
different not same as Var(εi ).
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Linear Regression Models

Var(ei ) = σ2
ε(1− hii ) - so, V̂ar(ei ) = σ̃2

ε(1− hii ).

So, standardised residual ei√
V̂ar(ei )

= ei
σ̃ε
√

1−hii
.

hii is the i th leverage value - the i th diagonal entry of the matrix
XQX = X(X′X)−1X′ = PX.

PX (some refers it as hat-matrix H) is an orthogonal projection matrix -
idempotent and symmetric - also, ŷ = PXy.

One can use Breusch-Pagan Test for checking homoscedasticity -
asymptotically χ2 distributed.

Uncorrelatedness: Plot the sample autocorrelation function of the residuals.
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Linear Regression Models

0 5 10 15

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  fm1$residuals

(a)

Figure: Indication of uncorrelatedness.

Also can perform Durbin-Watson test and Box-Pierce test for checking whether
there is any autocorrelation.
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Linear Regression Models

Normality: Q-Q plot of standardised/studentized residuals.
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Figure: Indication of non-normality.

Also can perform Shapiro-Wilks test and Kolmogorov-Smirnov test for checking
departure from normality.
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Linear Regression Models

Outliers : Check the fitted value Yi vs residual ei plot for large values - potential
outliers.

Leverage points : Check for points with high leverage values hii .

Recall that 0 ≤ hii ≤ 1.

Influential observations: Can be detected by looking into standardised residuals
vs leverage plot.
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Figure: A few influential observations.
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Linear Regression Models

Also, some more numerical diagnostic measures are there for detection of
potentially influential observations.

Cook’s distance :

Di = 1
2

(
ei

σ̃ε
√

1−hii

)2
hii

1−hii
= 1

2 (standardized residual)2 hii
1−hii

.

So, Cook’s D is a function of studentized residual and leverage value - can be
plotted as a nonlinear contours in the residuals vs leverage plot.

High leverage values (close to 1) means Cook’s distance very large - highly
influential observation.

DFFIT : DFFITi = difference in fit as we drop the i th observation.

Relationship between Di and DFFITi : Di = 1
2

σ̂2
ε(i)
σ̂2
ε

DFFIT 2
i .

If the model diagnostic checking turns out satisfactory then we check for how
good the model fits the data.
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Linear Regression Models

There are several such goodness of fit measure.

These measures are useful in selection of a single best model among several
competing models.

R-squared - R2 = Var(Y )
Var(y)

=
∑n

i=1(Yi−Ȳ )2∑n
i=1(yi−ȳ)2 ; 0 ≤ R2 ≤ 1.

Problem of R2 - tend to select overfitting models.

Adjusted R-squared - R2
adj = 1− (n−1)(1−R2)

(n−2)
- higher the better - can be

negative!

AIC - −2 ln(L(β̂mle, σ̂
2
εmle|y,X)) + 2(2 + 1) - lower the better.

BIC - −2 ln(L(β̂mle, σ̂
2
εmle|y,X)) + ln(n)(2 + 1) - lower the better.

BIC penalizes complex models more severely - better to use BIC than AIC.
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Linear Regression Models

Multiple linear regression model :
More familiar specification - Y = Xβ + ε; ε ∼ MVN(0, σ2

ε In).

Y =


y1
y2
...

yn

, X =


1 x11 · · · xp1
1 x2 · · · xp2
...
1 xn · · · xpn

 and ε =


ε1
ε2
...
εn

 are unobserved random

errors. β =

β0
β1
...βp

.

All the previous developments are applicable.

Polynomial regression model : [Yi |Xi = xi ]
ind∼ N(a + bxi + cx2

i , σ
2
ε) is a

special case.
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Logistic Regression

Observations taken on two features - covariate is continuous say dosage of a
drug (x) and response (y) is binary subject is alive/dead (we code it as 0/1).

Scatter plot of (x) and (y) does not give much insight!
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Figure: Scatter plot of x and y(0/1) - not useful.

Not much of descriptive statistics can be done.

Still - need some motivation!
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Logistic Regression Models

In simple linear regression model we have assumption E(Y |X = x) = a + bx .

Now for the logistic regression model we have assumption E(Y |X = x) =
1× P(Y = 1|X = x) + 0× P(Y = 0|X = x) = P(Y = 1|X = x) = a + bx?? -
meaningless

0 ≤ P(Y = 1|X = x) ≤ 1 but −∞ < a + bx < +∞ for b 6= 0.

However, P(Y = 1|X = x) = ea+bx

1+ea+bx - absolutely meaningful.

ea+bx

1+ea+bx - logistic distribution - so the name logistic regression.

logit(P(Y = 1|X = x)) = log(ODDS for Y=1) = log
(

P(Y =1|X=x)
P(Y =0|X=x)

)
=

log
(

P(Y =1|X=x)
1−P(Y =1|X=x)

)
= a + bx - so the name logit regression.

If not coded using dummy variables - P(Y = “dead ′′|X = x) = ea+bx

1+ea+bx .

Reason?(i) Very Simple Form.

(ii) Lots of Similarity with Linear Regression Model.

(iii) Logistic Regression Model/Logit Regression

Model is Highly Successful!
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Logistic Regression Models

Logistic regression model used in
(a) spam detection based on certain words and characters.
(b) malignant tumor detection based on certain cell profiles.
(c) loan defaulters detection based on personal/socio-economic and
demographic profiles.

Difference with linear regression - no closed form solution available.

Simple logistic regression model :

[Y1 = y1, · · · ,Yn = yn|X1 = x1, · · · ,Xn = xn] ∼
n∏

i=1

[P(Y = 1|X = xi )]yi [1− P(Y = 1|X = xi )]1−yi =

n∏
i=1

[
ea+bxi

1 + ea+bxi
]yi [

1
1 + ea+bxi

]1−yi

Model parameters - a, b.

The model is nothing but a family of product of Bernoulli distributions indexed
by unknown parameters a, b.

More familiar specification - [Yi |Xi = xi ]
ind∼ Ber( ea+bx

1+ea+bx ).
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Logistic Regression Models

The model is fitted using maximum likelihood method.

Inferential goal - estimating the parameter vector β = (a, b)′.

mle of β is denoted by β̂ - unlike linear regression no closed form expression.

mle is calculated using numerical algorithm - Fisher’s scoring algorithm.

Often the algorithm may not converge - multicollinearity, sparseness and
complete separation.

multicollinearity : when covariate/predictor variables are linearly highly
correlated.

sparseness : for some combinations of covariate variables we do not get any
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Logistic Regression Models

Another inferential goal - testing for β.

Individual test of significance H0 : β0 = 0 vs H1 : β0 6= 0 (test of intercept).

Test statistic Z =
β̂0

ŝe(β̂0)
.

Finite sample null distribution is not available - asymptotic null distribution
(assuming no. of data n large) of test statistic ∼ N(0, 1) - Cutoff is obtained
using standard normal table.

Practitioners prefer p-value - P(Z > |Zobserved |) where Z ∼ N(0, 1).

Individual test of significance H0 : β1 = 0 vs H1 : β1 6= 0 (test of slope).

Test statistic Z = β̂1

ŝe(β̂1)
.

asymptotic null distribution of test statistic ∼ N(0, 1) - Cutoff is obtained using
N(0, 1)-distribution table.

Asymptotically approximate confidence intervals can be obtained for the
parameters β0 and β1 inverting the Z test statistics.

Goodness of fit measures.

Want something like R2.
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ŝe(β̂0)
.

Finite sample null distribution is not available - asymptotic null distribution
(assuming no. of data n large) of test statistic ∼ N(0, 1) - Cutoff is obtained
using standard normal table.

Practitioners prefer p-value - P(Z > |Zobserved |) where Z ∼ N(0, 1).

Individual test of significance H0 : β1 = 0 vs H1 : β1 6= 0 (test of slope).

Test statistic Z = β̂1
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Logistic Regression Models

Deviance measure : Dfitted = −2 ln(L(β̂mle|y,X)).

Null model means only intercept term - no regressors.

Dnull = −2 ln(L(β̂0mle|y,X)).

Dnull − Dfitted ≥ 0.

If Dnull − Dfitted very large then we can reject the hypothesis of no regression.

H0 : all coefficients except β0 is 0 vs H1 : not H0 (test of regression is needed
or not/no regressors).

This test is analogue of F-test in linear regression models.

Can construct a pseudo-R squared based on Deviance : R2
L =

Dnull−Dfitted
Dnull

R2
L - larger value indicates good fit.
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Logistic Regression Models

Multiple logistic regression :

[Y1 = y1, · · · ,Yn = yn|X = x] ∼
n∏

i=1

[
eβ0+β1x1i +β2x2i +···+βpxpi

1 + eβ0+β1x1i +β2x2i +···+βpxpi
]yi [

1

1 + eβ0+β1x1i +β2x2i +···+βpxpi
]1−yi

Model parameters - β0, β1, β2, · · · , βp .

Everything is same as simple logistic regression.

One additional issue - multicollinearity or aliasing.

multicollinearity : some of the regressors/predictors are linearly highly
correlated.

multicollinearity makes some estimates very unreliable!
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correlated.

multicollinearity makes some estimates very unreliable!
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Logistic Regression Models

Calculate variance inflation factors VIFj for each of the p regressors.

Perform a multiple linear regression of the j th covariate on the remaining
(p − 1) covariates - calculate the R2

j (R-squared).

VIFj = 1
1−R2

j

High VIF means highly correlated covariate - VIFj > 5 is high (thumb rule).

Unlike linear regression there are different notions of residuals - Deviance
residual, Pearson residual and Anscombe residual.

Similar diagnostic plots based on them can be devised like linear regression
problems.
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