

A Short Course in Linear and Logistic Regression

Suman Guha Assistant Professor Department of Statistics Presidency University, Kolkata July 26, 2020 Observations taken on two features - say height (x) and weight (y) of individuals.

Situations when (x) and (y) show no interrelationships - no point doing regression.

Figure: Artificially simulated dataset showing no dependence between x and y.

Observations taken on two features - say height (x) and weight (y) of individuals.

Situations when (x) and (y) show no interrelationships - no point doing regression.

Figure: Artificially simulated dataset showing no dependence between *x* and *y*.

Fortunately, most of the time *x* and *y* turns out to be dependent!

Figure: (x) car speed in miles per hour vs (y) stopping distance in feet.

- Want an approximate formula $(y \approx f(x))$ of stopping distance (y) in terms of car speed (x) regression problem.
- Why?

Fortunately, most of the time x and y turns out to be dependent!

Figure: (x) car speed in miles per hour vs (y) stopping distance in feet.

- Want an approximate formula $(y \approx f(x))$ of stopping distance (y) in terms of car speed (x) regression problem.
- Why?

Fortunately, most of the time x and y turns out to be dependent!

Figure: (x) car speed in miles per hour vs (y) stopping distance in feet.

- Want an approximate formula $(y \approx f(x))$ of stopping distance (y) in terms of car speed (x) regression problem.
- Why?

\blacksquare To understand the nature of dependence between (x) and (y).

- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) can use the formula to predict y* using x*.
- What type of formula? $f(x) = ax^3 + b\sqrt{x} + c$?
- No, we want a formula of form f(x) = a + bx equation of a straight line.

- (ii) Most of the time linear regression perform guite well!
- How to get the value of a, b? a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$.
- Closed form solution available $f(x) = (\bar{y} \frac{Cov(x,y)}{Var(x)}\bar{x}) + \frac{Cov(x,y)}{Var(x)}x = \bar{y} + \frac{Cov(x,y)}{Var(x)}(x \bar{x})$

- \blacksquare To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) can use the formula to predict y* using x*.
- What type of formula? $f(x) = ax^3 + b\sqrt{x} + c$?
- No, we want a formula of form f(x) = a + bx equation of a straight line.

- (ii) Most of the time linear regression perform quite well!
- How to get the value of a, b? a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$.
- Closed form solution available $f(x) = (\bar{y} \frac{Cov(x,y)}{Var(x)}\bar{x}) + \frac{Cov(x,y)}{Var(x)}x = \bar{y} + \frac{Cov(x,y)}{Var(x)}(x \bar{x})$

- \blacksquare To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) can use the formula to predict y* using x*.
- What type of formula? $f(x) = ax^3 + b\sqrt{x} + c$?
- No, we want a formula of form f(x) = a + bx equation of a straight line.

- (ii) Most of the time linear regression perform quite well!
- How to get the value of a, b? a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$.
- Closed form solution available $f(x) = (\bar{y} \frac{Cov(x,y)}{Var(x)}\bar{x}) + \frac{Cov(x,y)}{Var(x)}x = \bar{y} + \frac{Cov(x,y)}{Var(x)}(x \bar{x})$

- \blacksquare To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) can use the formula to predict y* using x*.
- What type of formula? $f(x) = ax^3 + b\sqrt{x} + c$?
- No, we want a formula of form f(x) = a + bx equation of a straight line.

- (ii) Most of the time linear regression perform quite well!
- How to get the value of a, b? a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$.
- Closed form solution available $f(x) = (\bar{y} \frac{Cov(x,y)}{Var(x)}\bar{x}) + \frac{Cov(x,y)}{Var(x)}x = \bar{y} + \frac{Cov(x,y)}{Var(x)}(x \bar{x})$

- \blacksquare To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) can use the formula to predict y* using x*.
- What type of formula? $f(x) = ax^3 + b\sqrt{x} + c$?
- No, we want a formula of form f(x) = a + bx equation of a straight line.

- (ii) Most of the time linear regression perform quite well!
- How to get the value of a, b? a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$.
- Closed form solution available $f(x) = (\bar{y} \frac{Cov(x,y)}{Var(x)}\bar{x}) + \frac{Cov(x,y)}{Var(x)}x = \bar{y} + \frac{Cov(x,y)}{Var(x)}(x \bar{x})$

- \blacksquare To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) can use the formula to predict y* using x*.
- What type of formula? $f(x) = ax^3 + b\sqrt{x} + c$?
- No, we want a formula of form f(x) = a + bx equation of a straight line.

- (ii) Most of the time linear regression perform quite well!
- How to get the value of a, b? a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$.
- Closed form solution available $f(x) = (\bar{y} \frac{Cov(x,y)}{Var(x)}\bar{x}) + \frac{Cov(x,y)}{Var(x)}x = \bar{y} + \frac{Cov(x,y)}{Var(x)}(x \bar{x})$

- \blacksquare To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) can use the formula to predict y* using x*.
- What type of formula? $f(x) = ax^3 + b\sqrt{x} + c$?
- No, we want a formula of form f(x) = a + bx equation of a straight line.

- (ii) Most of the time linear regression perform guite well!
- How to get the value of a, b? a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$.
- Closed form solution available $f(x) = (\bar{y} \frac{Cov(x,y)}{Var(x)}\bar{x}) + \frac{Cov(x,y)}{Var(x)}x = \bar{y} + \frac{Cov(x,y)}{Var(x)}(x \bar{x}).$

 x_i , y_i - given data. $Y_i = f(x_i)$ is fitted values and $e_i = y_i - Y_i$ - residuals.

Figure: Scatter plot with the regression line, fitted values and residuals.

- Minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$ wrt a, b Principle of least squares (LS) LS regression line.
- LS regression line is highly vulnerable to outlying observation.

 x_i, y_i - given data. $Y_i = f(x_i)$ is fitted values and $e_i = y_i - Y_i$ - residuals.

Figure: Scatter plot with the regression line, fitted values and residuals.

- Minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$ wrt a, b Principle of least squares (LS) LS regression line.
- LS regression line is highly vulnerable to outlying observation

 x_i , y_i - given data. $Y_i = f(x_i)$ is fitted values and $e_i = y_i - Y_i$ - residuals.

Figure: Scatter plot with the regression line, fitted values and residuals.

- Minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$ wrt a, b Principle of least squares (LS) LS regression line.
- LS regression line is highly vulnerable to outlying observation.

Figure: Effect of a single outlier on LS regression line.

- Two possibilities: (i) detect and drop the outlier (ii) apply an outliers resistant regression.
- Minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$ wrt a, b equivalent minimizing $\frac{1}{n} \sum_{i=1}^{n} (y_i a bx_i)^2$ (mean of $(y_i a bx_i)^2$) wrt a, b.
- Why not minimize Median of $(y_i a bx_i)^2$ wrt a, b? least median square (LMS) regression.

Figure: Effect of a single outlier on LS regression line.

- Two possibilities : (i) detect and drop the outlier (ii) apply an outliers resistant regression.
- Minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$ wrt a, b equivalent minimizing $\frac{1}{n} \sum_{i=1}^{n} (y_i a bx_i)^2$ (mean of $(y_i a bx_i)^2$) wrt a, b.
- Why not minimize Median of $(y_i a bx_i)^2$ wrt a, b? least median square (LMS) regression.

Figure: Effect of a single outlier on LS regression line.

- Two possibilities: (i) detect and drop the outlier (ii) apply an outliers resistant regression.
- Minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$ wrt a, b equivalent minimizing $\frac{1}{n} \sum_{i=1}^{n} (y_i a bx_i)^2$ (mean of $(y_i a bx_i)^2$) wrt a, b.
- Why not minimize Median of $(y_i a bx_i)^2$ wrt a, b? least median square (LMS) regression.

Figure: Effect of a single outlier on LS regression line.

- Two possibilities: (i) detect and drop the outlier (ii) apply an outliers resistant regression.
- Minimizing $\sum_{i=1}^{n} (y_i a bx_i)^2$ wrt a, b equivalent minimizing $\frac{1}{n} \sum_{i=1}^{n} (y_i a bx_i)^2$ (mean of $(y_i a bx_i)^2$) wrt a, b.
- Why not minimize Median of $(y_i a bx_i)^2$ wrt a, b? least median square (LMS) regression.

■ LMS regression line is less affected by outliers - outliers resistant.

Figure: Effect of outlier on LMS regression line.

- So far only descriptive statistics.
- Want to understand reliability/accuracy of this regression lines require specifying suitable statistical model for the data.

LMS regression line is less affected by outliers - outliers resistant.

Figure: Effect of outlier on LMS regression line.

- So far only descriptive statistics.
- Want to understand reliability/accuracy of this regression lines require specifying suitable statistical model for the data.

LMS regression line is less affected by outliers - outliers resistant.

Figure: Effect of outlier on LMS regression line.

- So far only descriptive statistics.
- Want to understand reliability/accuracy of this regression lines require specifying suitable statistical model for the data.

$$[Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n] \sim (\frac{1}{\sqrt{2\pi}\sigma_{\epsilon}})^n e^{-\frac{1}{2}\sum_{i=1}^n \frac{(y_i - a - bx_i)^2}{\sigma_{\epsilon}^2}}$$

- Model parameters a, b, σ_c
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ} .
- More familiar specification $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; $\boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\boldsymbol{\epsilon}}^2 \mathbf{I}_n)$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{pmatrix} \text{ and } \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random errors.}$$

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

$$[Y_1 = y_1, \dots, Y_n = y_n | X_1 = x_1, \dots, X_n = x_n] \sim (\frac{1}{\sqrt{2\pi}\sigma_{\epsilon}})^n e^{-\frac{1}{2} \sum_{i=1}^n \frac{(y_i - a - bx_i)^2}{\sigma_{\epsilon}^2}}$$

- Model parameters a, b, σ_{ϵ} .
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ} .
- More familiar specification $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}; \ \boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\boldsymbol{\epsilon}}^2 \mathbf{I}_n).$

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{pmatrix} \text{ and } \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random errors.}$$

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

$$[Y_1 = y_1, \dots, Y_n = y_n | X_1 = x_1, \dots, X_n = x_n] \sim (\frac{1}{\sqrt{2\pi}\sigma_{\epsilon}})^n e^{-\frac{1}{2} \sum_{i=1}^n \frac{(y_i - a - bx_i)^2}{\sigma_{\epsilon}^2}}$$

- Model parameters a, b, σ_{ϵ} .
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_e .
- More familiar specification $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; $\boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_0)$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{pmatrix} \text{ and } \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random errors.}$$

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

$$[Y_1 = y_1, \dots, Y_n = y_n | X_1 = x_1, \dots, X_n = x_n] \sim (\frac{1}{\sqrt{2\pi}\sigma_{\epsilon}})^n e^{-\frac{1}{2}\sum_{i=1}^n \frac{(y_i - a - bx_i)^2}{\sigma_{\epsilon}^2}}$$

- Model parameters a, b, σ_{ϵ} .
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ} .
- More familiar specification $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; $\boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_n)$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{pmatrix} \text{ and } \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random errors.}$$

$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

$$[Y_1 = y_1, \dots, Y_n = y_n | X_1 = x_1, \dots, X_n = x_n] \sim (\frac{1}{\sqrt{2\pi}\sigma_{\epsilon}})^n e^{-\frac{1}{2}\sum_{i=1}^n \frac{(y_i - a - bx_i)^2}{\sigma_{\epsilon}^2}}$$

- Model parameters a, b, σ_{ϵ} .
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ} .
- More familiar specification $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; $\boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_n)$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{pmatrix} \text{ and } \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random errors.}$$

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

$$[Y_1 = y_1, \dots, Y_n = y_n | X_1 = x_1, \dots, X_n = x_n] \sim (\frac{1}{\sqrt{2\pi}\sigma_{\epsilon}})^n e^{-\frac{1}{2}\sum_{i=1}^n \frac{(y_i - a - bx_i)^2}{\sigma_{\epsilon}^2}}$$

- Model parameters a, b, σ_{ϵ} .
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ} .
- More familiar specification $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; $\boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_n)$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_n \end{pmatrix} \text{ and } \epsilon = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random errors.}$$

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

The model is fitted using maximum likelihood method.

- Inferential goal estimating $\boldsymbol{\beta}$ and σ_{ϵ}^2
- \blacksquare mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- lacksquare mle of σ_{ϵ}^2 is given by $\hat{\sigma_{\epsilon}^2} = rac{\sum_{i=1}^n \mathbf{e}_i^2}{n}$ biased
- An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n e_i^2}{n-2}$.
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\beta}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}} Var(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma}_{\epsilon}^2(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma}_{\epsilon}^2$ not mle $\hat{\sigma}_{\epsilon}^2$.
- Its diagonal entries estimate of standard error $\widehat{se(\hat{\beta}_0)}$ and $\widehat{se(\hat{\beta}_1)}$

- The model is fitted using maximum likelihood method.
- \blacksquare Inferential goal estimating ${\cal B}$ and $\sigma_{\epsilon}^2.$
- lacksquare mle of eta is given by $\hat{eta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- lacksquare mle of σ^2_ϵ is given by $\hat{\sigma^2_\epsilon} = rac{\sum_{i=1}^n e_i^2}{n}$ biased
- An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n e_i^2}{n-2}$.
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\beta}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}} Var(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\beta})$ is $\tilde{\sigma}_{\epsilon}^2(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma}_{\epsilon}^2$ not mle $\hat{\sigma}_{\epsilon}^2$.
- Its diagonal entries estimate of standard error $\widehat{se(\hat{\beta}_0)}$ and $\widehat{se(\hat{\beta}_1)}$

- The model is fitted using maximum likelihood method.
- \blacksquare Inferential goal estimating ${\cal B}$ and $\sigma_{\epsilon}^2.$
- mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- \blacksquare mle of σ_{ϵ}^2 is given by $\hat{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n e_i^2}{n}$ biased
- An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n e_i^2}{n-2}$.
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\beta}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}} Var(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma}_{\epsilon}^2(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma}_{\epsilon}^2$ not mle $\hat{\sigma}_{\epsilon}^2$.
- Its diagonal entries estimate of standard error $\widehat{se(\hat{\beta_0})}$ and $\widehat{se(\hat{\beta_1})}$.

- The model is fitted using maximum likelihood method.
- \blacksquare Inferential goal estimating ${\cal B}$ and $\sigma_{\epsilon}^2.$
- mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- \blacksquare mle of σ^2_ϵ is given by $\hat{\sigma^2_\epsilon} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n}$ biased.
- An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n e_i^2}{n-2}$.
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\beta}) = Var(\mathbf{Q}_{X}\mathbf{y}) = \mathbf{Q}_{X} Var(\mathbf{y}) \mathbf{Q}_{X}' = \mathbf{Q}_{X} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{X}' = \sigma_{\epsilon}^{2} \mathbf{Q}_{X} \mathbf{Q}_{X}' = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma}_{\epsilon}^2(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma}_{\epsilon}^2$ not mle $\hat{\sigma}_{\epsilon}^2$.
- Its diagonal entries estimate of standard error $se(\hat{\beta}_0)$ and $se(\hat{\beta}_1)$.

- The model is fitted using maximum likelihood method.
- \blacksquare Inferential goal estimating ${\cal B}$ and $\sigma_{\epsilon}^2.$
- mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- \blacksquare mle of σ^2_ϵ is given by $\hat{\sigma^2_\epsilon} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n}$ biased.
- \blacksquare An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n-2}.$
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\beta}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}} Var(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma}_{\epsilon}^2(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma}_{\epsilon}^2$ not mle $\hat{\sigma}_{\epsilon}^2$.
- Its diagonal entries estimate of standard error $se(\hat{\beta}_0)$ and $se(\hat{\beta}_1)$.

- The model is fitted using maximum likelihood method.
- \blacksquare Inferential goal estimating ${\cal \beta}$ and $\sigma_{\epsilon}^2.$
- mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- \blacksquare mle of σ^2_ϵ is given by $\hat{\sigma^2_\epsilon} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n}$ biased.
- \blacksquare An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n-2}.$
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\beta}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}} Var(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma}_{\epsilon}^2(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma}_{\epsilon}^2$ not mle $\hat{\sigma}_{\epsilon}^2$.
- Its diagonal entries estimate of standard error $se(\hat{\beta}_0)$ and $se(\hat{\beta}_1)$.

- The model is fitted using maximum likelihood method.
- \blacksquare Inferential goal estimating ${\cal B}$ and $\sigma_{\epsilon}^2.$
- mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- \blacksquare mle of σ^2_ϵ is given by $\hat{\sigma^2_\epsilon} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n}$ biased.
- \blacksquare An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n-2}.$
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\boldsymbol{\beta}}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}}Var(\mathbf{y})\mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}}\sigma_{\epsilon}^{2}\mathbf{I}_{n}\mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2}\mathbf{Q}_{\mathbf{X}}\mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^{2}(\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\beta})$ is $\tilde{\sigma}_{\epsilon}^2(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma}_{\epsilon}^2$ not mle $\hat{\sigma}_{\epsilon}^2$.
- Its diagonal entries estimate of standard error $se(\hat{\beta}_0)$ and $se(\hat{\beta}_1)$.

- The model is fitted using maximum likelihood method.
- \blacksquare Inferential goal estimating ${\cal \beta}$ and $\sigma_{\epsilon}^2.$
- mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- \blacksquare mle of σ^2_ϵ is given by $\hat{\sigma^2_\epsilon} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n}$ biased.
- \blacksquare An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n-2}.$
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\beta}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}} Var(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^{2} (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma_{\epsilon}^2}(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^2}$ not mle $\hat{\sigma_{\epsilon}^2}$.
- Its diagonal entries estimate of standard error $se(\hat{\beta}_0)$ and $se(\hat{\beta}_1)$.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating $oldsymbol{eta}$ and σ_{ϵ}^2 .
- mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- \blacksquare mle of σ^2_ϵ is given by $\hat{\sigma^2_\epsilon} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n}$ biased.
- \blacksquare An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n-2}.$
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\boldsymbol{\beta}}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}} Var(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^2 \mathbf{I}_n \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^2 \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^2 (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^2 (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\beta})$ is $\tilde{\sigma_{\epsilon}^2}(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^2}$ not mle $\hat{\sigma_{\epsilon}^2}$.
- Its diagonal entries estimate of standard error $se(\hat{\beta}_0)$ and $se(\hat{\beta}_1)$

- The model is fitted using maximum likelihood method.
- Inferential goal estimating $oldsymbol{eta}$ and σ_{ϵ}^2 .
- mle of β is given by $\hat{\beta} = \mathbf{Q}_{\mathbf{X}}\mathbf{y} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ same as LS regression values.
- mle of σ_{ϵ}^2 is given by $\hat{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n e_i^2}{n}$ biased.
- \blacksquare An unbiased estimator $\tilde{\sigma_{\epsilon}^2} = \frac{\sum_{i=1}^n \mathbf{e}_i^2}{n-2}.$
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? calculate standard errors.
- $Var(\hat{\boldsymbol{\beta}}) = Var(\mathbf{Q}_{\mathbf{X}}\mathbf{y}) = \mathbf{Q}_{\mathbf{X}} Var(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}' = \mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^2 \mathbf{I}_n \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^2 \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}' = \sigma_{\epsilon}^2 (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}' \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} = \sigma_{\epsilon}^2 (\mathbf{X}'\mathbf{X})^{-1}.$
- Estimate of $Var(\hat{\beta})$ is $\tilde{\sigma_{\epsilon}^2}(\mathbf{X}'\mathbf{X})^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^2}$ not mle $\hat{\sigma_{\epsilon}^2}$.
- Its diagonal entries estimate of standard error $\widehat{se}(\widehat{\beta_0})$ and $\widehat{se}(\widehat{\beta_1})$.

Another inferential goal - testing for β .

- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).
 - Test statistic $T = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{se(\hat{\beta_1})}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta}'(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta'}(X'X)\hat{\beta}}{2\hat{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

■ Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{\widehat{se(\hat{\beta_1})}}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta'}(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

■ Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta}'(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{se(\hat{\beta_1})}$
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta'}(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta}_1}{\widehat{se}(\hat{\beta}_1)}$
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta'}(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

■ Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{\widehat{se}(\hat{\beta_1})}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta}'(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- **p**-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

■ Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{\widehat{se}(\hat{\beta_1})}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta}'(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

■ Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{\widehat{se}(\hat{\beta_1})}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta}'(X'X)\hat{\beta}}{2\hat{\sigma}^2}$
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

$$\blacksquare \text{ Test statistic } T = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}.$$

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{\widehat{se}(\hat{\beta_1})}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta'}(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$.
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{\widehat{se}(\hat{\beta_1})}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta'}(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$.
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

Test statistic
$$T = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$$
.

- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Practitioners prefer *p*-value $P(T > |T_{observed}|)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $T = \frac{\hat{\beta_1}}{\widehat{se}(\hat{\beta_1})}$.
- Null distribution of test statistic $\sim t_{n-2}$ Cutoff is obtained using t_{n-2} -distribution table.
- Joint test of significance $H_0: \beta = \mathbf{0}$ vs $H_1: \beta \neq \mathbf{0}$
- Test statistic $F = \frac{\hat{\beta'}(X'X)\hat{\beta}}{2\tilde{\sigma}^2}$.
- Null distribution of test statistic $\sim F_{2,n-2}$ Cutoff is obtained using $F_{2,n-2}$ -distribution table.
- *p*-value $P(F > F_{observed})$ where $F \sim F_{2,n-2}$.

- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$.
- Confidence interval $\left[\hat{\beta_1} t_{n-2,\frac{\alpha}{2}} \widehat{se(\hat{\beta_0})}, \hat{\beta_1} + t_{n-2,\frac{\alpha}{2}} \widehat{se(\hat{\beta_0})}\right]$
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta}'(\mathbf{X}'\mathbf{X})\hat{\beta}}{2\hat{\sigma}^2}$.
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma_{\epsilon}^2}F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point.
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking

- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$
- Confidence interval $\left[\hat{\beta_1} t_{n-2,\frac{\alpha}{2}}\widehat{se(\hat{\beta_0})}, \hat{\beta_1} + t_{n-2,\frac{\alpha}{2}}\widehat{se(\hat{\beta_0})}\right]$
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta}'(\mathbf{X}'\mathbf{X})\hat{\beta}}{2\sigma_z^2}.$
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma_{\epsilon}^2}F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking

- Confidence interval for β_0 can be obtained by inverting the test statistic $\frac{\hat{\beta_0}}{\widehat{so}(\hat{\beta_0})}$.
- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta_1}}{se(\hat{\beta_1})}$.
- Confidence interval $\left[\hat{\beta_1} t_{n-2,\frac{\alpha}{2}}\widehat{se(\hat{\beta_0})}, \hat{\beta_1} + t_{n-2,\frac{\alpha}{2}}\widehat{se(\hat{\beta_0})}\right]$.
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta}'(\mathbf{x}'\mathbf{x})\hat{\beta}}{2\sigma_z^2}.$
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma_{\epsilon}^2}F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point.
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking

- Confidence interval for β_0 can be obtained by inverting the test statistic $\frac{\beta_0}{se(\hat{\beta}_0)}$.
- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta_1}}{se(\hat{\beta_1})}$
- Confidence interval $\left[\hat{\beta_1} t_{n-2,\frac{\alpha}{2}}\widehat{se(\hat{\beta_0})}, \hat{\beta_1} + t_{n-2,\frac{\alpha}{2}}\widehat{se(\hat{\beta_0})}\right]$.
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta}'(\mathbf{x}'\mathbf{x})\hat{\beta}}{2\sigma_z^2}.$
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma}_{\epsilon}^2 F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point.
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking

- Confidence interval for β_0 can be obtained by inverting the test statistic $\frac{\hat{\beta_0}}{\widehat{so(\hat{\beta_0})}}$.
- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta_1}}{se(\hat{\beta_1})}$.
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta}'(\mathbf{X}'\mathbf{X})\hat{\beta}}{2\tilde{\sigma}^2}$.
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma}_{\epsilon}^2 F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking

Confidence interval for β_0 can be obtained by inverting the test statistic $\frac{\beta_0}{se(\hat{\beta_0})}$.

- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta_1}}{se(\hat{\beta_1})}$
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta'}(\mathbf{X'X})\hat{\beta}}{2\sigma^2}$.
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma}_{\epsilon}^2 F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking

Confidence interval for β_0 can be obtained by inverting the test statistic $\frac{\hat{\beta_0}}{se(\hat{\beta_0})}$.

- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta_1}}{\widehat{se(\hat{\beta_1})}}$
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta'}(\mathbf{X'X})\hat{\beta}}{2\sigma^2}$.
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma}_{\epsilon}^2 F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point.
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking

Confidence interval for β_0 can be obtained by inverting the test statistic $\frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$.

- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta_1}}{se(\hat{\beta_1})}$
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta'}(\mathbf{X'X})\hat{\beta}}{2\sigma^2}$.
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma}_{\epsilon}^2 F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point.
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking

Confidence interval for β_0 can be obtained by inverting the test statistic $\frac{\hat{\beta}_0}{se(\hat{\beta}_0)}$

- Confidence interval for β_1 can be obtained by inverting the test statistic $\frac{\hat{\beta_1}}{\widehat{se(\hat{\beta_1})}}$
- Confidence interval $\left[\hat{\beta_1} t_{n-2,\frac{\alpha}{2}}\widehat{se(\hat{\beta_0})}, \hat{\beta_1} + t_{n-2,\frac{\alpha}{2}}\widehat{se(\hat{\beta_0})}\right]$.
- $t_{n-2,\frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$ -cutoff point.
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\beta'}(\mathbf{X'X})\hat{\beta}}{2\sigma^2}$.
- Confidence ellipsoid $P(\beta : (\beta \hat{\beta})'(\mathbf{X}'\mathbf{X})(\beta \hat{\beta}) \le 2\tilde{\sigma}_{\epsilon}^2 F_{2,n-2,\alpha}) = 1 \alpha$.
- $F_{2,n-2,\alpha}$ upper α -cutoff point.
- All of the above findings are useless if model fit is poor need to check if the model is appropriate for the data.
- Model diagnostic checking.

- (i) Linearity: The relationship between ${\bf X}$ and the mean of ${\bf Y}$ is linear $({\cal E}({\bf Y}|{\bf X})={\bf X}\beta).$
- (ii) Homoscedasticity: The variance of residual is the same for x_1, x_2, \dots, x_n . (iii) Uncorrelatedness: Observations are uncorrelated of each other.
- Normality: For any fixed value x_i , $[Y_i|X_i=x_i]$ is normally distributed.
- Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other ⇒ Observations are independent of each other.
- Check for potentially bad points which may lead to poor model fit :
 - (i) Outliers: An outlier is defined as an observation that has a large residual. In other words, the observed value for the point is very different from that predicted by the regression model.
 - (ii) Leverage points: A leverage point is defined as an observation that has a value of x_i that is far away from the mean of x_1, x_2, \dots, x_n .
 - (iii) Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a large influence on the fit of the model.

- (i) Linearity: The relationship between **X** and the mean of **Y** is linear $(E(Y|X) = X\beta)$.
- (ii) Homoscedasticity: The variance of residual is the same for x_1, x_2, \dots, x_n . (iii) Uncorrelatedness: Observations are uncorrelated of each other.
- Normality: For any fixed value x_i , $[Y_i|X_i=x_i]$ is normally distributed.
- Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other
 Observations are independent of each other.
- Check for potentially bad points which may lead to poor model fit :
 - (i) Outliers: An outlier is defined as an observation that has a large residual. In other words, the observed value for the point is very different from that predicted by the regression model.
 - (ii) Leverage points: A leverage point is defined as an observation that has a value of x_i that is far away from the mean of x_1, x_2, \dots, x_n .
 - (iii) Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a large influence on the fit of the model.

- (i) Linearity: The relationship between **X** and the mean of **Y** is linear $(E(Y|X) = X\beta)$.
- (ii) Homoscedasticity: The variance of residual is the same for x_1, x_2, \dots, x_n . (iii) Uncorrelatedness: Observations are uncorrelated of each other.
- Normality: For any fixed value x_i , $[Y_i|X_i=x_i]$ is normally distributed.
- Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other ⇒ Observations are independent of each other.
- Check for potentially bad points which may lead to poor model fit :
 - (i) Outliers: An outlier is defined as an observation that has a large residual. Ir other words, the observed value for the point is very different from that predicted by the regression model.
 - (ii) Leverage points: A leverage point is defined as an observation that has a value of x_i that is far away from the mean of x_1, x_2, \dots, x_n .
 - (iii) Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a large influence on the fit of the model.

- (i) Linearity: The relationship between **X** and the mean of **Y** is linear $(E(\mathbf{Y}|\mathbf{X}) = \mathbf{X}\boldsymbol{\beta})$.
- (ii) Homoscedasticity: The variance of residual is the same for x_1, x_2, \dots, x_n . (iii) Uncorrelatedness: Observations are uncorrelated of each other.
- Normality: For any fixed value x_i , $[Y_i|X_i=x_i]$ is normally distributed.
- Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other ⇒ Observations are independent of each other.

Check for potentially bad points which may lead to poor model fit :

- (i) Outliers: An outlier is defined as an observation that has a large residual. In other words, the observed value for the point is very different from that predicted by the regression model.
 - (ii) Leverage points: A leverage point is defined as an observation that has a value of x_i that is far away from the mean of x_1, x_2, \dots, x_n .
- (iii) Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a large influence on the fit of the model.

Linearity - Check the fitted value Y_i vs residual e_i plot for any pattern - randomly and closely distributed around x - axis indicates linearity.

■ Homoscedasticity - Check the fitted value Y_i vs residual e_i plot to see if the spread is changing as we move along x - axis - changing means beteroscedastic

Figure: Clear indication of nonlinearity and heteroscedasticity

Linearity - Check the fitted value Y_i vs residual e_i plot for any pattern - randomly and closely distributed around x - axis indicates linearity.

Homoscedasticity - Check the fitted value Y_i vs residual e_i plot to see if the spread is changing as we move along x - axis - changing means heteroscedastic.

Figure: Clear indication of nonlinearity and heteroscedasticity.

Homoscedasticity - Check the fitted value Y_i vs square root of absolute standardised residual $\sqrt{|\frac{e_i}{\tilde{\sigma_\epsilon}\sqrt{1-h_{ii}}}|}$ plot to see if the spread is changing as we move along x-axis - changing means heteroscedastic.

Figure: Clear indication of heteroscedasticity.

■ This plot is more appropriate for homoscedasticity checking as $Var(e_i)$ are different not same as $Var(\epsilon_i)$.

Homoscedasticity - Check the fitted value Y_i vs square root of absolute standardised residual $\sqrt{|\frac{e_i}{\sigma_{\epsilon}}\sqrt{1-h_{ij}}|}$ plot to see if the spread is changing as we move along x-axis - changing means heteroscedastic.

Figure: Clear indication of heteroscedasticity.

■ This plot is more appropriate for homoscedasticity checking as $Var(e_i)$ are different not same as $Var(\epsilon_i)$.

- $Var(e_i) = \sigma_{\epsilon}^2(1 h_{ii})$ so, $\widehat{Var(e_i)} = \widetilde{\sigma_{\epsilon}^2}(1 h_{ii})$.
- So, standardised residual $\frac{e_i}{\sqrt{\widehat{Var}(e_i)}} = \frac{e_i}{\widetilde{\sigma_\epsilon}\sqrt{1-h_{jj}}}$
- h_{ii} is the *i*th leverage value the *i*th diagonal entry of the matrix $\mathbf{XQ_X} = \mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'} = \mathbf{P_X}$.
- P_X (some refers it as hat-matrix H) is an orthogonal projection matrix idempotent and symmetric also, ŷ = P_Xy.
- One can use Breusch-Pagan Test for checking homoscedasticity asymptotically \(\chi^2 \) distributed.
- Uncorrelatedness: Plot the sample autocorrelation function of the residuals

- Var $(e_i) = \sigma_{\epsilon}^2 (1 h_{ii})$ so, $\widehat{Var}(e_i) = \tilde{\sigma_{\epsilon}^2} (1 h_{ii})$.
- So, standardised residual $\frac{e_i}{\sqrt{\widehat{Var}(e_i)}} = \frac{e_i}{\widetilde{\sigma_e}\sqrt{1-h_{jj}}}$.
- h_{ii} is the *i*th leverage value the *i*th diagonal entry of the matrix $\mathbf{XQ_X} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \mathbf{P_X}$.
- P_X (some refers it as hat-matrix H) is an orthogonal projection matrix idempotent and symmetric also, ŷ = P_Xy.
- One can use Breusch-Pagan Test for checking homoscedasticity asymptotically \(\gamma^2 \) distributed.
- Uncorrelatedness: Plot the sample autocorrelation function of the residuals

- $Var(e_i) = \sigma_{\epsilon}^2(1 h_{ii})$ so, $\widehat{Var(e_i)} = \tilde{\sigma_{\epsilon}^2}(1 h_{ii})$.
- So, standardised residual $\frac{e_i}{\sqrt{\widehat{Var}(e_i)}} = \frac{e_i}{\widetilde{\sigma_e}\sqrt{1-h_{jj}}}$.
- **n** h_{ii} is the *i*th leverage value the *i*th diagonal entry of the matrix $\mathbf{XQ_X} = \mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'} = \mathbf{P_X}$.
- P_X (some refers it as hat-matrix H) is an orthogonal projection matrix idempotent and symmetric also, ŷ = P_Xy.
- One can use Breusch-Pagan Test for checking homoscedasticity asymptotically \(\chi^2 \) distributed.
- Uncorrelatedness: Plot the sample autocorrelation function of the residuals

- $Var(e_i) = \sigma_{\epsilon}^2(1 h_{ii})$ so, $\widehat{Var(e_i)} = \widetilde{\sigma_{\epsilon}^2}(1 h_{ii})$.
- So, standardised residual $\frac{e_i}{\sqrt{\widehat{Var}(e_i)}} = \frac{e_i}{\widetilde{\sigma_e}\sqrt{1-h_{ji}}}$.
- h_{ii} is the *i*th leverage value the *i*th diagonal entry of the matrix $\mathbf{XQ_X} = \mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'} = \mathbf{P_X}$.
- P_X (some refers it as hat-matrix H) is an orthogonal projection matrix idempotent and symmetric also, ŷ = P_Xy.
- One can use Breusch-Pagan Test for checking homoscedasticity asymptotically \(\chi^2 \) distributed.
- Uncorrelatedness: Plot the sample autocorrelation function of the residuals

- $Var(e_i) = \sigma_{\epsilon}^2(1 h_{ii})$ so, $\widehat{Var(e_i)} = \tilde{\sigma_{\epsilon}^2}(1 h_{ii})$.
- So, standardised residual $\frac{e_i}{\sqrt{\widehat{Var}(e_i)}} = \frac{e_i}{\tilde{\sigma_e}\sqrt{1-h_{ji}}}$.
- h_{ii} is the *i*th leverage value the *i*th diagonal entry of the matrix $\mathbf{XQ_X} = \mathbf{X}(\mathbf{X'X})^{-1}\mathbf{X'} = \mathbf{P_X}$.
- P_X (some refers it as hat-matrix H) is an orthogonal projection matrix idempotent and symmetric also, ŷ = P_Xy.
- One can use Breusch-Pagan Test for checking homoscedasticity asymptotically χ^2 distributed.
- Uncorrelatedness: Plot the sample autocorrelation function of the residuals

- $Var(e_i) = \sigma_{\epsilon}^2(1 h_{ii})$ so, $\widehat{Var(e_i)} = \tilde{\sigma_{\epsilon}^2}(1 h_{ii})$.
- lacksquare So, standardised residual $\frac{e_i}{\sqrt{\widehat{Var}(e_i)}} = \frac{e_i}{\widetilde{\sigma_\epsilon}\sqrt{1-h_{ij}}}.$
- h_{ii} is the *i*th leverage value the *i*th diagonal entry of the matrix $\mathbf{XQ_X} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \mathbf{P_X}$.
- P_X (some refers it as hat-matrix H) is an orthogonal projection matrix idempotent and symmetric also, ŷ = P_Xy.
- One can use Breusch-Pagan Test for checking homoscedasticity asymptotically χ^2 distributed.
- Uncorrelatedness: Plot the sample autocorrelation function of the residuals.

Figure: Indication of uncorrelatedness.

Also can perform Durbin-Watson test and Box-Pierce test for checking whether there is any autocorrelation.

Figure: Indication of uncorrelatedness.

Also can perform Durbin-Watson test and Box-Pierce test for checking whether there is any autocorrelation. Normality: Q-Q plot of standardised/studentized residuals.

Figure: Indication of non-normality.

 Also can perform Shapiro-Wilks test and Kolmogorov-Smirnov test for checking departure from normality. Normality: Q-Q plot of standardised/studentized residuals.

Figure: Indication of non-normality.

 Also can perform Shapiro-Wilks test and Kolmogorov-Smirnov test for checking departure from normality.

- Leverage points: Check for points with high leverage values h_{ii} .
- Recall that $0 < h_{ii} < 1$.
- Influential observations: Can be detected by looking into standardised residuals vs leverage plot.

Figure: A few influential observations

- Outliers: Check the fitted value Y_i vs residual e_i plot for large values potential outliers.
- Leverage points: Check for points with high leverage values h_{ii}.
- Recall that $0 \le h_{ii} \le 1$.
- Influential observations: Can be detected by looking into standardised residuals vs leverage plot.

Figure: A few influential observations

- Leverage points : Check for points with high leverage values h_{ii} .
- Recall that $0 \le h_{ii} \le 1$.
- Influential observations: Can be detected by looking into standardised residuals vs leverage plot.

Figure: A few influential observations

- Leverage points : Check for points with high leverage values h_{ii} .
- Recall that $0 \le h_{ii} \le 1$.
- Influential observations: Can be detected by looking into standardised residuals vs leverage plot.

Figure: A few influential observations.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance : $D_i = \frac{1}{2} \left(\frac{e_i}{\sigma_r \sqrt{1 h_{ii}}} \right)^2 \frac{h_{ii}}{1 h_{ii}} = \frac{1}{2} \left(\text{standardized residual} \right)^2 \frac{h_{ii}}{1 h_{ii}}$
- So, Cook's D is a function of studentized residual and leverage value can be
 plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large highly influential observation.
- \blacksquare DFFIT: $DFFIT_i = \text{difference}$ in fit as we drop the *i*th observation
- Relationship between D_i and $DFFIT_i$: $D_i = \frac{1}{2} \frac{\hat{\sigma}^2_{\epsilon(i)}}{\hat{\sigma}^2_i} DFFIT_i^2$.
- If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance :

$$D_{i} = \frac{1}{2} \left(\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1 - h_{ii}}} \right)^{2} \frac{h_{ii}}{1 - h_{ii}} = \frac{1}{2} \left(\text{standardized residual} \right)^{2} \frac{h_{ii}}{1 - h_{ii}}.$$

- So, Cook's D is a function of studentized residual and leverage value can be
 plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large highly influential observation.
- \blacksquare DFFIT: $DFFIT_i = \text{difference}$ in fit as we drop the *i*th observation
- Relationship between D_i and $DFFIT_i$: $D_i = \frac{1}{2} \frac{\hat{\sigma}^2_{e(i)}}{\hat{\sigma}^2_e} DFFIT_i^2$.
- If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance: $D_i = \frac{1}{2} \left(\frac{e_i}{\sigma_e \sqrt{1 h_{ii}}} \right)^2 \frac{h_{ii}}{1 h_{ii}} = \frac{1}{2} \left(\text{standardized residual} \right)^2 \frac{h_{ii}}{1 h_{ii}}.$
- So, Cook's D is a function of studentized residual and leverage value can be
 plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large highly influential observation.
- \blacksquare DFFIT: DFFIT; = difference in fit as we drop the *i*th observation.
- Relationship between D_i and $DFFIT_i$: $D_i = \frac{1}{2} \frac{\hat{\sigma}_{e(i)}^2}{\hat{\sigma}_e^2} DFFIT_i^2$.
- If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance: $D_i = \frac{1}{2} \left(\frac{e_i}{\sigma_e \sqrt{1 h_{ii}}} \right)^2 \frac{h_{ii}}{1 h_{ii}} = \frac{1}{2} \left(\text{standardized residual} \right)^2 \frac{h_{ii}}{1 h_{ii}}.$
- So, Cook's D is a function of studentized residual and leverage value can be
 plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large highly influential observation.
- \blacksquare DFFIT: $DFFIT_i = \text{difference}$ in fit as we drop the *i*th observation
- Relationship between D_i and $DFFIT_i$: $D_i = \frac{1}{2} \frac{\hat{\sigma}_{e(i)}^2}{\hat{\sigma}_{z}^2} DFFIT_i^2$.
- If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance: $D_i = \frac{1}{2} \left(\frac{e_i}{\sigma_e \sqrt{1 h_{ii}}} \right)^2 \frac{h_{ii}}{1 h_{ii}} = \frac{1}{2} \left(\text{standardized residual} \right)^2 \frac{h_{ii}}{1 h_{ii}}.$
- So, Cook's D is a function of studentized residual and leverage value can be
 plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large highly influential observation.
- DFFIT : $DFFIT_i$ = difference in fit as we drop the *i*th observation.
- Relationship between D_i and $DFFIT_i$: $D_i = \frac{1}{2} \frac{\hat{\sigma}_{e(i)}^2}{\hat{\sigma}_e^2} DFFIT_i^2$.
- If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance: $D_i = \frac{1}{2} \left(\frac{e_i}{\sigma_e \sqrt{1 h_{ii}}} \right)^2 \frac{h_{ii}}{1 h_{ii}} = \frac{1}{2} \left(\text{standardized residual} \right)^2 \frac{h_{ii}}{1 h_{ii}}.$
- So, Cook's D is a function of studentized residual and leverage value can be plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large highly influential observation.
- DFFIT : $DFFIT_i$ = difference in fit as we drop the *i*th observation.
- Relationship between D_i and $DFFIT_i$: $D_i = \frac{1}{2} \frac{\hat{\sigma}_{e(i)}^2}{\hat{\sigma}_e^2} DFFIT_i^2$.
- If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance: $D_i = \frac{1}{2} \left(\frac{e_i}{\sigma_{co} \sqrt{1-h_{ii}}} \right)^2 \frac{h_{ii}}{1-h_{ij}} = \frac{1}{2} \left(\text{standardized residual} \right)^2 \frac{h_{ij}}{1-h_{ij}}.$
- So, Cook's D is a function of studentized residual and leverage value can be
 plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large highly influential observation.
- DFFIT: $DFFIT_i = difference$ in fit as we drop the *i*th observation.
- Relationship between D_i and $DFFIT_i$: $D_i = \frac{1}{2} \frac{\hat{\sigma}_{\epsilon(i)}^2}{\hat{\sigma}_{\epsilon}^2} DFFIT_i^2$.
- If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among severa competing models.
- R-squared $R^2 = \frac{Var(Y)}{Var(y)} = \frac{\sum_{i=1}^{n} (Y_i \bar{Y})^2}{\sum_{i=1}^{n} (y_i \bar{y})^2}; \ 0 \le R^2 \le 1.$
- Problem of R² tend to select overfitting models.
- Adjusted R-squared $R_{adj}^2 = 1 \frac{(n-1)(1-R^2)}{(n-2)}$ higher the better can be negative!
- AIC $-2\ln(L(\hat{\boldsymbol{\beta}}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + 2(2+1)$ lower the better.
- BIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + \ln(n)(2+1)$ lower the better.
- BIC penalizes complex models more severely better to use BIC than AIC

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared $R^2 = \frac{Var(Y)}{Var(y)} = \frac{\sum_{i=1}^{n} (Y_i \bar{Y})^2}{\sum_{i=1}^{n} (y_i \bar{y})^2}; \ 0 \le R^2 \le 1$
- Problem of R² tend to select overfitting models.
- Adjusted R-squared $R_{adj}^2 = 1 \frac{(n-1)(1-R^2)}{(n-2)}$ higher the better can be negative!
- AIC $-2\ln(L(\hat{\boldsymbol{\beta}}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + 2(2+1)$ lower the better.
- BIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + \ln(n)(2+1)$ lower the better.
- BIC penalizes complex models more severely better to use BIC than AIC

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared $R^2 = \frac{Var(Y)}{Var(y)} = \frac{\sum_{j=1}^n (Y_j \bar{Y})^2}{\sum_{j=1}^n (y_j \bar{y})^2}; \ 0 \le R^2 \le 1.$
- Problem of R² tend to select overfitting models.
- Adjusted R-squared $R_{adj}^2 = 1 \frac{(n-1)(1-R^2)}{(n-2)}$ higher the better can be negative!
- AIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + 2(2+1)$ lower the better.
- BIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + \ln(n)(2+1)$ lower the better.
- BIC penalizes complex models more severely better to use BIC than AIC

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared $R^2 = \frac{Var(Y)}{Var(y)} = \frac{\sum_{i=1}^n (Y_i \bar{Y})^2}{\sum_{i=1}^n (y_i \bar{y})^2}; \ 0 \le R^2 \le 1.$
- Problem of R² tend to select overfitting models.
- Adjusted R-squared $R_{adj}^2 = 1 \frac{(n-1)(1-R^2)}{(n-2)}$ higher the better can be negative!
- AIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + 2(2+1)$ lower the better.
- BIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}^2_{\epsilon mle}|\mathbf{y}, \mathbf{X})) + \ln(n)(2+1)$ lower the better.
- BIC penalizes complex models more severely better to use BIC than AIC

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared $R^2 = \frac{Var(Y)}{Var(y)} = \frac{\sum_{i=1}^n (Y_i \bar{Y})^2}{\sum_{i=1}^n (y_i \bar{y})^2}; \ 0 \le R^2 \le 1.$
- Problem of R² tend to select overfitting models.
- Adjusted R-squared $R_{adj}^2 = 1 \frac{(n-1)(1-R^2)}{(n-2)}$ higher the better can be negative!
- AIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + 2(2+1)$ lower the better.
- BIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + \ln(n)(2+1)$ lower the better.
- BIC penalizes complex models more severely better to use BIC than AIC

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared $R^2 = \frac{Var(Y)}{Var(Y)} = \frac{\sum_{i=1}^n (Y_i \bar{Y})^2}{\sum_{i=1}^n (Y_i \bar{y})^2}; \ 0 \le R^2 \le 1.$
- Problem of R² tend to select overfitting models.
- Adjusted R-squared $R_{adj}^2 = 1 \frac{(n-1)(1-R^2)}{(n-2)}$ higher the better can be negative!
- AIC $-2\ln(L(\hat{\boldsymbol{\beta}}_{mle}, \hat{\sigma}_{\epsilon mle}^2 | \mathbf{y}, \mathbf{X})) + 2(2+1)$ lower the better.
- BIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}^2_{\epsilon mle}|\mathbf{y}, \mathbf{X})) + \ln(n)(2+1)$ lower the better.
- BIC penalizes complex models more severely better to use BIC than AIC

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared $R^2 = \frac{Var(Y)}{Var(Y)} = \frac{\sum_{i=1}^n (Y_i \bar{Y})^2}{\sum_{i=1}^n (Y_i \bar{y})^2}; \ 0 \le R^2 \le 1.$
- Problem of R² tend to select overfitting models.
- Adjusted R-squared $R_{adj}^2 = 1 \frac{(n-1)(1-R^2)}{(n-2)}$ higher the better can be negative!
- AIC $-2\ln(L(\hat{\boldsymbol{\beta}}_{mle}, \hat{\sigma}_{\epsilon mle}^2 | \mathbf{y}, \mathbf{X})) + 2(2+1)$ lower the better.
- BIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}^2_{\epsilon mle}|\mathbf{y}, \mathbf{X})) + \ln(n)(2+1)$ lower the better.
- BIC penalizes complex models more severely better to use BIC than AIC

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared $R^2 = \frac{Var(Y)}{Var(Y)} = \frac{\sum_{i=1}^n (Y_i \bar{Y})^2}{\sum_{i=1}^n (Y_i \bar{y})^2}; \ 0 \le R^2 \le 1.$
- Problem of R² tend to select overfitting models.
- Adjusted R-squared $R_{adj}^2 = 1 \frac{(n-1)(1-R^2)}{(n-2)}$ higher the better can be negative!
- AIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}_{emle}^2|\mathbf{y}, \mathbf{X})) + 2(2+1)$ lower the better.
- BIC $-2\ln(L(\hat{\beta}_{mle}, \hat{\sigma}^2_{\epsilon mle}|\mathbf{y}, \mathbf{X})) + \ln(n)(2+1)$ lower the better.
- BIC penalizes complex models more severely better to use BIC than AIC.

■ Multiple linear regression model : More familiar specification - $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; $\boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_{R})$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{p1} \\ 1 & x_2 & \cdots & x_{p2} \\ \vdots & & & & \\ 1 & x_n & \cdots & x_{pn} \end{pmatrix} \text{ and } \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random}$$
 errors. $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$.

- All the previous developments are applicable.
- Polynomial regression model : $[Y_i|X_i=x_i]\stackrel{ind}{\sim} N(a+bx_i+cx_i^2,\sigma_{\epsilon}^2)$ is a special case.

■ Multiple linear regression model : More familiar specification - $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; $\boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_{R})$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots x_{p1} \\ 1 & x_2 & \cdots x_{p2} \\ \vdots & & & \\ 1 & x_n & \cdots x_{pn} \end{pmatrix} \text{ and } \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random }$$
 errors. $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}$.

- All the previous developments are applicable.
- Polynomial regression model : $[Y_i|X_i=x_i] \stackrel{ind}{\sim} N(a+bx_i+cx_i^2,\sigma_\epsilon^2)$ is a special case.

Multiple linear regression model :

More familiar specification - $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$; $\boldsymbol{\epsilon} \sim MVN(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I}_n)$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots x_{p1} \\ 1 & x_2 & \cdots x_{p2} \\ \vdots & & & \\ 1 & x_n & \cdots x_{pn} \end{pmatrix} \text{ and } \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random }$$
 errors. $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$.

- All the previous developments are applicable.
- Polynomial regression model : $[Y_i|X_i=x_i] \stackrel{ind}{\sim} N(a+bx_i+cx_i^2,\sigma_{\epsilon}^2)$ is a special case.

■ Multiple linear regression model : More familiar specification - $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$; $\epsilon \sim MVN(\mathbf{0}, \sigma_{\epsilon}^2\mathbf{I}_n)$.

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots x_{p1} \\ 1 & x_2 & \cdots x_{p2} \\ \vdots & & & \\ 1 & x_n & \cdots x_{pn} \end{pmatrix} \text{ and } \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \text{ are unobserved random }$$
 errors. $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \epsilon_n \end{pmatrix}.$

- All the previous developments are applicable.
- Polynomial regression model : $[Y_i|X_i=x_i] \stackrel{ind}{\sim} N(a+bx_i+cx_i^2,\sigma_{\epsilon}^2)$ is a special case.

- Observations taken on two features covariate is continuous say dosage of a drug (x) and response (y) is binary subject is alive/dead (we code it as 0/1).
- Scatter plot of (x) and (v) does not give much insight!

Figure: Scatter plot of x and v(0/1) - not useful

- Not much of descriptive statistics can be done.
- Still need some motivation!

- Observations taken on two features covariate is continuous say dosage of a drug (x) and response (y) is binary subject is alive/dead (we code it as 0/1).
- Scatter plot of (x) and (y) does not give much insight!

Figure: Scatter plot of x and y(0/1) - not useful.

- Not much of descriptive statistics can be done.
- Still need some motivation!

- Observations taken on two features covariate is continuous say dosage of a drug (x) and response (y) is binary subject is alive/dead (we code it as 0/1).
- Scatter plot of (x) and (y) does not give much insight!

Figure: Scatter plot of x and y(0/1) - not useful.

- Not much of descriptive statistics can be done.
- Still need some motivation!

- Observations taken on two features covariate is continuous say dosage of a drug (x) and response (y) is binary subject is alive/dead (we code it as 0/1).
- Scatter plot of (x) and (y) does not give much insight!

Figure: Scatter plot of x and y(0/1) - not useful.

- Not much of descriptive statistics can be done.
- Still need some motivation!

- Now for the logistic regression model we have assumption $E(Y|X=x) = 1 \times P(Y=1|X=x) + 0 \times P(Y=0|X=x) = P(Y=1|X=x) = a+bx??$ meaningless
- $0 \le P(Y = 1 | X = x) \le 1$ but $-\infty < a + bx < +\infty$ for $b \ne 0$.
- However, $P(Y = 1 | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$ absolutely meaningful.
- $=\frac{e^{a+bx}}{1+e^{a+bx}}$ logistic distribution so the name logistic regression.
- $logit(P(Y = 1|X = x)) = log(ODDS \text{ for } Y=1) = log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = log\left(\frac{P(Y=1|X=x)}{1-P(Y=1|X=x)}\right) = a + bx \text{so the name logit regression.}$
- If not coded using dummy variables $P(Y = "dead" | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$.

Reason?(i) Very Simple Form

- (ii) Lots of Similarity with Linear Regression Model
- (iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

Now for the logistic regression model we have assumption
$$E(Y|X=x)=1\times P(Y=1|X=x)+0\times P(Y=0|X=x)=P(Y=1|X=x)=a+bx??$$
 - meaningless

$$0 < P(Y = 1 | X = x) < 1 \text{ but } -\infty < a + bx < +\infty \text{ for } b \neq 0$$

■ However,
$$P(Y = 1 | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$$
 - absolutely meaningful.

$$=$$
 $\frac{e^{a+bx}}{1+e^{a+bx}}$ - logistic distribution - so the name logistic regression.

■
$$logit(P(Y=1|X=x)) = log(ODDS \text{ for } Y=1) = log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = log\left(\frac{P(Y=1|X=x)}{1-P(Y=1|X=x)}\right) = a + bx$$
 - so the name logit regression.

If not coded using dummy variables -
$$P(Y = "dead" | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$$

Reason?(i) Very Simple Form

- (ii) Lots of Similarity with Linear Regression Model.
- (iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

- Now for the logistic regression model we have assumption $E(Y|X=x) = 1 \times P(Y=1|X=x) + 0 \times P(Y=0|X=x) = P(Y=1|X=x) = a+bx??$ meaningless
- $0 \le P(Y = 1 | X = x) \le 1 \text{ but } -\infty < a + bx < +\infty \text{ for } b \ne 0.$
- However, $P(Y = 1|X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$ absolutely meaningful.
- = $\frac{e^{a+bx}}{1+e^{a+bx}}$ logistic distribution so the name logistic regression.
- $logit(P(Y = 1|X = x)) = log(ODDS \text{ for } Y=1) = log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = log\left(\frac{P(Y=1|X=x)}{1-P(Y=1|X=x)}\right) = a + bx$ so the name logit regression.
- If not coded using dummy variables $P(Y = "dead" | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$.

Reason?(i) Very Simple Form

- (ii) Lots of Similarity with Linear Regression Model
- (iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

Now for the logistic regression model we have assumption
$$E(Y|X=x)=1\times P(Y=1|X=x)+0\times P(Y=0|X=x)=P(Y=1|X=x)=a+bx??$$
 - meaningless

$$0 \le P(Y = 1 | X = x) \le 1 \text{ but } -\infty < a + bx < +\infty \text{ for } b \ne 0.$$

■ However,
$$P(Y = 1|X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$$
 - absolutely meaningful.

$$=\frac{e^{a+bx}}{1+e^{a+bx}}$$
 - logistic distribution - so the name logistic regression.

■
$$logit(P(Y=1|X=x)) = log(ODDS \text{ for } Y=1) = log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = log\left(\frac{P(Y=1|X=x)}{1-P(Y=1|X=x)}\right) = a + bx$$
 - so the name logit regression.

If not coded using dummy variables -
$$P(Y = "dead" | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$$

- (ii) Lots of Similarity with Linear Regression Model.
- (iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

- Now for the logistic regression model we have assumption $E(Y|X=x) = 1 \times P(Y=1|X=x) + 0 \times P(Y=0|X=x) = P(Y=1|X=x) = a+bx??$ meaningless
- $0 \le P(Y = 1 | X = x) \le 1 \text{ but } -\infty < a + bx < +\infty \text{ for } b \ne 0.$
- However, $P(Y = 1|X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$ absolutely meaningful.
- = $\frac{e^{a+bx}}{1+e^{a+bx}}$ logistic distribution so the name logistic regression.
- $logit(P(Y = 1|X = x)) = log(ODDS \text{ for } Y=1) = log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = log\left(\frac{P(Y=1|X=x)}{1-P(Y=1|X=x)}\right) = a + bx$ so the name logit regression.
- If not coded using dummy variables $P(Y = "dead" | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$.

- (ii) Lots of Similarity with Linear Regression Model.
- (iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

- Now for the logistic regression model we have assumption $E(Y|X=x)=1\times P(Y=1|X=x)+0\times P(Y=0|X=x)=P(Y=1|X=x)=a+bx??$ meaningless
- $0 \le P(Y = 1 | X = x) \le 1 \text{ but } -\infty < a + bx < +\infty \text{ for } b \ne 0.$
- However, $P(Y = 1|X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$ absolutely meaningful.
- = $\frac{e^{a+bx}}{1+e^{a+bx}}$ logistic distribution so the name logistic regression.
- $logit(P(Y = 1|X = x)) = log(ODDS \text{ for } Y=1) = log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = log\left(\frac{P(Y=1|X=x)}{1-P(Y=1|X=x)}\right) = a + bx$ so the name logit regression.
- If not coded using dummy variables $P(Y = "dead" | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$.

- (ii) Lots of Similarity with Linear Regression Model.
- (iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

- In simple linear regression model we have assumption E(Y|X=x)=a+bx.
- Now for the logistic regression model we have assumption $E(Y|X=x) = 1 \times P(Y=1|X=x) + 0 \times P(Y=0|X=x) = P(Y=1|X=x) = a+bx??$ meaningless
- $0 \le P(Y = 1 | X = x) \le 1$ but $-\infty < a + bx < +\infty$ for $b \ne 0$.
- However, $P(Y = 1|X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$ absolutely meaningful.
- $=\frac{e^{a+bx}}{1+e^{a+bx}}$ logistic distribution so the name logistic regression.
- $logit(P(Y = 1|X = x)) = log(ODDS \text{ for } Y=1) = log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = log\left(\frac{P(Y=1|X=x)}{1-P(Y=1|X=x)}\right) = a + bx$ so the name logit regression.
- If not coded using dummy variables $P(Y = "dead" | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$.

- (ii) Lots of Similarity with Linear Regression Model
- (iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

- In simple linear regression model we have assumption E(Y|X=x)=a+bx.
- Now for the logistic regression model we have assumption $E(Y|X=x)=1\times P(Y=1|X=x)+0\times P(Y=0|X=x)=P(Y=1|X=x)=a+bx??$ meaningless
- $0 \le P(Y = 1 | X = x) \le 1$ but $-\infty < a + bx < +\infty$ for $b \ne 0$.
- However, $P(Y = 1|X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$ absolutely meaningful.
- = $\frac{e^{a+bx}}{1+e^{a+bx}}$ logistic distribution so the name logistic regression.
- $logit(P(Y = 1|X = x)) = log(ODDS \text{ for } Y=1) = log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = log\left(\frac{P(Y=1|X=x)}{1-P(Y=1|X=x)}\right) = a + bx$ so the name logit regression.
- If not coded using dummy variables $P(Y = "dead" | X = x) = \frac{e^{a+bx}}{1+e^{a+bx}}$.

r

- (ii) Lots of Similarity with Linear Regression Model.
- (iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

- Logistic regression model used in
 - (a) spam detection based on certain words and characters.
 - (b) malignant tumor detection based on certain cell profiles.
 - (c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression no closed form solution available.
- Simple logistic regression model :

$$\begin{split} &[Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n] \sim \\ &\prod_{i=1}^n [P(Y = 1 | X = x_i)]^{y_i} [1 - P(Y = 1 | X = x_i)]^{1 - y_i} = \\ &\prod_{i=1}^n [\frac{e^{a + bx_i}}{1 + e^{a + bx_i}}]^{y_i} [\frac{1}{1 + e^{a + bx_i}}]^{1 - y_i} \end{split}$$

- Model parameters a.b.
- The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters *a*. *b*.
 - More familiar specification $[Y_i|X_i=x_i]\stackrel{ind}{\sim} Ber(\frac{e^{a+bx}}{1+e^{a+bx}})$.

- Logistic regression model used in
 - (a) spam detection based on certain words and characters.
 - (b) malignant tumor detection based on certain cell profiles.
 - (c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression no closed form solution available.
- Simple logistic regression model :

$$\begin{split} &[Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n] \sim \\ &\prod_{i=1}^n [P(Y = 1 | X = x_i)]^{y_i} [1 - P(Y = 1 | X = x_i)]^{1 - y_i} = \\ &\prod_{i=1}^n [\frac{e^{a + bx_i}}{1 + e^{a + bx_i}}]^{y_i} [\frac{1}{1 + e^{a + bx_i}}]^{1 - y_i} \end{split}$$

- Model parameters a.b.
- The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters *a*. *b*.
- More familiar specification $[Y_i|X_i=x_i]\stackrel{ind}{\sim} Ber(\frac{e^{a+bx}}{1+e^{a+bx}})$.

- Logistic regression model used in
 - (a) spam detection based on certain words and characters.
 - (b) malignant tumor detection based on certain cell profiles.
 - (c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression no closed form solution available.
- Simple logistic regression model :

$$\begin{split} &[Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n] \sim \\ &\prod_{i=1}^n [P(Y = 1 | X = x_i)]^{y_i} [1 - P(Y = 1 | X = x_i)]^{1 - y_i} = \\ &\prod_{i=1}^n [\frac{e^{a + bx_i}}{1 + e^{a + bx_i}}]^{y_i} [\frac{1}{1 + e^{a + bx_i}}]^{1 - y_i} \end{split}$$

- Model parameters a, b.
- The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters *a*. *b*.
- More familiar specification $[Y_i|X_i=x_i]\stackrel{ind}{\sim} Ber(\frac{e^{a+bx}}{1+e^{a+bx}})$.

- Logistic regression model used in
 - (a) spam detection based on certain words and characters.
 - (b) malignant tumor detection based on certain cell profiles.
 - (c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression no closed form solution available.
- Simple logistic regression model :

$$\begin{aligned} &[Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n] \sim \\ &\prod_{i=1}^n [P(Y = 1 | X = x_i)]^{y_i} [1 - P(Y = 1 | X = x_i)]^{1 - y_i} = \\ &\prod_{i=1}^n [\frac{e^{a + bx_i}}{1 + e^{a + bx_i}}]^{y_i} [\frac{1}{1 + e^{a + bx_i}}]^{1 - y_i} \end{aligned}$$

- Model parameters a, b.
- The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters *a*. *b*.
- More familiar specification $[Y_i|X_i=x_i]\stackrel{ind}{\sim} Ber(\frac{e^{a+bx}}{1+e^{a+bx}})$.

- Logistic regression model used in
 - (a) spam detection based on certain words and characters.
 - (b) malignant tumor detection based on certain cell profiles.
 - (c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression no closed form solution available.
- Simple logistic regression model :

$$\begin{aligned} &[Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n] \sim \\ &\prod_{i=1}^n [P(Y = 1 | X = x_i)]^{y_i} [1 - P(Y = 1 | X = x_i)]^{1 - y_i} = \\ &\prod_{i=1}^n [\frac{e^{a + bx_i}}{1 + e^{a + bx_i}}]^{y_i} [\frac{1}{1 + e^{a + bx_i}}]^{1 - y_i} \end{aligned}$$

- Model parameters a, b.
- The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters *a*, *b*.
- More familiar specification $[Y_i|X_i=x_i]\stackrel{ind}{\sim} Ber(\frac{e^{a+bx}}{1+e^{a+bx}})$.

- Logistic regression model used in
 - (a) spam detection based on certain words and characters.
 - (b) malignant tumor detection based on certain cell profiles.
 - (c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression no closed form solution available.
- Simple logistic regression model :

$$\begin{aligned} &[Y_1 = y_1, \cdots, Y_n = y_n | X_1 = x_1, \cdots, X_n = x_n] \sim \\ &\prod_{i=1}^n [P(Y = 1 | X = x_i)]^{y_i} [1 - P(Y = 1 | X = x_i)]^{1 - y_i} = \\ &\prod_{i=1}^n [\frac{e^{a + bx_i}}{1 + e^{a + bx_i}}]^{y_i} [\frac{1}{1 + e^{a + bx_i}}]^{1 - y_i} \end{aligned}$$

- Model parameters a, b.
- The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters *a*, *b*.
- More familiar specification $[Y_i|X_i=x_i] \stackrel{ind}{\sim} Ber(\frac{e^{a+bx}}{1+e^{a+bx}})$.

■ The model is fitted using maximum likelihood method.

- Inferential goal estimating the parameter vector $\beta = (a, b)'$.
- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data.
- complete separation : beyond some combination threshold value only Y=1 only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data
- \blacksquare complete separation : beyond some combination threshold value only Y=1 or only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data
- complete separation : beyond some combination threshold value only Y=1 only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data
- complete separation : beyond some combination threshold value only Y=1 only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data
- complete separation : beyond some combination threshold value only Y=1 only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data
- complete separation : beyond some combination threshold value only Y=1 only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness : for some combinations of covariate variables we do not get any data.
- complete separation : beyond some combination threshold value only Y=1 only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- lacksquare mle of eta is denoted by \hat{eta} unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data.
- $lue{}$ complete separation : beyond some combination threshold value only Y=1 or only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data.
- omplete separation : beyond some combination threshold value only Y=1 or only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data.
- $lue{}$ complete separation : beyond some combination threshold value only Y=1 or only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal estimating the parameter vector $\beta = (a, b)'$.

- \blacksquare mle of β is denoted by $\hat{\beta}$ unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm Fisher's scoring algorithm.
- Often the algorithm may not converge multicollinearity, sparseness and complete separation.
- multicollinearity: when covariate/predictor variables are linearly highly correlated.
- sparseness: for some combinations of covariate variables we do not get any data.
- $lue{}$ complete separation : beyond some combination threshold value only Y=1 or only Y=0 responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.

Another inferential goal - testing for β .

- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).
- Test statistic $Z = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$
- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope)
- Test statistic $Z = \frac{\hat{\beta}_1}{\widehat{se}(\hat{\beta}_1)}$
- asymptotic null distribution of test statistic ~ N(0,1) Cutoff is obtained using N(0,1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R².

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

- Test statistic $Z = \frac{\hat{\beta_0}}{\widehat{se(\hat{\beta_0})}}$
- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope)
- Test statistic $Z = \frac{\hat{\beta}_1}{\widehat{se}(\hat{\beta}_1)}$
- asymptotic null distribution of test statistic $\sim N(0,1)$ Cutoff is obtained using N(0,1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R².

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

Test statistic
$$Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$$
.

- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope)
- Test statistic $Z = \frac{\hat{\beta}_1}{\widehat{se}(\hat{\beta}_1)}$
- asymptotic null distribution of test statistic ~ N(0,1) Cutoff is obtained using N(0,1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R²

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

Test statistic
$$Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$$
.

- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope)
- Test statistic $Z = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$.
- asymptotic null distribution of test statistic ~ N(0,1) Cutoff is obtained using N(0,1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R²

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

- Test statistic $Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$.
- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope)
- Test statistic $Z = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$
- asymptotic null distribution of test statistic ~ N(0,1) Cutoff is obtained using N(0,1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R².

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

- Test statistic $Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$.
- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $Z = \frac{\hat{\beta}_1}{\widehat{se}(\hat{\beta}_1)}$
- asymptotic null distribution of test statistic ~ N(0,1) Cutoff is obtained using N(0,1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R².

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

- Test statistic $Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$.
- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $Z = \frac{\hat{\beta}_1}{\widehat{\operatorname{se}(\hat{\beta}_1)}}$.
- asymptotic null distribution of test statistic ~ N(0,1) Cutoff is obtained using N(0,1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R².

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

- Test statistic $Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$.
- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $Z = \frac{\hat{\beta}_1}{\widehat{se}(\hat{\beta}_1)}$.
- asymptotic null distribution of test statistic ~ N(0, 1) Cutoff is obtained using N(0, 1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R².

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

Test statistic
$$Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$$
.

- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $Z = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$.
- asymptotic null distribution of test statistic ~ N(0, 1) Cutoff is obtained using N(0, 1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures
- Want something like R².

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

Test statistic
$$Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$$
.

- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $Z = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$.
- asymptotic null distribution of test statistic ~ N(0, 1) Cutoff is obtained using N(0, 1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures.
- Want something like R^2 .

- Another inferential goal testing for β .
- Individual test of significance $H_0: \beta_0 = 0$ vs $H_1: \beta_0 \neq 0$ (test of intercept).

Test statistic
$$Z = \frac{\hat{\beta_0}}{\widehat{se}(\hat{\beta_0})}$$
.

- Finite sample null distribution is not available asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ Cutoff is obtained using standard normal table.
- Practitioners prefer *p*-value $P(Z > |Z_{observed}|)$ where $Z \sim N(0, 1)$.
- Individual test of significance $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$ (test of slope).
- Test statistic $Z = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)}$.
- asymptotic null distribution of test statistic ~ N(0, 1) Cutoff is obtained using N(0, 1)-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_0 and β_1 inverting the Ztest statistics.
- Goodness of fit measures.
- Want something like R^2 .

- Deviance measure : $D_{\text{fitted}} = -2 \ln(L(\hat{\beta}_{\text{mle}}|\mathbf{y},\mathbf{X}))$.
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y},\mathbf{X})).$
- $D_{null} D_{fitted} \geq 0$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H_0 : all coefficients except β_0 is 0 vs H_1 : not H_0 (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- \blacksquare R_I^2 larger value indicates good fit

- Deviance measure : $D_{\text{fitted}} = -2 \ln(L(\hat{\beta}_{\text{mle}}|\mathbf{y},\mathbf{X}))$.
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y},\mathbf{X})).$
- $D_{null} D_{fitted} \geq 0.$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H₀: all coefficients except β₀ is 0 vs H₁: not H₀ (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- \blacksquare R_L^2 larger value indicates good fit

- Deviance measure : $D_{fitted} = -2 \ln(L(\hat{\boldsymbol{\beta}}_{mle}|\mathbf{y},\mathbf{X}))$.
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y}, \mathbf{X})).$
- $D_{null} D_{fitted} \geq 0$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H_0 : all coefficients except β_0 is 0 vs H_1 : not H_0 (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- \blacksquare R_L^2 larger value indicates good fit

- Deviance measure : $D_{fitted} = -2 \ln(L(\hat{\beta}_{mle}|\mathbf{y}, \mathbf{X}))$.
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y}, \mathbf{X})).$
- $D_{null} D_{fitted} \geq 0.$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H_0 : all coefficients except β_0 is 0 vs H_1 : not H_0 (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- \blacksquare R_L^2 larger value indicates good fit

- Deviance measure : $D_{\text{fitted}} = -2 \ln(L(\hat{\boldsymbol{\beta}}_{\text{mle}}|\mathbf{y},\mathbf{X})).$
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y},\mathbf{X})).$
- $D_{null} D_{fitted} \geq 0.$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H₀: all coefficients except β₀ is 0 vs H₁: not H₀ (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- \blacksquare R_L^2 larger value indicates good fit

- Deviance measure : $D_{fitted} = -2 \ln(L(\hat{\beta}_{mle}|\mathbf{y}, \mathbf{X}))$.
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y},\mathbf{X})).$
- $D_{null} D_{fitted} \geq 0.$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H_0 : all coefficients except β_0 is 0 vs H_1 : not H_0 (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- R_L² larger value indicates good fit

- Deviance measure : $D_{\text{fitted}} = -2 \ln(L(\hat{\boldsymbol{\beta}}_{\text{mle}}|\mathbf{y},\mathbf{X})).$
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y},\mathbf{X})).$
- $D_{null} D_{fitted} \geq 0.$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H_0 : all coefficients except β_0 is 0 vs H_1 : not H_0 (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- \blacksquare R_L^2 larger value indicates good fill

- Deviance measure : $D_{fitted} = -2 \ln(L(\hat{\boldsymbol{\beta}}_{mle}|\mathbf{y},\mathbf{X}))$.
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y},\mathbf{X})).$
- $D_{null} D_{fitted} \geq 0.$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H_0 : all coefficients except β_0 is 0 vs H_1 : not H_0 (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- \blacksquare R_L^2 larger value indicates good fit

- Deviance measure : $D_{fitted} = -2 \ln(L(\hat{\boldsymbol{\beta}}_{mle}|\mathbf{y},\mathbf{X}))$.
- Null model means only intercept term no regressors.
- $D_{null} = -2 \ln(L(\hat{\beta}_{0mle}|\mathbf{y},\mathbf{X})).$
- $D_{null} D_{fitted} \geq 0.$
- If $D_{null} D_{fitted}$ very large then we can reject the hypothesis of no regression.
- H_0 : all coefficients except β_0 is 0 vs H_1 : not H_0 (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_L^2 = \frac{D_{null} D_{fitted}}{D_{null}}$
- \blacksquare R_I^2 larger value indicates good fit.

$$[Y_{1} = y_{1}, \cdots, Y_{n} = y_{n} | \mathbf{X} = \mathbf{x}] \sim$$

$$\prod_{i=1}^{n} \left[\frac{e^{\beta_{0} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \cdots + \beta_{n} x_{ni}}}{\frac{1}{1 + \frac{\beta_{0} + \beta_{1} x_{1i} + \beta_{0} x_{2i} + \cdots + \beta_{n} x_{ni}}}} \right]^{y_{i}} \left[\frac{1}{\frac{1}{1 + \frac{\beta_{0} + \beta_{1} x_{1i} + \beta_{0} x_{2i} + \cdots + \beta_{n} x_{ni}}}{\frac{1}{1 + \frac{\beta_{0} + \beta_{1} x_{1i} + \beta_{0} x_{2i} + \cdots + \beta_{n} x_{ni}}}}} \right]^{1-y_{i}} \right]$$

- Model parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_p$
- Everything is same as simple logistic regression.
- One additional issue multicollinearity or aliasing.
- multicollinearity: some of the regressors/predictors are linearly highly correlated
- multicollinearity makes some estimates very unreliable

$$\begin{split} & [Y_1 = y_1, \cdots, Y_n = y_n | \mathbf{X} = \mathbf{x}] \sim \\ & \prod_{i=1}^n \left[\frac{e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}} \right]^{y_i} \left[\frac{1}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}} \right]^{1 - y_i} \end{split}$$

- Model parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_p$.
- Everything is same as simple logistic regression.
- One additional issue multicollinearity or aliasing.
- multicollinearity: some of the regressors/predictors are linearly highly correlated
- multicollinearity makes some estimates very unreliable

$$\begin{split} & [Y_1 = y_1, \cdots, Y_n = y_n | \mathbf{X} = \mathbf{x}] \sim \\ & \prod_{i=1}^n [\frac{e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}]^{y_i} [\frac{1}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}]^{1 - y_i} \end{split}$$

- Model parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_p$.
- Everything is same as simple logistic regression.
- One additional issue multicollinearity or aliasing.
- multicollinearity: some of the regressors/predictors are linearly highly correlated
- multicollinearity makes some estimates very unreliable

$$\begin{split} & [Y_1 = y_1, \cdots, Y_n = y_n | \mathbf{X} = \mathbf{x}] \sim \\ & \prod_{i=1}^n [\frac{e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}]^{y_i} [\frac{1}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}]^{1 - y_i} \end{split}$$

- Model parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_p$.
- Everything is same as simple logistic regression.
- One additional issue multicollinearity or aliasing.
- multicollinearity: some of the regressors/predictors are linearly highly correlated
- multicollinearity makes some estimates very unreliable

$$\begin{split} & [Y_1 = y_1, \cdots, Y_n = y_n | \mathbf{X} = \mathbf{x}] \sim \\ & \prod_{i=1}^n \left[\frac{e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}} \right]^{y_i} \left[\frac{1}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}} \right]^{1 - y_i} \end{split}$$

- Model parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_p$.
- Everything is same as simple logistic regression.
- One additional issue multicollinearity or aliasing.
- multicollinearity: some of the regressors/predictors are linearly highly correlated.
- multicollinearity makes some estimates very unreliable

$$\begin{split} &[Y_1 = y_1, \cdots, Y_n = y_n | \mathbf{X} = \mathbf{x}] \sim \\ &\prod_{i=1}^n [\frac{e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}]^{y_i} [\frac{1}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}]^{1 - y_i} \end{split}$$

- Model parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_p$.
- Everything is same as simple logistic regression.
- One additional issue multicollinearity or aliasing.
- multicollinearity: some of the regressors/predictors are linearly highly correlated.
- multicollinearity makes some estimates very unreliable

$$\begin{split} &[Y_1 = y_1, \cdots, Y_n = y_n | \mathbf{X} = \mathbf{x}] \sim \\ &\prod_{i=1}^n \left[\frac{e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}} \right]^{y_i} \left[\frac{1}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}} \right]^{1 - y_i} \end{split}$$

- Model parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_p$.
- Everything is same as simple logistic regression.
- One additional issue multicollinearity or aliasing.
- multicollinearity: some of the regressors/predictors are linearly highly correlated.
- multicollinearity makes some estimates very unreliable!

$$\begin{split} &[Y_1 = y_1, \cdots, Y_n = y_n | \mathbf{X} = \mathbf{x}] \sim \\ &\prod_{i=1}^n \left[\frac{e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}} \right]^{y_i} \left[\frac{1}{1 + e^{\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_p x_{pi}}} \right]^{1 - y_i} \end{split}$$

- Model parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_p$.
- Everything is same as simple logistic regression.
- One additional issue multicollinearity or aliasing.
- multicollinearity: some of the regressors/predictors are linearly highly correlated.
- multicollinearity makes some estimates very unreliable!

- Calculate variance inflation factors VIF_i for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining (p-1) covariates calculate the R_i^2 (R-squared).
- $VIF_j = \frac{1}{1 R_j^2}$
- High VIF means highly correlated covariate $VIF_i > 5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals Deviance residual. Pearson residual and Anscombe residual.
- Similar diagnostic plots based on them can be devised like linear regression problems.

- **Calculate** variance inflation factors VIF_i for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining (p-1) covariates calculate the R_i^2 (R-squared).

$$VIF_j = \frac{1}{1 - R_j^2}$$

- High VIF means highly correlated covariate $VIF_i > 5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals Deviance residual. Pearson residual and Anscombe residual.
- Similar diagnostic plots based on them can be devised like linear regression problems.

- **Calculate** variance inflation factors VIF_i for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining (p-1) covariates calculate the R_i^2 (R-squared).
- $VIF_j = \frac{1}{1 R_j^2}$
- High VIF means highly correlated covariate $VIF_i > 5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals Deviance residual. Pearson residual and Anscombe residual.
- Similar diagnostic plots based on them can be devised like linear regression problems.

- **Calculate** variance inflation factors VIF_i for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining (p-1) covariates calculate the R_i^2 (R-squared).
- $VIF_j = \frac{1}{1 R_j^2}$
- High VIF means highly correlated covariate $VIF_i > 5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals Deviance residual. Pearson residual and Anscombe residual.
- Similar diagnostic plots based on them can be devised like linear regression problems.

- **Calculate** variance inflation factors VIF_i for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining (p-1) covariates calculate the R_i^2 (R-squared).
- $VIF_j = \frac{1}{1-R_j^2}$
- High VIF means highly correlated covariate $VIF_i > 5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals Deviance residual. Pearson residual and Anscombe residual.
- Similar diagnostic plots based on them can be devised like linear regression problems.

- **Calculate** variance inflation factors VIF_i for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining (p-1) covariates calculate the R_i^2 (R-squared).
- $VIF_j = \frac{1}{1 R_j^2}$
- High VIF means highly correlated covariate $VIF_i > 5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals Deviance residual, Pearson residual and Anscombe residual.
- Similar diagnostic plots based on them can be devised like linear regression problems.