A Short Course in Linear and Logistic Regression

Suman Guha
Assistant Professor
Department of Statistics
Presidency University, Kolkata
July 26, 2020

- Observations taken on two features - say height (x) and weight (y) of individuals.

$\overline{\mathrm{PU}}$

 Situations when (x) and (y) show no interrelationships - no point doing regression.

- Observations taken on two features - say height (x) and weight (y) of individuals.
- Situations when (x) and (y) show no interrelationships - no point doing regression.

(a)

Figure: Artificially simulated dataset showing no dependence between x and y.

- Fortunately, most of the time x and y turns out to be dependent!

(a)

Figure: (x) car speed in miles per hour vs (y) stopping distance in feet.

Want an approximate formula $(y \approx f(x))$ of stopping distance (y) in terms of car speed (x) - regression problem.

- Fortunately, most of the time x and y turns out to be dependent!

(a)

Figure: (x) car speed in miles per hour vs (y) stopping distance in feet.

- Want an approximate formula $(y \approx f(x))$ of stopping distance (y) in terms of car speed (x) - regression problem.
- Fortunately, most of the time x and y turns out to be dependent!

(a)

Figure: (x) car speed in miles per hour vs (y) stopping distance in feet.

- Want an approximate formula $(y \approx f(x))$ of stopping distance (y) in terms of car speed (x) - regression problem.
- Why?
- To understand the nature of dependence between (x) and (y).

$\stackrel{\overline{\mathrm{PU}}}{ }$

- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) - can use the formula to predict y^{*} using x^{*}.
- What type of formula? $-f(x)=a x^{3}+b \sqrt{x}+c$?
- No, we want a formula of form $f(x)=a+b x$ - equation of a straight line.

Reason?(i) Mathematically simple.
(ii) Most of the time linear regression perform quite well!

- How to get the value of a, b ? - a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$.

Closed form solution available
$f(x)=\left(\bar{y}-\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} \bar{x}\right)+\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} x=\bar{y}+\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}(x-\bar{x})$.

- To understand the nature of dependence between (x) and (y).

- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) - can use the formula to predict y^{*} using x^{*}.

What type of formula? $-f(x)=a x^{3}+b \sqrt{x}+c$?
No, we want a formula of form $f(x)=a+b x$ - equation of a straight line.

Reason?(i) Mathematically simple.
(ii) Most of the time linear regression perform quite well!

How to get the value of a, b ? - a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$.

Closed form solution available

- To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) - can use the formula to predict y^{*} using x^{*}.
- What type of formula? $-f(x)=a x^{3}+b \sqrt{x}+c$?

No, we want a formula of form $f(x)=a+b x$ - equation of a straight line.

Reason?(i) Mathematically simple.
(ii) Most of the time linear regression perform quite well!

How to get the value of a, b ? - a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$

Closed form solution available

- To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) - can use the formula to predict y^{*} using x^{*}.
- What type of formula? $-f(x)=a x^{3}+b \sqrt{x}+c$?
- No, we want a formula of form $f(x)=a+b x$ - equation of a straight line.

Reason?(i) Mathematically simple.
(ii) Most of the time linear regression perform quite well!

How to get the value of a, b ? - a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$

Closed form solution available

- To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) - can use the formula to predict y^{*} using x^{*}.
- What type of formula? $-f(x)=a x^{3}+b \sqrt{x}+c$?
- No, we want a formula of form $f(x)=a+b x$ - equation of a straight line.

Reason?(i) Mathematically simple.
(ii) Most of the time linear regression perform quite well!

How to get the value of a, b ? - a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$

Closed form solution available
$f(x)=\left(\bar{y}-\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} \bar{x}\right)+\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} x=\bar{y}+\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}(x-\bar{x})$.

- To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) - can use the formula to predict y^{*} using x^{*}.
- What type of formula? $-f(x)=a x^{3}+b \sqrt{x}+c$?
- No, we want a formula of form $f(x)=a+b x$ - equation of a straight line.

Reason?(i) Mathematically simple.
(ii) Most of the time linear regression perform quite well!

- How to get the value of a, b ? - a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$.

Closed form solution available-
$f(x)=\left(\bar{y}-\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} \bar{x}\right)+\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} x=\bar{y}+\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}(x-\bar{x})$.

- To understand the nature of dependence between (x) and (y).
- Sometimes (y) may be costly/difficult to measure (total annual income) but (x) may be measured easily (total annual expenditure) - can use the formula to predict y^{*} using x^{*}.
- What type of formula? $-f(x)=a x^{3}+b \sqrt{x}+c$?
- No, we want a formula of form $f(x)=a+b x$ - equation of a straight line.

Reason?(i) Mathematically simple.
(ii) Most of the time linear regression perform quite well!

- How to get the value of a, b ? - a line that pass through the most middle obtained by minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$.
- Closed form solution available -
$f(x)=\left(\bar{y}-\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} \bar{x}\right)+\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)} x=\bar{y}+\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}(x-\bar{x})$.

■ x_{i}, y_{i} - given data. $Y_{i}=f\left(x_{i}\right)$ is fitted values and $e_{i}=y_{i}-Y_{i}$ - residuals.

(a)

Figure: Scatter plot with the regression line, fitted values and residuals.
Minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ wrt $a, b-$ Principle of least squares (LS) - LS regression line.

LS regression line is highly vulnerable to outlying observation.

■ x_{i}, y_{i} - given data. $Y_{i}=f\left(x_{i}\right)$ is fitted values and $e_{i}=y_{i}-Y_{i}$ - residuals.

(a)

Figure: Scatter plot with the regression line, fitted values and residuals.

- Minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ wrt a, b - Principle of least squares (LS) - LS regression line.

■ x_{i}, y_{i} - given data. $Y_{i}=f\left(x_{i}\right)$ is fitted values and $e_{i}=y_{i}-Y_{i}$ - residuals.

(a)

Figure: Scatter plot with the regression line, fitted values and residuals.

- Minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ wrt a, b - Principle of least squares (LS) - LS regression line.
- LS regression line is highly vulnerable to outlying observation.

(a)

Figure: Effect of a single outlier on LS regression line.

- Two possibilities : (i) detect and drop the outlier (ii) apply an outliers resistant regression.
$=$ Minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ wrt a, b equivalent minimizing $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}\left(\right.$ mean of $\left.\left(y_{i}-a-b x_{i}\right)^{2}\right)$ wrt a, b.
- Why not minimize Median of $\left(y_{i}-a-b x_{i}\right)^{2}$ wrt a, b ? - least median square (LMS) regression.

(a)

Figure: Effect of a single outlier on LS regression line.

- Two possibilities : (i) detect and drop the outlier (ii) apply an outliers resistant regression.

> Minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ wrt a, b equivalent minimizing $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ (mean of $\left.\left(y_{i}-a-b x_{i}\right)^{2}\right)$ wrt a, b.

cars data with artificial outlier

(a)

Figure: Effect of a single outlier on LS regression line.

- Two possibilities : (i) detect and drop the outlier (ii) apply an outliers resistant regression.
- Minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ wrt a, b equivalent minimizing $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ (mean of $\left(y_{i}-a-b x_{i}\right)^{2}$) wrt a, b.

cars data with artificial outlier

(a)

Figure: Effect of a single outlier on LS regression line.

- Two possibilities : (i) detect and drop the outlier (ii) apply an outliers resistant regression.
- Minimizing $\sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ wrt a, b equivalent minimizing $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-a-b x_{i}\right)^{2}$ (mean of $\left(y_{i}-a-b x_{i}\right)^{2}$) wrt a, b.
- Why not minimize Median of $\left(y_{i}-a-b x_{i}\right)^{2}$ wrt a, b ? - least median square (LMS) regression.
- LMS regression line is less affected by outliers - outliers resistant.

(a)

Figure: Effect of outlier on LMS regression line.

- LMS regression line is less affected by outliers - outliers resistant.

(a)

Figure: Effect of outlier on LMS regression line.

- So far only descriptive statistics.

Want to understand reliability/accuracy of this regression lines - require specifying suitable statistical model for the data.

- LMS regression line is less affected by outliers - outliers resistant.

(a)

Figure: Effect of outlier on LMS regression line.

- So far only descriptive statistics.
- Want to understand reliability/accuracy of this regression lines - require specifying suitable statistical model for the data.

Simple linear regression model :

$\overline{\mathrm{PU}}$

$$
\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, x_{n}=x_{n}\right] \sim\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}}\right)^{n} e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{\epsilon}^{2}}}
$$

Model parameters - a, b, σ_{ϵ}.

- The model looks unfamiliar?

The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ}.

More familiar specification - $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} ; \epsilon \sim \operatorname{MVN}\left(\mathbf{0}, \sigma_{\epsilon}^{2} \mathbf{I}_{n}\right)$.

are unobserved random errors.

- Simple linear regression model :

$$
\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, x_{n}=x_{n}\right] \sim\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}}\right)^{n} e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{\epsilon}^{2}}}
$$

- Model parameters - a, b, σ_{ϵ}.

The model looks unfamiliar?

The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ}.

More familiar specification - $\mathrm{Y}=\mathrm{X} \beta+\epsilon ; \epsilon \sim \operatorname{MVN}\left(0, \sigma_{\epsilon}^{2} \boldsymbol{I}_{n}\right)$.

are unobserved random errors.

- Simple linear regression model :

$$
\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, x_{n}=x_{n}\right] \sim\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}}\right)^{n} e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{\epsilon}^{2}}}
$$

- Model parameters - a, b, σ_{ϵ}.
- The model looks unfamiliar?

The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ}.

More familiar specification - $\mathrm{Y}=\mathrm{X} \beta+\epsilon ; \epsilon \sim \operatorname{MVN}\left(0, \sigma_{\epsilon}^{2} \mathrm{I}_{n}\right)$.

are unobserved random errors.

- Simple linear regression model :

$$
\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right] \sim\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}}\right)^{n} e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{\epsilon}^{2}}}
$$

- Model parameters - a, b, σ_{ϵ}.
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ}.

More familiar specification - $\mathrm{Y}=\mathrm{X} \beta+\epsilon ; \epsilon \sim \operatorname{MVN}\left(0, \sigma_{\epsilon}^{2} I_{n}\right)$.

are unobserved random errors.

- Simple linear regression model :

$$
\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right] \sim\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}}\right)^{n} e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{\epsilon}^{2}}}
$$

- Model parameters - a, b, σ_{ϵ}.
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ}.
- More familiar specification $-\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} ; \boldsymbol{\epsilon} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma_{\epsilon}^{2} \mathbf{I}_{n}\right)$.

are unobserved random errors.
- Simple linear regression model :

$$
\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right] \sim\left(\frac{1}{\sqrt{2 \pi} \sigma_{\epsilon}}\right)^{n} e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{\left(y_{i}-a-b x_{i}\right)^{2}}{\sigma_{\epsilon}^{2}}}
$$

- Model parameters - a, b, σ_{ϵ}.
- The model looks unfamiliar?
- The model is nothing but a family of MVN distributions indexed by unknown parameters a, b, σ_{ϵ}.
- More familiar specification - $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} ; \boldsymbol{\epsilon} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma_{\epsilon}^{2} \mathbf{I}_{n}\right)$.
$\mathbf{Y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right), \mathbf{X}=\left(\begin{array}{cc}1 & x_{1} \\ 1 & x_{2} \\ \vdots & \\ 1 & x_{n}\end{array}\right)$ and $\boldsymbol{\epsilon}=\left(\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right)$ are unobserved random errors. $\boldsymbol{\beta}=\binom{\beta_{0}}{\beta_{1}}=\binom{a}{b}$.
- The model is fitted using maximum likelihood method.

$\overline{\mathrm{PU}}$

- Inferential goal - estimating β and σ_{ϵ}^{2}.
- mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$-same as LS regression values.
mle of σ_{c}^{2} is given by $\hat{\sigma_{c}^{2}}=\frac{\sum_{n}^{n} \theta^{2}}{\theta_{n}}$ - biased.
- An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$.

Only concentrate on $\hat{\beta}$ from now on.

- How good/reliable are these estimates? - calculate standard errors.
$\operatorname{Var}^{\prime}(\hat{\beta})=\operatorname{Var}\left(\mathbf{Q}_{X} \mathrm{Y}\right)=\mathbf{Q}_{X} \operatorname{Var}^{\prime}(\mathrm{y}) \mathbf{Q}_{X}^{\prime}=\mathbf{Q}_{X} \sigma_{c}^{2} 1_{n} \mathbf{Q}_{X}^{\prime}=\sigma_{C}^{2} \mathbf{Q}_{X} \mathbf{Q}_{X}^{\prime}=$ $\sigma_{\epsilon}^{2}\left(\mathrm{X}^{\prime} \mathbf{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{X}\left(\mathrm{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma_{\epsilon}^{2}\left(\mathrm{X}^{\prime} \mathbf{X}\right)^{-1}$.
- Estimate of $\operatorname{Var}(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma_{\epsilon}^{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}$ not mle $\hat{\sigma_{\epsilon}^{2}}$.
- Its diagonal entries - estimate of standard error $\widehat{\operatorname{se}\left(\hat{\beta_{0}}\right)}$ and $\widehat{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
mle of β is given by $\hat{\beta}=Q_{X Y} y=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}$ - same as LS regression values.
mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.
An unbiased estimator $\tilde{\sigma}^{2}=\frac{\sum_{n}^{n} \rho^{2}}{n-2}$.
- Only concentrate on $\hat{\beta}$ from now on.
- How good/reliable are these estimates? - calculate standard errors.
- $\operatorname{Var}(\hat{\boldsymbol{\beta}})=\operatorname{Var}\left(\mathbf{Q}_{\mathbf{X}} \mathbf{y}\right)=\mathbf{Q}_{\mathbf{X}} \operatorname{Var}(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}^{\prime}=\mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \boldsymbol{I}_{n} \mathbf{Q}_{\mathbf{X}}^{\prime}=\sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}^{\prime}=$ $\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$.
- Estimate of $\operatorname{Var}(\hat{\beta})$ is $\tilde{\sigma_{\epsilon}^{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}$ not mle $\hat{\sigma_{\epsilon}^{2}}$.
- Its diagonal entries - estimate of standard error $\widehat{\operatorname{se}\left(\hat{\beta_{0}}\right)}$ and $\widehat{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$ - same as LS regression values.
mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.
An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$.

Only concentrate on $\hat{\beta}$ from now on.

How good/reliable are these estimates? - calculate standard errors.

Estimate of $\operatorname{Var}(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma_{\epsilon}^{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}$ not mle $\hat{\sigma_{\epsilon}^{2}}$.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
- mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$ - same as LS regression values.
- mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.

An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$
Only concentrate on $\hat{\boldsymbol{\beta}}$ from now on.
How good/roliable are these estimates? - calculate standard errors.

Estimate of $\operatorname{Var}(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma_{\epsilon}^{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}$ not mle Its diagonal entries - estimate of standard error $\hat{\operatorname{se}\left(\hat{\beta_{0}}\right)}$ and $\widehat{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
- mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$ - same as LS regression values.
- mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.

An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$.
Only concentrate on $\hat{\beta}$ from now on.
How good/reliable are these estimates? - calculate standard errors.

Estimate of $\operatorname{Var}(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma_{\epsilon}^{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}$ not mle

Its diagonal entries - estimate of standard error $\operatorname{se}\left(\hat{\beta_{0}}\right)$ and $\operatorname{se}\left(\hat{\beta_{1}}\right)$.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
- mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$ - same as LS regression values.
- mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.

An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$.

- Only concentrate on $\hat{\boldsymbol{\beta}}$ from now on.

How good/reliable are these estimates? - calculate standard errors. $\operatorname{Var}(\hat{\boldsymbol{\beta}})=\operatorname{Var}\left(\mathbf{Q}_{\mathbf{X}} \mathbf{y}\right)=\mathbf{Q}_{\mathbf{X}} \operatorname{Var}(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}^{\prime}$
$\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}=\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ Estimate of $\operatorname{Var}(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (we use the unbiased estimator $\tilde{\sigma}^{2}$ not mle Its diagonal entries - estimate of standard error $\widehat{\operatorname{se}\left(\hat{\beta_{0}}\right)}$ and $\widehat{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
- mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$ - same as LS regression values.
- mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.
- An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$.
- Only concentrate on $\hat{\boldsymbol{\beta}}$ from now on.
- How good/reliable are these estimates? - calculate standard errors.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
- mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$ - same as LS regression values.
- mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.
- An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$.
- Only concentrate on $\hat{\boldsymbol{\beta}}$ from now on.
- How good/reliable are these estimates? - calculate standard errors.
- $\operatorname{Var}(\hat{\boldsymbol{\beta}})=\operatorname{Var}\left(\mathbf{Q}_{\mathbf{X}} \mathbf{y}\right)=\mathbf{Q}_{\mathbf{X}} \operatorname{Var}(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}^{\prime}=\mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}^{\prime}=\sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}^{\prime}=$ $\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}=\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}$.
- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
- mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$ - same as LS regression values.
- mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.
- An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$.
- Only concentrate on $\hat{\boldsymbol{\beta}}$ from now on.
- How good/reliable are these estimates? - calculate standard errors.
- $\operatorname{Var}(\hat{\boldsymbol{\beta}})=\operatorname{Var}\left(\mathbf{Q}_{\mathbf{X}} \mathbf{y}\right)=\mathbf{Q}_{\mathbf{X}} \operatorname{Var}(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}^{\prime}=\mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}^{\prime}=\sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}^{\prime}=$ $\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}=\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}$.
- Estimate of $\operatorname{Var}(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma_{\epsilon}^{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}$ not mle $\hat{\sigma_{\epsilon}^{2}}$.

Its diagonal entries - estimate of standard error $\operatorname{se}\left(\hat{\beta_{0}}\right)$ and $\operatorname{se}\left(\hat{\beta_{1}}\right)$.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating $\boldsymbol{\beta}$ and σ_{ϵ}^{2}.
- mle of $\boldsymbol{\beta}$ is given by $\hat{\boldsymbol{\beta}}=\mathbf{Q}_{\mathbf{X}} \mathbf{y}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}} \mathbf{X}^{\prime} \mathbf{y}$ - same as LS regression values.
- mle of σ_{ϵ}^{2} is given by $\hat{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n}$ - biased.
- An unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}$.
- Only concentrate on $\hat{\boldsymbol{\beta}}$ from now on.
- How good/reliable are these estimates? - calculate standard errors.
- $\operatorname{Var}(\hat{\boldsymbol{\beta}})=\operatorname{Var}\left(\mathbf{Q}_{\mathbf{X}} \mathbf{y}\right)=\mathbf{Q}_{\mathbf{X}} \operatorname{Var}(\mathbf{y}) \mathbf{Q}_{\mathbf{X}}^{\prime}=\mathbf{Q}_{\mathbf{X}} \sigma_{\epsilon}^{2} \mathbf{I}_{n} \mathbf{Q}_{\mathbf{X}}^{\prime}=\sigma_{\epsilon}^{2} \mathbf{Q}_{\mathbf{X}} \mathbf{Q}_{\mathbf{X}}^{\prime}=$ $\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}=\sigma_{\epsilon}^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{1}}$.
- Estimate of $\operatorname{Var}(\hat{\boldsymbol{\beta}})$ is $\tilde{\sigma_{\epsilon}^{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$ (we use the unbiased estimator $\tilde{\sigma_{\epsilon}^{2}}$ not mle $\hat{\sigma_{\epsilon}^{2}}$.
- Its diagonal entries - estimate of standard error $\widehat{\operatorname{se(\hat {\beta _{0}})}}$ and $\widehat{s e\left(\hat{\beta_{1}}\right)}$.
- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

$\overline{\underline{\mathrm{PU}}}$

- Test statistic $T=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $T=\frac{\hat{\beta_{1}}}{s e\left(\hat{\beta_{1}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Joint test of significance $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
- Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(X^{\prime} X\right) \hat{\boldsymbol{\beta}}}{2 \hat{\sigma}_{\epsilon}^{2}}$.
- Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.
p-value - $P\left(F>F_{\text {observed }}\right)$ where $F \sim F_{2, n-2}$.
- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

Test statistic $T=$ $\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\beta_{0}}\right)}$

Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

- Practitioners prefer p-value - $P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).

Test statistic $T=\frac{\hat{\beta_{1}}}{s e\left(\hat{\beta}_{1}\right)}$.
Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

Joint test of significance $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$

- Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(X^{\prime} X\right) \hat{\boldsymbol{\beta}}}{2 \sigma_{c}^{2}}$
- Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.
p-value - $P\left(F>F_{\text {observed }}\right)$ where $F \sim F_{2, n-2}$.
- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.

Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

- Practitioners nrefer n-value - $P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).

Test statistic $T=\frac{\hat{\beta_{1}}}{s e\left(\hat{\beta_{1}}\right)}$.
Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

Joint test of significance $H_{0}: \boldsymbol{\beta}=\mathbf{0}$ vs $H_{1}: \boldsymbol{\beta} \neq \mathbf{0}$
Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(x^{\prime} x\right) \hat{\boldsymbol{\beta}}}{2 \sigma^{2}}$
Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.
p-value - $P\left(F>F_{\text {observed }}\right)$ where $F \sim F_{2, n-2}$.

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

Practitioners prefer p-value - $P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
Test statistic $T=\frac{\beta_{1}}{\operatorname{se}\left(\beta_{1}\right)}$
Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

Joint test of significance $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(X^{\prime} X\right) \hat{\boldsymbol{\beta}}}{2 \sigma_{\epsilon}^{2}}$
Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.
p-value - $P\left(F>F_{\text {observed }}\right)$ where $F \sim F_{2, n-2}$.

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.

Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope). Test statistic $T=\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$

Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

Joint test of significance $H_{0}: \boldsymbol{\beta}=\mathbf{0}$ vs $H_{1}: \boldsymbol{\beta} \neq \mathbf{0}$
Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(x^{\prime} x\right) \hat{\boldsymbol{\beta}}}{2 \sigma^{2}}$
Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.
p-value - $P\left(F>F_{\text {observed }}\right)$ where $F \sim F_{2, n-2}$.

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).

Test statistic $T=\frac{\beta_{1}}{s e\left(\hat{\beta}_{1}\right)}$.
Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

Joint test of significance $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(X^{\prime} X\right) \hat{\boldsymbol{\beta}}}{2 \sigma^{2}}$
Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2 \text {-distribution table. }}$
p-value - $P\left(F>F_{\text {observed }}\right)$ where $F \sim F_{2, n-2}$.

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $T=\frac{\hat{\beta_{1}}}{s e\left(\hat{\beta}_{1}\right)}$.

Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

Joint test of significance $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$
Test statistic $F=\frac{\hat{\beta}^{\prime}\left(X^{\prime} X\right) \hat{\beta}}{2 \sigma^{2}}$
Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.
p-value - $P\left(F>F_{\text {observed }}\right)$ where $F \sim F_{2, n-2}$.

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $T=\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.

Joint test of significance $H_{0}: \beta=0$ vs $H_{1}: \beta \neq 0$ Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(X^{\prime} X\right) \hat{\boldsymbol{\beta}}}{2 \sigma^{2}}$. Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $T=\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Joint test of significance $H_{0}: \boldsymbol{\beta}=\mathbf{0}$ vs $H_{1}: \boldsymbol{\beta} \neq \mathbf{0}$

Test statistic $F=\frac{\beta^{\prime}\left(X^{\prime} X\right) \beta}{2 \sigma_{c}^{2}}$
Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $T=\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Joint test of significance $H_{0}: \boldsymbol{\beta}=\mathbf{0}$ vs $H_{1}: \boldsymbol{\beta} \neq \mathbf{0}$
- Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(X^{\prime} X\right) \hat{\boldsymbol{\beta}}}{2 \tilde{\sigma}_{\epsilon}^{2}}$.

Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2^{-d i s t r i b u t i o n ~ t a b l e . ~}}$

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $T=\frac{\hat{\beta_{1}}}{s e\left(\hat{\beta}_{1}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Joint test of significance $H_{0}: \boldsymbol{\beta}=\mathbf{0}$ vs $H_{1}: \boldsymbol{\beta} \neq \mathbf{0}$
- Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(X^{\prime} X\right) \hat{\boldsymbol{\beta}}}{2 \hat{\sigma}_{\epsilon}^{2}}$.
- Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.
- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $T=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Practitioners prefer p-value $-P\left(T>\left|T_{\text {observed }}\right|\right)$ where $T \sim t_{n-2}$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $T=\frac{\hat{\beta_{1}}}{s e\left(\hat{\beta}_{1}\right)}$.
- Null distribution of test statistic $\sim t_{n-2}$ - Cutoff is obtained using t_{n-2}-distribution table.
- Joint test of significance $H_{0}: \boldsymbol{\beta}=\mathbf{0}$ vs $H_{1}: \boldsymbol{\beta} \neq \mathbf{0}$
- Test statistic $F=\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(X^{\prime} X\right) \hat{\boldsymbol{\beta}}}{2 \tilde{\sigma}_{\epsilon}^{2}}$.
- Null distribution of test statistic $\sim F_{2, n-2}$ - Cutoff is obtained using $F_{2, n-2}$-distribution table.
- p-value $-P\left(F>F_{\text {observed }}\right)$ where $F \sim F_{2, n-2}$.
\square Confidence interval for β_{0} can be obtained by inverting the test statistic $\frac{\hat{\beta_{0}}}{\operatorname{se}\left(\hat{\left.\beta_{0}\right)}\right.}$.

Confidence interval for β_{1} can be obtained by inverting the test statistic $\frac{\hat{\beta_{1}}}{\hat{\operatorname{se}\left(\hat{\left.\beta_{1}\right)}\right.}}$

- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta_{0}}\right)}, \hat{\beta}_{1}+t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}\right]$
$t_{n-2, \frac{\alpha}{2}}$ upper $\frac{n}{2}$-cutoff point
- Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \sigma^{2}}$
- Confidence ellipsoid - $P\left(\boldsymbol{\beta}:(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq 2 \tilde{\sigma}_{\epsilon}^{2} F_{2, n-2, \alpha}\right)=1-\alpha$.
$F_{2, n-2, \alpha}$ upper a-cutofl point.
All of the above findings are useless if model fit is poor - need to check if the model is appropriate for the data.
- Model diagnostic checking.
- Confidence interval for β_{0} can be obtained by inverting the test statistic $\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Confidence interval for β_{1} can be obtained by inverting the test statistic $\frac{\hat{\beta_{1}}}{s e\left(\hat{\left.\beta_{1}\right)}\right.}$.
- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\sec \left(\hat{\beta_{0}}\right)}, \hat{\beta_{1}}+t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}\right]$
$t_{n-2, \frac{N}{2}}$ unper $\frac{\alpha}{2}$-cutoff point
Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \sigma^{-2}}$

Confidence ellipsoid - $P\left(\boldsymbol{\beta}:(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq 2 \tilde{\sigma_{\epsilon}^{2}} F_{2, n-2, \alpha}\right)=1-\alpha$.
$F_{2, n-2, ~ u p e r ~ a-c u t o f f ~ p o i n t ~}^{\text {a }}$
All of the above findings are useless if model fit is poor - need to check if the model is appropriate for the data.

Model diagnostic chocking.

- Confidence interval for β_{0} can be obtained by inverting the test statistic $\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Confidence interval for β_{1} can be obtained by inverting the test statistic $\frac{\hat{\beta_{1}}}{s e\left(\hat{\left.\beta_{1}\right)}\right.}$.
- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}, \hat{\beta}_{1}+t_{n-2, \frac{\alpha}{2}} \widehat{\boldsymbol{s e}\left(\hat{\beta}_{0}\right)}\right]$.
$t_{n-2, \frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$-cutoff point.
Ellipsoidal joint confidence set for $\boldsymbol{\beta}$ is obtained by inverting the test statistic $\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \sigma^{-2}}$

Confidence ellipsoid - $P\left(\boldsymbol{\beta}:(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq 2 \tilde{\sigma_{\epsilon}^{2}} F_{2, n-2, \alpha}\right)=1-\alpha$.
$F_{2, n-2, ~ u p e r ~ a-c u t o f f ~ p o i n t ~}^{\text {a }}$
All of the above findings are useless if model fit is poor - need to check if the model is appropriate for the data.

Model diagnostic checking.

- Confidence interval for β_{0} can be obtained by inverting the test statistic $\xlongequal\left[s e\left(\hat{\left.\beta_{0}\right)}\right]{\hat{\beta_{0}}} \text {. }\right.$
- Confidence interval for β_{1} can be obtained by inverting the test statistic $\frac{\hat{\beta_{1}}}{s e\left(\hat{\left.\beta_{1}\right)}\right.}$.
- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}, \hat{\beta}_{1}+t_{n-2, \frac{\alpha}{2}} \widehat{\boldsymbol{s e}\left(\hat{\beta}_{0}\right)}\right]$.
- $t_{n-2, \frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$-cutoff point.

Ellipsoidal joint confidence set for β is obtained by inverting the test statistic $\frac{\boldsymbol{\beta}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \sigma_{\epsilon}^{2}}$.
 Confidence ellipsoid - $P\left(\beta:(\beta-\hat{\beta})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\beta-\hat{\beta}) \leq 2 \tilde{\sigma_{\epsilon}^{2}} F_{2, n-2, \alpha}\right)=1-\alpha$. $F_{2, n-2, \alpha}$ upper α-cutoff point.
 All of the above findings are useless if model fit is poor - need to check if the model is appropriate for the data.

Model diagnostic checking.

- Confidence interval for β_{0} can be obtained by inverting the test statistic $\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Confidence interval for β_{1} can be obtained by inverting the test statistic $\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\sec \left(\hat{\beta}_{0}\right)}, \hat{\beta}_{1}+t_{n-2, \frac{\alpha}{2}} \widehat{\boldsymbol{s e}\left(\hat{\beta}_{0}\right)}\right]$.
- $t_{n-2, \frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$-cutoff point.
- Ellipsoidal joint confidence set for $\boldsymbol{\beta}$ is obtained by inverting the test statistic $\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \tilde{\sigma}_{\epsilon}^{2}}$.

Confidence ellipsoid - $P\left(\beta:(\beta-\hat{\beta})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\beta-\hat{\beta}) \leq 2 \tilde{\sigma_{\epsilon}^{2}} F_{2, n-2, \alpha}\right)=1-\alpha$.
$F_{2, n-2, \alpha}$ upper α-cutoff point.
All of the above findings are useless if model fit is poor - need to check if the model is appropriate for the data.

Model diagnostic checking.

- Confidence interval for β_{0} can be obtained by inverting the test statistic $\xlongequal[s e\left(\hat{\beta_{0}}\right)]{\hat{\beta_{0}}}$.
- Confidence interval for β_{1} can be obtained by inverting the test statistic $\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\left.\beta_{1}\right)}\right.}$.
- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}, \hat{\beta}_{1}+t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}\right]$.
- $t_{n-2, \frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$-cutoff point.
- Ellipsoidal joint confidence set for $\boldsymbol{\beta}$ is obtained by inverting the test statistic $\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \hat{\sigma}_{\epsilon}^{2}}$.
- Confidence ellipsoid - $P\left(\boldsymbol{\beta}:(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq 2 \tilde{\sigma_{\epsilon}^{2}} F_{2, n-2, \alpha}\right)=1-\alpha$.

$F_{2, n-2, \alpha}$ upper α-cutoff point.

All of the above findings are useless if model fit is poor - need to check if the model is appropriate for the data.

Model diagnostic checking.

- Confidence interval for β_{0} can be obtained by inverting the test statistic $\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Confidence interval for β_{1} can be obtained by inverting the test statistic $\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}, \hat{\beta}_{1}+t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}\right]$.
- $t_{n-2, \frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$-cutoff point.
- Ellipsoidal joint confidence set for $\boldsymbol{\beta}$ is obtained by inverting the test statistic $\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \hat{\sigma}_{\epsilon}^{2}}$.
- Confidence ellipsoid - $P\left(\boldsymbol{\beta}:(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq 2 \tilde{\sigma_{\epsilon}^{2}} F_{2, n-2, \alpha}\right)=1-\alpha$.
- $F_{2, n-2, \alpha}$ upper α-cutoff point. model is appropriate for the data.
- Confidence interval for β_{0} can be obtained by inverting the test statistic $\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Confidence interval for β_{1} can be obtained by inverting the test statistic $\xlongequal\left[\operatorname{se}\left(\hat{\left.\beta_{1}\right)}\right]{\hat{\beta_{1}}} \text {. }\right.$
- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}, \hat{\beta}_{1}+t_{n-2, \frac{\alpha}{2}} \widehat{\boldsymbol{s e}\left(\hat{\beta}_{0}\right)}\right]$.
- $t_{n-2, \frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$-cutoff point.
- Ellipsoidal joint confidence set for $\boldsymbol{\beta}$ is obtained by inverting the test statistic $\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \hat{\sigma}_{\epsilon}^{2}}$.
- Confidence ellipsoid - $P\left(\boldsymbol{\beta}:(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq 2 \tilde{\sigma_{\epsilon}^{2}} F_{2, n-2, \alpha}\right)=1-\alpha$.
- $F_{2, n-2, \alpha}$ upper α-cutoff point.
- All of the above findings are useless if model fit is poor - need to check if the model is appropriate for the data.

Model diagnostic checking.

- Confidence interval for β_{0} can be obtained by inverting the test statistic $\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Confidence interval for β_{1} can be obtained by inverting the test statistic $\xlongequal\left[\operatorname{se}\left(\hat{\left.\beta_{1}\right)}\right]{\hat{\beta_{1}}} \text {. }\right.$
- Confidence interval $\left[\hat{\beta_{1}}-t_{n-2, \frac{\alpha}{2}} \widehat{\operatorname{se}\left(\hat{\beta}_{0}\right)}, \hat{\beta}_{1}+t_{n-2, \frac{\alpha}{2}} \widehat{\boldsymbol{s e}\left(\hat{\beta}_{0}\right)}\right]$.
- $t_{n-2, \frac{\alpha}{2}}$ upper $\frac{\alpha}{2}$-cutoff point.
- Ellipsoidal joint confidence set for $\boldsymbol{\beta}$ is obtained by inverting the test statistic $\frac{\hat{\boldsymbol{\beta}}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \hat{\boldsymbol{\beta}}}{2 \hat{\sigma}_{\epsilon}^{2}}$.
- Confidence ellipsoid - $P\left(\boldsymbol{\beta}:(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}})^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)(\boldsymbol{\beta}-\hat{\boldsymbol{\beta}}) \leq 2 \tilde{\sigma_{\epsilon}^{2}} F_{2, n-2, \alpha}\right)=1-\alpha$.
- $F_{2, n-2, \alpha}$ upper α-cutoff point.
- All of the above findings are useless if model fit is poor - need to check if the model is appropriate for the data.
- Model diagnostic checking.
- Appropriateness of Gauss-Markov assumption :
(i) Linearity: The relationship between \mathbf{X} and the mean of \mathbf{Y} is linear $(E(\mathbf{Y} \mid \mathbf{X})=\mathbf{X} \boldsymbol{\beta})$.
(ii) Homoscedasticity: The variance of residual is the same for $x_{1}, x_{2}, \cdots, x_{n}$. (iii) Uncorrelatedness: Observations are uncorrelated of each other.

> Normality: For any fixed value $x_{i},\left[Y_{i} \mid X_{i}=x_{i}\right]$ is normally distributed.
> Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other \Rightarrow Observations are independent of each other.

> Check for potentially bad points which may lead to poor model fit :
> (i) Outliers: An outlier is defined as an observation that has a large residual. In other words, the observed value for the point is very different from that predicted' by the regression model
(ii) Leverage points: A leverage point is defined as an observation that has a value of x_{i} that is far away from the mean of $x_{1}, x_{2}, \cdots, x_{n}$.
(iii) Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a
large influence on the fit of the model.

- Appropriateness of Gauss-Markov assumption :
(i) Linearity: The relationship between \mathbf{X} and the mean of \mathbf{Y} is linear $(E(\mathbf{Y} \mid \mathbf{X})=\mathbf{X} \boldsymbol{\beta})$.
(ii) Homoscedasticity: The variance of residual is the same for $x_{1}, x_{2}, \cdots, x_{n}$. (iii) Uncorrelatedness: Observations are uncorrelated of each other.
- Normality: For any fixed value $x_{i},\left[Y_{i} \mid X_{i}=x_{i}\right]$ is normally distributed.

> Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other \Rightarrow Observations are independent of each other.

> Check for potentially bad points which may lead to poor model fit :
> (i) Outliers: An outlier is defined as an observation that has a large residual. In other words, the observed value for the point is very different from that

predicted by the regression model.
(ii) Leverage points: A leverage point is defined as an observation that has a
value of x_{i} that is far away from the mean of $x_{1}, x_{2}, \cdots, x_{n}$.
(iii) Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a
large influence on the fit of the model.

- Appropriateness of Gauss-Markov assumption :
(i) Linearity: The relationship between \mathbf{X} and the mean of \mathbf{Y} is linear $(E(\mathbf{Y} \mid \mathbf{X})=\mathbf{X} \boldsymbol{\beta})$.
(ii) Homoscedasticity: The variance of residual is the same for $x_{1}, x_{2}, \cdots, x_{n}$. (iii) Uncorrelatedness: Observations are uncorrelated of each other.
- Normality: For any fixed value $x_{i},\left[Y_{i} \mid X_{i}=x_{i}\right]$ is normally distributed.
- Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other \Rightarrow Observations are independent of each other.

Check for potentially bad points which may lead to poor model fit :
(i) Outliers: An outlier is defined as an observation that has a large residual. In other words, the observed value for the point is very different from that predicted by the regression model.
(ii) Leverage points: A leverage point is defined as an observation that has a value of x_{i} that is far away from the mean of $x_{1}, x_{2}, \cdots, x_{n}$.
(iii) Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a
large influence on the fit of the model.

- Appropriateness of Gauss-Markov assumption :
(i) Linearity: The relationship between \mathbf{X} and the mean of \mathbf{Y} is linear $(E(\mathbf{Y} \mid \mathbf{X})=\mathbf{X} \boldsymbol{\beta})$.
(ii) Homoscedasticity: The variance of residual is the same for $x_{1}, x_{2}, \cdots, x_{n}$.
(iii) Uncorrelatedness: Observations are uncorrelated of each other.
- Normality: For any fixed value $x_{i},\left[Y_{i} \mid X_{i}=x_{i}\right]$ is normally distributed.
- Normality + (iii) Uncorrelatedness: Observations are uncorrelated of each other \Rightarrow Observations are independent of each other.
- Check for potentially bad points which may lead to poor model fit :
(i) Outliers: An outlier is defined as an observation that has a large residual. In other words, the observed value for the point is very different from that predicted by the regression model.
(ii) Leverage points: A leverage point is defined as an observation that has a value of x_{i} that is far away from the mean of $x_{1}, x_{2}, \cdots, x_{n}$.
(iii) Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a large influence on the fit of the model.
- Linearity - Check the fitted value Y_{i} vs residual e_{i} plot for any pattern randomly and closely distributed around x-axis indicates linearity.

$\underline{\underline{\mathrm{PU}}}$

Homoscedasticity - Check the fitted value Y_{i} vs residual e_{i} plot to see if the spread is changing as we move along x - axis - changing means heteroscedastic.

Figure: Clear indication of nonlinearity and heteroscedasticity.

- Linearity - Check the fitted value Y_{i} vs residual e_{i} plot for any pattern randomly and closely distributed around x-axis indicates linearity.
- Homoscedasticity - Check the fitted value Y_{i} vs residual e_{i} plot to see if the spread is changing as we move along x-axis - changing means heteroscedastic.

(a)

Figure: Clear indication of nonlinearity and heteroscedasticity.

- Homoscedasticity - Check the fitted value Y_{i} vs square root of absolute standardised residual $\sqrt{\left|\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1-h_{i i}}}\right|}$ plot to see if the spread is changing as we move along x - axis - changing means heteroscedastic.

(a)

Figure: Clear indication of heteroscedasticity.

- Homoscedasticity - Check the fitted value Y_{i} vs square root of absolute standardised residual $\sqrt{\left|\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1-h_{i i}}}\right|}$ plot to see if the spread is changing as we move along x - axis - changing means heteroscedastic.

(a)

Figure: Clear indication of heteroscedasticity.

- This plot is more appropriate for homoscedasticity checking as $\operatorname{Var}\left(e_{i}\right)$ are different not same as $\operatorname{Var}\left(\epsilon_{i}\right)$.

$\square \operatorname{Var}\left(e_{i}\right)=\sigma_{\epsilon}^{2}\left(1-h_{i i}\right)-\mathrm{so}, \widehat{\operatorname{Var}\left(e_{i}\right)}=\tilde{\sigma_{\epsilon}^{2}}\left(1-h_{i i}\right)$.
So, standardised residual $\frac{e_{i}}{\sqrt{\operatorname{Var}\left(e_{i}\right)}}=\frac{e_{i}}{\tilde{\sigma}_{\epsilon} \sqrt{1-h_{i j}}}$.
$h_{i j}$ is the i th leverage value - the i th diagonal entry of the matrix $\mathbf{X} \mathbf{Q}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{P}_{\mathbf{X}}$.
- $\mathrm{P}_{\mathrm{X}}($ some refers it as hat-matrix $H)$ is an orthogonal projection matrix idempotent and symmetric - also, $\hat{\mathbf{y}}=\mathbf{P}_{\mathbf{X}} \mathbf{y}$.

One can use Breusch-Pagan Test for checking homoscedasticity asymptotically χ^{2} distributed.

- Uncorrelatedness: Plot the sample autocorrelation function of the residuals.

$\square \operatorname{Var}\left(e_{i}\right)=\sigma_{\epsilon}^{2}\left(1-h_{i i}\right)-\mathrm{so}, \widehat{\operatorname{Var}\left(e_{i}\right)}=\tilde{\sigma_{\epsilon}^{2}}\left(1-h_{i i}\right)$.
So, standardised residual $\frac{e_{i}}{\sqrt{\sqrt{\operatorname{Var}\left(e_{i}\right)}}}=\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1-h_{i i}}}$.
$h_{i j}$ is the i th leverage value - the i th diagonal entry of the matrix $\mathbf{X} \mathbf{Q}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{P}_{\mathbf{X}}$.
- $P_{X}($ some refers it as hat-matrix $H)$ is an orthogonal projection matrix idempotent and symmetric - also, $\hat{\mathbf{y}}=\mathbf{P}_{\mathbf{X}} \mathbf{y}$.

One can use Breusch-Pagan Test for checking homoscedasticity asymptotically χ^{2} distributed.

- Uncorrelatedness: Plot the sample autocorrelation function of the residuals.

$\square \operatorname{Var}\left(e_{i}\right)=\sigma_{\epsilon}^{2}\left(1-h_{i i}\right)-$ so, $\left.\widehat{\operatorname{Var}\left(e_{i}\right.}\right)=\tilde{\sigma_{\epsilon}^{2}}\left(1-h_{i i}\right)$.

- $h_{i i}$ is the i th leverage value - the i th diagonal entry of the matrix $\mathbf{X} \mathbf{Q}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{P}_{\mathbf{X}}$.
> Px_{x} (some refers it as hat-matrix H) is an orthogonal projection matrix idempotent and symmetric - also, $\hat{\mathbf{y}}=\mathbf{P}_{\mathrm{x}} \mathbf{y}$.

> One can use Brousch - Pagan Test for chocking homoscedasticity asymptotically χ^{2} distributed.

Uncorrelatedness: Plot the sample autocorrelation function of the residuals.

$\square \operatorname{Var}\left(e_{i}\right)=\sigma_{\epsilon}^{2}\left(1-h_{i i}\right)-$ so, $\widehat{\operatorname{Var}\left(e_{i}\right)}=\tilde{\sigma_{\epsilon}^{2}}\left(1-h_{i i}\right)$.

- $h_{i j}$ is the i th leverage value - the i th diagonal entry of the matrix $\mathbf{X} \mathbf{Q}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{P}_{\mathbf{X}}$.
- $\mathbf{P}_{\mathbf{X}}$ (some refers it as hat-matrix \mathbf{H}) is an orthogonal projection matrix idempotent and symmetric - also, $\hat{\mathbf{y}}=\mathbf{P}_{\mathbf{x}} \mathbf{y}$.

One can use Breusch-Pagan Test for checking homoscedasticity asymptotically χ^{2} distributed.

Uncorrelatedness: Plot the sample autocorrelation function of the residuals.
$\square \operatorname{Var}\left(e_{i}\right)=\sigma_{\epsilon}^{2}\left(1-h_{i i}\right)-$ so, $\left.\widehat{\operatorname{Var}\left(e_{i}\right.}\right)=\tilde{\sigma_{\epsilon}^{2}}\left(1-h_{i i}\right)$.

- So, standardised residual $\frac{e_{i}}{\sqrt{\operatorname{Var(e_{i})}}}=\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1-h_{i i}}}$.
- $h_{i j}$ is the i th leverage value - the i th diagonal entry of the matrix $\mathbf{X} \mathbf{Q}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{P}_{\mathbf{X}}$.
- $\mathbf{P}_{\mathbf{X}}$ (some refers it as hat-matrix \mathbf{H}) is an orthogonal projection matrix idempotent and symmetric - also, $\hat{\mathbf{y}}=\mathbf{P}_{\mathbf{x}} \mathbf{y}$.
- One can use Breusch-Pagan Test for checking homoscedasticity asymptotically χ^{2} distributed.

Uncorrelatedness: Plot the sample autocorrelation function of the residuals.
$\square \operatorname{Var}\left(e_{i}\right)=\sigma_{\epsilon}^{2}\left(1-h_{i i}\right)-$ so, $\widehat{\operatorname{Var}\left(e_{i}\right)}=\tilde{\sigma_{\epsilon}^{2}}\left(1-h_{i i}\right)$.

- So, standardised residual $\frac{e_{i}}{\sqrt{\sqrt[\operatorname{Var}\left(e_{i}\right)]{ }}}=\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1-h_{i i}}}$.
- $h_{i j}$ is the i th leverage value - the i th diagonal entry of the matrix $\mathbf{X} \mathbf{Q}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}=\mathbf{P}_{\mathbf{X}}$.
- $\mathbf{P}_{\mathbf{X}}$ (some refers it as hat-matrix \mathbf{H}) is an orthogonal projection matrix idempotent and symmetric - also, $\hat{\mathbf{y}}=\mathbf{P}_{\mathbf{x}} \mathbf{y}$.
- One can use Breusch-Pagan Test for checking homoscedasticity asymptotically χ^{2} distributed.
- Uncorrelatedness: Plot the sample autocorrelation function of the residuals.

(a)

Figure: Indication of uncorrelatedness.
Also can perform Durbin-Watson test and Box-Pierce test for checking whether there is any autocorrelation.

Figure: Indication of uncorrelatedness.

- Also can perform Durbin-Watson test and Box-Pierce test for checking whether there is any autocorrelation.
- Normality: Q-Q plot of standardised/studentized residuals.

(a)

Figure: Indication of non-normality.

- Normality: Q-Q plot of standardised/studentized residuals.

(a)

Figure: Indication of non-normality.

- Also can perform Shapiro-Wilks test and Kolmogorov-Smirnov test for checking departure from normality.
- Outliers: Check the fitted value Y_{i} vs residual e_{i} plot for large values - potential outliers.

$\overline{\underline{\mathrm{PU}}}$

- Leverage points : Check for points with high leverage values $h_{i j}$.

- Recall that $0 \leq h_{i i} \leq 1$.

Influential observations: Can be detected by looking into standardised residuals vs leverage plot.

(a)

- Outliers: Check the fitted value Y_{i} vs residual e_{i} plot for large values - potential outliers.
- Leverage points : Check for points with high leverage values $h_{i i}$.

Recall that $0 \leq h_{i j} \leq 1$.
 Influential observations: Can be detected by looking into standardised residuals vs leverage plot.

- Outliers: Check the fitted value Y_{i} vs residual e_{i} plot for large values - potential outliers.
- Leverage points : Check for points with high leverage values $h_{i i}$.
- Recall that $0 \leq h_{i j} \leq 1$.

Influential observations: Can be detected by looking into standardised residuals vs leverage plot.

- Outliers: Check the fitted value Y_{i} vs residual e_{i} plot for large values - potential outliers.
- Leverage points : Check for points with high leverage values $h_{i i}$.
- Recall that $0 \leq h_{i i} \leq 1$.
- Influential observations: Can be detected by looking into standardised residuals vs leverage plot.

(a)

Figure: A few influential observations.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.

Cook's distance
$D_{i}=\frac{1}{2}\left(\frac{e_{i}}{\sigma_{\epsilon} \sqrt{1-h_{i j}}}\right)^{2} \frac{h_{i i}}{1-h_{i i}}=\frac{1}{2}(\text { standardized residual })^{2} \frac{h_{i j}}{1-h_{i j}}$.
So, Cook's D is a function of studentized residual and leverage value - can be plotted as a nonlinear contours in the residuals vs leverage plot.

High leverage values (close to 1) means Cook's distance very large - highly influential observation.

DFFIT : DFFIT $T_{i}=$ difference in fit as we drop the ith observation.

Relationship between D_{i} and $D F F I T_{i}$
$D_{i}=\frac{1}{2} \frac{\hat{\sigma}_{(c(i)}^{2}}{\hat{\sigma}_{2}^{2}} D F F I T_{i}^{2}$.
If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance :
$D_{i}=\frac{1}{2}\left(\frac{e_{i}}{\sigma_{\epsilon} \sqrt{1-h_{i i}}}\right)^{2} \frac{h_{i j}}{1-h_{i i}}=\frac{1}{2}(\text { standardized residual })^{2} \frac{h_{i j}}{1-h_{i j}}$.
So, Cook's D is a function of studentized residual and leverage value - can be plotted as a nonlinear contours in the residuals vs leverage plot.

High leverage values (close to 1) means Cook's distance very large - highly influential observation.

DFFIT : DFFIT $_{i}=$ difference in fit as we drop the ith observation.

Relationship between D_{i} and $D F F I T_{i}$

If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance :
$D_{i}=\frac{1}{2}\left(\frac{e_{i}}{\tilde{\sigma} \sqrt{1-h_{i i}}}\right)^{2} \frac{h_{i i}}{1-h_{i i}}=\frac{1}{2}(\text { standardized residual })^{2} \frac{h_{i j}}{1-h_{i j}}$.
- So, Cook's D is a function of studentized residual and leverage value - can be plotted as a nonlinear contours in the residuals vs leverage plot.

High leverage values (close to 1) means Cook's distance very large - highly influential observation.

DFFIT : DFFIT = difference in fit as we drop the ith observation.

Relationship between D_{i} and $D F F I T_{i}$

If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance :
$D_{i}=\frac{1}{2}\left(\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1-h_{i i}}}\right)^{2} \frac{h_{i j}}{1-h_{i i}}=\frac{1}{2}(\text { standardized residual })^{2} \frac{h_{i j}}{1-h_{i j}}$.
- So, Cook's D is a function of studentized residual and leverage value - can be plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large - highly influential observation.

DFFIT : DFFIT $i_{i}=$ difference in fit as we drop the ith observation.

Relationship between D_{i} and $D F F I T_{i}$

If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance :
$D_{i}=\frac{1}{2}\left(\frac{e_{i}}{\tilde{\sigma \epsilon} \sqrt{1-h_{i i}}}\right)^{2} \frac{h_{i j}}{1-h_{i i}}=\frac{1}{2}\left(\right.$ standardized residual) ${ }^{2} \frac{h_{i j}}{1-h_{i j}}$.
- So, Cook's D is a function of studentized residual and leverage value - can be plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large - highly influential observation.
- DFFIT : DFFIT $_{i}=$ difference in fit as we drop the i th observation.

$$
\text { Relationship between } D_{i} \text { and } D F F I T_{i}
$$

If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance :

$$
D_{i}=\frac{1}{2}\left(\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1-h_{i i}}}\right)^{2} \frac{h_{i i}}{1-h_{i i}}=\frac{1}{2}(\text { standardized residual })^{2} \frac{h_{i i}}{1-h_{i i}}
$$

- So, Cook's D is a function of studentized residual and leverage value - can be plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large - highly influential observation.
- DFFIT : DFFIT $_{i}=$ difference in fit as we drop the ith observation.
- Relationship between D_{i} and $D F F I T_{i}: D_{i}=\frac{1}{2} \frac{\hat{\sigma}_{\epsilon(i)}^{2}}{\hat{\sigma}_{\epsilon}^{2}} D F F I T_{i}^{2}$.

If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.

- Also, some more numerical diagnostic measures are there for detection of potentially influential observations.
- Cook's distance :

$$
D_{i}=\frac{1}{2}\left(\frac{e_{i}}{\tilde{\sigma_{\epsilon}} \sqrt{1-h_{i i}}}\right)^{2} \frac{h_{i i}}{1-h_{i i}}=\frac{1}{2}(\text { standardized residual })^{2} \frac{h_{i i}}{1-h_{i i}}
$$

- So, Cook's D is a function of studentized residual and leverage value - can be plotted as a nonlinear contours in the residuals vs leverage plot.
- High leverage values (close to 1) means Cook's distance very large - highly influential observation.
- DFFIT : DFFIT $_{i}=$ difference in fit as we drop the ith observation.
- Relationship between D_{i} and $D F F I T_{i}: D_{i}=\frac{1}{2} \frac{\hat{\sigma}_{\epsilon(i)}^{2}}{\hat{\sigma}_{\epsilon}^{2}} D F F I T_{i}^{2}$.
- If the model diagnostic checking turns out satisfactory then we check for how good the model fits the data.
- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.

R-squared - $R^{2}=\frac{\operatorname{Var}(Y)}{\operatorname{Var}(y)}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} ; 0 \leq R^{2} \leq 1$.

- Problem of R^{2} - tend to select overfitting models.

Adjusted R-squared $-R_{\text {adj }}^{2}=1-\frac{(n-1)\left(1-R^{2}\right)}{(n-2)}$ - higher the better - can be negative!

AIC $-2 \ln \left(L\left(\hat{\beta}_{\text {mle }}, \hat{\sigma}_{\text {emle }}^{2} \mid \mathrm{y}, \mathrm{X}\right)\right)+2(2+1)$ - lower the better.

- $\mathrm{BIC}--2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }}, \hat{\sigma}_{\epsilon \text { m/e }}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+\ln (n)(2+1)$ - lower the better.

BIC penalizes complex models more severely - better to use BIC than AIC.

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.

R-squared - $R^{2}=\frac{\operatorname{Var}(Y)}{\operatorname{Var}(y)}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{Y}\right)^{2}} ; 0 \leq R^{2} \leq 1$.
Problem of R^{2} - tend to select overfitting models.
Adjusted R-squared - $R_{\text {adj }}^{2}=1-\frac{(n-1)\left(1-n^{2}\right)}{(n-2)}$ - higher the better - can be negative!

AIC $-2 \ln \left(L\left(\hat{\beta}_{\text {mle }}, \hat{\sigma}_{\text {emle }}^{2} \mid y, X\right)\right)+2(2+1)$ - lower the better.
BIC - $-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{m l e}, \hat{\sigma}_{\epsilon \text { m/e }}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+\ln (n)(2+1)$ - lower the better.
BIC penalizes complex models more severely - better to use BIC than AIC.

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared - $R^{2}=\frac{\operatorname{Var}(Y)}{\operatorname{Var}(y)}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} ; 0 \leq R^{2} \leq 1$.

Problem of R^{2} - tend to select overfitting models.
Adjusted R-squared - $R_{a d j}^{2}=1-\frac{(n-1)\left(1-R^{2}\right)}{(n-2)}$ - higher the better - can be negative!

AIC - $-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }}, \hat{\sigma}_{\epsilon \text { mle }}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+2(2+1)-$ lower the better. BIC $-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{m / e}, \hat{\sigma}_{\epsilon m / e}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+\ln (n)(2+1)$ - lower the better. BIC penalizes complex models more severely - better to use BIC than AIC.

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared - $R^{2}=\frac{\operatorname{Var}(Y)}{\operatorname{Var}(y)}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} ; 0 \leq R^{2} \leq 1$.
- Problem of R^{2} - tend to select overfitting models.

Adjusted R-squared - $R_{a d j}^{2}=1-\frac{(n-1)\left(1-R^{2}\right)}{(n-2)}$ - higher the better - can be negative!

AIC - $-2 \ln \left(L\left(\hat{\beta}_{\text {mle }}, \hat{\sigma}_{\text {emle }}^{2} \mid \mathrm{y}, \mathrm{X}\right)\right)+2(2+1)$ - lower the better. BIC - $-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }}, \hat{\sigma}_{\epsilon \text { mle }}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+\ln (n)(2+1)$ - lower the better. BIC penalizes complex models more severely better to use BIC than AIC.

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared - $R^{2}=\frac{\operatorname{Var}(Y)}{\operatorname{Var}(y)}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} ; 0 \leq R^{2} \leq 1$.
- Problem of R^{2} - tend to select overfitting models.
- Adjusted R-squared - $R_{a d j}^{2}=1-\frac{(n-1)\left(1-R^{2}\right)}{(n-2)}$ - higher the better - can be negative!

AIC - $-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }}, \hat{\sigma}_{\text {emle }}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+2(2+1)$ - lower the better. BIC $-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }}, \hat{\sigma}_{\text {mme }}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+\ln (n)(2+1)$ - lower the better. BIC penalizes complex models more severely - better to use BIC than AIC.

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared - $R^{2}=\frac{\operatorname{Var}(Y)}{\operatorname{Var}(y)}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} ; 0 \leq R^{2} \leq 1$.
- Problem of R^{2} - tend to select overfitting models.
- Adjusted R-squared - $R_{a d j}^{2}=1-\frac{(n-1)\left(1-R^{2}\right)}{(n-2)}$ - higher the better - can be negative!
- AIC $--2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{m / e}, \hat{\sigma}_{\epsilon m / e}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+2(2+1)$ - lower the better.

BIC $-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }}, \hat{\sigma}_{\epsilon m \mid e}^{2} \mid \mathbf{y}, \mathrm{X}\right)\right)+\ln (n)(2+1)$ - lower the better. BIC penalizes complex models more severely - better to use BIC than AIC.

- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared - $R^{2}=\frac{\operatorname{Var}(Y)}{\operatorname{Var}(y)}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} ; 0 \leq R^{2} \leq 1$.
- Problem of R^{2} - tend to select overfitting models.
- Adjusted R-squared - $R_{a d j}^{2}=1-\frac{(n-1)\left(1-R^{2}\right)}{(n-2)}$ - higher the better - can be negative!
- $\mathrm{AIC}--2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{m / e}, \hat{\sigma}_{\epsilon m / e}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+2(2+1)$ - lower the better.
- $\operatorname{BIC}--2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }}, \hat{\sigma}_{\epsilon \text { mle }}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+\ln (n)(2+1)$ - lower the better.
- There are several such goodness of fit measure.
- These measures are useful in selection of a single best model among several competing models.
- R-squared - $R^{2}=\frac{\operatorname{Var}(Y)}{\operatorname{Var}(y)}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}} ; 0 \leq R^{2} \leq 1$.
- Problem of R^{2} - tend to select overfitting models.
- Adjusted R-squared - $R_{a d j}^{2}=1-\frac{(n-1)\left(1-R^{2}\right)}{(n-2)}$ - higher the better - can be negative!
- $\mathrm{AIC}--2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{m / e}, \hat{\sigma}_{\epsilon m / e}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+2(2+1)$ - lower the better.
- $\operatorname{BIC}--2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }}, \hat{\sigma}_{\epsilon \text { m/e }}^{2} \mid \mathbf{y}, \mathbf{X}\right)\right)+\ln (n)(2+1)$ - lower the better.
- BIC penalizes complex models more severely - better to use BIC than AIC.

$\stackrel{\stackrel{\text { PU }}{ }}{\underline{1}}$

- Multiple linear regression model :

More familiar specification - $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} ; \boldsymbol{\epsilon} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma_{\epsilon}^{2} \mathbf{I}_{n}\right)$.

All the previous developments are applicable.
Polynomial regression model : $\left[Y_{i} \mid X_{i}=x_{i}\right] \stackrel{\text { ind }}{\sim} N\left(a+b x_{i}+c x_{i}^{2}, \sigma_{e}^{2}\right)$ is a special case.

- Multiple linear regression model :

More familiar specification - $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} ; \boldsymbol{\epsilon} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma_{\epsilon}^{2} \boldsymbol{I}_{n}\right)$.
$\square \mathbf{Y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right), \mathbf{X}=\left(\begin{array}{ccc}1 & x_{11} & \cdots x_{p 1} \\ 1 & x_{2} & \cdots x_{p 2} \\ \vdots & & \\ 1 & x_{n} & \cdots x_{p n}\end{array}\right)$ and $\epsilon=\left(\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right)$ are unobserved random
errors. $\boldsymbol{\beta}=\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right)$.
All the previous developments are applicable.
Polynomial regression model : $\left[Y_{i} \mid X_{i}=x_{i}\right] \stackrel{i n d}{\sim} N\left(a+b x_{i}+c x_{i}^{2}, \sigma_{\epsilon}^{2}\right)$ is a special case.

- Multiple linear regression model :

More familiar specification - $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} ; \boldsymbol{\epsilon} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma_{\epsilon}^{2} \mathbf{I}_{n}\right)$.
$\square \mathbf{Y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right), \mathbf{X}=\left(\begin{array}{ccc}1 & x_{11} & \cdots x_{p 1} \\ 1 & x_{2} & \cdots x_{p 2} \\ \vdots & & \\ 1 & x_{n} & \cdots x_{p n}\end{array}\right)$ and $\epsilon=\left(\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right)$ are unobserved random
errors. $\boldsymbol{\beta}=\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right)$.

- All the previous developments are applicable.

Polynomial regression model : $\left[Y_{i} \mid X_{i}=x_{i}\right] \stackrel{i n d}{\sim} N\left(a+b x_{i}+c x_{i}^{2}, \sigma_{\epsilon}^{2}\right)$ is a special case.

- Multiple linear regression model :

More familiar specification - $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} ; \boldsymbol{\epsilon} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma_{\epsilon}^{2} \mathbf{I}_{n}\right)$.
$\square \mathbf{Y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right), \mathbf{X}=\left(\begin{array}{ccc}1 & x_{11} & \cdots x_{p 1} \\ 1 & x_{2} & \cdots x_{p 2} \\ \vdots & & \\ 1 & x_{n} & \cdots x_{p n}\end{array}\right)$ and $\epsilon=\left(\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right)$ are unobserved random errors. $\boldsymbol{\beta}=\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p}\end{array}\right)$.

- All the previous developments are applicable.
- Polynomial regression model : $\left[Y_{i} \mid X_{i}=x_{i}\right] \stackrel{i n d}{\sim} N\left(a+b x_{i}+c x_{i}^{2}, \sigma_{\epsilon}^{2}\right)$ is a special case.
- Observations taken on two features - covariate is continuous say dosage of a drug (x) and response (y) is binary subject is alive/dead (we code it as $0 / 1$).

Scatter plot of (x) and (y) does not give much insight!

Figure: Scatter plot of x and $y(0 / 1)$ - not useful.

- Observations taken on two features - covariate is continuous say dosage of a drug (x) and response (y) is binary subject is alive/dead (we code it as $0 / 1$).
- Scatter plot of (x) and (y) does not give much insight!

(a)

Figure: Scatter plot of x and $y(0 / 1)$ - not useful.

- Observations taken on two features - covariate is continuous say dosage of a drug (x) and response (y) is binary subject is alive/dead (we code it as $0 / 1$).
- Scatter plot of (x) and (y) does not give much insight!

(a)

Figure: Scatter plot of x and $y(0 / 1)$ - not useful.

- Not much of descriptive statistics can be done.
- Observations taken on two features - covariate is continuous say dosage of a drug (x) and response (y) is binary subject is alive/dead (we code it as $0 / 1$).
- Scatter plot of (x) and (y) does not give much insight!

(a)

Figure: Scatter plot of x and $y(0 / 1)$ - not useful.

- Not much of descriptive statistics can be done.
- Still - need some motivation!
- In simple linear regression model we have assumption $E(Y \mid X=x)=a+b x$.

Now for the logistic regression model we have assumption $E(Y \mid X=x)=$
$1 \times P(Y=1 \mid X=x)+0 \times P(Y=0 \mid X=x)=P(Y=1 \mid X=x)=a+b x ? ?$ meaningless
$0 \leq P(Y=1 \mid X=x) \leq 1$ but $-\infty<a+b x<+\infty$ for $b \neq 0$.
However, $P(Y=1 \mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$ - absolutely meaningful. $\frac{e^{a+b x}}{1+e^{a+b x}}-\log$ istic distribution - so the name logistic regression. $\operatorname{logit}(P(Y=1 \mid X=x))=\log ($ ODDS for $Y=1)=\log \left(\frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}\right)=$ $\log \left(\frac{P(Y=1 \mid X=x)}{1-P(Y-1 \mid X-x)}\right)=a+b x$ - so the name logit regression.

- If not coded using dummy variables - $P(Y=$ "dead" $\mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$

Reason?(i) Very Simple Form.
(ii) Lots of Similarity with Linear Regression Model.
(iii) Logistic Regression Model/Logit Regression

Model is Highly Successful!

- In simple linear regression model we have assumption $E(Y \mid X=x)=a+b x$.
- Now for the logistic regression model we have assumption $E(Y \mid X=x)=$ $1 \times P(Y=1 \mid X=x)+0 \times P(Y=0 \mid X=x)=P(Y=1 \mid X=x)=a+b x ? ?$? meaningless
$0 \leq P(Y=1 \mid X=x) \leq 1$ but $-\infty<a+b x<+\infty$ for $b \neq 0$.
However, $P(Y=1 \mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$ - absolutely meaningful. $\frac{e^{a+b x}}{1+e^{a+b x}}-\log$ istic distribution - so the name logistic regression. $\operatorname{logit}(P(Y=1 \mid X=x))=\log ($ ODDS for $Y=1)=\log \left(\frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}\right)=$ $\log \left(\frac{P(Y=1 \mid X=x)}{1-P(Y-1 \mid X-x)}\right)=a+b x$ - so the name logit regression. If not coded using dummy variables $-P(Y=$ "dead" $\mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$

Reason?(i) Very Simple Form.

(ii) Lots of Similarity with Linear Regression Model.
(iii) Logistic Regression Model/Logit Regression

Model is Highly Successful!

- In simple linear regression model we have assumption $E(Y \mid X=x)=a+b x$.
- Now for the logistic regression model we have assumption $E(Y \mid X=x)=$ $1 \times P(Y=1 \mid X=x)+0 \times P(Y=0 \mid X=x)=P(Y=1 \mid X=x)=a+b x ? ?$ meaningless
$0 \leq P(Y=1 \mid X=x) \leq 1$ but $-\infty<a+b x<+\infty$ for $b \neq 0$.
However, $P(Y=1 \mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$ - absolutely meaningful. $\frac{e^{a+b x}}{1+e^{a+b x}}$ - logistic distribution - so the name logistic regression. $\operatorname{logit}(P(Y=1 \mid X=X))=\log (\operatorname{ODDS}$ for $Y=1)=\log \binom{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}=$ $\log \left(\frac{P(Y=1 \mid X=x)}{1-P(Y=1 \mid X=x)}\right)=a+b x$ - so the name logit regression. If not coded using dummy variables $-P(Y=$ "dead" $\mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$

Reason?(i) Very Simple Form.
(ii) Lots of Similarity with Linear Regression Model.
(iii) Logistic Regression Model/Logit Regression

Model is Highly Successful!

- In simple linear regression model we have assumption $E(Y \mid X=x)=a+b x$.
- Now for the logistic regression model we have assumption $E(Y \mid X=x)=$ $1 \times P(Y=1 \mid X=x)+0 \times P(Y=0 \mid X=x)=P(Y=1 \mid X=x)=a+b x ? ?$ meaningless
$0 \leq P(Y=1 \mid X=x) \leq 1$ but $-\infty<a+b x<+\infty$ for $b \neq 0$.
- However, $P(Y=1 \mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$ - absolutely meaningful.
> $\frac{e^{a+b x}}{1+e^{a+b x}}-$ logistic distribution - so the name logistic regression.
> $\operatorname{logit}(P(Y=1 \mid X=x))=\log ($ ODDS for $Y=1)=\log \left(\frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}\right)=$ $\log \left(\frac{P(Y=1 \mid X=x)}{1-P(Y-1 \mid X-x)}\right)=a+b x$ - so the name logit regression.

> If not coded using dummy variables - $P(Y=$ "dead" $\mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$

Reason?(i) Very Simple Form.
(ii) Lots of Similarity with Linear Regression Model.
(iii) Logistic Regression Model/Logit Regression

Model is Highly Successful!

- In simple linear regression model we have assumption $E(Y \mid X=x)=a+b x$.
- Now for the logistic regression model we have assumption $E(Y \mid X=x)=$ $1 \times P(Y=1 \mid X=x)+0 \times P(Y=0 \mid X=x)=P(Y=1 \mid X=x)=a+b x ? ?$ meaningless
- $0 \leq P(Y=1 \mid X=x) \leq 1$ but $-\infty<a+b x<+\infty$ for $b \neq 0$.
- However, $P(Y=1 \mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$ - absolutely meaningful.
- $\frac{e^{a+b x}}{1+e^{a+b x}}$ - logistic distribution - so the name logistic regression.
$\operatorname{logit}(P(Y=1 \mid X=x))=\log ($ ODDS for $Y=1)=\log \left(\frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}\right)=$ $\log \left(\frac{P(Y=1 \mid X=x)}{1-P(Y=1 \mid X=x)}\right)=a+b x$ - so the name logit regression. If not coded using dummy variables $-P\left(Y={ }^{\prime \prime}\right.$ 'dead"' $\left.\mid X=X\right)=\frac{e^{a+b x}}{1+e^{a+b x}}$

Reason?(i) Very Simple Form.
(ii) Lots of Similarity with Linear Regression Model.
(iii) Logistic Regression Model/Logit Regression

Model is Highly Successful!

- In simple linear regression model we have assumption $E(Y \mid X=x)=a+b x$.
- Now for the logistic regression model we have assumption $E(Y \mid X=x)=$ $1 \times P(Y=1 \mid X=x)+0 \times P(Y=0 \mid X=x)=P(Y=1 \mid X=x)=a+b x ? ?$ meaningless

■ $0 \leq P(Y=1 \mid X=x) \leq 1$ but $-\infty<a+b x<+\infty$ for $b \neq 0$.

- However, $P(Y=1 \mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$ - absolutely meaningful.
- $\frac{e^{a+b x}}{1+e^{a+b x}}$ - logistic distribution - so the name logistic regression.
- $\operatorname{logit}(P(Y=1 \mid X=x))=\log ($ ODDS for $Y=1)=\log \left(\frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}\right)=$ $\log \left(\frac{P(Y=1 \mid X=x)}{1-P(Y=1 \mid X=x)}\right)=a+b x-$ so the name logit regression.

Reason?(i) Very Simple Form.
(ii) Lots of Similarity with Linear Regression Model.
(iii) Logistic Regression Model/Logit Regression

Model is Highly Successful!

- In simple linear regression model we have assumption $E(Y \mid X=x)=a+b x$.
- Now for the logistic regression model we have assumption $E(Y \mid X=x)=$ $1 \times P(Y=1 \mid X=x)+0 \times P(Y=0 \mid X=x)=P(Y=1 \mid X=x)=a+b x ? ?$ meaningless

■ $0 \leq P(Y=1 \mid X=x) \leq 1$ but $-\infty<a+b x<+\infty$ for $b \neq 0$.

- However, $P(Y=1 \mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$ - absolutely meaningful.
- $\frac{e^{a+b x}}{1+e^{a+b x}}$ - logistic distribution - so the name logistic regression.
- $\operatorname{logit}(P(Y=1 \mid X=x))=\log ($ ODDS for $Y=1)=\log \left(\frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}\right)=$ $\log \left(\frac{P(Y=1 \mid X=x)}{1-P(Y=1 \mid X=x)}\right)=a+b x-$ so the name logit regression.
- If not coded using dummy variables $-P(Y=$ "dead" $\mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$.

Reason?(i) Very Simple Form.
(ii) Lots of Similarity with Linear Regression Model.
(iii) Logistic Regression Model/Logit Regression

Model is Highly Successful!

- In simple linear regression model we have assumption $E(Y \mid X=x)=a+b x$.
- Now for the logistic regression model we have assumption $E(Y \mid X=x)=$ $1 \times P(Y=1 \mid X=x)+0 \times P(Y=0 \mid X=x)=P(Y=1 \mid X=x)=a+b x ? ?$? meaningless

■ $0 \leq P(Y=1 \mid X=x) \leq 1$ but $-\infty<a+b x<+\infty$ for $b \neq 0$.

- However, $P(Y=1 \mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$ - absolutely meaningful.
- $\frac{e^{a+b x}}{1+e^{a+b x}}$ - logistic distribution - so the name logistic regression.
- $\operatorname{logit}(P(Y=1 \mid X=x))=\log ($ ODDS for $Y=1)=\log \left(\frac{P(Y=1 \mid X=x)}{P(Y=0 \mid X=x)}\right)=$ $\log \left(\frac{P(Y=1 \mid X=x)}{1-P(Y=1 \mid X=x)}\right)=a+b x$ - so the name logit regression.
- If not coded using dummy variables $-P(Y=$ "dead" $\mid X=x)=\frac{e^{a+b x}}{1+e^{a+b x}}$.

Reason?(i) Very Simple Form.
(ii) Lots of Similarity with Linear Regression Model.
(iii) Logistic Regression Model/Logit Regression Model is Highly Successful!

- Logistic regression model used in
(a) spam detection based on certain words and characters.
(b) malignant tumor detection based on certain cell profiles.
(c) loan defaulters detection based on personal/socio-economic and demographic profiles.

Difference with linear regression - no closed form solution available.
Simple logistic regression model :

Model parameters - a, b.

The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters a, b.

More familiar specification

$\operatorname{Ber}\left(\frac{e^{a+b x}}{1+e^{a+b x}}\right)$.

- Logistic regression model used in
(a) spam detection based on certain words and characters.
(b) malignant tumor detection based on certain cell profiles.
(c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression - no closed form solution available.

Simple logistic regression model :

Model parameters - a, b.
The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters a, b.

More familiar specification

- Logistic regression model used in
(a) spam detection based on certain words and characters.
(b) malignant tumor detection based on certain cell profiles.
(c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression - no closed form solution available.
- Simple logistic regression model :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right] \sim} \\
& \prod_{i=1}^{n}\left[P\left(Y=1 \mid X=x_{i}\right)\right]^{y_{i}}\left[1-P\left(Y=1 \mid X=x_{i}\right)\right]^{1-y_{i}}= \\
& \prod_{i=1}^{n}\left[\frac{e^{a+b x_{i}}}{1+e^{a+b x_{i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{a+b x_{i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Logistic regression model used in
(a) spam detection based on certain words and characters.
(b) malignant tumor detection based on certain cell profiles.
(c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression - no closed form solution available.
- Simple logistic regression model :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right] \sim} \\
& \prod_{i=1}^{n}\left[P\left(Y=1 \mid X=x_{i}\right)\right]^{y_{i}}\left[1-P\left(Y=1 \mid X=x_{i}\right)\right]^{1-y_{i}}= \\
& \prod_{i=1}^{n}\left[\frac{e^{a+b x_{i}}}{1+e^{a+b x_{i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{a+b x_{i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters - a, b. by unknown parameters a, b.
- Logistic regression model used in
(a) spam detection based on certain words and characters.
(b) malignant tumor detection based on certain cell profiles.
(c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression - no closed form solution available.
- Simple logistic regression model :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right] \sim} \\
& \prod_{i=1}^{n}\left[P\left(Y=1 \mid X=x_{i}\right)\right]^{y_{i}}\left[1-P\left(Y=1 \mid X=x_{i}\right)\right]^{1-y_{i}}= \\
& \prod_{i=1}^{n}\left[\frac{e^{a+b x_{i}}}{1+e^{a+b x_{i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{a+b x_{i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters - a, b.
- The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters a, b.

More familiar specification

- Logistic regression model used in
(a) spam detection based on certain words and characters.
(b) malignant tumor detection based on certain cell profiles.
(c) loan defaulters detection based on personal/socio-economic and demographic profiles.
- Difference with linear regression - no closed form solution available.
- Simple logistic regression model :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right] \sim} \\
& \prod_{i=1}^{n}\left[P\left(Y=1 \mid X=x_{i}\right)\right]^{y_{i}}\left[1-P\left(Y=1 \mid X=x_{i}\right)\right]^{1-y_{i}}= \\
& \prod_{i=1}^{n}\left[\frac{e^{a+b x_{i}}}{1+e^{a+b x_{i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{a+b x_{i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters - a, b.
- The model is nothing but a family of product of Bernoulli distributions indexed by unknown parameters a, b.
- More familiar specification $-\left[Y_{i} \mid X_{i}=x_{i}\right] \stackrel{\text { ind }}{\sim} \operatorname{Ber}\left(\frac{e^{a+b x}}{1+e^{a+b x}}\right)$.
- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\beta=(a, b)^{\prime}$.
le mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression. mle is calculated using numorical algorithm - Fishor's scoring algorithm.
- Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
multicollinearity : when covariate/predictor variables are linearly highly correlated.
sparseness : for some combinations of covariate variables we do not get any data.
complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.

For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

- IRLS form is highly useful since calculation of least squares is relatively easy.
- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.

mle of β is denoted by $\hat{\beta}$ - unlike linear regression no closed form expression. mle is calculated using numerical algorithm - Fisher's scoring algorithm.

Often the algorithm may not converge - multicollinearity sparseness and complete separation.
multicollinearity : when covariate/predictor variables are linearly highly correlated.
sparseness : for some combinations of covariate variables we do not get any data.
complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.

For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

IRIS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.

- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
mle is calculated using numerical algorithm - Fisher's scoring algorithm.
Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
multicollinearity: when covariate/predictor variables are linearly highly correlated.
sparseness : for some combinations of covariate variables we do not get any data.
complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.

For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.
- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm - Fisher's scoring algorithm.

Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
multicollinearity: when covariate/predictor variables are linearly highly correlated.
sparseness : for some combinations of covariate variables we do not get any data.
complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.

For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.
- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm - Fisher's scoring algorithm.
- Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
multicollinearity : when covariate/predictor variables are linearly highly correlated.
sparseness : for some combinations of covariate variables we do not get any data.
complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.

For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

IRLS form is highly useful since calculation of least squares is relatively easy.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.
- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm - Fisher's scoring algorithm.
- Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
- multicollinearity : when covariate/predictor variables are linearly highly correlated.
sparseness : for some combinations of covariate variables we do not get any data.
complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.

For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.
- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm - Fisher's scoring algorithm.
- Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
- multicollinearity : when covariate/predictor variables are linearly highly correlated.
- sparseness : for some combinations of covariate variables we do not get any data.
complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.

For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.
- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm - Fisher's scoring algorithm.
- Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
- multicollinearity : when covariate/predictor variables are linearly highly correlated.
- sparseness : for some combinations of covariate variables we do not get any data.
- complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.

For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.
- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm - Fisher's scoring algorithm.
- Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
- multicollinearity : when covariate/predictor variables are linearly highly correlated.
- sparseness : for some combinations of covariate variables we do not get any data.
- complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.

For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.

- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.
- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm - Fisher's scoring algorithm.
- Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
- multicollinearity : when covariate/predictor variables are linearly highly correlated.
- sparseness : for some combinations of covariate variables we do not get any data.
- complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- The model is fitted using maximum likelihood method.
- Inferential goal - estimating the parameter vector $\boldsymbol{\beta}=(a, b)^{\prime}$.
- mle of $\boldsymbol{\beta}$ is denoted by $\hat{\boldsymbol{\beta}}$ - unlike linear regression no closed form expression.
- mle is calculated using numerical algorithm - Fisher's scoring algorithm.
- Often the algorithm may not converge - multicollinearity, sparseness and complete separation.
- multicollinearity : when covariate/predictor variables are linearly highly correlated.
- sparseness : for some combinations of covariate variables we do not get any data.
- complete separation : beyond some combination threshold value only $Y=1$ or only $Y=0$ responses are obtained.
- For the simple logistic regression model instead of Fisher's scoring one often use Newton-Raphson method.
- For the simple logistic regression model Newton-Raphson method become a iteratively reweighted least squares (IRLS) algorithm.
- IRLS form is highly useful since calculation of least squares is relatively easy.
\square Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

DTU

- Test statistic $Z=\frac{\hat{\beta_{0}}}{\operatorname{se(\hat {\beta _{0}})}}$
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.

Practitioners prefer p-value - $P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.

- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).

Test statistic $Z=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\beta_{1}\right)}$.

- asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Z test statistics.

Goodness of itt measures.

- Want something like R^{2}.
- Another inferential goal - testing for $\boldsymbol{\beta}$.

■ Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.

Practitioners prefer p-value $-P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.
Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
Test statistic $Z=\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$
asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.

Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Z test statistics.

Goodness of fit measures.
Want something like R^{2}

- Another inferential goal - testing for $\boldsymbol{\beta}$.

■ Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.

Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.

Practitioners prefer p-value - $P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.
Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
Test statistic $Z=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}$
asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.

Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Z test statistics.

Goodness of fit measures.
Want something like R^{2}

- Another inferential goal - testing for $\boldsymbol{\beta}$.

■ Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.

```
Practitioners prefer p-value - P(Z> |Z Zoserved }|)\mathrm{ where Z }~N(0,1)\mathrm{ .
Individual test of significance }\mp@subsup{H}{0}{}:\mp@subsup{\beta}{1}{}=0\mathrm{ vs }\mp@subsup{H}{1}{}:\mp@subsup{\beta}{1}{}\not=0\mathrm{ (test of slope).
Test statistic Z = 会,
asymptotic null distribution of test statistic ~N(0,1) - Cutoff is obtained using
N(0,1)-distribution table.
Asymptotically approximate confidence intervals can be obtained for the
parameters }\mp@subsup{\beta}{0}{}\mathrm{ and }\mp@subsup{\beta}{1}{}\mathrm{ inverting the Ztest statistics.
Goodness of fit measures.
```

Want something like R^{2}

- Another inferential goal - testing for $\boldsymbol{\beta}$.

■ Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.
- Practitioners prefer p-value $-P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.

Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope). Test statistic $Z=\frac{\beta_{1}}{\operatorname{se}\left(\beta_{1}\right)}$
asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.

Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Z test statistics.

Goodness of fit measures.
Want something like R^{2}

- Another inferential goal - testing for $\boldsymbol{\beta}$.

■ Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.
- Practitioners prefer p-value - $P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).

Test statistic $Z=\frac{\beta_{1}}{\operatorname{se}\left(\beta_{1}\right)}$
asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.

Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Z test statistics.

Goodness of fit measures.
Want something like R^{2}

- Another inferential goal - testing for $\boldsymbol{\beta}$.

■ Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.
- Practitioners prefer p-value - $P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $Z=\frac{\hat{\beta_{1}}}{s e\left(\hat{\beta}_{1}\right)}$.
asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.

Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Ztest statistics.

Goodness of fit measures.
Want something like n^{2}

- Another inferential goal - testing for $\boldsymbol{\beta}$.

■ Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).

- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.
- Practitioners prefer p-value - $P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $Z=\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.

Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Z test statistics.

Goodness of fit measures.
Want something like R^{2}

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.
- Practitioners prefer p-value - $P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $Z=\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Ztest statistics.

Goodness of fit measures.
Want something like R^{2}

- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.
- Practitioners prefer p-value - $P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $Z=\frac{\hat{\beta_{1}}}{\operatorname{se}\left(\hat{\beta_{1}}\right)}$.
- asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Ztest statistics.
- Goodness of fit measures.
- Another inferential goal - testing for $\boldsymbol{\beta}$.
- Individual test of significance $H_{0}: \beta_{0}=0$ vs $H_{1}: \beta_{0} \neq 0$ (test of intercept).
- Test statistic $Z=\frac{\hat{\beta_{0}}}{s e\left(\hat{\beta_{0}}\right)}$.
- Finite sample null distribution is not available - asymptotic null distribution (assuming no. of data n large) of test statistic $\sim N(0,1)$ - Cutoff is obtained using standard normal table.
- Practitioners prefer p-value - $P\left(Z>\left|Z_{\text {observed }}\right|\right)$ where $Z \sim N(0,1)$.
- Individual test of significance $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1} \neq 0$ (test of slope).
- Test statistic $Z=\frac{\hat{\beta_{1}}}{s e\left(\beta_{1}\right)}$.
- asymptotic null distribution of test statistic $\sim N(0,1)$ - Cutoff is obtained using $N(0,1)$-distribution table.
- Asymptotically approximate confidence intervals can be obtained for the parameters β_{0} and β_{1} inverting the Ztest statistics.
- Goodness of fit measures.
- Want something like R^{2}.

$\stackrel{\rightharpoonup}{\mathrm{PU}}$

- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.
- $D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{0 \text { mele }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
$D_{\text {null }}-D_{\text {fitited }} \geq 0$.
If $D_{\text {null }}-D_{\text {fitted }}$ very large then we can reject the hypothesis of no regression.
- H: all coefficients except β_{0} is $0 \mathrm{vs} H_{1}$: not H_{0} (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_{L}^{2}=\frac{D_{\text {null }}-D_{\text {fitted }}}{D_{\text {null }}}$
- R_{L}^{2} - larger value indicates good fit.

$\stackrel{\rightharpoonup}{\mathrm{PU}}$

- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.

```
\(D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{\text {omle }} \mid \mathbf{y}, \mathbf{X}\right)\right)\).
\(D_{\text {null }}-D_{\text {fitted }} \geq 0\).
If \(D_{\text {null }}\) - \(D_{\text {fitted }}\) vary large then we can reject the hypothesis of no regression.
\(H_{0}\) : all coefficients except \(\beta_{0}\) is 0 vs \(H_{1}\) : not \(H_{0}\) (test of regression is needed
or not/no regressors).
```

This test is analogue of F-test in linear regression models.
Can construct a pseudo-R squared based on Deviance : $R_{L}^{2}=\frac{D_{\text {null }}-D_{\text {fitted }}}{D_{\text {null }}}$
R_{L}^{2} - larger value indicates good fit.

$\underline{\underline{\text { PU }}}$

- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.
- $D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{0 \text { mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
$D_{\text {null }}-D_{\text {fitted }} \geq 0$.
If $D_{\text {null }}-D_{\text {fitted }}$ very large then we can reject the hypothesis of no regression.
H_{0} : all coefficients excent β_{0} is 0 vs H_{1} : not H_{0} (test of regression is needed or not/no regressors).

This test is analogue of F -test in linear regression models.
Can construct a pseudo- R squared based on Deviance : $R_{L}^{2}=\frac{D_{\text {null }}-D_{\text {fitted }}}{D_{\text {null }}}$
R_{L}^{2} - larger value indicates good fit.

$\underline{\underline{\text { PU }}}$

- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.
- $D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{0 \text { mie }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- $D_{\text {null }}-D_{\text {fitted }} \geq 0$.

If $D_{\text {null }}-D_{\text {fitted }}$ very large then we can reject the hypothesis of no regression.
H_{0} : all coefficients except β_{0} is 0 vs H_{1} : not H_{0} (test of regression is needed or not/no regressors).

This test is analogue of F-test in linear regression models.
Can construct a pseudo-R squared based on Deviance

R_{L}^{2} - larger value indicates good fit.

- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.
- $D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{0 \text { mie }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- $D_{\text {null }}-D_{\text {fitted }} \geq 0$.
- If $D_{\text {null }}-D_{\text {fitted }}$ very large then we can reject the hypothesis of no regression.
> H_{0} : all coefficients except β_{0} is 0 vs H_{1} : not H_{0} (test of regression is needed or not/no regressors).

This test is analogue of F -test in linear regression models.
Can construct a pseudo-R squared based on Deviance

R_{L}^{2} - larger value indicates good fit.

- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.
- $D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{0 \text { mie }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- $D_{\text {null }}-D_{\text {fitted }} \geq 0$.
- If $D_{\text {null }}-D_{\text {fitted }}$ very large then we can reject the hypothesis of no regression.
- H_{0} : all coefficients except β_{0} is 0 vs H_{1} : not H_{0} (test of regression is needed or not/no regressors).

This test is analogue of F -test in linear regression models.
Can construct a pseudo-R squared based on Deviance

R_{L}^{2} - larger value indicates good fit.

- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.
- $D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{0 \text { mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- $D_{\text {null }}-D_{\text {fitted }} \geq 0$.
- If $D_{\text {null }}-D_{\text {fitted }}$ very large then we can reject the hypothesis of no regression.
- H_{0} : all coefficients except β_{0} is 0 vs $H_{1}:$ not H_{0} (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.

Can construct a pseudo-R squared based on Deviance

R_{L}^{2} - larger value indicates good fit.

- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.
- $D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{0 \text { mie }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- $D_{\text {null }}-D_{\text {fitted }} \geq 0$.
- If $D_{\text {null }}-D_{\text {fitted }}$ very large then we can reject the hypothesis of no regression.
- H_{0} : all coefficients except β_{0} is 0 vs H_{1} : not H_{0} (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_{L}^{2}=\frac{D_{\text {null }}-D_{\text {fitted }}}{D_{\text {null }}}$ R_{L}^{2} - larger value indicates good fit.
- Deviance measure : $D_{\text {fitted }}=-2 \ln \left(L\left(\hat{\boldsymbol{\beta}}_{\text {mle }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- Null model means only intercept term - no regressors.
- $D_{\text {null }}=-2 \ln \left(L\left(\hat{\beta}_{0 \text { mie }} \mid \mathbf{y}, \mathbf{X}\right)\right)$.
- $D_{\text {null }}-D_{\text {fitted }} \geq 0$.
- If $D_{\text {null }}-D_{\text {fitted }}$ very large then we can reject the hypothesis of no regression.
- H_{0} : all coefficients except β_{0} is 0 vs $H_{1}:$ not H_{0} (test of regression is needed or not/no regressors).
- This test is analogue of F-test in linear regression models.
- Can construct a pseudo-R squared based on Deviance : $R_{L}^{2}=\frac{D_{\text {null }}-D_{\text {fitted }}}{D_{\text {null }}}$
- R_{L}^{2} - larger value indicates good fit.
- Multiple logistic regression :

Model parameters - $\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$.
Everything is same as simple logistic regression.
One additional issue - multicollinearity or aliasing.
multicollinearity : some of the regressors/predictors are linearly highly correlated.
multicollinearity makes some estimates very unreliable!

- Multiple logistic regression

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid \mathbf{X}=\mathbf{x}\right] \sim} \\
& \prod_{i=1}^{n}\left[\frac{e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{1-y_{i}}
\end{aligned}
$$

Model parameters $-\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$.

Everything is same as simple logistic regression.
One additional issue - multicollinearity or aliasing.
multicollinearity: some of the regressors/predictors are linearly highly correlated.
multicollinearity makes some estimates very unreliable!

- Multiple logistic regression :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid \mathbf{X}=\mathbf{x}\right] \sim} \\
& \prod_{i=1}^{n}\left[\frac{e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters $-\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$.

Everything is same as simple logistic regression.
One additional issue - multicollinearity or aliasing.
multicollinearity: some of the regressors/predictors are linearly highly correlated.
multicollinearity makes some estimates very unreliable!

- Multiple logistic regression :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid \mathbf{X}=\mathbf{x}\right] \sim} \\
& \prod_{i=1}^{n}\left[\frac{e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters - $\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$.
- Everything is same as simple logistic regression.

One additional issue - multicollinearity or aliasing.
multicollinearity : some of the regressors/predictors are linearly highly correlated.
multicollinearity makes some estimates very unreliable!

- Multiple logistic regression :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid \mathbf{X}=\mathbf{x}\right] \sim} \\
& \prod_{i=1}^{n}\left[\frac{e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters $-\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$.
- Everything is same as simple logistic regression.
- One additional issue - multicollinearity or aliasing.

multicollinearity : some of the regressors/predictors are linearly highly correlated.

multicollinearity makes some estimates very unreliable!

Multiple logistic regression :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid \mathbf{X}=\mathbf{x}\right] \sim} \\
& \prod_{i=1}^{n}\left[\frac{e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters $-\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$.
- Everything is same as simple logistic regression.
- One additional issue - multicollinearity or aliasing.
- multicollinearity : some of the regressors/predictors are linearly highly correlated.
multicollinearity makes some estimates very unreliable!

Multiple logistic regression :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid \mathbf{X}=\mathbf{x}\right] \sim} \\
& \prod_{i=1}^{n}\left[\frac{e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters - $\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$.
- Everything is same as simple logistic regression.
- One additional issue - multicollinearity or aliasing.
- multicollinearity : some of the regressors/predictors are linearly highly correlated.
- multicollinearity makes some estimates very unreliable!

Multiple logistic regression :

$$
\begin{aligned}
& {\left[Y_{1}=y_{1}, \cdots, Y_{n}=y_{n} \mid \mathbf{X}=\mathbf{x}\right] \sim} \\
& \prod_{i=1}^{n}\left[\frac{e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{y_{i}}\left[\frac{1}{1+e^{\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{p} x_{p i}}}\right]^{1-y_{i}}
\end{aligned}
$$

- Model parameters - $\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{p}$.
- Everything is same as simple logistic regression.
- One additional issue - multicollinearity or aliasing.
- multicollinearity : some of the regressors/predictors are linearly highly correlated.
- multicollinearity makes some estimates very unreliable!
- Calculate variance inflation factors VIF $_{j}$ for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining ($p-1$) covariates - calculate the R_{j}^{2} (R -squared).

- High VIF means highly correlated covariate - VIF $_{j}>5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals - Deviance residual, Pearson residual and Anscombe residual.

Similar diagnostic plots based on them can be devised like linear regression problems.

- Calculate variance inflation factors VIF for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining ($p-1$) covariates - calculate the R_{j}^{2} (R-squared).

High VIF means highly correlated covariate - VIF $F_{j}>5$ is high (thumb rule).
Unlike linear regression there are different notions of residuals - Deviance residual, Pearson residual and Anscombe residual.

Similar diagnostic plots based on them can be devised like linear regression problems.

- Calculate variance inflation factors VIF for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining ($p-1$) covariates - calculate the R_{j}^{2} (R-squared).

VIF $=\frac{1}{1-R_{j}^{2}}$
High VIF means highly correlated covariate - VIF >5 is high (thumb rule).
Unlike linear regression there are different notions of residuals - Deviance residual, Pearson residual and Anscombe residual.

Similar diagnostic plots based on them can be devised like linear regression problems.

- Calculate variance inflation factors VIF $_{j}$ for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining ($p-1$) covariates - calculate the R_{j}^{2} (R -squared).
- VIF $_{j}=\frac{1}{1-R_{j}^{2}}$
- High VIF means highly correlated covariate - VIF $_{j}>5$ is high (thumb rule).

Unlike linear regression there are different notions of residuals - Deviance residual, Pearson residual and Anscombe residual.

Similar d"agnostic pots based on them can be devised like linear regression problems.

- Calculate variance inflation factors VIF $_{j}$ for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining ($p-1$) covariates - calculate the R_{j}^{2} (R -squared).
$-V I F_{j}=\frac{1}{1-R_{j}^{2}}$
- High VIF means highly correlated covariate - VIF $_{j}>5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals - Deviance residual, Pearson residual and Anscombe residual.

Similar diagnostic plots based on them can be devised like linear regression problems.

- Calculate variance inflation factors VIF $_{j}$ for each of the p regressors.
- Perform a multiple linear regression of the j th covariate on the remaining ($p-1$) covariates - calculate the R_{j}^{2} (R -squared).
$-V I F_{j}=\frac{1}{1-R_{j}^{2}}$
- High VIF means highly correlated covariate - VIF $_{j}>5$ is high (thumb rule).
- Unlike linear regression there are different notions of residuals - Deviance residual, Pearson residual and Anscombe residual.
- Similar diagnostic plots based on them can be devised like linear regression problems.

