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Formal Methods:
General Issues
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Rigorous Development

• Rigorous development aims at developing analysis, designs,
programs, components and proving interesting properties thereof

• Several approaches at several levels

• Will delve into the so-called Formal Method approach

• Formal methods in fact encompasses several techniques, tools,
specification languages, proof theories, . . .

• We will use however a well-known approach (VDM, the Vienna
Development Method) to highlight several points

• Plan:
1. General considerations on formal methods
2. The VDM approach: syntax, semantics, tools, examples
3. Other approaches
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Formal Methods: Pointers
Some of them used to prepare this set of slides:

A Specifier’s Introduction to Formal Methods J.
M. Wing, Carnegie Mellon University, IEEE Com-
puter, September 1990

Seven Myths of Formal Methods Anthony Hall,
Praxis Systems, IEEE Computer, September 1990

Systematic Software Development Using VDM
Cliff B. Jones, Prentice-Hall, 1986

Formal Specification of Software John Fitzger-
ald, Center for Software Reliability

A Guide to Reading VDM Specifications Bob
Fields University of Manchester

Programs from Specifications A. Herranz, J. J.
Moreno, June 1999 (talk given at the Institut für
Wirtschaftsinformatik, Universität Münster)

Formal Specifications: a Roadmap Axel van
Lamsweerde, Université Catholique de Louvain

Understanding the differences between VDM
and Z, I. J. Hayes, C. B. Jones and J. E. Nicholls,
University of Manchester

Modeling Systems: Practical Tools and Tech-
niques in Software Development Fitzgerald &
Larsen,Cambridge University Press, 1998
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Formal Methods
• Mathematically based techniques for describing system

properties (in a very broad sense)

• Turing (late 1940s): annotation of programs makes reasoning with
them easier

• Mathematical basis usually given by a formal specification
language

• However, formal methods usually include:
• Indications of fields where it can be applied
• Guidelines to be successfully used
• Sometimes, associated tools

• Tools do not necessarily exist: a FM is a FM, and not a
computer language (compare with maths or physics)

• However, associated computer languages often exist

• Specification language always present
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An Example of a FM

• Backus-Naur form for grammars is a specification language

A := aBb | λ

B := AA

• Any reasoning over a schema of a grammar is valid for any
grammar represented by the scheme

• Formal method associated include equations over strings and
automata

• Domain of application clearly delimited
(module translation of other problems into strings)

• This is usual in FM: normally domain-oriented
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What is Formal Specification

The expression in some formal language and at some level of
abstraction of a collection of properties some system should
satisfy

• Properties denote a wide variety of targets:
• Functional requirements
• Non-functional requirements (complexity, timing, . . . )
• Services provided by components
• Protocols of interaction among such components
• . . .

• A formal specification include:
• Rules to determine well formed sentences (syntax),
• Rules to interpret sentences (semantics),
• Rules to infer useful information (proof theory)
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Good Specifications

• Specification languages often more expressive than computer
languages

• Hence, specifications more concise than computer programs

• Good specifications:
• Adequate for the problem at hand
• Internally consistent (single interpretation makes true all

properties)
• Unambiguous (only one interesting interpretation makes the

specification true)
• Complete (the set of specified properties must be enough)

• Probably as difficult as writing a good computer program
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Why Formally?

• Lack of ambiguity (present in, e.g., natural language)

• Even computer languages can show some degree of ambiguity!
if P1 if P2 C1; else C2;

a := b++c;

• Formality helps to check and derive further properties

• Automatically or, at least, systematically:

derive logical consequences through theorem proving; confirm that operational specifications
satisfy abstract specifications; generate counterexamples otherwise; infer specifications from
scenarios; animate the specification to check adequacy; generate invariants or liveness
conditions; refine specifications and produce proof obligations; generate automatically test
cases and oracles; support reuse and matching of components; ensure liveness and security
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For Whom and When?
Useful at many levels:

• Consumers may approve specifications (not usual)

• Programmers use the specification as a reference guide

• Analyzers use the specification to discover incompleteness and
inconsistencies in the original requirements

• Designers can use it to decompose and refine a software system

• Verification needs a previous specification

• Validation and debugging can take advantage of test cases and
expected results generated by means of the specification

• Specifications can be used to document the path from
requirements to implementation
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Formal Methods and CBSE
• Developed models composed after inception

• Some may need to be extended (even dynamically reconfigured)

• Reuse is key: reasoning based on compositional properties (and
not in global properties particular to a model)

• Lack of referential transparency in many languages an issue!

• Lack of global vision and architecture specification a problem

• Should be coupled with component specifications themselves
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Pitfalls
Formal specification is not without problems:

• Specifications are never totally formal: an initial, informal
definition of, e.g., properties, is always needed

• A translation from “informal” to “formal” is not enough

• Hard to develop and assess

• Modeling choices usually not documented (“fox syndrome”)

• Importance of byproducts usually neglected

• More useful when application domain is reduced
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A Taxonomy

• Traditionally: model-based vs. property based

• Somewhat incomplete / confusing (intersection not empty, even
without forcing the language)

• Alternative classification:
• History-based state the set of admissible histories;

interpreted over time
• State-based express the set of valid states at any arbitrary

snapshot; use invariants and pre/post conditions
• Transition-based characterize transitions between states;

preconditions guard the transition
• Functional classified as algebraic (capture data type behavior

as equations) or higher-order
• Operational rely on the definition of an (abstract) machine

• Will review VDM, a state-based well-known formal method
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VDM Basics: Types, Functions, Operations
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VDM in a Nutshell
• Vienna Development Method : IBM laboratory, Vienna

• Roughly and inaccurately:

ALGOL-60 → PL/I → UDL-3 → VDM
Compiler Compiler Oper. Denot. Funct.

Semantics Semantics Part

• State-based language (several variants exist)

• Data types, invariants, preconditions, postconditions

• Type checking and proof obligations

• Logic of Partial Functions

• Implicit and explicit specifications
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The Overall Picture
• A formal model in VDM is composed of:

• Basic types,
• Defined types (with many useful constructors)
• Invariants for those types,
• Explicit function definitions (including preconditions),
• Implicit definitions (postconditions),
• Not referentially transparent constructs,
• Very possibly grouped into abstract data types (standard

VDM-SL) or classes (VDM-PP)

• Not all of them have to be present in a given model

• Heavy use of (first-ordera) logic

• Explicit function definitions using a relatively standard language

• Mathematical and computer-oriented syntax

aMore on that later
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Basic Types

Type Symbol Values Example Values Operators

nat Natural numbers 0,1,... +, -, *, ...

nat1 nat excluding 0 1,2,... +, -, *, ...

int integers ...,-1,0,1,... +, -, *, ...

real Real Numbers 3.1415 +, -, *, ...

char Characters ’a’, ’F’, ’$’ =, <>

bool Booleans true, false and, or, ...

tokena Not applicable Not applicable = , <>

quote Named values <Red>, <Bio> = , <>

• Token: used to represent any unknown / yet not define type

• Signatures: +nat : nat× nat → nat

• What is the signature of =, <>?
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Explicit Function Definitions

• VDM features a (functional/procedural) programming language

• Function definitions include a signature and the expression
defining the function:

f : X1 × . . . × Xn → R
f(x1, . . . , xn) 4 e(x1, . . . , xn)

• Several arrows available
• Using computer notation:
f: X1 * ... * Xn -> R
f(x1, ..., xn) == ...

• E.g.: define multiplication based on addition
mult: nat * nat -> nat
mult(x, y) == if y = 1

then x
else mult(x, y - 1) + y
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Implicit Function Definitions

• Sometimes one does not want / know how to define a function
• Implicit function definitions allow to express what is to be

computed, not how

f(x1 : X1, . . . , xn : Xn) r : R
pre P (x1, . . . , xn)
post Q(x1, . . . , xn, r)

pre: what has to be true before
calling; post: what will be true af-
ter calling

• Computer notation:
f (x1: X1, ..., xn: Xn) res: R
pre P(x1, ..., xn)
post Q(x1, ..., xn, res)

• Example:
mult(x: nat, y: nat) res: R
pre true
post res = x * y

• Implementations are required to be deterministic (e.g., x ∈ T )
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Proof Obligations

• pre and postconditions impose formulas to be met by the
function definition

pre-f(x1, . . . , xn) → post-f(x1, . . . , xn, f(x1, . . . , xn))

• These formulas have to be discharged (proved)

• By proving them we:
• ensure that the model is consistent and that the functions

implement the desired properties,
• can find inconsistencies in the requirements

• Proofs:
• Classically (by hand)
• Automated prover (often proofs are trivial)

• Hard-to-prove proof obligations often pinpoint weak parts of the
model / requirements
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Implicit + Explicit

• Both can be used at the same time
f : X1 × . . . × Xn → R
f(x1, . . . , xn) 4 e(x1, . . . , xn)
pre P (x1, . . . , xn)
post Q(x1, . . . , xn, res)

• Computer notation: f: X1 * ... * Xn -> R
f (x1, ..., xn) == ...
pre P(x1, ..., xn)
post Q(x1, ..., xn, RESULT)

• Example: mult: nat * nat -> nat
mult(x, y) == if y = 1

then x
else mult(x, y - 1) + y

pre true
post RESULT = x * y

• RESULT implicit identifier to express the result of the function
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Operations

• VDM can also model changes to a global state

• Operations which do so have to explicitly declare that

op(x1 : X1 × . . . × xn : Xn) r : R
ext rd :i : I

wr :io : IO
pre P (x1, . . . , xn, i, io)

post Q(x1, . . . , xn, i, io,
↼

io, res)

• External state: i and io

• Decorated
↼

io: value of io after the operation executes
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What Now?
• Express software system as a model

• Check Internal consistency:
• Types (type system has rules)
• Proof obligations (using LPF and proof theory, preconditions,

postconditions, invariants)

• Check consistency with other modules (used or users)

• Reference for requirements analysis

• Reference for design and implementation:
• Automatic (e.g., IFAD Tools)
• Manual (refinement steps)
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Logic
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Logic(s)

Our ability to state invariants, record preconditions and
post-conditions, and the ability to reason about a formal
model depend on the logic on which the modeling language is
based.

• Need to state invariants, record preconditions and post-conditions

• Reasoning about a formal model depends on the logic on which
the modeling language is based

• Classical logical propositions and predicates

• Connectives
• Quantifiers
• Handling undefinedness: the logic of partial functions
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The Temperature Monitor Example

Temperature

Time
0

10

20

30

40

1 2 3 4 5 6

The monitor records the last
five temperature readings 25 10 5 5 10
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The Temperature Monitor Example

• The following conditions are to be detected by the monitor:

• Rising: the last reading in the sample is greater than the first
• Over limit: there is a reading in the sample in excess of 400 C
• Continually over limit: all the readings in the sample exceed

400 C
• Safe: If readings do not exceed 400 C by the middle of the

sample, the reactor is safe. If readings exceed 400 C by the
middle of the sample, the reactor is still safe provided that the
reading at the end of the sample is less than 400 C.

• Alarm: The alarm is to be raised if and only if the reactor is
not safe
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Predicates and Propositions

• Predicates are logical expressions

• The simplest kind of logical predicate is a proposition

• Proposition: a logical assertion about a particular value or values

• Usually involving some operator to compare the values:

3 < 27

5 = 9

• Propositions are normally either true or false (classical logic)

• VDM handles also undefined values
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First Order Predicates
• A logical expression that contains variables which can stand for

one of a range of possible values, e.g.

x < 27

x2 + x − 6 = 0

• The truth or falsehood of a predicate depends on the value taken
by the variables
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Predicates in the Monitor Example

• We will advance some data structures:
• Monitor is an array of integersa

Monitor = seq of int

• Consider a monitor m
• First reading in m: m(1); last reading: m(5)

• State that the first reading in m is strictly less than the last reading:
m(1) < m(5)

• The truth of the predicate depends on the value of m.

aApproximately; VDM sequences have properties not present in arrays
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Predicates: The Rising Condition

• The last reading in the sample is greater than the first

• We can express the rising condition as a Boolean function:
Rising: Monitor -> bool
Rising(m) == m(1) < m(5)

• For any monitor m , the expression Rising(m) evaluates to true
iff the last reading in the sample in m is higher than the first, e.g.
Rising([233,45,677,650,900], true)
Rising([433,45,677,650,298], false)
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Basic logical operators

• We build more complex logical expressions out of simple ones
using logical connectives

• A and B truth values (true or false)

Traditional VDM Name
¬A not A Negation

A ∧ B A and B Conjunction
A ∨ B A or B Disjunction
A → B A => B Implication
A ↔ B A <=> B Biimplication

• Interpretation of expressions usually done using truth tables
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Basic Logical Operators

• Negation: the opposite of some
logical expression is true

A ¬A
true false
false true

• E.g., the reading does not raise: not Rising(mon)

• Disjunction: alternatives that are
not necessarily exclusive

A B A ∨ B
false false false
false true true
true false true
true true true

• E.g., Over limit: There is a reading in the sample in excess of
400 C
OverLimit: Monitor -> bool

OverLimit(m) ==
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Basic Logical Operators

• Conjunction: all of a collection of
predicates are true

A B A ∧ B
false false false
false true false
true false false
true true true

• Continually over limit: all readings in the sample exceed 400 C
COverLimit: Monitor -> bool

COverLimit(m) ==

• De Morgan law: ¬(A ∨ B) ≡ ¬A ∧ ¬B
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Basic Logical Operators

• Implication: predicates which
must be true under certain condi-
tions

A B A → B
false false true
false true true
true false false
true true true

• A → B ≡ ¬A ∨ B

• Safe: If readings do not exceed 400 C by the middle of the
sample, the reactor is safe. If readings exceed 400 C by the
middle of the sample, the reactor is still safe provided that the
reading at the end of the sample is less than 400 C.
Safe: Monitor -> bool

Safe(m) ==
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Basic Logical Operators

• Biimplication allows us to express
equivalence

A B A ↔ B
false false true
false true false
true false false
true true true

• A ↔ B ≡ (A → B) ∧ (B → A)

• Alarm is true if and only if the reactor is not safe
Alarm(m) =

• This can also be recorded as an invariant property (more on that
later)
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Quantifiers
• For large collections of values, using a variable makes more

sense than dealing with each case separately.

• inds m represents indices (1-5) of the sample

• The “over limit” condition can then be expressed more
economically as: There is an index whose reading is over 400

• “Continually over limit” condition can be expressed more
succinctly

• Existential quantifier:

Logic VDM notation
∃x • P (x) exists Binding & Predicate

• Universal quantifier:

Logic VDM notation
∀x • P (x) forall Binding & Predicate
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Quantifiers in VDM
• Bindings restrict the set of value a variable ranges over

• Type bindings:
x: nat
n: seq of char

x ∈ N

n ∈ seq of char
• Set bindings:
i in set inds m
x in set {1 ... 20}

i ∈ inds m
x ∈ {1, . . . , 20}

• Type binding: the bound variable ranges over a type (a possibly
infinite collection of values); improves type information

• Set binding: the bound variable ranges over a finite set of values

• Type: set of values

• Unneeded in classical, type free, logic — no notion of “erroneous”
or “undefined” values

• But there are type-aware logics (many-sorted logics)
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Quantifiers
• Several variables may be bound at once by a single quantifier:

∀x, y ∈ {1, . . . , 5} • ¬(m(x) = m(y))

or, in VDM notation,

forall x, y in set {1 ... 5} & not m(x) = m(y)

• Would this predicate be true for the following value of m ?

[320, 220, 105, 119, 150]
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Quantifiers: Exercises
1. All the readings in the sample are less than 400 and greater than

50
2. Each reading in the sample is up to 10 greater than its

predecessor

3. There are two distinct readings in the sample which are over 400

4. There is a “single minimum” in the sequence of readings, i.e.,
there is a reading which is strictly smaller than any of the other
readings

5. Reverse the order of the quantifiers in the previous example and
give it a meaning
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Deduction Rules
Valid derivations in propositional / predicate calculus are represented
using inference rules, e.g.

∨ − I
Ei

E1 ∨ E2

(1 ≤ i ≤ 2)

¬¬ − I
E

¬¬E

...

contr
E1;¬E1

E

∀ − defn
¬∃x ∈ X • ¬E(x)

∀x ∈ X • E(x)

∀ − E
∀x ∈ X • E(x); s ∈ X

E(s/x)

...

• Any good book on classical logic should include a detailed
discussion on them.

• VDM completes them with rules for types and equality
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Coping with Undefinedness

• LPF: Logic of Partial Functions

• f : X1 × . . . × Xn → R total if for any c1 : X1, . . . , cn : Xn the
expression f(c1, . . . , cn) is defined, and partial otherwise

• What if a function yields no (suitable) value for some element in
the domain?

subp: int * int -> int
subp(x, y) ==

if x = y
then 0
else subp(x, y + 1) + 1

pre y =< x
post RESULT = x - y

No value ever returned if x < y,
e.g., subp(0, 1)

• Proof obligation:

∀x, y ∈ N • y ≤ x → subp(x, y) ∈ N ∧ subp(x, y) = x − y
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Logic of Partial Functions

• When antecedent false, whole formula is true

• However subp will not denote a natural number

• How can we determine the truth value of subp(0, 1) = 1?

• What values have to be assigned to expressions where terms fail
to denote values?

• Logic in VDM is equipped with facilities for handling undefined

∀x : N • x = 0 ∨
x

x
= 1

• Can’t evaluate disjunction when x = 0

• Even if order-sensitive operators (cand, cor ) are used

• However, it is a key property of numbers
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Basic LPF Operators

Disjunction: If one disjunct is
true, the whole disjunction is true

A B A ∨ B
false false false

* false false
false * false
false true true

* true true
true * true

* * *
true true true

Conjunction: If one conjunct is
false, the whole conjunction is
false

A B A ∧ B
false false false

* false false
false * false
false true false

* true *
true * *

* * *
true true true

A ¬A
true false
false true
* *

Negation: negating the undefined
is undefined
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Last Operators and Some Properties

• Tables for → and ↔ can be deduced from their definitions (do it)

• Does De Morgan law hold? (test it)

• Existential: ∃x • P (x) ≡ P (c0) ∨ P (c1) ∨ · · ·

• Universal: ∀x • P (x) ≡ P (c0) ∧ P (c1) ∧ · · ·

• Notably, excluded middle (E ∨ ¬E) does not hold!

• Some proofs more involved than in classical logic

• VDM includes specific proof rules for all implicit operations
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Points to Take into Account
It should be noted that:
• Propositional (no variables) calculus is always decidable

• But computationally hard

• Pure predicate calculus is semi-decidable
• An algorithm can prove that a sentence is a theorem

(provable) when it is a theorem
• Do not mix being provable in a formal system with being true

in a model !
• Predicate calculus with equality axioms and interpreted functions

is not decidable
• There are true sentences which are not provable, and whose

negation is not provable either
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More Types and Constructions:
Sequences, Sets, Mappings, Records, . . .
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Non-Basic Types in VDM

• VDM is equipped with structured types

• Will review them very shortly:

• Sets,
• Mappings,
• Sequences,
• Records,
• Cartesian and union types,
• Type definitions and invariants

• Mathematical script counterparts will be given when reasonably
well known and appropriate
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Sets
• Finite, non-indexed, collection of values, with no repetition, order

immaterial
• Type constructor:
T1 = set of T2 T1 = T2−set

• T1: class of all possible finite sets with elements drawn from T2

• Examples:
Coins = set of nat1 Coins = N1−set
Alphabet = set of char Alphabet = nat−set

• Values:
{’a’, ’g’, ’K’}
{{-2, -3, 1}, {}, {3, 0}}
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Defining Sets

• Enumeration: {}, {4.3, 5.6}

• Integer subrange: {3, ..., 11}

• Comprehension: {expression | binding & predicate}

• Set of values of expression under each assignment of variables
in binding which satisfy predicate

• Examples:
{x | x: nat & x < 5} {x|x ∈ N • x < 5}
{y | y: nat & y < 0} {y|y ∈ N • y < 0}
{x+y | x, y: nat & x<3 and y<4}

{x + y|x, y ∈ N • x < 3 ∧ y < 4}
{x*y | x, y: nat1 & (x > 1 or y > 1) and x*y < k}

{x ∗ y|x, y ∈ N1
• (x > 1 ∨ y > 1) ∧ x ∗ y < k}

• What is the meaning of the last one?
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Set Operations

• Counterparts of the usual mathematical constructions

• Obey to usual foundations

• Recall that, e.g., Pascal already had some set operations

• Assume: TX = set of X

_ union _: TX * TX -> TX Set union A
⋃

B
_ inter _: TX * TX -> TX Set intersection A

⋂
B

_ \ _: TX * TX -> TX Set difference A − B
card: TX -> nat Cardinality |A|
_ in set _: X * TX -> bool Membership x ∈ A
_ subset _: TX * TX -> bool Subset testing A ⊂ B

• Note: all of them are total (modulo well-typedness)
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Mappings

• Partial applications between two arbitrary sets

• Very expressive: mappings can represent sequences, hash
tables, functions, . . .

• Not available in most languages!a

• One-to-one or many-to-one, never many-to-*

• This is an adequate basis for many other types:
• Arrays: inds s 7→ T,
• Bank accounts: BankNumber 7→ Owner,
• (Hash) Tables, . . .

• Mappings have to be finite to be well defined

aThey resemble extensible hash/associative arrays, though
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Mapping Constructors

• Type constructor:
T1 = map T2 to T3 T1 = T2 7→ T3

• E.g.: map nat to real

• Mapping enumeration: finite set of maplets
{0 |-> 1, 1 |-> 1, 2 |-> 2, 3 |-> 6}

{0 7→ 1, 1 7→ 1, 2 7→ 2, 3 7→ 6}
{0 |-> 0!, 1 |-> 1!, 2 |-> 2!, 3 |-> 3!}

{0 7→ 0!, 1 7→ 1!, 2 7→ 2!, 3 7→ 6!}

• Mapping comprehension:

{expression |-> expression | binding & predicate}

• Examples:
{x|->x**2 | x:nat1 & x**2<3} {x 7→ x2|x ∈ N1

• x2 < 3}
{x 7→ y|x ∈ {0, . . . , 9}, y ∈ N • b10yπc mod 10 = x∧

6 ∃z • z < y ∧ b10zπc mod 10 = x}
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Operators on Mappings
TX,Y = map X to Y

dom: TX,Y -> set of X Domain
rng: TX,Y -> set of Y Range
_(_): TX,Y * X -> Y Lookup; partial
_ munion _: TX,Y * TX,Y -> TX,Y Mapping union; partial
_ ++ _: TX,Y * TX,Y -> TX,Y Overriding mapping

union

• Note that the lookup operator has the same syntax as indexing in
sequences

• Other operators available to restrict mappings
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Sequences

• Finite, indexed, collection of values (of any type)

• Order matters, repetitions allowed (unlike sets)

• Type constructor:
T1 = seq of T2 T1 = T ∗

2

• T1: class of all possible finite sequences with elements drawn
from T2

• Examples:
Naturals = seq of nat Naturals = N

∗

Matrix = seq of (seq of real) Matrix = (R∗)∗

• Values (write the corresponding type!)

[1, 2, -6, 7]
[{4.5, 7.6}, {-5, -0.9}]
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Operators on Sequences

• Assume: TX = seq of X

hd: TX -> X First element; partial
tl: TX -> TX Tail; partial
len: TX -> nat Length of sequence
elems: TX -> set of X Set of elements in sequence
inds: TX -> set of nat Set of elements in sequence
_ ˆ _: TX * TX -> TX Concatenation
_ (_): TX * nat -> X N-th element; partial
_(_..._): TX*nat*nat-> X Subsequence; partial

• len and _(_) obey to

s ∈ TX ` ∀i • 1 ≤ i ≤ len s → s(i) ∈ X

• Behavior of the rest of the operators can be derived

• E.g., x ∈ elems s ↔ ∃i ∈ {1, . . . , len s} • s(i) = x
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Sequence Example

• Alternatively merging two sequences
Merge: S * S -> S
Merge(s1, s2) ==

if s1 = [] then s2 else
if s2 = [] then s1 else

[ hd s1, hd s2 ] ˆ Merge(tl s1, tl s2)

• Write down the corresponding postcondition

• Note that the algorithm
Merge(s1, s2) ==

if s1 = [] then s2
else [hd s1] ˆ Merge(tl s2, tl s1)

should correspond to the same specification
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Records
• Combine items of different types in a single unit

• Type constructor:
RecType :: FieldName1: Type1

FieldName2: Type2
...

• Similar to C / C++ structures or Pascal / Ada records
• Example:
CarDef :: Plate: nat

Engine: seq of char

• Records also called composites
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Constructing and Consulting Records

• Record definitions induce a construction function:

mk-RecType : Type
1
× Type

2
× · · · → RecType

• E.g., mk_CarDef(345, "XFD88767DD")

• Also, for each field a consulting function is created:

FieldNamen : RecType → Typen

• E.g.,
Plate(mk_CarDef(345, "XFD88767DD")) = 345
Engine(mk_CarDef(345, "XFD88767DD")) = "XFD88767DD"

• Updating: µ function changes a single field

• Assume Car = mk_CarDef(345, "XFD88767DD")
mu(Car, Plate |-> 256) = mk_CarDef(256, "XFD88767DD")
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Product, Union, Optional Components

• Cartesian product: tuple construction
T = T1 * T2 * ... T = T1 × T2 × . . .

• Values are tuples, assumed right associative, with selectors fst
and snd

• Union of types:
T = T1 | T2 | ... T = T1|T2| . . .

• Any of the values in T1, T2, . . . is a value of T

• If T1, . . . , Tn are disjoint, a function can discern the case at hand

• Optional component: T = [T1]

• Also as part of products, records

• If missing, value is nil
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Invariants
• Restricting attention to some elements in the type is often

convenient (types traditionally checkable at compile time)

• E.g., polar coordinate system or search trees

• In general, invariants help to have a normal form: each object has
a canonical representative

• This makes equality testing easier

• VDM allows to associate an invariant (a predicate) to each new
data type

• This invariant has to:
• Be true (in addition to any precondition) before function

application
• Be true (in addition to any postcondition) upon function exit
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An Invariant Example

• Polar coordinate system: (r, θ)

• We want rotate points (construction comes for free)
PolPoint = Polar :: Radius: real

Angle : real

Rotate: PolPoint * real -> PolPoint
Rotate (P, R) == ...
pre true
post RESULT = mu(P, Angle |-> Angle(P) + R)

• Invariant belongs to the data type, not to the function
PolPoint = Polar :: Radius: real

Angle : real
inv P == (Radius(P) > 0 ∧ 0 ≤ Angle(P) < 2π)∨

(Radius(P) = 0 ∧ Angle(P) = 0)

• Postcondition and function definitions have to be changed to
respect invariant inv-Polar
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Extended Examples
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Extended Examples

• Will develop three longer examples:
• Sequence-based standard stack
• Record-based standard stack
• Insertion in a sorted sequence

• We will try them with a set of tools (IFAD VDM TollBox)

• We will then study:
• Generated proof obligations
• Generated code

• IFAD VDM files include: module name and keyword to separate
types, functions, etc.

• Will not show them here
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VDM Model: Stack
• Using a sequence

• Type definition:
IStck = seq of int

• Operations naturally use the corresponding sequence operations:

Empty: () -> IStck
Empty () == []
pre true
post RESULT = []

Pop: IStck -> IStck
Pop (S) == tl S
pre S 6= []
post RESULT = tl S

Top: IStck -> int
Top (S) == hd S
pre S 6= []
post RESULT = hd S

Push: IStck * int +> IStck
Push (S, E) == [E] ˆ S
pre true
post E = hd RESULT ∧

S = tl RESULT
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Stack: Proof Obligations

• Different obligations if only implicit, explicit, or both definitiones
are used

• We will have a look at some proof obligations

• Pop, Top: Need to ensure precondition

∀S : IStck • S 6= []

• Impossible to ensure in isolation: every call to Pop, Top has to
guarantee it

• Push: need to ensure that algorithm really implements
postcondition if precondition is assumed

∀S ∈ IStck, E ∈ Z • pre-Push(S,E) → post-Push(S,E, [E]_S))

• Trivial in this case

Manuel Carro — C.S. School — UPM – p.66/98



Proof Obligations: What For?

• They should be proved (discharged), or else they remain pending
to prove:
• Very difficult
• Not true in general

• IFAD Toolbox points them out (besides making syntax and type
checks)

• Theorem provers can help with the simpler ones
(e.g., B tools, LARCH provers, perfect, Boyer-Moore, NuPrl,
SETHEO, Stalmark’s method, . . . )

• If discharging a proof is hard (impossible?), we should worry
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Code Generation: How?
• Specification → code is in general in the programmer’s hands

• Specification provides a detailed, consistent, account of what is
required

• Several tools available for different methods, however

• In particular: VDM-SL explicit specifications relatively easy to
execute / translate

• Implicit specifications harder to translate, but more expressive

• Uually a computation method can be read after several reification
steps

• IFAD Tools can generate code to:
• Implement functional specification
• Test implicit specification

• Code relies on libraries to implement ADTs (e.g., sequences)
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Stack: Type Definition

• Type based on a sequence (SEQ) template instantiated with Int

#define TYPE_IStck type_iL

class type_iL : public SEQ<Int> {
public:

type_iL () : SEQ<Int>() {}
type_iL (const SEQ<Int> &c) : SEQ<Int>(c) {}
type_iL (const Generic &c) : SEQ<Int>(c) {}

};

• Interface given by (generic) sequence used to implement the
operations
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Stack: Code for Operations
TYPE_IStck vdm_Pop (const TYPE_IStck &vdm_S) {

return (Generic)vdm_S.Tl();
}

Bool vdm_pre_Pop (const TYPE_IStck &vdm_S) {
return (Generic)(Bool)!(vdm_S == Sequence());

}

Bool vdm_post_Pop (const TYPE_IStck &vdm_S,
const TYPE_IStck &vdm_RESULT) {

return (Generic)(Bool)(vdm_RESULT == vdm_S.Tl());
}
• Code quite clear in this example (apart from type juggling — it

should have been correctly generated)

• Note: separate generation and testing

• Will see other languages which remove this distinction
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Stack Two: Using Records

• Non-linear data structures (e.g., trees) are awkward to implement
with sequences

• Composites can be used to simulate algebraic types

• Types:
IStck = [ IStckNode ];
IStckNode :: Content: int

Next: IStck;

• Note the optional type (implicit constant nil appears)

• Recal that records generate automatically functions to construct
consult

• Other possibility:
IStck = int × [ IStck ]

• And use functions fst, snd to access components
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Stack Two: Operations
Empty: () +> IStck
Empty () == nil
pre true
post RESULT = nil;

Pop: IStck -> IStck
Pop (S) == S.Next
pre S 6= nil
post ∃Head ∈ Z • S =

mk_IStckNode(Head,RESULT);

Push: IStck * int +> IStck
Push (S, E) ==

mk_IStckNode(E, S)
pre true
post RESULT =

mk_IStckNode(E,S);

Top: IStck -> int
Top (S) == S.Content
pre S 6= nil
post ∃Tail ∈ IStck • S =

mk_IStckNode(RESULT,Tail);
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Stack Two: Type Implementation

• Type a little more involved

• Custom record definition

enum {
vdm_IStckNode = TAG_TYPE_IStckNode,
length_IStckNode = 2,
pos_IStckNode_Content = 1,
pos_IStckNode_Next = 2

};

class TYPE_IStckNode: public Record {
public:

TYPE_IStckNode (): Record(TAG_TYPE_IStckNode, 2) {}
TYPE_IStckNode &Init (Int p2, TYPE_IStack p3);
TYPE_IStckNode (const Generic &c): Record(c) {}

}
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Stack Two: Sample Code
TYPE_IStck vdm_Push (const TYPE_IStck &vdm_S,

const Int &vdm_E) {

Record varRes_3(vdm_IStckNode, length_IStckNode);

varRes_3.SetField(1, vdm_E);
varRes_3.SetField(2, vdm_S);
return (Generic) varRes_3;

}
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Sorted Sequence

• Items (integers) are sorted in ascending order

SortedSeq = seq of int
inv S == S = [] ∨ ∀I, J ∈ inds S • I > J → S(I) ≥ S(J)

• Invariant: restricts which elements of the type are admissible

• Why S = [] ∨ . . .? How could it be interpreted if logic is not LPF?

• It must hold on entry and upon exit of every operation

• It will therefore be part of the proof obligations

• Will model only two operation: creation (easy) and insertion
(more difficult)
Empty: () +> SortedSeq
Empty () == []
pre true
post RESULT = [];
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Sorted Sequence: Insertion

• Implicit definition (might have used dichotomy as well):
Insert: SortedSeq * int +> SortedSeq
Insert (S, E) ==

cases true:
(S = []) -> [ E ],
(E <= hd S) -> [ E ] ˆ S,
(E > hd S) -> [ hd S ] ˆ Insert(tl S, E)

end

• Pre- and postconditions:

pre inv-SortedSeq(S)
post len S + 1 = len RESULT ∧ inv-SortedSeq(RESULT)∧

let S1 = [E]_S in
∀X ∈ (elems RESULT

⋃
elems S1)•

|{I|I ∈ inds RESULT • RESULT(I) = X}| =

|{I|I ∈ inds S1 • S1(I) = X}|
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Proof Obligations

• More interesting (and more involved)

• Exhaustive matching:

∀S ∈ SortedSeq, E ∈ Z • inv-SortedSeq(S) →
true = (S = []) ∨
true = (E <= hd(S)) ∨
true = (E > hd(S))

• Unneeded if if-then-else had been used
• Note the true = . . . to work around possible undefinedness
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Proof Obligations

• Proof obligation for the recursive call

∀S ∈ SortedSeq, E ∈ Z • inv-SortedSeq(S) →
true 6= (S = []) →

true 6= (E <= hd(S)) →
true = (E > hd(S)) →

pre-Insert(tl(S), E))

• I.e., when Insert is recursively called, its precondition (which
includes the type invariant) is met

• Code: long and complicated — based on sequences, includes:
• Runtime error checks
• Code to test invariants and postconditions
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Validating Formal Models
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The Idea of Validation
• Prove that a formal model describes the system the customer

wanted
• Requirements often incomplete, incorrect, ambiguous: modelers

have to resolve these
• However, a formal model can be approved by a customer

• Validation
• Checking internal consistency of a model (always needed!)
• Checking that the model describes the required behavior

• Verification deals with ensuring that the system satisfies its
specification
• Unneeded if system automatically generated by another

system verified and validated
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Internal Consistency

• In a formal language we should have:
• A formal, unambiguous syntax
• A formal semantics: rules to determine the meaning of every

sentence
• Formal syntax → can be checked with an automatic tool

• Formal semantics → some properties (but not all) can be
checked with an automatic tool (e.g., a type checker)

• Type checking and proof obligations
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Validating Behavior

• Formal proofs
• Excellent coverage
• Not supported by all tools and formal methods

• Animation
• Run the model through an interpreter
• Good for inexpert users

• Systematic testing
• Assess coverage
• Quality depends on the tests performed
• Automatic test generation possible (testing all / most / many

paths)
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Type Checking

• In general, type systems are designed to be checkable at compile
time (VDM-SL’s is)

• But some are not, and either human intervention or run-time
checks is needed

• Preconditions and invariants are usually expressive enough as to
be not (automatically) provable

MODELSDefinitely
Wrong

Right

Definitely

Maybe right,
maybe wrong

Much of current research aims at
developing languages and tools to
reduce the size of the middle area
by performing more checks auto-
matically
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Proof Obligations

• When checks cannot be performed automatically, mathematical
proofs are needed

• Three types:
• Domain checking: Every (partial) function is applied to values

inside its domain (preconditions and invariants included)
• Protecting postconditions: Defensive programming;

applicability of automatic tools reduced
• Satisfiability of explicit definitions: The result of every

function (assuming the preconditions hold) is in the right
domain

• Satisfiability of implicit definitions: For every input
satisfying the precondition there is an object satisfying the
postcondition
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Animation
• Execution of the model through an interface

• Dynamic link facility should exists to link the interface code to the
model

• E.g., IFAD ToolBox has an interpreter and a C++/Java code
generator + CORBA interface

• Increases confidence that a model accurately reflects the
requirements

• Does not prove! (But problems found definitely problems)

• Customers rarely understand the modeling language — but they
appreciate watching the model running
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Systematic Testing

• Animation only as good as the choice of scenarios executed

• More systematic testing possible
• Define a collection of test cases
• Execute each test case on the formal model
• Compare with expectation

• Test cases generated by hand or automatically

• Automatic generation can produce a vast number of test cases!

• Techniques for test generation in functional languages carry over
to many formal models
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Other Formal Specification Languages and
Methods
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Classical Models
• Date back to Turing

• Hoare logic:
{Pre}

Sentence;
{Post}

• Weakest Precondition (WP):
• Basic sentences have {Pre} / {Post} axioms
• Sentence composition chain backward the Weakest

Precondition at each point
• Until program beginning is reached
• Gries: The Science of Programming

• Impractical in real cases
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Z Notation
• Spivey

• A notation, not a method (although application guidelines exist)

• Similar to VDM in many things: state based

• Preconditions hidden in postconditions

• Limitation object-oriented systems, concurrency (Z++ extension)

• Used in industrial development
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The B Method
• J.R. Abrial
• State-based:

• Stepwise refinement of abstract machines
• Each step must be proved
• Auxiliary tools (e.g., theorem provers) available

• Industrial success:
• Paris underground, automating line 14
• 100.000 lines of B code; refinement discovered many errors
• 87.000 lines of Ada automatically generated
• 27.000 tests
• No single error detected when conventional validation tests

applied
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Axiomatic Specifications

• Data types as free algebraic structures

• Operation properties as minimal set of equations

sorts: Stack, Z, B

new: → Stack
push: Stack × Z → Stack
pop: Stack → Stack

⋃
{error}

top: Stack → Z
⋃

{error}
empty: Stack → B

pop(new()) = error
pop(push(S,i)) = S

top(new()) = error
top(push(S,i)) = i

empty(new()) = true
empty(push(S,i)) = false

• Implementations must obey the equations
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Process Algebras: CSP

• Designed as a programming language (Hoare)

• Rich and complex algebra

• OCCAM: language based on CSP

• Process as first-order citizens: STOP, RUN, SKIP

• Communication
• Sequential, parallel, and alternative composition

• Π calculus (Milner): simplification of CSP

• More dynamic behavior

• A number of languages based on it: Pict, ELAN, Nepi, Piccola
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Axiomatic Specifications

• OBJ, FOOPS

• Maude:
• Equations evaluated non deterministically
• Concurrency, reactive systems
• Reflexive language
• Good performance
• Specifications with algorithmic flavor
• Difficult to manage in practical cases

Manuel Carro — C.S. School — UPM – p.93/98



Temporal Logic

• Aims at specifying and validating concurrent and distributed
systems

• Pnuelli, 77: time added to propositional logic

• Semantics: State of a program ≡ assignment of values to
variables

• Behaviors: List of states a program traverses in time

• Specify / prove existence of some behaviors

• Temporal operators:

© in the next moment in time
at every future moment
at some future moment
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Specifying with Temporal Logics

• Interesting properties can be written very concisely:

(send → received): it is always the case that if a

message is sent it will be received in the future

(send → ©(received ∨ send)): it is always the case that, if
we send a message then, at the next moment in time, either
the message will be received or we will send it again

send ∧ → ¬received: it is always the case that if a
message is received it cannot be sent again

• We should be able to deduce that send ∧ ¬received is
inconsistent (message continually resent, never received)
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The Difficulty

• Many different temporal logics exist:
• Different operators
• Different idea of time (continuous, discrete, branching, . . . )

• Even propositional, linear, discrete temporal logic has high
complexity:

` (ϕ → ©ϕ) → (ϕ → ϕ)

(induction axiom) can be read as

[∀i • ϕ(i) → ϕ(i + 1)] → [ϕ(0) → ∀j • ϕ(j)]

• I.e., the FOL induction axiom

• Decision procedure is PSPACE-complete

• Predicate temporal logic: things get even worse
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Execution and Applications

• Resolution in temporal clauses: provers for temporal logic (detect
inconsistencies, determine if some conclusion holds)

• Temporal logic programming

• Model checking:
• Finite-state model captures execution of a system
• Checked against a temporal formula
• Used to verify hardware, network protocols, complex software
• Technology evolving

• Does not reason, however, about scheduling or resource
assignment
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Just Logic?

• Can’t classical logic be used directly?

• After all: used to specify (implicitly) in, e.g., VDM

• E.g., proving theorems to return answers: Green’s dream

• This is the basic idea of Logic Programming

• With some restrictions on the source language for efficiency
reasons

• Several languages based on it, notably Prolog

• Grown up: Constraint Logic Programming

• Highly expressive and reasonably fast (adequate for many
applications)
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