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1 Introduction

This paper gives a brief overview of game
theory. Therefore in the first section I
want to outline what game theory gener-
ally is and where it is applied.

In the next section, I introduce some
of the most important terms used in game
theory, such as normal form games and
Nash equilibrium as well as some of the
most popular games, e.g. the Prisoner’s
Dilemma or the Ultimatum Game.

I then present the basic concepts of
evolutionary game theory (EGT), a more
specialized branch of game theory. We
will see how EGT uses new concepts such
as evolutionary stable strategies (ESS) and
replicator dynamics, and its importance
to sciences like biology and physics.

At last I present two examples, pro-
grammed in the language NetLogo, which
will demonstrate the applications of EGT
and the similarities to condensed matter
physics.

1.1 Game Theory – What is it?

The concepts of game theory provide a
common language to formulate, structure,
analyse and eventually understand differ-
ent strategical scenarios. Generally, game
theory investigates conflict situations, the
interaction between the agents and their
decisions.

A game in the sense of game theory
is given by a (mostly finite) number of
players, who interact according to given
rules. Those players might be individu-
als, groups, companies, associations and
so on. Their interactions will have an im-
pact on each of the players and on the
whole group of players, i.e. they are in-
terdependent.

To be more precise: A game is de-
scribed by a set of players and their possi-
bilities to play the game according to the
rules, i.e. their set of strategies.

This description leads to a widespred
definition of game theory:

The subject of game theory
are situations, where the re-
sult for a player does not only
depend on his own decisions,
but also on the behaviour of
the other players.

Game theory has its historical origin
in 1928. By analysing parlour games, John
von Neumann realised very quickly the
practicability of his approaches for the
analysis of economic problems.

In his book Theory of Games and Eco-
nomic Behavior, which he wrote together
with Oskar Morgenstern in 1944, he al-
ready applied his mathematical theory to
economic applications.

The publication of this book is gen-
erally seen as the initial point of modern
game theory.

1.2 Game Theory – Where is it
applied?

As we have seen in the previous section,
game theory is a branch of mathemat-
ics. Mathematics provide a common lan-
guage to describe these games. We have
also seen that game theory was already
applied to economics by von Neumann.
When there is competition for a resource
to be analysed, game theory can be used
either to explain existing behaviour or to
improve strategies.

The first is especially applied by sci-
ences which analyse long-term situations,
like biology or sociology. In animality, for
example, one can find situations, where
cooperation has developed for the sake of
mutual benefits.

The latter is a crucial tool in sciences
like economics. Companies use game the-
ory to improve their strategical situation
in the market.



2 DEFINITIONS 3

Despite the deep insights he gained from
game theory’s applications to economics,
von Neumann was mostly interested in
applying his methods to politics and war-
fare, perhaps descending from his favorite
childhood game, Kriegspiel, a chess-like
military simulation. He used his meth-
ods to model the Cold War interaction be-
tween the U.S. and the USSR, picturing
them as two players in a zero-sum game.

He sketched out a mathematical model
of the conflict from which he deduced that
the Allies would win, applying some of
the methods of game theory to his pre-
dictions.

There are many more applications in
the sciences, which have already been men-
tioned, and in many more sciences like so-
ciology, philosophy, psychology and cul-
tural anthropology. It is not possible to
list them all in this paper, more informa-
tion can be obtained in the references at
the end of this paper.

2 Definitions

I now introduce some of the basic defini-
tions of game theory. I use a non-mathematical
description as far as possible, since math-
ematics is not really required to under-
stand the basic concepts of game theory.

However, a mathematical derivation is
given in appendix A.1 and A.2.

2.1 Normal Form Games

A game in normal form consists of:

1. A finite number of players.

2. A strategy set assigned to each player.
(e.g. in the Prisoner’s Dilemma each
player has the possibility to cooper-
ate (C) and to defect (D). Thus his
strategy set consists of the elements
C and D.)

3. A payoff function, which assigns a
certain payoff to each player depend-
ing on his strategy and the strat-
egy of the other players (e.g. in the
Prisoner’s Dilemma the time each of
the players has to spend in prison).

The payoff function assigns each player
a certain payoff depending on his strat-
egy and the strategy of the other play-
ers. If the number of players is limited
to two and if their sets of strategies con-
sist of only a few elements, the outcome
of the payoff function can be represented
in a matrix, the so-called payoff matrix,
which shows the two players, their strate-
gies and their payoffs.

Example:

Player1\Player2 L R
U 1, 3 2, 4
D 1, 0 3, 3

In this example, player 1 (vertical) has
two different strategies: Up (U) and Down
(D). Player 2 (horizontal) also has two
different strategies, namely Left (L) and
Right (R).

The elements of the matrix are the
outcomes for the two players for playing
certain strategies, i.e. supposing, player 1
chooses strategy U and player 2 chooses
strategy R, the outcome is (2, 4), i.e. the
payoff for player 1 is 2 and for player 2 is
4.

2.2 Extensive Form Games

Contrary to the normal form game, the
rules of an extensive form game are de-
scribed such that the agents of the game
execute their moves consecutively.

This game is represented by a game
tree, where each node represents every
possible stage of the game as it is played.
There is a unique node called the initial
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node that represents the start of the game.
Any node that has only one edge con-
nected to it is a terminal node and rep-
resents the end of the game (and also a
strategy profile). Every non-terminal node
belongs to a player in the sense that it
represents a stage in the game in which it
is that player’s move. Every edge repre-
sents a possible action that can be taken
by a player. Every terminal node has
a payoff for every player associated with
it. These are the payoffs for every player
if the combination of actions required to
reach that terminal node are actually played.

Example:

Figure 1: A game in extensive form

In figure 1 the payoff for player 1 will be
2 and for player 2 will be 1, provided that
player 1 plays strategy U and player 2
plays strategy D’.

2.3 Nash Equilibrium

In game theory, the Nash equilibrium (named
after John Nash, who first described it)
is a kind of solution concepts of a game
involving two or more players, where no
player has anything to gain by changing
only his own strategy.

If each player has chosen a strategy
and no player can benefit by changing
his strategy while the other players keep
theirs unchanged, then the current set of

strategy choices and the corresponding pay-
offs constitute a Nash equilibrium.

John Nash showed in 1950, that every
game with a finite number of players and
finite number of strategies has at least one
mixed strategy Nash equilibrium.

2.3.1 Best Response

The best response is the strategy (or strate-
gies) which produces the most favorable
immediate outcome for the current player,
taking other players’ strategies as given.

With this definition , we can now de-
termine the Nash equilibrium in a normal
form game very easily by using the payoff
matrix.

The formal proof that this procedure
leads to the desired result is given in ap-
pendix A.2.

2.3.2 Localizing a Nash Equilibrium
in a Payoff-matrix

Let us use the payoff matrix of the Pris-
oner’s Dilemma, which will be introduced
in 3.1, to determine the Nash equilibrium:

Player1\Player2 C D
C 3, 3 0, 5
D 5, 0 1, 1

The procedure is the following: First we
consider the options for player 1 by a given
strategy of player 2, i.e. we look for the
best answer to a given strategy of player
2.

If player 2 plays C, the payoff for player
1 for coosing C will be 3, for choosing D it
will be 5, so we highlight his best answer,
D:

C D
C 3, 3 0, 5
D 5 , 0 1, 1

Now we repeat this procedure for the case,
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that player 2 plays D (the best answer
in this case is D, since C gains payoff 0
whereas D gains payoff 1), then we do the
same for player 2 by a given strategy of
player 1 and we will get:

C D
C 3, 3 0, 5

D 5 , 0 1 , 1

The Nash equilibrium is then determined
by the matrix element, in which both play-
ers marked their best answers.

Thus, the strategies that constitute
a Nash equilibrium is defection by both
players, because if any player changed his
strategy to C whereas the other one stays
with D, he would get a less payoff.

2.4 Mixed Strategies

Consider the following payoff matrix, which
corresponds to the game Matchin Pen-
nies:

Player1\Player2 Head Tail
Head 1 , -1 -1 , 1
Tail -1 , 1 1 , -1

The best responses are already marked,
and it is obvious, that there is no matrix
cell, in which both players marked their
best response.

What do game theorists make of a
game without a Nash equilibrium? The
answer is that there are more ways to play
the game than are represented in the ma-
trix. Instead of simply choosing Head or
Tail, a player can just flip the coin to de-
cide what to do. This is an example of
a mixed strategy, which simply means a
particular way of choosing randomly among
the different strategies.

The mixed strategy equilibrium of the
matching pennies game is well known: each
player should randomize 50-50 between
the two alternatives.

Mixed strategy equilibrium points out
an aspect of Nash equilibrium that is of-
ten confusing for beginners. Nash equi-
librium does not require a positive reason
for playing the equilibrium strategy. In
matching pennies, the two players are in-
different: they have no positive reason to
randomize 50-50 rather than doing some-
thing else. However, it is only an equilib-
rium if they both happen to randomize
50-50. The central thing to keep in mind
is that Nash equilibrium does not attempt
to explain why players play the way they
do. It merely proposes a way of playing
so that no player would have an incentive
to play differently.

If, for example, player 1 chooses to
play Head with a probability of 80 % and
play Tail with a probability of 20 % , then
player 2 will eventually anticipate the op-
ponent’s strategy. Hence he will play Tail
everytime. This will lead to a positive
payoff of 0.8 · 1 + 0.2 · (−1) = 0.6 per
game for player 2, respectively a payoff
of −0.6 for player 1. The best payoff one
can do in such a fair zero-sum game is
0, and this will be achieved by playing
1
2 Head + 1

2 Tail.
Mathematically spoken, a mixed strat-

egy is just a linear combination of the
pure strategies.

3 Games

Now I want to present some of the most
studied games of game theory.

3.1 Prisoner’s Dilemma (PD)

We have already used the payoff matrix
of the Prisoner’s Dilemma in 2.3.2 to lo-
calize the Nash equilibrium of this game,
and now I want to tell the story behind
this famous dilemma:

Two suspects are arrested by the police.
The police have insufficient evidence for
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a conviction, and, having separated both
prisoners, an officer visits each of them
to offer the same deal: if one testifies for
the prosecution against the other and the
other remains silent, the betrayer goes free
and the silent accomplice receives the full
10-year sentence. If both stay silent, the
police can sentence both prisoners to only
six months in jail for a minor charge. If
each betrays the other, each will receive
a two-year sentence. Each prisoner must
make the choice of whether to betray the
other or to remain silent. However, nei-
ther prisoner knows for sure what choice
the other prisoner will make. So the ques-
tion this dilemma poses is: How will the
prisoners act?

We will use the following abbreviations:
To testify means to betray the other sus-
pect and thus to defect (D), to remain
silent means to cooperate (C) with the
other suspect. And for the sake of clarity,
we want to use positive numbers in the
payoff matrix.

C D
C R=3, R=3 S=0, T=5
D T=5, S=0 P=1, P=1

• R is a Reward for mutual coopera-
tion. Therefore, if both players co-
operate then both receive a reward
of 3 points.

• If one player defects and the other
cooperates then one player receives
the Temptation to defect payoff (5
in this case) and the other player
(the cooperator) receives the Sucker
payoff (zero in this case).

• If both players defect then they both
receive the Punishment for mutual
defection payoff (1 in this case).

As we have already seen, the logical move
for both players is defection (D). The dilemma
lies herein, that the best result for player
1 and player 2 as a group (R = 3 for both)
can’t be achieved.

In defining a PD, certain conditions have
to hold. The values we used above, to
demonstrate the game, are not the only
values that could have been used, but they
do adhere to the conditions listed below.

Firstly, the order of the payoffs is im-
portant. The best a player can do is T
(temptation to defect). The worst a player
can do is to get the sucker payoff, S. If
the two players cooperate then the reward
for that mutual cooperation, R, should
be better than the punishment for mu-
tual defection, P. Therefore, the following
must hold:

T > R > P > S.

In repeated interactions, another condi-
tion it is additionally required:

Players should not be allowed to get
out of the dilemma by taking it in turns to
exploit each other. Or, to be a little more
pedantic, the players should not play the
game so that they end up with half the
time being exploited and the other half
of the time exploiting their opponent. In
other words, an even chance of being ex-
ploited or doing the exploiting is not as
good an outcome as both players mutu-
ally cooperating. Therefore, the reward
for mutual cooperation should be greater
than the average of the payoff for the temp-
tation and the sucker. That is, the follow-
ing must hold:

R > (S + T )/2

3.1.1 Other Interesting Two-person
Games

Depending on the order of R, T, S, and
P, we can have different games. Most are
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trivial, but two games stand out:

• Chicken (T > R > S > P )

C D
C R=2, R=2 S=1, T=3
D T=3, S=1 P=0, P=0

Example: Two drivers with something to
prove drive at each other on a narrow
road. The first to swerve loses faces among
his peers (the chicken). If neither swerves,
however, the obvious worst case will oc-
cur.

• Stag Hunt (R > T > P > S)

C D
C R=3, R=3 S=0, T=2
D T=2, S=0 P=1, P=1

Example: Two hunters can either jointly
hunt a stag or individually hunt a rabbit.
Hunting stags is quite challenging and re-
quires mutual cooperation. Both need to
stay in position and not be tempted by
a running rabbit. Hunting stags is most
beneficial for society but requires a lot of
trust among its members. The dilemma
exists because you are afraid of the oth-
ers’ defection. Thus, it is also called trust
dilemma.

3.2 The Ultimatum Game

Imagine you and a friend of yours are
walking down the street, when suddenly
a stranger stops you and wants to play a
game with you:

He offers you 100 $ and you have to
agree on how to split this money. You,
as the proposer, make an offer to your
friend, the responder. If he accepts your
offer, the deal goes ahead. If your friend
rejects, neither player gets anything. The
stranger will take back his money and the
game is over.

Obviously, rational responders should
accept even the smallest positive offer, since
the alternative is getting nothing. Pro-
posers, therefore, should be able to claim
almost the entire sum. In a large num-
ber of human studies, however, conducted
with different incentives in different coun-
tries, the majority of proposers offer 40 to
50 % of the total sum, and about half of
all responders reject offers below 30 %

3.3 Public Good Game

A group of 4 people are given $ 200 each
to participate in a group investment project.
They are told that they could keep any
money they do not invest. The rules of
the game are that every $1 invested will
yield $ 2, but that these proceeds would
be distributed to all group members. If
every one invested, each would get $ 400.
However, if only one person invested, that
“sucker” would take home a mere $ 100.
Thus, the assumed Nash equilibrium could
be the combination of strategies, where
no one invests any money. And we can
show that this is indeed the Nash equilib-
rium.

We will not display this game in a pay-
off matrix, since each player has a too big
set of strategies (the strategy sn is given
by the amount of money that player n
wants to contribute, e.g. s1 = 10 means,
that player 1 invests 10 $). Nevertheless
this is a game in normal form and there-
fore it has a payoff function for each player.
The payoff function for, let’s say, player 1
is given by

P =
2 · (s1 + s2 + s3 + s4)

4
− s1

=
2 · (s2 + s3 + s4)

4
− 0, 5 · s1

But this means, that every investment
s1 of player 1 will diminish his payoff.
Therefore, a rational player will choose
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the strategy sn = 0, i.e. he will invest no
money at all. But if everyone plays this
strategy, no one can benefit by changing
his strategy while the other players keep
their strategy unchanged. And this is just
the definition of the Nash equilibrium.

The dilemma lies exactly herein, since
the greatest benefit for the whole group
arises, if everyone contributed all of his
money.

3.4 Rock, Paper, Scissors

The players simultaneously change their
fists into any of three ”objects”:

• Rock: a clenched fist.

• Paper : all fingers extended, palm
facing downwards, upwards, or side-
ways.

• Scissors: forefinger and middle fin-
ger extended and separated into a
”V” shape.

The objective is to defeat the oppo-
nent by selecting a weapon which defeats
their choice under the following rules:

1. Rock crushes Scissors (rock wins)

2. Scissors cut Paper (scissors win)

3. Paper covers Rock and roughness is
covered (paper wins)

If players choose the same weapon, the
game is a tie and is played again.

This is a classic non-transitive system
which involves a community of three com-
peting species satisfying a relationship.

Such relationships have been demon-
strated in several natural systems.

4 Evolutionary Game The-
ory

Since game theory was established as a
discipline for its own, it has been very
successful.

However, there have been situations,
which could not be properly described by
the language of game theory.

Many people have attempted to use
traditional game theory to analyze eco-
nomic or political problems, which typi-
cally involve a large population of agents
interacting. However, traditional game
theory is a “static” theory, which reduces
its usefulness in analyzing these very sorts
of situations. EGT improves upon tra-
ditional game theory by providing a dy-
namics describing how the population will
change over time. Therefore a new math-
ematical extension has been developed (mainly
by John Maynard Smith in his book Evo-
lution and the Theory of Games, 1982),
which is called evolutionary game theory
(EGT)

I will show in the next section, in what
kinds of situations EGT might be appli-
cable and what are the most significant
differences to game theory.

4.1 Why EGT?

Evolutionary game theory (EGT) stud-
ies equilibria of games played by a pop-
ulation of players, where the fitness of
the players derives from the success each
player has in playing the game. It pro-
vides tools for describing situations where
a number of agents interact and where
agents might change the strategy they fol-
low at the end of any particular interac-
tion.

So, the questions of EGT are: Which
populations are stable? When do the in-
dividuals adopt other strategies? Is it
possible for mutants to invade a given pop-
ulation?
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Another very prominent application is
the quest for the origins and evolution
of cooperation. The effects of population
structures on the performance of behav-
ioral strategies became apparent only in
recent years and marks the advent of an
intriguing link between apparently unre-
lated disciplines. EGT in structured pop-
ulations reveals critical phase transitions
that fall into the universality class of di-
rected percolation on square lattices.

Together with EGT as an extension
of game theory, new concepts were devel-
oped to investigate and to describe these
very problems. I will now introduce two
of them, which are crucial to describe EGT,
evolutionary stable strategies and the repli-
cator dynamics. The first one is applied
tu study the stability of populations, the
latter one investigates the adoption of strate-
gies.

4.2 Evolutionary Stable Strate-
gies

An evolutionary stable strategy (ESS) is
a strategy which if adopted by a popula-
tion cannot be invaded by any competing
alternative strategy. The concept is an
equilibrium refinement to the Nash equi-
librium.

The definition of an ESS was intro-
duced by John Maynard Smith and George
R. Price in 1973 based on W.D. Hamil-
ton’s (1967) concept of an unbeatable strat-
egy in sex ratios. The idea can be traced
back to Ronald Fisher (1930) and Charles
Darwin (1859).

4.2.1 ESS and Nash Equilibrium

A Nash equilibrium is a strategy in a game
such that if all players adopt it, no player
will benefit by switching to play any al-
ternative strategy.

If a player, choosing strategy µ in a
population where all other players play

strategy σ, receives a payoff of E(µ, σ),
then strategy σ is a Nash equilibrium if
E(σ, σ) ≥ E(µ, σ), i.e. σ does just as
good or better playing against σ than any
mutant with strategy µ does playing against
σ.

This equilibrium definition allows for
the possibility that strategy µ is a neutral
alternative to σ (it scores equally, but not
better). A Nash equilibrium is presumed
to be stable even if µ scores equally, on
the assumption that players do not play
µ.

Maynard Smith and Price specify (May-
nard Smith & Price, 1973; Maynard Smith
1982) two conditions for a strategy σ to
be an ESS. Either

1. E(σ, σ) > E(µ, σ), or

2. E(σ, σ) = E(µ, σ) and
E(σ, µ) > E(µ, µ)

must be true for all σ 6= µ.
In other words, what this means is

that a strategy σ is an ESS if one of two
conditions holds:

1. σ does better playing against σ than
any mutant does playing against σ,
or

2. some mutant does just as well play-
ing against σ as σ, but σ does better
playing against the mutant than the
mutant does.

A derivation of ESS is given in ap-
pendix A.3.

4.2.2 The Hawk-Dove Game

As an example for ESS, we consider the
Hawk-Dove Game. In this game, two in-
dividuals compete for a resource of a fixed
value V (The value V of the resource cor-
responds to an increase in the Darwinian
fitness of the individual who obtains the
resource). Each individual follows exactly
one of two strategies described below:
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• Hawk: Initiate aggressive behaviour,
not stopping until injured or until
one’s opponent backs down.

• Dove: Retreat immediately if one’s
opponent initiates aggressive behaviour.

If we assume that

1. whenever two individuals both ini-
tiate aggressive behaviour, conflict
eventually results and the two indi-
viduals are equally likely to be in-
jured,

2. the cost of the conflict reduces indi-
vidual fitness by some constant value
C,

3. when a hawk meets a dove, the dove
immediately retreats and the hawk
obtains the resource, and

4. when two doves meet the resource
is shared equally between them,

the fitness payoffs for the Hawk-Dove game
can be summarized according to the fol-
lowing matrix:

Hawk Dove
Hawk 1

2(V − C), 1
2(V − C) V, 0

Dove 0, V V/2, V/2

One can readily confirm that, for the Hawk-
Dove game, the strategy Dove is not evo-
lutionarily stable because a pure popula-
tion of Doves can be invaded by a Hawk
mutant. If the value V of the resource
is greater than the cost C of injury (so
that it is worth risking injury in order
to obtain the resource), then the strat-
egy Hawk is evolutionarily stable. In the
case where the value of the resource is less
than the cost of injury, there is no ESS
if individuals are restricted to following
pure strategies, although there is an ESS
if players may use mixed strategies.

4.2.3 ESS of the Hawk-Dove Game

Clearly, Dove is no stable strategy, since
V
2 = E(D,D) < E(H,D) = V , a popu-
lation of doves can be invaded by hawks.
Because of E(H,H) = 1

2(V−C) and E(D,H) =
0, H is an ESS if V > C. But what if
V < C? Neither H nor D is an ESS.

But we could ask: What would hap-
pen to a population of individuals which
are able to play mixed strategies? Maybe
there exists a mixed strategy which is evo-
lutianary stable.

Consider a population consisting of a
species, which is able to play a mixed
strategy I, i.e. sometimes Hawk and some-
times Dove with probabilities p and 1− p
respectively.

For a mixed ESS I to exist the follow-
ing must hold:

E(D, I) = E(H, I) = E(I, I)

Suppose that there exists an ESS in
which H and D, which are played with
positive probability, have different pay-
offs. Then it is worthwile for the player
to increase the weight given to the strat-
egy with the higher payoff since this will
increase expected utility.

But this means that the original mixed
strategy was not a best response and hence
not part of an ESS, which is a contradic-
tion. Therefore, it must be that in an
ESS all strategies with positive probabil-
ity yield the same payoff.

Thus:

E(H, I) = E(D, I)

⇔ p E(H,H) + (1− p)E(H,D) =
p E(D,H) + (1− p)E(D,D)

⇔ p
2(V − C) + (1− p)V =
(1− p)V

2

⇔ p = V
C
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Thus a mixed strategy with a proba-
bility V/C of playing Hawk and a proba-
bility 1 − V/C of playing Dove is evolu-
tionary stable, i.e. that it can not be in-
vaded by players playing one of the pure
strategies Hawk or Dove.

4.3 The Replicator Dynamics

As mentioned before, the main difference
of EGT to game theory is the investiga-
tion of dynamic processes. In EGT, we
are interested in the dynamics of a pop-
ulation, i.e. how the population evolves
over time.

Let us consider now a population consist-
ing of n types, and let xi(t) be the fre-
quency of type i. Then the state of the
population is given by the vector x(t) =
x1(t), . . . , xn(t).

We want now to postulate a law of
motion for x(t). If individuals meet ran-
domly and then engage in a symmetric
game with payoff matrix A, then (Ax)i is
the expected payoff for an individual of
type i and xT Ax is the average payoff in
the population state x.

The evolution of x over time is de-
scribed by the replicator equation:

ẋi = xi[(Ax)i − xT Ax] (1)

The replicator equation describes a se-
lection process: more succesful strategies
spread in the population.

A derivation of the replicator equation
is given in appendix A.4

4.4 ESS and Replicator Dynam-
ics

We have seen, that D is no ESS at all and
for V > C, H is an ESS. We have also
seen, that for V < C the ESS is a mixed
ESS with a probability of V/C for playing
H and with a probability of 1 − V/C for
playing D.

By setting ẋi = 0, we obtain the evo-
lutionary stable states of a population.

A population is said to be in an evo-
lutionarily stable state if its genetic com-
position is restored by selection after a
disturbance, provided the disturbance is
not too large.

If this equation is applied to the Hawk-
Dove game, the result will be the follow-
ing:

For V > C, the only evolutionary sta-
ble state is a population consisting of hawks.
For V < C, a mixed population with a
fraction V/C of hawks and a fraction 1−
V/C of doves is evolutionary stable.

This result will be derived in appendix
A.5.

At this point, one may see little differ-
ence between the two concepts of evolu-
tionary game theory. We have confirmed
that, for the Hawk-Dove game and for
V > C, the strategy Hawk is the only
ESS. Since this state is also the only sta-
ble equilibrium under the replicator dy-
namics, the two notions fit together quite
neatly: the only stable equilibrium under
the replicator dynamics occurs when ev-
eryone in the population follows the only
ESS. In general, though, the relationship
between ESSs and stable states of the repli-
cator dynamics is more complex than this
example suggests.

If only two pure strategies exist, then
given a (possibly mixed) evolutionarily sta-
ble strategy, the corresponding state of
the population is a stable state under the
replicator dynamics. (If the evolutionar-
ily stable strategy is a mixed strategy S,
the corresponding state of the population
is the state in which the proportion of
the population following the first strategy
equals the probability assigned to the first
strategy by S, and the remainder follow
the second strategy.)

However, this can fail to be true if
more than two pure strategies exist.
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The connection between ESSs and stable
states under an evolutionary dynamical
model is weakened further if we do not
model the dynamics by the replicator dy-
namics.

In 5.1 we use a local interaction model
in which each individual plays the Pris-
oner’s Dilemma with his or her neighbors.
Nowak and May, using a spatial model in
which local interactions occur between in-
dividuals occupying neighboring nodes on
a square lattice, showed that stable pop-
ulation states for the Prisoner’s Dilemma
depend upon the specific form of the pay-
off matrix.

5 Applications

5.1 Evolution of cooperation

As mentioned before, the evolution of co-
operation is a fundamental problem in bi-
ology because unselfish, altruistic actions
apparently contradict Darwinian selection.

Nevertheless, cooperation is abundant
in nature ranging from microbial interac-
tions to human behavior. In particular,
cooperation has given rise to major tran-
sitions in the history of life. Game theory
together with its extensions to an evolu-
tionary context has become an invaluable
tool to address the evolution of coopera-
tion. The most prominent mechanisms of
cooperation are direct and indirect reci-
procity and spatial structure.

The mechanisms of reciprocity can be
investigated very well with the Ultima-
tum game and also with the Public Good
game.

But the prime example to investigate
spatially structured populations is the Pris-
oner’s Dilemma.

Investigations of spatially extended sys-
tems have a long tradition in condensed
matter physics. Among the most impor-
tant features of spatially extended sys-
tems are the emergence of phase transi-

tions. Their analysis can be traced back
to the Ising model. The application of
methods developed in statistical mechan-
ics to interactions in spatially structured
populations has turned out to be very fruit-
ful. Interesting parallels between non equi-
librium phase transitions and spatial evo-
lutionary game theory have added another
dimension to the concept of universality
classes.

We have already seen, that the Nash
equilibrium of PD is to defect. But to
overcome this dilemma, we consider spa-
tially structured populations where indi-
viduals interact and compete only within
a limited neighborhood. Such limited lo-
cal interactions enable cooperators to form
clusters and thus individuals along the
boundary can outweigh their losses against
defectors by gains from interactions within
the cluster. Results for different popula-
tion structures in the PD are discussed
and related to condensed matter physics.

This problem has been investigated by
Martin Nowak (Nature, 359, pp. 826-
829, 1992)

I programmed this scenario based on
the investigations of Nowak. The pro-
gram is written in NetLogo, the program
code is given in appendix B.

5.2 Biodiversity

One of the central aims of ecology is to
identify mechanisms that maintain bio-
diversity. Numerous theoretical models
have shown that competing species can
coexist if ecological processes such as dis-
persal, movement, and interaction occur
over small spatial scales. In particular,
this may be the case for nontransitive com-
munities, that is, those without strict com-
petitive hierarchies. The classic non-transitive
system involves a community of three com-
peting species satisfying a relationship sim-
ilar to the children’s game rock-paper-scissors,
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where rock crushes scissors, scissors cuts
paper, and paper covers rock. Such rela-
tionships have been demonstrated in sev-
eral natural systems. Some models pre-
dict that local interaction and dispersal
are sufficient to ensure coexistence of all
three species in such a community, whereas
diversity is lost when ecological processes
occur over larger scales. Kerr et al., tested
these predictions empirically using a non-
transitive model community containing three
populations of Escherichia coli. They found
that diversity is rapidly lost in our experi-
mental community when dispersal and in-
teraction occur over relatively large spa-
tial scales, whereas all populations coexist
when ecological processes are localized.

There exist three strains of Escherichia
coli bacteria:

• Type A releases toxic colicin and
produces, for its own protection, an
immunity protein.

• Type B produces the immunity pro-
tein only.

• Type C produces neither toxin nor
immunity.

The production of the toxic colicin and
the immunity protein causes some higher
costs. Thus the strain which produces
the toxin colicin is superior to the strain
which has no immunity protein (A beats
C).

The one with no immunity protein is
superior to the strain with immunity pro-
tein, since it has lower costs to reproduce
(C beats B)

The same holds for the strain with im-
munity protein but no production of the
colicin compared to the strain which pro-
duces colicin (B beats A).

In figure 2, one can see, that on a
static plate, which is an environment in
which dispersal and interaction are pri-
marily local, the three strain coexist.

Figure 2: Escherichia coli on a static plate

green: resistant strain
red: colicin producing strain
blue: sensitive strain

Figure 3: Escherichia coli in a flask

In figure 3, where the strains are held
in a flask, a well-mixed environment in
which dispersal and interaction are not
exclusively local, only the strain, which
produces the immunity protein only will
survive.
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A Mathematical Derivation

A.1 Normal form games

A game in normal form consists of:

1. A (finite) number of players M =
{a1, . . . , an}

2. A strategy set Si assigned to each
player i ∈ M .
The combination of all sets of strate-
gies S =

∏
i∈M Si is called strategy

space.

3. A utility/payoff function ui : S 7→
R, assigned to each player i ∈ M .
⇒ ∀s ∈ S : ui(s) ∈ R

A.2 Nash equilibrium and best
answer

Notations:

1. s ∈ S =
∏

i∈M Si ;
s = (s1, . . . , sM ) ; si ∈ Si

2. s−i := (s1, . . . , si−1, si+1, . . . , sM ) ;
(si, s−i) := s ; (s−i, si) := s

3. S−i =
∏

j∈M, j 6=i Sj ;
Si × S−i = S ; (si, s−i) ∈ Si × S−i

Definition:

A combination of strategies s∗ ∈ S is called
a Nash equilibrium iff:

∀i ∈ M ∀si ∈ Si :
ui(s∗) = ui(s∗i , s

∗
−i) ≥ ui(si, s

∗
−i)

Definition:

A strategy ŝi ∈ Si is called best answer
to a combination of strategies s−i ∈ S−i

iff:

∀si ∈ Si : ui(ŝi, s−i) ≥ ui(si, s−i)
⇔ ui(ŝi, s−i) = max{ui(si, s−i) ; si ∈ Si}

It is now easy to see, that, if every
player chooses his best answer, this will

constitute a Nash equilibrium, since an-
other strategy will not lead to an increase
of the payoff, since the best answer al-
ready leads to the maximum payoff.

A.3 Evolutionary stable strate-
gies (ESS)

In order for a strategy to be evolutionar-
ily stable, it must have the property that
if almost every member of the population
follows it, no mutant (that is, an individ-
ual who adopts a novel strategy) can suc-
cessfully invade. This idea can be given
a precise characterization as follows: Let
E(s1, s2) denote the payoff (measured in
Darwinian fitness) for an individual fol-
lowing strategy s1 against an opponent
following strategy s2, and let W (s) denote
the total fitness of an individual follow-
ing strategy s; furthermore, suppose that
each individual in the population has an
initial fitness of W0.

We consider now a population consist-
ing mainly of individulas following strat-
egy σ which shall be an ESS with a small
frequency p of some mutants playing µ.
Then if each indivudal engages in one con-
test

W (σ) = W0 + (1− p)E(σ, σ) + pE(σ, µ),
W (µ) = W0 + (1− p)E(µ, σ) + pE(µ, µ).

Since σ is evolutionarily stable, the
fitness of an individual following σ must
be greater than the fitness of an individ-
ual following µ (otherwise the mutant fol-
lowing µ would be able to invade), and so
W (σ) > W (µ). Now, as p is very close to
0, this requires either that

E(σ, σ) > E(µ, σ)

or that

E(σ, σ) = E(µ, σ) and
E(σ, µ) > E(µ, µ).
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A.4 Replicator equation

The fitness of a population is given by
(Ax)i and the total fitness of the entire
population is given by xT Ax. Thus, the
relative fitness of a population is given by

(Ax)i

xT Ax

Let us assume that the proportion of the
population following the strategies in the
next generation is related to the propor-
tion of the population following the strate-
gies current generation according to the
rule:

xi(t + ∆t) = xi(t)
(Ax)i

xT Ax
∆t

for xT Ax 6= 0. Thus

xi(t+∆t)−xi(t) = xi(t)
(Ax)i − xT Ax

xT Ax
∆t

This yields the differential equation for
∆t → 0:

ẋi =
xi[(Ax)i − xT Ax]

xT Ax
(2)

for i = 1, . . . , n with ẋi denoting the deriva-
tive of xi after time.

The simplified equation

ẋi = xi[(Ax)i − xT Ax] (3)

has the same trajectories than (2), since
every solution x(t) of (2) delivers accord-
ing to the time transformation

t(s) =
∫ s

so

x(t)T Ax(t)dt

a solution y(s) := x(t(s)) of (3).
Equation (3) is called the replicator

equation.

A.5 Evolutionary stable state of
the Hawk-Dove game

We want to show, that the replicator dy-
namics and ESS yield to the same result

for the Hawk-Dove game.

The replicator equation is given by

ẋi = xi[(Ax)i − xT Ax)]

Let us denote the population of hawks x1

with p, thus the population of doves x2

will be denoted with 1−p. The first term
Ax gives( p

2(V − C) + V (1− p)
V
2 (1− p)

)
Since Hawk is denoted with x1, we will
use the first component of the vector Ax.

The second term xT Ax delivers

p2

2
(V − C) + p V (1− p) +

V

2
(1− p)2

Thus:

ṗ = p [p
2(V − C) + V (1− p)− p2

2 (V − C)
−p V (1− p)− V

2 (1− p)2]

= p [C
2 p2 − 1

2(V + C)p + V
2 ]

= p [p2 − V +C
C p + V

C ]

In order to be a population evolutionary
stable we set the changes of the popula-
tion per time to zero, so that there is no
change in time. This gives:

ṗ = 0

⇒ p [p2 − V +C
C p + V

C ] = 0

This is certainly true for p = 0. This is
the trivial solution. Two other solutions
can be obtained by evaluating the term
in the brackets:

p2 − V + C

C
p +

V

C
= 0

This gives

p1/2 = V +C
2C ±

√
V 2+2V C+C2

4C2 − V
C

= V +C
2C ±

√
V 2−2V C+C2

4C2

= V +C
2C ± V−C

2C
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Thus:
p1 = 1, p2 =

V

C

p1 = 1 is another trivial solution, thus
the only relevant result is p2 = V

C .
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B Pogram Code

B.1 Spatial PD

globals [movie_on?]

patches-own [num_D z z_prev score d score_h neighbor_h]

to setup

ca

;;1/3 will be defectors (z=1, red); 2/3 cooperators (z=0; blue)

ask patches [ifelse ((random 3) < 1) [set pcolor red set z 1][set pcolor blue set z 0]]

;;d=delta*(2.0*(random(1.0)-1.0))

ask patches [set d delta * (2.0 * (random-float 1.0) - 1.0)]

set movie_on? false

end

to single-D

ca

ask patches [set pcolor blue set z 0]

ask patches [set d delta * (2.0 * (random-float 1.0) - 1.0)]

ask patch 0 0 [set pcolor red set z 1]

set movie_on? false

end

to go

play-game

update

if (movie_on?) [movie-grab-view]

end

to play-game

ask patches [set z_prev z]

ask patches

[

; num_D = number of neighbors that are defectors

set num_D nsum z

ifelse z = 1

[

; if patch is defector: score is T times number of cooperators (8-num_D)

set score (T * (8 - num_D)) + (P * (num_D + 1))

]

[

; if patch is cooperator: score is 1=R times number of cooperators (+1=itself)

set score (R * (9 - num_D)) + (S * num_D)

]

]

end

to update

; find the neighbor with the highest payoff

ask patches

[

; neighbor_h = the neighbor with the highest score

set neighbor_h max-one-of neighbors [score]

; score_h = highest score

set score_h score-of neighbor_h

ifelse (score_h >= score + d)

[

; if highest score > own score (+d)

ifelse z_prev = 1

[

; if this patch is defector:

; if neighbor with highest score is cooperator: set patch to cooperator (z=0, green)

; else: stay defector

ifelse (z_prev-of neighbor_h) = 0 [set pcolor green set z 0][set pcolor red]
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]

[

; if this patch is cooperator:

; if neighbor with highest score is defector: set patch to defector (z=1, yellow)

; else: stay cooperator

ifelse (z_prev-of neighbor_h) = 1 [set pcolor yellow set z 1][set pcolor blue]

]

set d delta * (2.0 * (random-float 1.0) - 1.0)

]

[

; if own score is the highest:

; if cooperator: set color blue, otherwise red

ifelse z = 0 [set pcolor blue][set pcolor red]

]

]

end

to perturb

if mouse-down?

[

ask patch-at mouse-xcor mouse-ycor [set z 1 - z ifelse z = 0 [set pcolor blue][set pcolor red]]

;need to wait for a while; otherwise the procedure is run a few times after a mouse click

wait 0.5

]

end

to movie_start

movie-start "out.mov"

set movie_on? true

end

to movie_stop

movie-close

set movie_on? false

end
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B.2 Hawk-Dove game

breed [hawks hawk]

breed [doves dove]

globals [deltaD deltaH p total counter decrement reproduce_limit]

turtles-own [energy]

to setup

ca

set-default-shape hawks "hawk"

set-default-shape doves "butterfly"

createH n_hawks

createD n_doves

ask turtles [set energy random-float 10.0]

set reproduce_limit 11.0

set decrement 0.05

end

to go

ask turtles

[

move

fight

reproduce

]

while [count turtles > 600]

[ask one-of turtles[die]]

do-plot

end

to createH [num_hawks]

create-custom-hawks num_hawks

[

set color red

set size 1.0

setxy random-xcor random-ycor

]

end

to createD [num_doves]

create-custom-doves num_doves

[

set color white

set size 1.0

setxy random-xcor random-ycor

]

end

to fight

ifelse (is-hawk? self)

[

if ((count other-hawks-here = 1) and (count other-doves-here = 0))

[set energy (energy + 0.5 * (V - C))]

if ((count other-hawks-here = 0) and (count other-doves-here = 1))

[set energy (energy + V)]

]

[

if ((count other-hawks-here = 0) and (count other-doves-here = 1))
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[set energy (energy + V / 2)]

]

;set pcolor-of patch-here black

end

to move ;; turtle procedure

rt random-float 50 - random-float 50

fd 1

set energy (energy - decrement)

end

to reproduce

if energy > reproduce_limit

[

set energy (energy / 2)

hatch 1 [rt random 360 fd 1]

]

if energy < 0

[die]

end

to do-plot

set-current-plot "ratio"

set-current-plot-pen "ratio"

if any? turtles

[plot count hawks / count turtles]

;

end
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