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Abstract: In this paper, a simple class of measures for detecting skewness in samples is 

introduced. The new class of measures is based on a new definition of skewness that takes 

midrange into consideration. The proposed coefficients of skewness can be computed easily with 

only three of the summary statistics, i.e., the minimum value, the maximum value and the median 

(or the mode, or the mean). Another advantage of the new statistics is that they are bounded by -1 

and +1, hence, the coefficients of skewness can be interpreted easily. The powers of the proposed 

statistics to detect skewness are investigated by a limited Monte Carlo simulation in order to have 

an idea. The preliminary results indicate that the performances of the new statistics look generally 

good in a limited simulation. However, a more comprehensive investigation is needed. 
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1. Introduction 

Skewness is usually described with reference to symmetry. On the other hand, symmetry 

is not usually defined clearly, and it is assumed that everyone understands it. There may be many 

definitions of symmetry depending on the areas where it is used. As Murphy (1982) explains, any 

statement about symmetry of a structure must be made with reference to some principle of 

symmetry, a point, a line, an axis. In statistical distributions, the significant point or axis is taken 

as the center of a distribution. Thus, for unimodal case, the mass is concentrated around the 

center evenly in a symmetrical distribution. As explained in many statistics textbooks or 

elsewhere, in a symmetrical distribution, the three popular measures of center (or central 

tendency), namely, the mean, median and mode coincide at the center. This equality can be 

considered as the most important characteristic of a unimodal symmetric distribution. Thus a 

deviation from the symmetry condition is called asymmetry, or simply skewness to Arnold and 

Groeneveld (1992). In a positively skewed distribution, the ordering of the measures of central 

tendency generally occurs as mode < median < mean, and the reverse ordering in negatively 

skewed distributions.  The mean-median-mode inequality has been investigated by Groeneveld 

and Meeden (1977), Runnenburg (1978), MacGillivray (1981), van Zwet (1979), Abdous and 

Theodorescu (1998), Abadir (2005), and von Hippel (2005), among others, for both continuous 

and discrete distributions. It is shown in these studies that, although there are some exceptions, 

the mean-median-mode inequality generally holds in unimodal continuous distributions. 

However, there are many counter-examples for the mean-median-mode ordering in discrete 

distributions. Despite the fact that the mean-median-mode inequality is not universal, many 

measures of skewness are based on this inequality, to be more precise, on the difference between 

the location parameters in asymmetrical distributions.  



2 

 

As Arnold and Groeneveld (1995) explains, several measures of skewness had been 

proposed by 1920. Let denote the mean µ, the median m, the mode M, σ standard deviation, Q1 

and Q3 for the first and the third quartiles, respectively. The measures are, Pearson’s coefficient 

of skewness:  SKP =

 M

, Pearson’s second coefficient of skewness (see, Doane and Seward, 

2011):  SKP2 =
 

 m3

, Yule’s coefficient of skewness:   SKY =

 m

, the standardized third 

central moment:
3

3
1




 , and Bowley’s coefficient of skewness: SKB =

13

13

QQ

m2QQ




. Although 

several other measures, generally extensions of the above coefficients, have been introduced later 

on, the early measures are still used today, especially γ1 (or its variants) is widely used in many 

statistical software. The first three of the measures of skewness are apparently based on the 

mean-median-mode inequality, generally encountered in asymmetrical distributions. In cases 

where the inequality does not hold, the skewness coefficients may give contradictory results. This 

study attempts to define skewness from a new perspective by taking midrange, a neglected 

measure of central tendency, into consideration. Based on this definition of skewness, a new class 

of statistics to measure sample skewness is introduced.  

In next section, a new definition of skewness, hence a new method for measuring 

skewness is developed. In section 3, the properties of the new statistics are explained and the 

critical values for the new statistics using Monte Carlo simulation are obtained. In section 4, the 

powers of the proposed statistics are compared to the conventional measures of skewness. An 

empirical example using the General Social Surveys data is given in section 5, and section 6 

concludes. 
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2. An Alternative Definition of Skewness 

What we expect from a symmetrical distribution when we inspect visually a graphical 

display of data is that one half of the distribution is a mirror image of the other half with respect 

to the center. Hence, the center of any distribution plays an important role in deciding whether it 

is symmetrical or not. On the other hand, in measuring skewness, which of the measure of central 

tendency, (i.e., the mean, mode or median) should be considered as the ‘true center’ of a 

distribution is a critical issue that has not been settled in the literature (see Groeneveld and 

Meeden, 1984; Arnold and Groeneveld, 1995; Cabilio and Masaro, 1996; Tajuddin, 1996; Das et 

al., 2009). We can make a statement that, in a symmetrical distribution, all the measures of 

central tendency located on the center, whereas they depart from the center in case of asymmetry. 

Thus, to measure any skewness we can just measure how far they are departed from the center. 

Of course, the question here is, if the mean, mode or median is not the center, what is the center? 

Here, it is assumed that the best candidate for the center is midrange, a neglected measure of 

central tendency. The midrange of a dataset is just halfway of its range, i.e., the arithmetic mean 

of the minimum (Xmin) and the maximum (Xmax) values (i.e., midrange = 
2

XX maxmin   ). By 

considering the midrange as the center, we can define absolute skewness, depicted in Figure 1, as 

(midrange - θ), where θ is either the mean, median or mode (if exists) of a sample. Therefore, 

relative skewness (or coefficient of skewness) with respect to the mean, mode and median can be 

written as follows:    
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


     (3) 

Division of the absolute skewness by (range/2) guarantees that the coefficients of skewness are 

bounded by [-1, 1].  Thus, any value of the coefficients, other than zero, indicates skewness as 

percentage departure from the center, whereas a coefficient value of zero denotes a symmetrical 

distribution. Although the ordering of the mean, mode and median in Figure 1 (b) and (c)  are 

shown in conventional way, the statistics proposed do not depend on the ordering. 
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Figure 1. (a) Symmetric distribution, (b) Skewness to the left, (c) Skewness to the right. 

 

3. Properties of the Proposed Statistics 

Let γ refer to any of the three skewness measures proposed, and X a sample from either a 

continuous or discrete distribution. The following properties can be written: 

1) )X()baX(  , for any a > 0 and b ∈ ℝ. 

2) )X()X(  . 
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3) If X has a symmetrical distribution, then 0)X(  . 

4) )X( ∈ [-1, 1]. 

In other words, the coefficient of skewness is not affected by a scale or location change. If the 

values of a dataset are inverted, the coefficient is also inverted. It is obvious that for a 

symmetrical distribution, all the measures of central tendency coincide (see Figure 1(a)), thus the 

coefficient of skewness will be zero. All of the measures proposed are bounded by [-1, 1], i.e., 1 

represents extreme right skewness, while -1 represents extreme left skewness. The last property, 

which most of the other measures of skewness do not possess, is particularly useful for 

interpreting coefficient of skewness. The other advantage of the proposed measures is that they 

are very easy to implement, they can be computed with knowledge of a few summary statistics. 

On the other hand, all of the three statistics are very non-robust since they take only the extreme 

values into consideration.  

By using Monte Carlo simulation based on 20,000 samples drawn from N(0,1), 

preliminary critical values for the sample skewness statistics, SKG2 and SKG3, are obtained. For 

each sample size from 5 to 150, SKG2 and SKG3 and their percentiles were calculated. Table 1 

shows only the upper 1%, 5% and 10% critical values obtained from the simulation. The lower 

percentiles are the same except for sign. Note that, the critical values in Table 1 can be used to 

determine whether the sample is drawn from a normal population or not. Thus, they are not for a 

test for symmetry in general. As can be seen from Table 1, the critical values of SKG2 are higher 

(in absolute terms) than those of SKG3 as expected, since median is farther from the center than 

the mean is in these samples, taken from normal population. However, they converge as sample 

size gets larger. The critical values of SKG1 are not provided since mode does not exist in this 

simulation setting.  
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Table 1. Critical Values for SKG2 and SKG3 (based on 20,000 replications) 

 

SKG2 

  

SKG3 

 

Upper Percentiles 

  

Upper Percentiles 

n 10% 5% 1% 

 

n 10% 5% 1% 

5 0.5743 0.6973 0.8586 

 

5 0.2674 0.3352 0.4374 

10 0.3683 0.4640 0.6233 

 

10 0.2360 0.3004 0.4073 

15 0.3156 0.3988 0.5460 

 

15 0.2158 0.2732 0.3750 

20 0.2720 0.3488 0.4763 

 

20 0.2025 0.2587 0.3578 

25 0.2530 0.3179 0.4373 

 

25 0.1914 0.2430 0.3387 

30 0.2310 0.2941 0.4067 

 

30 0.1837 0.2337 0.3268 

40 0.2092 0.2681 0.3715 

 

40 0.1719 0.2200 0.3067 

50 0.1927 0.2467 0.3445 

 

50 0.1641 0.2092 0.2943 

60 0.1824 0.2334 0.3278 

 

60 0.1576 0.2026 0.2837 

70 0.1726 0.2209 0.3117 

 

70 0.1523 0.1950 0.2746 

80 0.1683 0.2146 0.3025 

 

80 0.1494 0.1904 0.2695 

90 0.1623 0.2082 0.2886 

 

90 0.1459 0.1863 0.2619 

100 0.1575 0.2014 0.2834 

 

100 0.1422 0.1828 0.2568 

150 0.1390 0.1793 0.2541 

 

150 0.1294 0.1672 0.2373 

 Note: The lower percentiles are the same except for sign. 

 

4. Power Comparisons 

In order to have an idea about the performances of the proposed statistics, the powers of 

the statistics are compared to the conventional measures of skewness by using a Monte Carlo 

simulation. Recently,  Tabor (2010) tested the power
1
 of eleven different statistics, including the 

coefficients of skewness given in introduction section, for detecting skewness in samples of size 

10 taken from strongly skewed ( 2 with d.f.= 1), moderately skewed ( 2 with d.f.= 5) and 

slightly skewed ( 2 with d.f.= 40) populations. The same procedure is used in this study in order 

to make the power of the proposed statistics comparable to those in Tabor (2010). In addition to 

sample size of 10, to find out the power of the statistics in larger samples, the same procedure 

based on 10,000 replications is applied to samples with sizes of 30 and 60, and the results are 

                                                           
1
 Probability of rejecting the null hypothesis of normally distributed population against the alternative hypothesis of 

positively skewed population, when the alternative is presumably true. 
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presented in Table 2. Only three of the eleven statistics (γ1, SKP2, SKB), the most popular ones, 

are included in the Monte Carlo study. Note that the powers of γ1, SKP2, SKB found here are very 

similar to those in Tabor (2010). 

 

Table 2. Power Comparisons of the Proposed Statistics with the Conventional Statistics 

Sample 

Size 

 

Extremely 

Skewed 

Moderately 

Skewed 

Slightly 

Skewed 

 

Statistic Power at 5 % significance level 

 

SKG2 0.8415 0.3121 0.1090 

 

SKG3 0.8199 0.3210 0.1176 

n = 10 γ1 0.6828 0.2873 0.1145 

 

SKP2 0.6254 0.1858 0.0838 

 

SKB 0.2644 0.0897 0.0626 

 

SKG2 0.9998 0.7816 0.2068 

 

SKG3 0.9998 0.7365 0.1984 

n = 30 γ1 0.9943 0.7033 0.2095 

 

SKP2 0.9654 0.4354 0.1252 

 

SKB 0.5331 0.1468 0.0739 

 

SKG2 1.0000 0.9690 0.3213 

 

SKG3 1.0000 0.9467 0.2952 

n = 60 γ1 1.0000 0.9494 0.3453 

 

SKP2 0.9989 0.7118 0.1851 

 

SKB 0.7776 0.2239 0.0841 

 

As preliminary results, the performances of SKG2 and SKG3 seem to be very promising. In 

extremely skewed and moderately skewed distributions, the powers of SKG2 and SKG3 are the 

best; especially in small samples they detect skewness much better. In slightly skewed 

distributions, the performance of γ1 is either similar to or slightly better than those of SKG2 and 

SKG3. The power of Pearson’s second coefficient of skewness (SKP2), equivalent to Yule’s 

coefficient of skewness (SKY) in power, ranks fourth, while Bowley’s coefficient of skewness 

(SKB) has the worst performance in all cases. In overall assessment, SKG2 may be preferable, not 

only because of its higher power in general, but also because of its ease of computing. 
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5. An Empirical Example 

So far we have had some idea about the performance of the proposed statistics in 

continuous data. To find out the performances of the proposed statistics in discrete data, 

especially in real world data, we consider the General Social Surveys (1972-2010) data, as they 

were used in von Hippel (2005) and in Garcia et al. (2015).  The data given in Table 3. 

correspond to a survey of respondents who are asked how many people older than 17 live in their 

household in the USA in 2002.  

 

Table 3. Number of Adult Household Members in the U.S. in 2002 (n = 2,765) 

# of Members 1 2 3 4 5 

Frequency 1045 1365 259 75 21 

 

The summary statistics of the data in Table 3 are as follows.  

mean median mode s.d. min max midrange range Q1 Q3 

1.7928 2 2 0.7783 1 5 3 4 1 2 

 

Although the frequencies suggest a likely skewness to the right, the mean is lower than the 

median and the mode. This is one of the counter-examples for the mean-median-mode inequality 

in discrete data. The coefficients of skewness corresponding to the data in Table 3 are as follows.  

 

SKG1 SKG2 SKG3 γ1 SKP SKP2 SKY SKB 

0.5000 0.5000 0.6036 1.1103 -0.2663 -0.7988 -0.2663 -1.0000 

 

Since the mean-median-mode inequality does not hold in this example, four of the coefficients of 

skewness, the ones based on the difference between measures of central tendency (namely, SKP, 
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SKP2, SKY)  and also SKB, yield negative values indicating the dataset is skewed to the left. 

Especially, Bowley’s coefficient of skewness (SKB) points to extremely negative skewness. 

Contrary to them, the proposed coefficients of skewness (SKG1, SKG2 and SKG3) as well as γ1 

indicate that the dataset is skewed to the right. Although γ1 indicates a positively skewed 

distribution, it is difficult to interpret the magnitude of 1.11, since it is not bounded. The values of 

SKG1, SKG2 and SKG3 (around 0.5-0.6) indicate an approximately moderate (or 50% to 60%) 

skewness to the right.  

Note that the proposed measures of skewness (SKG1, SKG2 and SKG3) generally yield 

similar results to the standardized third central moment (γ1) both in continuous and discrete data. 

 

6. Concluding Remarks 

In this paper, a simple class of measures for detecting skewness in samples is introduced. 

The new class of measures is based on a new definition of skewness that takes midrange of a 

sample as the reference point. From this perspective, skewness is defined as a deviation of the 

mean, median and mode from the midrange or center. The powers of the proposed statistics to 

detect skewness in samples are investigated by a limited Monte Carlo simulation. The 

preliminary results indicate that the performances of the new statistics seem to be promising, 

since in most of the cases they have similar or better power properties. Nevertheless, a more 

comprehensive Monte Carlo study that uses other asymmetrical distributions is needed to make 

more precise power comparisons. Note that this paper does not claim that the proposed statistics 

are superior to the conventional measures of skewness. The advantages of the proposed 

coefficients of skewness are that they can be computed relatively easier, they are more intuitive, 

and since the coefficients are bounded they are easier to interpret. The weakness of the proposed 
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statistics lies on their simplicity again, since the statistics proposed take only the extreme values 

into consideration. In case of data with outliers, the coefficients may yield misleading results. 

Therefore, the proposed statistics can be used to get a quick idea about skewness of sample data 

in which there are no outliers. 
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