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ABSTRACT

In this article a new simple method for calculating PID parameters for a wide
class of SISO process models is presented. The method utilizes one self oscilla-
tion experiment and one open loop step response experiment for determining the
parameters of a suitable PID controller. A specialization of the method to first
order models with time delay (FOTD) introduces a simple approximation of the
ultimate gain which eliminates the need for any self oscillation experiment, thus
giving rise to a method based solely on a step response of the model. Combining
this method with a simple method for estimation of the three parameters in a
FOTD model finally results in a design method based purely on an open loop
step response. The methods presented are evaluated by simulation on a number
of process models and the functionality of the step response based method is
tested on a real process (a soldering iron).

Keywords: PID, controller design, Ziegler-Nichols method, time delay, rational
approximation

1 Introduction

Ever since the days of the emergence of the Ziegler-Nichols famous methods ([1])
for choice of parameters in a PI or PID controller for a certain process model,
there has been attempts to find improved methods for tuning the PID param-
eters. In this article we propose an assumingly new method for determining
suitable parameters of a PID controller. The method uses three measurements
of the process model, one from a self oscillation experiment and two from an
open loop step response.
In [2] there is a survey of the most common parameter tuning rules for PID con-
trollers available today. The article [3] specifically treats the so called AMIGO
methods.



2 PID controller design

Given a process model transfer function

Gp(s) =
B(s)

A(s)
e−Ls

the parameters Ku, kp and Lp are estimated, where Ku is the ultimate feedback
gain for which the closed loop system oscillates with constant amplitude, kp is
the process model static gain and Tp is the total (equivalent first order) time
constant defined by

Gp(s) =
kp

1 + Tps+O(s2)
= kp(1− Tps+O(s2))

which defines the first order low frequency properties of the process model. The
parameter Tp is also referred to as average residence time ([3]). For a FOTD
(First Order plus Time Delay) model

G(s) =
kp

1 + Ts
e−Ls

it is immediately clear that the total time constant is given by Tp = T + L. In
this case Tp is directly obtained from the open loop step response by noting the
time for which the output reaches the level (1 − e−1)kp ≈ 0.63kp. It turns out
that, although this method for estimating Tp is only approximate in the general
case, the method is still useful for a broad class of process models.
The controller structure consists of the classical PID controller on parallell form
(with filtered derivative part):

Gc(s) = K

(

1 +
1

Ti

1

s
+

Tds

1 + Tfs

)

where Tf = Td

N for some filter factor N (typically N = 10). From the three
estimated process parameters we make use of the following choice of PID pa-
rameters:

K = cKKu , Ti =
TpKkp
Kkp + σ

and Td = cdTi (1)

where cK , cd and σ are design parameters. The parameter σ is most often
chosen to be 0.5, which gives a vertical LF-asymptote Re s = −σ = −0.5 of the
loop transfer nyquist curve. This follows from the fact that the loop transfer
function can be written as

Gc(s)Gp(s) =

= K

(

1 +
1

Tis
+O(s)

)

kp(1− Tps+O(s2))

=
Kkp
Tis

(1 + Tis+O(s2))(1 − Tps+O(s2))

=
Kkp
Tis

(1 + (Ti − Tp)s+O(s2))



The formula for Ti then follows from

lim
ω→0

ReGc(iω)Gp(iω) = Kkp

(

1−
Tp

Ti

)

= −σ

The coefficient cK , which is ususally chosen to be less than 0.5, can essentially be
regarded as a “bandwidth parameter” for the closed loop system behaviour. The
parameter cd (the quotient of Td and Ti) is a relative measure of the amount
of derivative action (cd = 0 corresponds to pure PI control). The parameter
σ indirectly influences the phase margin and the value 0.5 suggested above
approximately gives a phase margin of 60◦. A larger value of σ decreases the
phase margin resulting in less damped responses to steps in the reference signal.
This can, however, be utilized to obtain a faster response to load disturbances,
especially in cases with high ultimate gain Ku.

3 Non-resonant systems

A common type of process model used in the process industry is

G(s) = G0(s)e
−Ls,

where G0(s) typically is rational with well-damped poles and of low order. Some
examples will be given of PID control of such systems for different choices of
the parameters cK and cd.

Example 1. Consider the system

G(s) =
1− 2s

(1 + 4s)(1 + s)3
e−3s

Fig. 1 shows the closed loop responses for PID control of the system with four
sets of parameters. Notice how the response speed is directly correlated to the
gain factor cK . The choice of the derivative factor cd is done with regard to
keeping the same damping in all cases. In all cases the parameter σ is chosen as
0.5. The only process data needed for this design was kp = 1, Ku ≈ 1.51, and
Tp = 2 + 4 + 3 · 1 + 3 = 12 s. �

The method is not dependent on the considered process models to have any
time delay, since the process data required does not depend on the time delay
explicitly. High order models without time delay can often exhibit a behaviour
similar to low order models with time delay. One problem with models of low
order with small relative time delay is illustrated by the following example.

Example 2. For the system

G(s) =
1

1 + 4s
e−0.4s

problems appear for the larger values of cK . This is shown in Fig. 2. Stability
problems start to appear when the gain factor is increased to cK = 0.3. This
is due to the fact that the derivative factor cd is much too high for such small
relative time delays when the gain is increased. Since the ultimate feedback gain
Ku is large for small values of the relative time delay L/T , this results in a large
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Figure 1: closed loop response for PID control of a fourth order system with time delay.

Parameters chosen are (cK , cd) = (0.1, 0.05), (0.2, 0.1), (0.3, 0.2), and (0.4, 0.25).
As expected the response speed increases with increasing value of the gain factor cK .
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Figure 2: Closed loop responses for PID control of a first order system with time

delay. The parameter values are in this case (cK , cd) = (0.1, 0.05), (0.2, 0.1), and
(0.3, 0.2).
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Figure 3: Closed loop responses for PID control of a first order system with time

delay. The gain factor is cK = 0.4 and the values of the time delay are L = 0.4, 1, 2,
4, 10, and 20 s. The time constant is given by T = 4 s. A unit step load disturbance

is introduced at time t = 100 s.

gain K = cKKu. As the derivative action further amplifies the nyquist curve at
high frequencies, the spiral arms are magnified so much that they approach the
critical point −1, thereby deteriorating the stability. �

This may seem as a clear disadvantage of the proposed method, but the problem
is remedied in the following example where greater care is taken when choosing
the derivative factor cd = Td/Ti.

Example 3. The first order system with time delay is revisited. This time,
however, the system is studied for several different values of the time delay L.

G(s) =
1

1 + 4s
e−Ls

As L approaches 0, the derivative action must be eliminated, since, as noted in
previous example, the ultimate gain Ku then gets large. By manually tuning
cd for each L so that the closed loop response has an overshoot of 5%, an
approximate formula for the derivative factor cd is given by

cd = 0.3
(

1− e−0.7L
T

)

(2)

for cK = 0.4. For cK = 0.3 the following formula gives better curve fitting:

cd = 0.2− 0.25e−0.8L
T + 0.05e−2.3L

T

The result is depicted in Fig. 3, where the closed loop responses for several
different time delays L are shown and where the gain factor is given by cK = 0.4.
�



The accuracy achieved for the formulas for cd decreases with increasing values
of cK . For values such large as cK = 0.4 the behaviour of the system worsens for
values of L/T larger than 4 and the formula is then no longer useful. For lower
values of cK the closed loop behaviour becomes gradually more independent of
the value of cd (but slower). The artefacts in the closed loop responses, due
to the pure time delay combined with feedback, also become less noticeable for
decreasing values of cK .

4 Resonant systems

For systems with poorly damped dynamics, the choice of derivative factor cd
must be modified. Systems with small relative damping combined with small
relative timedelay L/T are not feasible to design PID controllers for, using
the methods described in this article, so only mildly oscillative systems are
considered. This is due to the fact that poorly damped systems demands some
phase retardation in the PID controller, which in turn forces negative values on
the PID parameters, since the controller then must have zeros in the right half
plane. For a second order system with time delay

Gp(s) =
kp

1 + Ts+ a2s2
e−Ls

the parameter cd should be chosen near a2/T
2 to give a near cancellation of the

weakly damped poles by the controller zeros. This works best for smaller values
of L/T , whereas for larger values of L/T the value of cd can be chosen more
independently of the quotient a2/T

2. For σ = 0.5 and a specified overshoot of
5%, an approximate formula for cd, when cK = 0.3, is given by

cd = 0.2− (0.30− 1.01x− 1.82x2)e−0.8τ + (0.076− 0.056x− 2.07x2)e−2.3τ (3)

where x = a2/T
2 and τ = L/T . This formula (Eq. (3)) is valid for 0.2 < L/T <

5 and for 0 < a2/T
2 < 1 (i.e. ζ > 1/2, where ζ is the relative damping).

For L/T > 5 higher frequency properties of the time delayed system starts to
degrade the behaviour of the closed loop response.

Example 4. A moderately resonant system with relative damping ζ = 0.5 and
with time delay L is given by

G(s) =
1

1 + 4s+ 16s2
e−Ls

Using the PID parameter formula above, the closed loop reference value step
responses and load disturbance response is shown in Fig. 4 for four values of the
time delay, namely L = 1, 4, 16 and 30 s, respectively. �

Just as in the case a2 = 0 in previous section, this effect for large time delays
can be explained by the derivative high frequency blow-up of the spiral arms of
the loop transfer nyquist curve, which introduces high frequency resonances. To
some extent this can be counteracted by decreasing the gain factor cK , thereby
sacrificing closed loop bandwidth. The formula in Eq. (3) for cd is the result of
least squares curve fitting, first with respect to L/T and then with respect to
a2/T

2. The coefficients 0.8 and 2.3 in the exponents of the “base functions” are,
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Figure 4: PID control of systems with relative damping ζ = 0.5 and a time delay

L. The four curves correspond to L = 1, 4, 16 and 30 s respectively (T = 4 s and

a2 = 16 s2). The formula in Eq. (3) has been used for the choice of cd in the PID

design.

however, the result of some manually tuning. The overshoot in the closed loop
step response varies around 5% (3-6%) within the specified parameter range
given above. Extrapolating to systems with parameters a2/T

2 > 1 using the
formula for cd gives overshoots gradually more deviating from the nominal 5%
but it should be noted that in that case a 5% overshoot is often not even
achievable for any value of cd whatsoever. For L/T = 0.25 and a2/T

2 = 4 (ζ =
T√
a2

/2 = 1/4) the minimum attainable overshoot lies around 24%, for example.

So even if the valid operation range for the cd formula can be extended (by least
squares or otherwise) there are limitations. However, by decreasing cK to values
less than 0.3 it is possible to find values of cd for which the overshoot can be
decreased to 5%, but then all PID parameters will be negative (including the
derivative filter factor N) and the system must be slowed down to a bandwidth
well below the resonance frecuency. The negativity of the PID parameters can
be seen as a consequence of the phase lag needed to achieve the lowering of
the bandwidth in order to rotate the resonance frequency region of the nyquist
curve of the loop transfer function clock-wise from the left half plane to the
right half plane. This implies the appearance of zeros in the right half plane,
which in turn manifests itself as negative coefficients in the numerator of the
loop transfer function, thus resulting in negative values in one or several of the
PID parameters.



5 Approximations of the ultimate gain for FOTD

systems

Determining the ultimate gain of a process model is traditionally done by some
sort of self oscillation based test method. Even if the classical self oscillation
experiment often is replaced by more practical but approximate relay feedback
oscillation methods it is tempting to find a pure step response based design
method. This would be possible to achieve by finding an approximation of the
ultimate gain Ku from step response data. Another approach is to find such
an approximate formula for Ku based on a simple process model. In process
industry the most efficient process model seems to be a first order system with
time delay, which only contains three parameters, namely the static gain kp, the
time constant T , and the time delay L:

Gp(s) =
kp

1 + Ts
e−Ls

The ultimate gain for this system is given by

Ku =
1

kp

√

1 + x2

where x is defined by the trancendental equation

arctanx = π −
L

T
x

An approximate solution to this equation is obtained by simply using arctanx ≈
π/2 resulting in x ≈ πT

2L which gives

Ku ≈
1

kp

√

1 +

(

πT

2L

)2

(4)

This approximation is relevant for small values of the relative time delay L/T .
A more accurate solution is obtained by making use of the approximation

arctanx ≈
π

2

x

x+ 1

The maximal absolute error for this approximation is

max
x>0

∣

∣

∣

∣

arctanx−
π

2

x

x+ 1

∣

∣

∣

∣

≈ 0.071

Remark. This rational approximation is actually the best rational uniform ap-
proximation r(x) of degree (1, 1) to arctanx under the interpolation constraints
r(0) = 0 and r(∞) = π/2. Since the constraints directly yields

r(x) =
π

2

ax

ax+ 1

for a > 0, it is sufficient to show that the error function ǫ(x) = arctanx− r(x)
has one local maximum and one local minimum for 0 < x < π/2 and that these
have equal magnitude precisely when a = 1, which guarantees the minimax
property of the approximation.
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Figure 5: The absolute relative error curves for the three approximation methods

Eq. (4), Eq. (5), and Eq. (6), of the ultimate gain as a function of the relative time

delay L/T giving maximum absolute relative errors of 22%, 3%, and 1% respectively.

This results in the following sharpened formula for the ultimate gain:

Ku ≈
1

kp

√

1 +
1

4

(

x− 1 +
√

x2 + 6x+ 1
)2

(5)

where x = πT
2L . Note, as a peculiarity, that by just switching the 6 to a 2 in

this formula we arrive at the previous cruder approximation. Of course, higher
order rational approximations of arctanx will give better result but this will not
be addressed here. As an example of another type of approximation of Ku the
following can be mentioned:

Ku ≈
1

kp

√

1 +

(

πT

2L

)2
1

1 + 0.2e−
2L
T − 0.2e−

L
5T − 0.1L

T e
−L

T

(6)

This is an ad hoc parametrized and manually tuned correction of the crude
approximation in Eq. (4), where the correction factor consists of the inverse of
a sum of exponentials.
The absolute relative error curves for the three approximation methods are
shown in Fig. 5. From this figure, the maximum absolute relative errors for the
approximation methods in Eq. (4), Eq. (5), and Eq. (6), can be estimated to
22%, 3%, and 1% respectively.



6 Step based method for FOTD systems

Aiming at a purely step response based PID parameter formula for first order
systems with time delay (FOTD systems)

G(s) =
kpe

−Ls

1 + Ts

the crude approximation in Eq. (4) is used, which gives an absolute relative error
of the ultimate gain Ku of at most around 20% (as can be seen in Fig. (5)).
Actually, the approximation is underestimating the true ultimate gain by about
20% in the worst case. The parameter cK in Eq. (1) is chosen to cK = 0.4.
Together with the underestimation of the ultimate gain this implies that cK =
0.4 in the worst case corresponds to an actual value of cK ≈ 0.3. The only side
effect of this is that the design in worst case gives a slightly slower response,
without any other form of performance degradation. For the parameter cd =
Td/Ti the formula in Eq. (2) is utilized. These choices gives the following simple
explicit formula for the PID parameters:











































K =
0.4

kp

√

1 +

(

πT

2L

)2

Ti =
L+ T

1 +
1

2Kkp

Td = 0.3
(

1− e−0.7L
T

)

Ti

(7)

For low values of the relative time delay L/T this PID parameter formula results
in slow responses to load disturbances. A modified version of the formula for Ti,
which constitutes a trade-off between on the one hand (a) slower response to load
disturbances but smaller overshoot in the reference value step response, and, on
the other hand (b) faster response to load disturbances but larger overshoot in
the reference value step response is given by

Ti =
L+ T

1 +
1 + α(Kkp)

2

2Kkp

(8)

where the parameter α interpolates between the two cases (α = 0 for case (a)
and α = 1 for case (b)). There is a clear advantage to choose values of α closer
to 1 since the larger overshoot in the reference value step response can easily be
reduced by making use of reference value weighting.
Case (b) (α = 1) is derived from the observation that for L = 0 (case without
time delay) and pure PI control (Td = 0) the characteristic equation for the
closed loop system becomes

s2 +
1 +Kkp

T
s+

Kkp
TTi

= 0 (9)

By substituting Tp = T + L = T (since L = 0) into the formula (picked from
Eq. (1)):

Ti =
Tp

1 +
σ

Kkp



and then substituting this into Eq. (9) the following characteristic equation is
obtained:

s2 +
1 +Kkp

T
s+

Kkp + σ

T 2
= 0 (10)

Comparing coefficients between Eq. (10) and the characteristic equation of a
second order system with standard parametrization

s2 + 2ζωns+ ω2
n = 0

where ζ is the relative damping, gives the following relation between σ and ζ:

σ =
(1 +Kkp)

2

4ζ2
−Kkp

Choosing the relative damping ζ = 1/
√
2 yields

σ =
(1 +Kkp)

2

2
−Kkp =

1 + (Kkp)
2

2

which corresponds to the case α = 1 above.

Example 5. The system

G(s) =
1

1 + 20s
e−2s

has a relative time delay of L/T = 0.1, which is fairly small. In Fig. 6 three
cases of PID control of the system are shown, α = 0, α = 1 without reference
value weighting and α = 1 with reference value weighting respectively. �

When choosing values of cK other than 0.4 it is empirically found that the
parameter cd should be scaled according to cd = (cK/0.4)0.3(1 − e−0.7L/T ).
The formula is then summarized as















































K =
cK

kp

√

1 +

(

πT

2L

)2

Ti =
L+ T

1 +
1 + α(Kkp)

2

2Kkp

Td = 0.75 cK

(

1− e−0.7L
T

)

Ti

(11)

A useful formula for the parameter α is given by

α =
fα

fα + L/T

where fα = 0.1 which empirically gives a good response to load disturbances.
By using a simple reference value filter

Fr(s) =
1 + Tnums

1 + Trefs

the increased overshoot in the reference value step response can be decreased
by proper choice of time constants Tref and Tnum.
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Figure 6: PID control using Eq. (7) with modified integral time according to Eq. (8)

for system with L = 2 s and T = 20 s in three cases, α = 0, α = 1 with ref. value

weighting and α = 1 without ref. value weighting.

7 Estimation of L and T from a step response

The classic (“school book”) estimation of three parameter (FOTD) model is
to draw the tangent line of the measured step response at the inflection point.
Assuming the initial value to be 0 the intersection of the tangent line with the
time axis gives the dead time L. By drawing the vertical line through the point
of intersection between the tangent line and the horizontal line through the
final value, the time constant T is then obtained as the width of the base of
the triangle thus defined. As an illustration, this method is applied to the step
response of the system

G(s) =
2

(1 + 2s)3
e−2s

The result is shown in Fig. 7 together with the step response of the FOTD
model obtained (Approximation 1). A simple and straightforward method to
estimate L and T from a step respone y(t) is to find the FOTD model which
interpolates (coincides with) the measured step response at two points. An
easily computable formula for this procedure is given by







T =
ty(t)=λ2kp

− ty(t)=λ1kp

ln(1− λ1)− ln(1− λ2)

L = ty(t)=λ1kp
+ T ln(1− λ1)

(12)

where kp is the static gain and 0 < λ1 < λ2 < 1, where the step response is
interpolated at the values λ1kp and λ2kp. Empirically useful values have been
found to be λ1 = 0.3 and λ2 = 0.8 (interpolation of the step response at 30%
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Figure 7: Step response of a third order system with a time delay, together with two

different approximations based on FOTD models

and 80% of the static gain). This gives the approximate formulas

{

T = 0.80 (ty(t)=0.8kp
− ty(t)=0.3kp

)

L = ty(t)=0.3kp
− 0.357T

(13)

The resulting FOTD model is also shown in Fig. 7 (Approximation 2), from
which the approximate values ty(t)=0.3kp

≈ 5.9 s and ty(t)=0.8kp
≈ 10.6 s are

read. From Eq. (13) the values L ≈ 4.56 s and T ≈ 3.76 s then are obtained.
The choice of λ1 and λ2 affects the frequency weighting. For example, by de-
creasing these values to λ1 = 0.1 and λ2 = 0.7 the high frequency properties
get higher priority. A straightforward generalization is to use a least-squares
approximation using a larger number of data points.

The Skogestad “half rule”

The so called “half rule” from [4] means that the largest time constant to be
neglected is distributed fifty-fifty on the smallest non-neglected time constant
and the time delay in the approximation. For a system with two time time
constants T1 and T2, where T2 ≪ T1 (or at least T2 < T1), this means that
the time constant and the time delay in the FOTD approximation are given by
T = T1 + T2/2 and L = T2/2 respectively. In this case it is easily shown that
T =

√

T 2
1 + T 2

2 and L = T1 + T2 − T will give an asymptotically correct rule
of second order as s → 0. This is seen by matching (1 + T1s)(1 + T2s) and
(1 + Ts)eLs up to second order terms, which gives a unique solution for T and
L. The Skogestad “half rule” gives a non-unique first order approximation. The
“half rule” tends to give approximations, where the step responses of the system
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Figure 8: Soldering iron open loop step response experiment and a consecutive cooling

followed by a step response of the system when controlled by a PID controller with

parameters computed from the open loop step response.

and its FOTD approximation coincide at two points corresponding to a low level
of 2-10% and a high level of 70-80%. From a frequency domain perspective this
can be viewed as employing heavier weighting at high frequencies, since larger
priority is given to matching the step response at small times (i.e. at low levels
of the step response).

8 Applications

In order to assess the step response based method it is appropriate to test it on
some physical process.

Example 6. The method was applied to a process consisting of a soldering iron
with a Pt100 sensor installed on it. The control signal was generated from a
solid state relay in the form of a PWM signal with a switch frequency of 0.5 Hz.
Fig. 8 shows an open loop step response experiment, where the times for passage
of the 30% and 80% levels (λ1 = 0.3 and λ2 = 0.8) were utilized for calculation
of k0, L and T in a FOTD model using Eq. (12) (in this case specialized to
Eq. (13)). The FOTD parameters thus obtained were kp = 1.32, L = 46.3 s,
and T = 255 s. Using the formulas in Eq. (7) gave the result K = 2.68, Ti = 264
s, and Td = 9.46 s. Note that only the analog control signal u is shown and
not the actual PWM signal. After the open loop experiment, the soldering iron
was cooled off, whereafter a step was introduced in the reference signal. This
resulted in a well-damped closed loop step response with a small overshoot.
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9 Conclusion

The various methods proposed are demonstrated to yield satisfactory results for
a variety of process models. The “base” method depends on a self oscillation
experiment (to estimate the ultimate gain) and a step response (to estimate the
total time constant Tp, also known as “average residence time”). If the transfer
function is known (such as in the given examples) the value of Tp is easily
calculated. A decent approximation of Tp for many process models is given
by T63%. By specializing to first order systems with time delay (FOTD) and
combining this with a simple method for estimating the three FOTD parameters
from a step response, a PID design method based only on a step response
is obtained. Different estimates of the ultimate gain for a FOTD system is
considered and the simplest of these is incorporated into the step response based
method in order to eliminate the need for a self oscillation experiment or a relay
feedback experiment.

In order to enhance the response to load disturbances, especially for low values
of the relative time delay L/T , a parameter 0 ≤ α ≤ 1 is introduced in the
formula for the integration time Ti, thereby selling of some of the performance
of the step response from the reference value.

Some attempts are also made to find some adjustment rules for a second order
system with a time delay based on the “base method” in Eq. (1). A special
formula for the parameter cd (i.e. Td/Ti) is devised which involves the second
order properties of the process model. This gives acceptable performance in the
reference value responses for process models with relative damping ζ > 0.5.
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