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Abstract: This paper proposes a single-stage asymmetrical half-bridge fly-back (AHBF) converter
with resonant mode using dual-mode control. The presented converter has an integrated boost
converter and asymmetrical half-bridge fly-back converter and operates in resonant mode.
The boost-cell always operates in discontinuous conduction mode (DCM) to achieve high power
factor. The presented converter operates simultaneously using a variable-frequency-controller
(VFC) and pulse-width-modulation (PWM) controller. Unlike the conventional single-stage design,
the intermediate bus voltage of this controller can be regulated depending on the main power switch
duty ratio. The asymmetrical half-bridge fly-back converter utilizes a variable switching frequency
controller to achieve the output voltage regulation. The asymmetrical half-bridge fly-back converter
can achieve zero-voltage-switching (ZVS) operation and significantly reduce the switching losses.
Detailed analysis and design of this single-stage asymmetrical half-bridge fly-back converter with
resonant mode is described. A wide AC input voltage ranging from 90 to 264 Vrms and output
19 V/120 W prototype converter was built to verify the theoretical analysis and performance of the
presented converter.

Keywords: fly-back converter; zero-voltage-switching (ZVS); variable-frequency-controller (VFC);
single-stage

1. Introduction

A conventional power supply was designed with a two-stage scheme that can be divided into two
parts. The first stage achieves power-factor-correction (PFC) to reduce the input current harmonics.
The second stage is a DC/DC converter that regulates the output voltage. However, the two-stage
scheme has several defects, such as high cost and power supply system complexity. In recent years,
a single-stage scheme was proposed [1–5] that integrates a boost stage and a DC/DC stage to
share a common switch. The boost-cell stage operates in discontinuous conduction mode (DCM)
to provide high power factor while the DC/DC stage can be responsible for output voltage regulation.
Unfortunately, the single-stage scheme presents major problems in which the intermediate bus voltage
cannot be regulated, such as the boost integrated flyback rectifier energy DC/DC (BIFRED) converter,
single-stage fly-back converter and single-stage LLC resonant converter [6–10]. When voltage is input
for universal applications, the intermediate bus voltage could be as high as 1000 V, causing difficulty
in selecting converter components, with voltage stress issues throughout the capacitors and switches.
The wide intermediate bus voltage variation will cause output voltage regulation design difficulty and
also cause lower conversion efficiency though the DC/DC stage. The single-stage scheme intermediate
bus voltage cannot be regulated at light loads and universal input voltage. The zero-voltage-switching
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(ZVS) fly-back converters have been used widely in industry and are suitable for low-to-medium
power applications, such as LED-driver and desktop computer power supplies. Various kinds of
ZVS schemes have been proposed, such as the active-clamp network and asymmetrical half-bridge
circuit [11,12]. The active-clamp fly-back converter [13] employs the active clamp network to achieve
ZVS operation; however, the voltage stresses on the switches are greater than input voltage which will
cause high conduction losses in the power switches. The asymmetrical half-bridge fly-back converter
(AHBF) with resonant mode [14–20] was developed to achieve ZVS and reduce the voltage stresses
on the switches to less than that of the active-clamp fly-back converter, so the power density and
conversion efficiency can be effectively increased. Furthermore, it can operate under changed duty
cycles or variable switching frequencies for regulated output voltage.

This paper proposes a new single-stage asymmetrical half-bridge fly-back converter with resonant
mode. The proposed converter integrates a boost converter and an asymmetrical half-bridge fly-back
converter with resonant mode using dual-mode control. The converter intermediate bus voltage
can be regulated by the pulse-width-modulation control (PWM). The variable-frequency-controller
(VFC) can regulate the converter output voltage. Therefore, this proposed converter can operate in
universal input voltage and solves the voltage stress issues throughout the capacitors and switches.
The proposed converter utilizes the ZVS technique to decrease the switching losses, resulting in high
conversion efficiency. The operational principle for the proposed converter is analyzed, a prototype
converter with AC input voltage of 90–264 Vrms and output voltage/current of 19 V/8 A is built to
verify the analytical results.

2. Circuit Description and Principle Operation of Proposed Converter

Figure 1 shows the circuit configuration for the single-stage asymmetrical half-bridge fly-back
converter with resonant mode. The primary switches Q1 and Q2 operate at asymmetrical duty ratio.
Db1 and Db2 are the anti-paralleled power MOSFETs. The primary side diode Din is a braking diode.
The Lboost is a boost-cell inductor. The resonant inductor Lr, resonant capacitor Cr and magnetizing
inductor Lm for are the resonant tank for the asymmetrical half-bridge fly-back converter. The secondary
diode Dr is a rectifier diode, the Cbus is boost cell output capacitor and CO is the asymmetrical
half-bridge fly-back converter output capacitor.
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Figure 1. Schematic of the proposed single-stage asymmetrical half-bridge fly-back converter with 
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The following assumptions were made to analyze the proposed single-stage asymmetrical
half-bridge fly-back converter:

- These conduction losses of all switches, diodes and layout traces, and the copper losses of the
transformer are neglected.

- The turn ratio of the transformer windings is n = N1/N2.
- The resonant inductor Lr is composed of a leakage inductor and external inductor, where

Lr = Leakage + Lex.

- The conduction times for Q1 are (1 − D)Ts and Q2 is DTs, respectively, where D is the duty cycle
for Q2, and Ts denotes the switching period. In addition, the dead time is much smaller than that
other of conduction times.

- In the steady state the bus capacitance Cbus and output capacitance CO are large enough so that
the bus voltage Vbus and output voltage VO are a constant value.

Both the boost-cell stage and asymmetrical half-bridge fly-back converter stage share the common
switches Q1 and Q2, and furthermore there is bus capacitor Cbus between the two stages. The boost-cell
stage was presented in [21]. When the switch Q2 is turned on and the switch Q1 is turned off, this
results in a positive voltage VLboost = VIN across the inductor Lboost causing a linear increase in the
inductor current iLboost. Conversely, when the switch Q1 is turned on and the switch Q2 is turned off,
the inductor Lboost is releases energy to the bus capacitor Cbus. Therefore, from the flux-balance of Lboost
under the steady-state, Vbus can be determined as:

Vbus
VIN

=
1
2
+

√
1 + 2 · D2·RLbus

L· fs

2
(1)

In the DC/DC stage, when the switch Q1 is turned on, the intermediate bus voltage Vbus will
charge Cr, Lr and Lm. Conversely, when the switch Q2 is turned on, the secondary diode Dr conducts
and Lm is releases energy to the output load. When the asymmetrical half-bridge fly-back converter
operates in resonant mode, the voltage transfer ratio can be expressed as:

M =
nVO
Vbus

=
(1− D) ·

1−cos
[
ωr ·
(

D
fs

)]
Zr ·ωr

1−D
ωr

[
1

n2Ro
+ D

2Lm fs

]
· sin

[
ωr ·

(
D
fs

)]
+ (1−D)2

n2Ro fs
+

1−cos
[
ωr ·
(

D
fs

)]
Zr ·ωr

(2)

where:
ωr =

1√
Cr · Lr

(3)

Zr =

√
Lr

Cr
(4)

From Equation (2), the voltage transfer ratio of the asymmetrical half-bridge fly-back converter
includes relation between the duty ratio D and switching frequency fs simultaneously. Figure 2 shows
the relation between the duty ratio D, switching frequency fs and voltage transfer ratio. It shows that
when the duty-ratio D is decreased from 0.35 to 0.65, to maintain fixed voltage gain, the switching
frequency can shift from fc to fa correspondingly. However, Figure 2 also shows that when the
switching frequency fs or duty ratio D decreases the voltage gain will be increased. In contrast, when
the switching frequency fs or duty ratio D increase, the voltage gain will be decreased.
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From Figure 1, the resistors R3 and R4 can measure output voltage Vbus and it can be to through
the compensator, which is composed of C2, R6 and operational amplifier (OPA). The output voltage
of compensator can provide a DC level for PWM + VFC controller, so that the duty ratio can be
changed according to Vbus. On the other hand, the Q2 is the boost-cell stage main switch, therefore
the intermediate bus voltage Vbus is regulated by the D to Q2 duty ratio. Unfortunately, changing
the D to Q2 duty ratio will affect the asymmetrical half-bridge fly-back converter output voltage.
For example, when the D to Q2 duty ratio is increased, the asymmetrical half-bridge fly-back converter
output voltage will decrease. Conversely, when the D to Q2 duty ratio is decreased, the asymmetrical
half-bridge fly-back converter output voltage will increase. To overcome the change in D to Q2 duty
ratio causing unstable asymmetrical half-bridge fly-back converter output voltage, a VFC has been
added to the feedback control loop.

From the section of VO-feedback of Figure 1, the resistors R1 and R2 can measure output voltage
VO, and the feedback-voltage can be to through the compensator, which is composed of C1, R5 and
OPA. Therefore, the output of OPA will adjust QSW at basis-terminal voltage, so that the oscillator can
be changed the frequency of saw-tooth wave in output-terminal. When the asymmetrical half-bridge
fly-back converter output voltage is decreased, the switching frequency fs will decrease to provide
larger voltage gain for regulated output voltage. Conversely, when the output voltage is increased,
the switching frequency fs will be increased to provide lower voltage gain. According to the above
analysis, the intermediate bus voltage Vbus and output voltage VO of the proposed converter can be
regulated simultaneously from the PWM control and VFC.

Figure 3 depicts the key waveforms of the proposed single-stage asymmetrical half-bridge fly-back
converter with resonant mode. Six states are required to complete a switching cycle. The conduction
paths for each operating state are illustrated in Figure 4.



Energies 2018, 11, 1721 5 of 16

Energies 2018, 11, x FOR PEER REVIEW  4 of 17 

 

 
Figure 2. Voltage transfer ratio versus normalized switching frequency. 

From Figure 1, the resistors R3 and R4 can measure output voltage Vbus and it can be to through 
the compensator, which is composed of C2, R6 and operational amplifier (OPA). The output voltage 
of compensator can provide a DC level for PWM + VFC controller, so that the duty ratio can be 
changed according to Vbus. On the other hand, the Q2 is the boost-cell stage main switch, therefore the 
intermediate bus voltage Vbus is regulated by the D to Q2 duty ratio. Unfortunately, changing the D to 
Q2 duty ratio will affect the asymmetrical half-bridge fly-back converter output voltage. For 
example, when the D to Q2 duty ratio is increased, the asymmetrical half-bridge fly-back converter 
output voltage will decrease. Conversely, when the D to Q2 duty ratio is decreased, the asymmetrical 
half-bridge fly-back converter output voltage will increase. To overcome the change in D to Q2 duty 
ratio causing unstable asymmetrical half-bridge fly-back converter output voltage, a VFC has been 
added to the feedback control loop.  

Ts

Q2 Q1 Q2 Q1

(1-D) TsD Ts

iLboot

vpri

nVO

DVbus

ir

iLm

iDr

t0 t1 t2t3 t4 t5 t6

vgs

 
Figure 3. Key waveforms of the proposed single-stage asymmetrical half-bridge fly-back converter 
with resonant mode. Figure 3. Key waveforms of the proposed single-stage asymmetrical half-bridge fly-back converter

with resonant mode.

Energies 2018, 11, x FOR PEER REVIEW  5 of 17 

 

From the section of VO-feedback of Figure 1, the resistors R1 and R2 can measure output voltage 
VO, and the feedback-voltage can be to through the compensator, which is composed of C1, R5 and 
OPA. Therefore, the output of OPA will adjust QSW at basis-terminal voltage, so that the oscillator 
can be changed the frequency of saw-tooth wave in output-terminal. When the asymmetrical 
half-bridge fly-back converter output voltage is decreased, the switching frequency fs will decrease 
to provide larger voltage gain for regulated output voltage. Conversely, when the output voltage is 
increased, the switching frequency fs will be increased to provide lower voltage gain. According to 
the above analysis, the intermediate bus voltage Vbus and output voltage VO of the proposed 
converter can be regulated simultaneously from the PWM control and VFC. 

Figure 3 depicts the key waveforms of the proposed single-stage asymmetrical half-bridge 
fly-back converter with resonant mode. Six states are required to complete a switching cycle. The 
conduction paths for each operating state are illustrated in Figure 4. 

 
(a) 

 
(b) 

 
(c) 
  

Figure 4. Cont.



Energies 2018, 11, 1721 6 of 16

Energies 2018, 11, x FOR PEER REVIEW  6 of 17 

 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Operation Modes of the proposed single-stage asymmetrical half-bridge fly-back converter 
during one switching period: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6. 

Mode 1 [t0, t1]: 

As shown in Figure 4, Q2 is turned on with the ZVS operating condition. In the meantime the 
rectifier diode Dr is conducted and the energies stored in the transformer magnetizing inductors are 
transferred to the output load. The output voltage is reflected to the primary side, therefore, the 
primary transformer is clamped to −nVO, and iLm decreases linearly. During this period, the resonant 
inductor Lr and resonant capacitor Cr begin to resonate. On the other hand, the diode Din is 
conducted and the voltage across the input inductor Lboost is equal to the input voltage VIN so the 
input inductor current iLboost increases linearly. The input current iLboost can be expressed as: 

( ) ( )0
bus

Lboost
boost

Vi t t t
L

= −   (5) 

Figure 4. Operation Modes of the proposed single-stage asymmetrical half-bridge fly-back converter
during one switching period: (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6.

Mode 1 [t0, t1]:

As shown in Figure 4, Q2 is turned on with the ZVS operating condition. In the meantime the
rectifier diode Dr is conducted and the energies stored in the transformer magnetizing inductors are
transferred to the output load. The output voltage is reflected to the primary side, therefore, the primary
transformer is clamped to −nVO, and iLm decreases linearly. During this period, the resonant inductor
Lr and resonant capacitor Cr begin to resonate. On the other hand, the diode Din is conducted and the
voltage across the input inductor Lboost is equal to the input voltage VIN so the input inductor current
iLboost increases linearly. The input current iLboost can be expressed as:

iLboost(t) =
Vbus
Lboost

(t− t0) (5)

The resonant inductor current iLr and the resonant capacitor voltage vCr are given as:

iLr(t) = iLr(t0) · cos[ωr(t− t0)]−
vCr(t0) + nVo

Zr
· sin[ωr(t− t0)] (6)

vCr(t) = nVO + [vCr(t0) + nVO] · cos[ωr(t− t0)] + ZriLr(t0) · sin[ωr(t− t0)] (7)

The magnetizing current iLm of transformer can be expressed as
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iLm(t) = iLm(t0)−
nVO(t− t0)

Lm
(8)

This interval is ended when iLr equals iLm at t1.

Mode 2 [t1, t2]:

At time t1 the input inductor current iLboost increases linearly. The resonant inductor current iLr is
the same as the magnetizing current iLm therefore, no current is transferred to the secondary side so
the rectifier diode Dr is turned off. During this mode, the resonant circuit is composed of Cr, Lr and
Lm. Moreover, Lm is equal to series with Lr and Lm is much larger than Lr, so that the resonant cycle is
much longer than the previous state. The iLm, iLr and vCr are expressed as:

iLr(t) = iLr(t1) · cos[ωr2(t− t1)]−ωr2Crvcr(t1) · sin[ωr2(t− t1)] (9)

vCr(t) = vCr(t1) · cos[ωr2(t− t1)] + LmiLr(t1)ωr2 · sin[ωr2(t− t1)]

+LriLr(t1)ωr2 · sin[ωr2(t− t1)]
(10)

iLm(t) = iLr(t) (11)

here:
ωr2 =

1√
Cr · (Lm + Lr)

(12)

When Q2 is turned off this interval is ended.

Mode 3 [t2, t3]:

The mode begins when Q2 is turned off at t = t2. The magnetizing current iLm charges the Q2

junction capacitors and discharges the Q1 junction capacitors until the Q2 junction capacitors equal
Vbus and the Q1 body diode conducts. Therefore, at time t3, Q1 can be turned on to achieve ZVS. During
this period, which is used to allow enough time to achieve ZVS, as well as prevent shoot through in
the two switches, the iLr and vCr are expressed as

iLr(t) = iLr(t2) · cos[ωr1(t− t2)]−ωr2Crvcr(t1) · sin[ωr1(t− t2)] (13)

vCr(t) =
iLr(t2)

ωr1Cr
· sin[ωr1(t− t2)] + vcr(t2) · cos[ωr1(t− t2)] (14)

where:
ωr1 =

1√
(Lm + Lr) ·

(
Ceq
∣∣∣∣Cr

)Coss1 = Coss2; Ceq = Coss1 = Coss2 (15)

The input current iLboost can be expressed as:

iLboost(t) = −
VIN −Vbus

Lboost
(t− t2) (16)

Mode 4 [t3, t4]:

In this state, Q1 is turned on which carries the resonant inductor current iLr and input inductor
current iLboost. The voltage across the input inductor Lboost is about (VIN − Vbus) so the input inductor
current iLboost linearly decreasing. Referring to Figure 4d, the rectifier diode Dr is reverse-biased and in
the meantime the input energy is stored in the primary magnetizing inductance Lm, while the output
capacitors CO provide energy to the output load. The resonant inductor current iLr, magnetizing
inductance current iLm and resonant capacitors voltage vCr can be expressed as:

iLr(t) = iLr(t3) · cos[ωr2(t− t3)] + ωr2Crvbus · sin[ωr2(t− t3)]

−ωr2Crvcr(t3) · sin[ωr2(t− t3)]
(17)

vCr(t) = vcr(t3) + iLr(t3) · cos[ωr2(t− t3)] + ωr2Crvbus · sin[ωr2(t− t3)]

−ωr2Crvcr(t3) · sin[ωr2(t− t3)]
(18)
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iLm(t) = iLr(t) (19)

The input current iLboost are given as:

iLboost(t) = −
VIN −Vbus

Lboost
(t− t3) (20)

When input current iLboost reach zero level, this interval is ended.

Mode 5 [t4, t5]:

During this stage, Q1 remains turned on so that the direction of iLr is reversed. As with Stage
4 the primary magnetizing inductance Lm stores energy and the output capacitors CO continue to
provide energy through the output load. The current in Lboost stays at zero (DCM operation) so the PFC
feature can be achieved. In the meantime, diode Din is in reverse bias. The resonant inductor current
iLr, magnetizing inductance current iLm and the resonant capacitor voltage vCr are given as:

iLr(t) = iLr(t4) · cos[ωr2(t− t4)] + ωr2Crvbus · sin[ωr2(t− t4)]

−ωr2Crvcr(t4) · sin[ωr2(t− t4)]
(21)

vCr(t) = vcr(t4) + iLr(t4) · cos[ωr2(t− t4)] + ωr2Crvbus · sin[ωr2(t− t4)]

−ωr2Crvcr(t4) · sin[ωr2(t− t4)]
(22)

iLm(t) = iLr(t) (23)

where:
ωr2 =

1√
Cr · (Lm + Lr)

(24)

When Q1 turned off, this interval is ended.

Mode 6 [t5, t6]:

In this stage, Q1 and Q2 are turned off and the input current iLboost remains at zero, while the
output capacitors continue to provide energy through the output load. At this interval, the resonant
current iLr charges the Q1 junction capacitors and discharges the Q2 junction capacitors. When Q1

equals Vbus and the body diode across Q2 conducts, this interval is ended and the operating state
returns to Stage 1 to begin the next switching cycle. The resonant inductor current iLr, magnetizing
inductance current iLm and resonant capacitor voltage vCr can be expressed as:

iLr(t) = iLr(t5) · cos[ωr1(t− t5)] + ωr1CrvCr(t5) · sin[ωr1(t− t5)] (25)

vCr(t) =
ILr(t5)

ωr1Cr
· sin[ωr1(t− t5)] + vCr(t5) · cos[ωr2(t− t5)] (26)

iLm(t) = iLr(t) (27)

When Stage 6 ends the operating state returns to Stage 1 and the next switching cycle begins.

3. Circuit Design for the Proposed Converter

Dmax is the maximum duty cycle for the proposed converter. For to achieve high power-factor the
input inductor current must be operated in DCM so the input inductor Lboost can be expressed as:

Lboos <
VbusTs

2 · iINpeak fsmin
· (Dmax) · (1− Dmax)

2 (28)

where iIN peak is the maximum peak-current of the input inductor Lboost, and fsmin is the lowest
switching frequency for the proposed converter. From Equation (25), when Lm is greater than the
resonant inductor Lr, the voltage gain can be approximated as:

VO =
1
n

Vbus · (1− D) (29)

Therefore, the turn ratio of the transformer primary winding to secondary winding can be equal to:
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n =
Vbus
VO
· (1− D) (30)

At t = t3, to ensure the ZVS operation for Q1, the magnetizing inductance current iLm must
discharge the Coss1 until the voltage is equal to zero so the minimum iLm at t3 can be given as

iLm(t3)min =
nVO
2Lm

· DminTs (31)

According to Equation (28), the maximum magnetizing inductance Lm can be expressed as:

Lm(t3)max =
nVO · tdead

2 ·Vbus(Coss1 + Coss2) · fs
· Dmin (32)

On the other hand, at t = t6, to ensure ZVS operation for Q2, the magnetizing inductance current
iLm must discharge Coss2 until the voltage is equal to zero so the minimum iLm at t6 can be given as:

iLm(t6)min =
nVO

2 · Lm · fs
· (1− Dmax) (33)

According to Equation (30), the maximum magnetizing inductance Lm can be expressed as:

Lm(t6)max =
nVO · tdead

2 ·Vbus(Coss1 + Coss2) · fs
· (1− Dmax) (34)

From Figure 4a, the resonant capacitor Cr and the resonant inductor Lr are resonating from t0 to
t1, this time interval is during the Q2 turn-on time, which is about half the resonant period and can be
approximately expressed as:

Cr ≤

(
2·Dmax

ωr

)2

Lr
(35)

The output filter capacitance CO can be calculated as:

CO ≥
PO
VO
· (1− Dmax)

∆VO · fs
(36)

where fs is the switching frequency and4VO is the output voltage ripple. The voltage stresses of Q1

and Q2 are equal to Vbus. The voltage stresses of the secondary diode Dr is:

Dr =
Dmax ·Vbus

n
+ VO (37)

The peak secondary diode current is expressed as:

IDr,max =
π

2 · (1− Dmax)
· IO (38)

4. Experimental Results

In order to verify the feasibility of the proposed converter, a 120 W prototype converter is built in
the laboratory. Figure 5 shows the proposed converter and the experimental parameters are designed
in Table 1.
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Table 1. Experimental parameters of the proposed converter.

Parameters Value

Input ac voltage range: 85–264 Vrms
Output voltage: VO = 19 V

Output voltage ripple: 4VO = 0.95 V
Intermediate bus voltage: Vbus = 420 V
Maximum output current: IO = 6.32 A

Input inductor: Lboost = 200 µH
Magnetizing inductance: Lm = 450 µH

Turns ratio: n = Np/Ns = 3T
Resonant inductor: Lr = 100 µH

Maximum duty cycle: Dmax = 0.75
Resonant capacitors: Cr = 40 nF
Switching frequency: fs = 60–150 kHz

Output capacitor: CO = 1200 µF

A PQ26/20 TDK core is used for the input inductor. The PQ32/30 core is used for the isolation
transformer and the transformer turn ratio is calculated from Equation (26). The magnetizing
inductance Lm is designed from Equation (29) at approximately 450 µH. The IPP60R99 MOSFET is used
producing output capacitance COSS of about 130 pF at a 430 V drain-to-source voltage, including the
output capacitances of Q1 and Q2 it is about 260 pF. Therefore, to ensure ZVS operations, 330 ns dead
time was inserted between the Q1 and Q2 gate signals. The resonant frequency fr is placed at about
80 kHz so the resonant capacitor Cr and resonant inductor Lr can be calculated from Equation (32).
The output voltage ripple 4VO is required to be smaller than 0.95 V. The output capacitor CO is
calculated to be greater than 474 µF from Equation (33). Therefore, a 1200 µF output capacitor is used.

Figure 6 shows the experimental results for vGS1, vGS2, iLboost and iLr at different output currents
and at VIn,main. Referring to Figure 3, six operation states can be observed in Figure 6. When Q1

is turned on and Q2 is turned off, the iLboost linearly decreases and iLr linearly increases. When Q1

and Q2 are turned off, ZVS operation can be achieved. During the Q1 turned off and Q2 turned
on period, the iLboost increases linearly and the resonant inductor Lr and resonant capacitor begin to
resonate. On the other hand, Figure 6 also shows that when the output load increases from light load
to full load, the duty ratio of Q2 increases from 0.5 to 0.75 for regulated bus voltage Vbus, and the
switching frequency decreases from about 125 kHz to 62 kHz for regulated output voltage VO. Figure 7
shows the measured input voltage vac, input current iac and input inductor current iLboost under full
load conditions. The input current near sinusoidal waveform and input inductor current are shown
operated in DCM so that high power factor can be achieved.
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Figure 8 shows the gate-to-source waveforms and drain-to-source voltages for primary switches
Q1 and Q2 at the full-load. The waveform shows that VDS1 and VDS2 reach zero levels after Q1 and Q2

are turned on. Therefore, ZVS conduction is achieved so that overall conversion efficiency is increased.
The transient output voltage VO during a step load current from 1.6 to 6.3 A and from 6.3 to 1.6 A
are shown in Figure 9 when input voltage of 230 Vrms, which shows that VO can still be regulated.
Figure 10 depicts the bus voltage variation under 25%, 50%, 75% and 100% load condition and the bus
voltage is regulated around 430 V. Figure 11 also depicts the input current power factor. It indicates
that the power factor is greater than 0.9 at different load conditions. Figure 12 shows the measured
efficiencies of the proposed single stage asymmetrical half-bridge fly-back converter through different
outputs. The average efficiency is around 86% above which the rated full load efficiency is about 90%.
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Table 2 shows the comparison among the converters proposed in [14,15,17]. Compared with
the input voltage range, this presented converter can be operated in universal-voltage, and other
converter just can operate in high-line voltage situations. Moreover, this proposed converter has the
lowest component cost because it does not need an additional power-device or inductor for a high PF.
Figure 13 shows the prototype of the proposed converter.

Table 2. Comparison to the other published methods.

Proposed Converter 2005 [14] 2012 [15] 2014 [17]

Input Voltage 90–264 Vrms 180–265 Vrms 180–270 Vrms 180–265 Vrms
Output Voltage 19 V 24 V 24 V 24 V

Switching Frequency 60–150 kHz 100 kHz 99–119 kHz 100 kHz
Efficiency 90% 91% 91.5% 92%

Power Factor 98% 99% None 99%
ZVS/ZCS Yes Yes Yes Yes

Control Techniques
for power factor VCF and PWM Coupled Inductor Frequency Compensator PWM

Cost Low High Middle High
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5. Conclusions

This paper presented a single stage asymmetrical half-bridge fly-back converter with
resonant mode. The switches operate simultaneously in the variable-frequency-controller (VFC) and
pulse-width-modulation (PWM) control to regulate the bus voltage and output voltage. The operating
modes in a complete switching cycle were analyzed and discussed in detail. The key equations were
derived and the design procedures formulated. The experimental results on an AC input voltage 90 to
264 Vrms with output 120 W prototype were recorded to verify the theoretical scheme. The measured
results show that the power factor is above 0.9, the average efficiency is around 86% and the highest
conversion efficiency is about 90%. The proposed single stage asymmetrical half-bridge fly-back
converter is especially suitable for low-to-medium power level applications.
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