
TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5

A Software-Only Scheme for Managing Heap Data on Limited Local
Memory(LLM) Multicore Processors

KE BAI and AVIRAL SHRIVASTAVA, Arizona State University

This article presents a scheme for managing heap data in the local memory present in each core of a
limited local memory (LLM) multicore architecture. Although managing heap data semi-automatically with
software cache is feasible, it may require modifications of other thread codes. Crossthread modifications are
very difficult to code and debug, and will become more complex and challenging as we increase the number
of cores. In this article, we propose an intuitive programming interface, which is an automatic and scalable
scheme for heap data management. Besides, for embedded applications, where the maximum heap size can
be profiled, we propose several optimizations on our heap management to significantly decrease the library
overheads. Our experiments on several benchmarks from MiBench executing on the Sony Playstation 3 show
that our scheme is natural to use, and if we know the maximum size of heap data, our optimizations can
improve application performance by an average of 14%.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code generation, Com-
pilers, Optimization

General Terms: Algorithm, Design, Experimentation, Performance

Additional Key Words and Phrases: Heap data, local memory, scratch pad memory, embedded systems,
multicore processor, IBM Cell BE, MPI

ACM Reference Format:
Bai, K. and Shrivastava, A. 2013. A software-only scheme for managing heap data on limited local memory
(LLM) multicore processors. ACM Trans. Embedd. Comput. Syst. 13, 1, Article 5 (August 2013), 18 pages.
DOI: http://dx.doi.org/10.1145/2501626.2501632

1. INTRODUCTION

Scaling the memory architecture is one of the toughest and the most significant issue
as we evolute from multicore (few cores) to many-core (thousands of cores). Meanwhile,
providing the illusion of a singe unified memory space in hardware is becoming expen-
sive for two main reasons: (i) automatically managing the memory in hardware, that
is, by caches, becomes prohibitive, since it has higher power and performance over-
heads. Caches have already consumed about half of the processor energy on single-core
processors [Banakar et al. 2002] and are expected to consume more as the number of
cores increase. (ii) Cache protocols are not well scalable to many cores [Eichenberger
et al. 2006]. As a result, limited local memory (LLM) multicore architecture with a
small local memory on each core is coming up as a promising scalable memory ar-
chitecture. Modern and futuristic processors, especially in the embedded domain, are

This research was partially funded by grants from National Science Foundation CCF-0916652, IIP-0856090,
and NSF I/UCRC for Embedded Systems.
Authors’ addresses: K. Bai and A. Shrivastava, Compiler and Microarchitecture Laboratory, Arizona State
University, Tempe, AZ 85281; corresponding author’s email: ke.bai@asu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/08-ART5 $15.00

DOI: http://dx.doi.org/10.1145/2501626.2501632

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:2 K. Bai and A. Shrivastava

being designed in LLM multicore architectures. One such example is the IBM Cell
BE [Flachs et al. 2006].

In an LLM multicore processor, each core can only directly access its local memory,
and programmers are responsible for manually adding DMA commands for data trans-
fers between the global memory and the local memory. For example, each Synergistic
Processing Element (SPE) on the IBM Cell BE can only access its local memory, and this
local memory is shared by all code and data of the thread mapped to the core. When
developing applications on LLM multicore architectures, there are always two chal-
lenges. The first is that programmers must parallelize the given application at several
levels, for example, thread level or data level. The second is that each thread on each
core should be executed efficiently. When a thread can not be mapped to a core, pro-
grammers must change the way the application is parallelized. This can be extremely
complex, because often applications have some natural parallelism themselves, and
finding out some other ways to parallelize them can be formidable. Therefore, we pri-
marily cope with the second challenge of executing (and efficiently executing) a thread
of application on a core.

If all the code and data of an application can fit into the local memory, extreme
efficiency is achieved—this is the promise of LLM multicore architectures. However, if
they can not completely fit into the local memory, DMA commands must be inserted
to bring the required data to the local memory before it is used and move some not-
so-urgently-needed data back to the global memory. With limited memory resource
in the local memory of LLM architectures, all code and data of a thread must be
managed. However, managing heap data is especially important. First, it is dynamic
in nature, and the size is always data dependent and can be unbounded. Second, in
most systems, heap and stack grow towards each other and could easily overwrite each
other. The gentle failure is that the application will crash or go to an infinite loop.
The severe failure is that the program gives a wrong result without the awareness
of the programmer. In fact, the Cell Programmer’s Guide suggests to “avoid using
heap variables”. We believe this will extremely restrict a programmer’s productivity
and creativity. Consequently, we need a scheme to efficiently manage heap data in a
constant and small amount of space in the local memory.

One way to semi-automatically manage heap data in the local memory on each core
of an LLM multicore processor is through the use of the software cache [Angiolini et al.
2004]. Software cache is essentially software implemented in some data structures.
Global data can take advantage of software cache better than other data types, since
it is declared and allocated once. Heap data, which is dynamically allocated, can not
use software cache directly. In fact, managing heap data of an application thread
with software cache requires several non-intuitive and error-prone modifications in
the application code. It requires not only the modification of the execution thread, but
also several changes of the main thread. Namely, the user must create a new thread
on the main core that listens to memory requests from the execution core. As the
number of cores increases, this solution becomes more complicated to be implemented
and debugged.

This article proposes a scheme for hiding the programming complexity in a library
with simple programming interface. We modify the GCC compiler for IBM Cell BE to
automate insertions of library functions, compile benchmarks from MiBench [Guthaus
et al. 2001] and others using it, and then measure the runtime on the Sony Play
Station 3. Our experiments show that our heap management scheme, while being
transparent to programmers, performs on par with a software cache implementation.
When the maximum heap size of the application can be known, our optimizations can
improve application speeds by an average of 14%.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:3

Fig. 1. The IBM Cell BE is a good example of limited local memory (LLM) architectures. There are eight
synergistic processing elements, or SPEs. Each SPE can access only a small local memory, and all data
transfers between the local memory and the global memory take place through explicit DMA calls.

2. BACKGROUND

2.1. Limited Local Memory Architecture

The IBM Cell Broadband Engine [Flachs et al. 2006] is a very good example of limited
local memory (LLM) multicore architectures. As shown in Figure 1, it is a nine-core
architecture, with one main core (the power processing element, or PPE, in the IBM
Cell BE) and eight distributed execution cores (the synergistic processing elements, or
SPEs, in the IBM Cell BE). The main core in the Cell BE is a two-way simultaneous
multithreaded power 5 core, while each of the execution cores works on only one thread
at a time in a non-preemptive fashion. Only the main core has an operating system, and
it has direct access to the global memory through a coherent L2 cache. Each execution
core has a 256 KB local memory and can not directly access the global memory and
other local memories. Data communications between the local memory and the global
memory should be explicitly managed in the software through the direct memory access
(DMA) engine.

2.2. Thread-Based Programming Paradigm

Programming on an LLM multicore architecture is based on a Message Passing In-
terface (MPI) style thread model. It requires programmers to have a main thread.
This main master thread is responsible for creating, distributing data and tasks, and
even collecting results from execution threads. The main thread runs on the main core,
while the execution threads are scheduled on execution cores. A very simple application
in this multicore programming paradigm is illustrated in Figure 2. In the pseudocode,
the main thread, executing on the main core, initiates several execution threads on
the execution cores. In the execution thread, N number of ITEM data structures are
initialized and accessed. ITEM data structures contain two fields, id (int) and price
(float) for each item.

3. MOTIVATION

Generally, the local memory on the execution core is conceptually divided into four
segments by the compiler: text region, global data region, heap data region, and stack
data region. The text region is where the compiled code of the program itself resides.
Function frames reside in the stack region, starting from the top of the memory and
growing downwards, while heap variables (defined through malloc) are allocated in
the heap region, starting from the top of code region and growing upwards. The four
segments share the limited memory resource of local memory. Because the local memory

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:4 K. Bai and A. Shrivastava

main () {
for (speID=0;speID<NUMSPEs; speID++){
init SPEs (speID) ;

}
}

(a) PPE code

typedef struct{
int id ;
float price ;

} ITEM;

main () {
for (i =0; i<N; i ++){
item [i] = malloc (sizeof (ITEM)) ;
item [i] . id = i ;
pr in t f (”%d\n” , item [i] . id) ;

}
}

(b) SPE code

Fig. 2. Outline of a threaded program on the Cell BE: (a) PPE creates a thread on each SPE; (b) on each
SPE, some ITEM structures are allocated and accessed.

lacks any hardware protection, heap data can easily overflow into the stack region and
corrupt the program state.

In Figure 2, for small N, the program will execute correctly, but large values of N
can cause catastrophic failures, for example, the application crashes, the execution core
goes into an infinite loop. However, the worst situation is that the output is just slightly
incorrect. One way to avoid these problems is to avoid using heap variables; however, we
believe that this is very limiting on both the creativity and the productivity of program-
mers. What is needed is a scheme that limited local memory multicore programmers
can use to efficiently and automatically manage heap data of the application.

4. RELATED WORK

Local memory in each core of an LLM multicore architecture is a raw memory under
software control. They are very similar to the Scratch Pad Memories (SPMs) popular
in embedded systems. Banakar et al. [2002] proposed the use of raw memories in
embedded systems when they noticed that caches consume a very significant portion of
the power budget of even an embedded processor, like the Intel StrongARM [Montanaro
et al. 1997]. They demonstrated that for the same memory area, SPMs consume 40%
less energy and 34% less die area. However, the absence of memory management logic
in the hardware shifts the burden of managing data to programmers.

Techniques have been proposed to manage code [Steinke et al. 2002a, 2002b;
Angiolini et al. 2004; Verma et al. 2004, 2005; Nguyen et al. 2005; Egger et al. 2006a,
2006b; Udayakumaran et al. 2006; Janapsatya et al. 2006; Verma and Marwedel 2006],
global data [Kandemir et al. 2001, 2002; Steinke et al. 2002b; Avissar et al. 2002; Verma
et al. 2005; Li et al. 2005; Udayakumaran et al. 2006; Verma and Marwedel 2006] and
stack data [Avissar et al. 2002; Francesco et al. 2004; Nguyen et al. 2005; Li et al.
2005; Udayakumaran et al. 2006] on the SPM, but little work has been done towards
managing heap data [Francesco et al. 2004; Dominguez et al. 2005; McIlroy et al. 2008],
not even to techniques for LLM multicore architectures.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:5

Fig. 3. In the ARM processor, the SPM is in addition to the regular cache hierarchy, while in the Cell BE,
local memory/SPM is an essential part of the memory hierarchy.

Che et al. proposed techniques for compiling stream programs for IBM Cell BE [Che
et al. 2010; Che and Chatha 2010, 2011a, 2011b]. We have already proposed schemes
for managing code [Pabalkar et al. 2008; Jung et al. 2010], stack data [Kannan et al.
2009; Bai et al. 2011b], and heap data (in the form of vector for C++ language) [Bai et al.
2011a] for LLM multicore architectures. This work only focuses on managing heap data
on local memories of LLM multicore processors, and fundamentally differs from the
existing work on SPMs. The difference originates from the use of SPMs in embedded
systems and local memories in LLM multicore processors. Figure 3 illustrates the
difference. It shows that in the embedded systems, for example, the ARM architecture,
the SPM is present in addition to the regular cache hierarchy of the processor. Programs
could execute correctly without the use of SPM; they could however use SPM to improve
power and performance. On the other hand, in the synergistic processing element
(SPE) of IBM Cell BE, all code/data must go through the local memory. In other words,
while the problem of using SPMs in embedded systems is that of optimization, the
problem of using local memory/SPM in distributed memory multicore processors is to
enable the execution of applications. As a result, previous SPM researches [Francesco
et al. 2004; Dominguez et al. 2005; McIlroy et al. 2008] have focused on the question
of “what to map” on the SPM. The “what to map” is not even an option for LLM
multicore processors. Important questions in using local memories are (i) given that
the application code has to be changed to make itself work, what would be a set of
intuitive and simple APIs that must be inserted to the application program to make
this happen, and (ii) these changes should eventually result in a smaller number of
coarse-grain communications between the local memory and the global memory.

One way to manage heap data on the local memory of each core in an LLM processor,
for example, the IBM Cell BE, is by using the software cache. However, there are
several limitations in managing heap data through the software cache. We will discuss
this approach and its limitations in greater detail in Section 5, describe our approach
to meet this challenge in Section 6, and finally experimentally demonstrate the need
and usefulness of our approach in Section 8.

5. HEAP DATA MANAGEMENT USING SOFTWARE CACHE

Software cache [Angiolini et al. 2004] is a software-managed data structure located in
the global data segment of the local memory in each execution core. It can be used as
a semi-automatic method to manage large amounts of data in a programmer-defined
size. Before using software cache, the programmer needs to make some configurations
for software cache, and then replaces every access of that data with a read/write from/to
the software cache. For each read and write, the software cache first checks whether
the data is in the cache or not. If it is, the program can directly read/write the data
from/to the cache; otherwise, a direct memory access (DMA) is performed to get the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:6 K. Bai and A. Shrivastava

heapManage () {
while (1) {
spe out mbox read (speID , s ize . . .) ;
ppeAddr = malloc (s i ze) ;
spe in mbox write (speID,&ppeAddr

. . .) ;
}

}

main () {
for (speID=0;speID<6;speID++){
init SPEs (speID) ;

}
/∗ Create a new thread ∗ /
pthread create (. .&heapManage . .) ;

}
(a) PPE code

#define CACHENAME HEAP
. . .

typedef struct{
int id ;
float price ;

}Item ;

main () {
for (i =0; i<N; i ++){
spu write out mbox (sizeof (Item)) ;
item [i] = spu read in mbox () ;
cache wr (HEAP, item [i] . id , i) ;
p r in t f (”%d\n” , cache rd (HEAP, item [

i] . id)) ;
}

}
(b) SPE code

Fig. 4. Using the software cache to manage heap data in the IBM Cell BE. Important observations: (a) the
SPE must transmit all its memory management functions to the PPE; (b) an extra memory management
thread is needed on the PPE for communications between PPE and SPE.

required data from the global memory to the local memory, and then the data can be
used. As new data comes into the cache data structure, older data may be evicted out
to the global memory.

We modified the application code described in Figure 2 to manage heap data through
software cache. Note that the software cache is designed for managing large amount of
data in the local memory and there is no published scheme for the purpose of managing
heap data through software cache. We made this try to manage heap data in this way.
In Figure 4(a), we can note that there is a separate thread, heapManage, created by the
main thread. It waits for requests from the execution thread/core (SPE), allocates the
requested data structure in the global memory, and sends back the allocated address
to the execution thread/core (SPE). For the execution thread in Figure 4(b), the first
line declares a software cache named HEAP. More configurations for cache are needed,
for example, cache size and associativity, but are skipped here for succinctness. Since
the number of items N can be large, depending on the N set by the programmer, the
item data structures must be allocated in the global memory. However, the ITEM data
structures are malloc-ed in the execution thread in the original code. Therefore, we
need to use heapManage in the main thread/core (PPE) to take care of memory re-
quirements from the execution threads/cores to the main thread/core. In the example
shown in Figure 4, the execution thread/core (SPE) sends the size of malloc to the main
thread/core (PPE) through mailbox. The main thread/core (PPE) allocates space for the
ITEM data structure(s) in the global memory and sends its address back to the execu-
tion thread/core (SPE). The execution core (SPE) can then use this address to access the
ITEM data structure that actually resides in the global memory, through the software
cache. Similar steps need to be taken when freeing up the allocated memory, but are
skipped for simplicity in the example. Some of the complexities and disadvantages of
managing heap data through software cache are as follows.

(1) The data is required to be allocated on the global memory by the software cache,
and each data access of execution cores must through a global address. To use the
software cache for heap variables, each allocation or deallocation request in the
execution thread/core must be transmitted to the main thread/core. This commu-
nication task should be manually accomplished by programmers. In addition, to

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:7

typedef struct node
{

int weight ;
struct node ∗ l ink ;

}
(a) Original Struct

typedef struct node
{

int weight ;
int l ink ;

}
(b) Modified Struct

Fig. 5. Users need to change the pointer type to any other non-pointer/non-structure type in order to use it
in software cache, for example, here we change it to int.

allow the main thread to do some other parallel tasks during the execution time of
execution cores, programmers should create a new thread, which waits and serves
all the requests from execution threads. Another aspect of managing heap data
through software cache is that normally the main core is the master core which
is responsible for distributing tasks and data, but now the main core has to serve
requests from each execution core. This reversal of roles makes this programming
non-intuitive and complicated.

(2) The interface of the software cache only supports one data type in a declared
cache. Given one example of a data structure shown in Figure 5, we will learn how
complicated using the software cache is. The structure node contains two elements,
weight and a pointer to a similar structure. One thing that should be noted is that
the software cache does not support pointer type elements, and it must be renamed
as any other non-structure and non-pointer data type. For example, we can change
this element to integer type for the purpose that two elements can use the same
cache instead of two different caches. This is unnatural for C programming and
severely reduces readability.

(3) Managing heap data through the software cache requires users to replace each
data access with a cache read/write operation. Hence, even if we know that the
data is in the cache, we still need to use cache functions cache rd and cache wr to
access data from software cache. We can not avoid looking up the cache table, and
therefore there is little scope for reducing the management overhead.

6. OUR APPROACH

6.1. Overview

The objective of our approach is to hide the additional complexity in managing heap
memory in a limited space on the local memory. The heap management library should
be intuitive to use and can be automated with the help of a compiler. In our scheme,
library functions can handle the data type issue, which is one limitation of using the
software cache. Our library does not require users to declare different regions for
different data types, and it also can support different types of pointer values. Figure 6
shows the pseudocode of how to use our heap management on the example shown
in Figure 2. Note that the heap is declared and allocated/freed only on the execution
thread/core (SPE). Since heap memory allocation and deallocation thread is one of our
heap management library, programmers do not need to write the extra thread on the
main core (PPE). Therefore, the main thread does not change at all. In addition, users
do not need to consider the redistribution of heap data; they can continue to program
as if each execution core has enough memory to manage (almost) unlimited heap data.
They even do not need to insert the function p2s before and the function s2p after
any access to heap variables with our modified GCC compiler. In addition, we also
expose both global addresses and local addresses, therefore we do not need to perform
checking every time, as one of the disadvantages of using software cache.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:8 K. Bai and A. Shrivastava

/∗PPU heap region ∗ /
int ppe heap [MAX] ;

main () {
for (speID=0;speID<NUMSPEs; speID

++){
init SPEs (speID) ;

}
}

(a) PPE code

main () {
for (i =0; i<N; i ++){
item [i] = malloc (sizeof (Item)) ;

item [i] = p2s (item [i]) ;
item [i] . id = i ;
pr in t f (”%d\n” , item [i] . id) ;
item [i] = s2p (item [i]) ;

}
}

(b) SPE code

Fig. 6. Using our approach to manage heap data. (a) We redefine malloc and free on the SPE to automatically
interact with the PPE. (b) Our modified GCC compiler automatically inserts a call to p2s function before
and a call to s2p function after accessing each heap variable.

6.2. Application Programming Interface (API)

The fundamental challenge in limited local memory (LLM) multicore architectures
is that every variable can have two addresses, a global address and a local address,
depending on where the variable is located. The software cache hides local addresses to
programmers. It only exposes global addresses of variables, and users must use them
to access variables through the software cache. The interface of the software cache
simulates the functionalities of the cache in the cache-based architectures. However, it
requires the address translation every time when the variable is accessed, and therefore
incurs high overhead. To solve this problem, our heap data management approach
exposes both addresses of variables to programmers. With the local address, users can
directly access the variable and do not need to perform the address translation every
time. If a required variable is not in the local memory, the library function p2s(global
address ga) brings it from the global address ga to the local memory and returns the
local address la of the variable. The counterpart functionality is encapsulated in the
function s2p(local address la). Besides introducing two newly implemented functions,
we also re-implement two existing functions, malloc and free. If there is enough memory
space in the heap region of the local memory, the malloc function can directly return
a pointer. Otherwise, the function will first evict the oldest heap variable(s) to the
global memory to make sufficient space for the coming heap variable, and then return
a pointer. One important point to note here is that even if the malloc function may
allocate space from the local memory, it still returns the global memory address of the
allocated heap variable each time. This is because different heap variables can have the
same local memory address, but definitely have unique global memory addresses. Thus,
we should always access heap variables through global addresses. The free function also
uses the global address of the variable.

6.3. Implementation Details

We expose both global addresses and local addresses to programmers. Therefore, our
library keeps a mapping between these two addresses in a data structure called the
heap management table.

6.3.1. Bookkeeping Data Structure – Heap Management Table. Each entry of the manage-
ment table consists of the following information (it is not the real data structure for
each entry).

For each heap variable, its size should be kept in chunkSize. The size can be one heap
object or any other sizes, depending on the granularity. For two different addresses,
we have speAddress and ppeAddress, accordingly. One other important information

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:9

HMDSEntry{
chunkSize , /∗ s ize of heap ob jec t ∗ /
speAddress , /∗ l o c a l memory address ∗ /
ppeAddress , /∗ global memory address ∗ /
isFree , /∗ indicates whether this heap was freed ∗ /
val id , /∗ indicates whether the entry i s val id ∗ /
inSPM , /∗ indicates locat ion of heap variable ∗ /
timeStamp , /∗ f o r LRU replacement po l i cy ∗ /

}

is the location of the heap variable, and therefore inSPM is used. If the heap data is in
the local memory, it is set to 1; otherwise, it is 0. Again, heap data is dynamic in nature
and it can be allocated and deallocated at any time. This is the reason why we introduce
isFree. The 1 indicates this heap variable is freed. When the space in the local memory

for heap is not sufficient, some old heap objects should be evicted to the global memory.
We implement LRU replacement policy for our heap management, since the access
pattern of the heap data is complex in its analysis. timeStamp shows when this heap
variable starts to be located in the local memory. Finally, because the heap management
table might be accessed frequently, it is beneficial to keep more valid entries at a given
table size in the local memory. It can reduce data transfers between the global memory
and the local memory. Two ways can be used to achieve this objective. The first option
is to reuse the table entries. This can be achieved by the flag valid. The 0 of the flag
means this entry can be reused for other heap objects later. The second choice is to
keep every entry of management table as small as possible. One thing that should be
emphasized is that the fields previously shown are not the real elements in each entry
of our heap management table. We only use 18 bits for speAddress, 1 bit for valid,
and 1 bit for inSPM. In total, each entry occupies 16 bytes.

6.3.2. Interaction between Functions and Heap Management Table. The malloc function adds
a new entry for every allocated heap object to the heap management table (HMT).
Reversely, free may result in the removal of an entry in the table. Both the function
p2s and the function s2p access HMT when they are called every time. p2s takes in

the global address ga, and then uses it to look up the table to find the right entry E
by checking ga with all global addresses in HMT until it is found. From the element
inSPM in E, we know where the heap data is locating. If it is in the local memory,

the function just returns speAddress in E. Otherwise, p2s looks up the table again
to find the oldest heap data h in the local memory and evicts it to its global address
ga′. After the eviction and the updating of inSPM for h, the right data located in ga
will be fetched to the local address la of h, and finally la is returned and timeStamp
is updated. Contrarily, the process in s2p is simpler. It only maps the local address la
back to its corresponding global address ga. It is done by checking the HMT until the
local address in that entry matches the la and the inSPM indicates the heap data is
in the local memory.

6.4. Global Memory Management

In order to support (almost) unlimited heap memory, we have to manage heap data
and the heap management table in the global memory dynamically. This essentially
requires a separate memory management thread running on the main core. Our im-
plementation is similar to the one described in Section 5, however, this separate thread
is a part of the library in our implementation, and the user does not need to explicitly
write it. In Figure 7, we can see the functionality of our global memory management
thread. When the execution thread wants to put some old heap data to the global

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:10 K. Bai and A. Shrivastava

Fig. 7. Global memory management thread on PPE.

memory, it first checks whether there is enough space there. If there is enough space
in the global memory, it can directly and efficiently leverage DMA to transfer the data.
Otherwise, there must be a memory request from the execution thread. The request
is achieved through mailbox facility provided by the IBM Cell SDK. Once the memory
management thread receives the size of space, it allocates the memory in the main core
and returns the start and end addresses of the allocated space to the execution core. At
this point, the DMA can be used to evict contents from execution core to main core. As
for free() function, the execution core sends a signal and the memory size to the main
core, and the global memory management thread will free that size of memory.

With global memory management thread, we solve the problem of “how to send” and
“where to send”. However, another consideration is “how much to send”. In our heap
management implementation, we introduce the concept of granularity. The unit of data
transfer between the local memory and the global memory is called the granularity of
management. Heap data can be managed at various granularities, right from word-
level to the whole heap space allocated in the local memory. Again, we can look at the
sample code in Figure 2. The program accesses one field (item.id) of the data structure
after initialization. When the program accesses any part of a allocated data structure,
if only the exact field (item.id) is brought into the local memory, the heap management
is done at word level of granularity. If the whole data structure is brought into the local
memory, the heap management is done at programmer-defined granularity. How to
define the granularity depends on the structure of the application. If the allocated data
structures are very large and only a small part of them are used each time, we believe
that a finer granularity of heap management is beneficial. When the allocated objects
are very small, heap management can perform at a coarser granularity by grouping
the allocated objects into a block, and if a part of any of them is accessed, a whole block
of them are brought into the local memory. One important advantage of our software
implemented heap management is that it can be tuned to the application demands,
rather than block size being fixed for a given processor implementation in traditional
cache architectures.

6.5. Local Heap Management

In our heap management, the functions p2s and s2p look up the management table
at every function call. Since this looking up overhead can be large, one is tempted
to maintain the whole table in the local memory. However, the size of the table may
also grow arbitrarily large if the number of heap objects is large. Therefore, heap
management approach should support the requirement of maintaining a portion of
management table in the local memory. The space we defined in the local memory for

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:11

heap S is divided into a constant space H for heap data, and a constant space T for
heap management table, such that S = H+T . All the sizes, S, H, and T can be fixed at
compile time. Every time when malloc wants to add a new entry, it checks if there is still
place. If yes, it can just write the new entry; otherwise it can only write the new entry
after making its space by evicting some of the older entries to the global memory. The
global memory management thread described in the previous section provides space in
the global memory for older entries. Besides, we need to consider the granularity when
we evict the entries. The heap table management can also be performed at several
granularities, from a single entry to the entire table size we set at the compile time. We
leave the exploration of the effect of the granularity of table management as a future
concern. In this work, we manage the heap management table at the whole table size
granularity. Namely, we evict the whole table, and bring a full table back into the local
memory, when needed.

7. OPTIMIZATION FOR EMBEDDED SYSTEMS

In order to support (almost) unlimited heap data, we implement a thread in the main
core to dynamically allocate memory for heap data and the heap management table.
Fundamentally this requires some communications between execution cores and the
main core, which can interpret messages from local threads. In the Cell BE, we can
achieve this through another thread on the main processor and a mailbox-based com-
munication between execution cores and the main core. This communication overhead
is in addition to the actual heap data transfers. Clearly this has high overhead and will
become more expensive as the number of cores increases.

In embedded software, where the upper bound of the heap size can be profiled, we
can do some optimizations to minimize the overhead. By profiling, we can get and keep
this maximum size. Then we can define static data structures, for example, arrays, to
contiguously accommodate heap data and heap management table entries from local
cores. When heap data is needed, we can resolve the global address in the execution
core so that a DMA can be directly used to transfer the data from the global memory.
This completely eliminates the need for the extra thread in the main core, and therefore
avoids all the performance overheads associated with the communication. In addition,
if possible, and especially because the heap management table entries may be much
smaller than heap data, the whole heap management table may be housed in the local
memory, resulting in additional performance optimization.

8. EXPERIMENTS

8.1. Experimental Setup

We conduct our experiments on the IBM Cell BE in Sony Playstation 3, which runs a
Linux Fedora 91 and gives us access to six of eight SPEs. We implement our scheme
on the single-threaded benchmarks from the Mibench suite [Guthaus et al. 2001] and
self-implement other applications which use heap variables. We modify those single-
threaded benchmarks to multithreaded applications, in which the PPE thread performs
all the input/output and the SPE threads perform all computing tasks. We evaluate
the effectiveness of our heap management technique and optimization by comparing
the runtime of (i) benchmarks without any heap management, (ii) benchmarks with
heap management to support arbitrary heap data size, and (iii) benchmarks with heap
management optimizations. We use mftb() and spu decrementer() for measuring the
runtime of PPE and SPE individually. The details of our benchmarks are listed in
Table I. dijkstra, fft, fft inv, and stringsearch are from the Mibench suite [Guthaus

1http://fedoraproject.org/wiki/releases/9.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:12 K. Bai and A. Shrivastava

Table I. Several Benchmarks from MiBench and Elsewhere that Use Heap Variables

Benchmarks Source Description Heap Size (bytes)

Dijkstra Mibench find the shortest path 5,040
fft Mibench fft algorithm 16,416

fft inv Mibench fft inv algorithm 16,416
stringsearch Mibench search strings 4,096

DFS self-implemented depth first search algorithm 16,000
MST self-implemented minimum spanning tree algorithm 336

rbTree self-implemented red black tree data structure 2,476

Note: The table shows the maximum heap data each application needs.

et al. 2001], while DFS, MST, and red black tree are some other algorithms that are
very likely to be used in the application domain developed for the Cell BE. Only the
maximum heap size demands for all the benchmarks are noted in Table I, the size
of other data is skipped. Although the heap data can fit in the 256 KB of the local
memory, the whole application can not be accommodated in it. Most of our experiments
are conducted on the configuration of one PPE and only one SPE. The scalability of
our technique is explored in our last experiment where multiple identical threads are
created on various number of cores.

8.2. Unrestricted Heap Size

To demonstrate the value of our heap management, we execute one benchmark, rbTree,
with and without heap management. It is a binary search benchmark. Each node in the
tree data structure is 24 bytes large and is dynamically allocated. In the benchmark,
241 KB can be shared by the heap data and stack data, and the remaining 15 KB are
occupied by the code and global data. We can allocate only n0 = 6,800 nodes (almost
160 KB in heap) without any heap management, exceeding which the program crashes.
We run the benchmark using our heap management scheme with nodes from 1 to
65,536, which is almost ten times larger than that which can be executed without heap
management. We initially allocate 150 KB for heap data in the local memory. Therefore,
no heap data DMA happens between the global memory and the local memory until
the 150 KB space is full. Furthermore, our heap management table consumes 4 KB,
which means we have 256 entries in our table. We choose these parameters for the fair
comparison of time with and without heap management scheme.

The first observation from Figure 8 is that our technique seems to support any heap
size of the application. We dynamically manage both the heap management table and
the memory allocation in the global memory. The runtime increases as the number
of nodes in rbTree becomes larger, for the reason that DMA needs to be performed
in our heap management scheme for heap data and heap management table. It is
also the reason why there is a leap after allocating more than 6,800 nodes. However,
our technique enables the execution of the application for any program parameters,
without any further modifications.

8.3. Impact of Heap Management Parameters

With the heap management, the performance of applications are most affected by two
parameters: (i) the amount of memory in the execution core that is used for storing
heap objects and the heap management table; (ii) the granularity that we choose for
heap data management.

The total space S we defined in the local memory for heap can be partitioned as
S = H + T . Assume the number of heap chunks that can be located in the fixed heap
region is nH and the size of each heap chunk is sH , then the total space for heap data

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:13

Fig. 8. Without heap management, the program will run with at most 6,800 nodes; with management, we
get a flexibility of using applications that require larger heap.

Fig. 9. (a) Heap management with dynamic memory allocation in global memory of PPE for heap objects
from local memory of SPE; the heap region size for each benchmark is set from the minimum size to the
maximum size. (b) Benchmarks with different granularities. Granularity defines the number of heap objects
we consider for DMA transfers at a time.

is H = nH ∗ sH . Also, T can be interpreted as T = nE ∗ sE, where nE is the number
of entries in the local memory and sE is the size of one entry. For a given S, there are
several schemes to partition S into H and T . How to partition the memory is our future
concern, and therefore here we keep a unique partition of the total space as nH = nE.
We get the minimum and the maximum heap size that is required for each benchmark
by profiling and run the application for the entire range of heap sizes. The runtime of
applications are shown in Figure 9. The most clear observation from the graph is that
the performance improves as we allocate more memory for heap data.

The second main factor that affects the performance of our heap management is
the granularity of communication between the local memory and the global memory.
We bind several memory blocks that are malloc-ed as one granularity. To get rid of the
influence of other factors and discover the single factor (granularity), we set the size
of heap region in the local memory as 4 KB. From Figure 9(b), we can see the effect
of the granularity is that the runtime decreases as we increase the granularity. There
are two main reasons. On the one hand, the bandwidth of the interconnected network
of the IBM Cell BE is big. The data transfer time between the global memory and the
local memory will not increase too much as we increase DMA transfer sizes. Therefore,
it is beneficial to have coarser granularity. One the other hand, the latency for DMA is
not small. Coarser granularity can decrease the number of DMA calls, which in turn
decrease the performance penalties caused by DMAs.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:14 K. Bai and A. Shrivastava

Table II. Overheads Caused by Calling Heap Management Functions

Overhead(us) Caused by Calling Fraction
Benchmarks malloc free p2s s2p of total time

Dijkstra 6,232 76 289,937 234,758 24%
fft 244 1 50,579 21,891 23%

fft inv 514 1 102,589 44,421 45%
stringsearch 131 2 902 669 11%

DFS 381 0 11,339 4,057 17%
MST 391 0 96 77 7%

rbTree 155 0 1,071 970 4%

Note: For all benchmarks, we set 8,192 bytes for heap region, 256 for
heap data granularity, and the whole heap management table is in the
local memory of each core.

Fig. 10. The overhead varies from 1% to 55% when the input size of rbTree changes from 1 to 65,536 nodes,
because the number of library function calls increases as heap objects increase.

8.4. Overhead of Heap Management

Our heap management can enable the programs that can not execute on limited local
memory (LLM) multicore architectures. However, heap management causes overheads
inevitably. Lots of factors can affect the application performance: Parameters, such
as the region sizes defined in the local memory for heap data and heap management
table, granularity used for heap data and the heap management table, and memory
distribution between heap data and the heap management table, so on and so forth.
The frequency of heap variable accesses in the application is another important effect
for the performance penalty.

As shown in Table II, the average fraction of heap management overhead for all
benchmarks is 18%. In this experiment, we set 8,192 bytes for heap data, 256 as
the granularity for heap data, and the whole management table located in the local
memory. The overhead of fft inv benchmark is very high, which is about 45% of the
total execution time. This is because there are few operations other than accessing
the heap variables. For benchmarks MST and rbTree, the overheads caused by heap
management are very small, since the heap size 8,192 bytes we set for heap data is
larger than their memory demands.

To delve deeper into high overhead benchmarks, Figure 10 shows the variation of
the overhead as we increase the data size of the red black tree rbtree. The horizontal
axis is the number of nodes in rbtree and is equal to the number of heap objects created
in the application. rbtree has several accesses to heap variables, and therefore makes

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:15

Table III. Average Performance Enhancement for Each Benchmark with
Different Heap Region Sizes and Different Granularities is 14%

Dynamic Static Average
Benchmarks Management (us) Management (us) Improvement

Dijkstra 48,167,280 39,317,728 18%
fft 2,837,261 2,708,675 5%

fft inv 2,923,532 2,788,252 5%
stringsearch 130,029 127,650 2%

DFS 1,000,519 957,732 4%
MST 9,909 5,615 43%

rbTree 98,044 77,376 21%

Note: The reason being that if a static buffer can be assigned in the memory
for heap management, it eliminates the blocking DMA calls due to the global
memory management thread in the PPE.

a lot of heap management function calls, especially p2s and s2p. In a sense, this is
an extreme benchmark that exercises our heap management technique to its extreme.
Figure 10 shows that the data management overhead comprises of 1% to 55% of the
runtime as the input size (N) changes.

Figure 10 also shows the contribution of each data management function in the over-
head. High penalties are caused mostly due to the functions p2s and s2p that are
added before and after every heap variable access, because when an application has
heap, heap accesses are very high. Consequently, lots of DMA-based data communica-
tions between the global memory and the local memory are needed, which increases
the expense of managing data.

8.5. Optimization for Embedded Applications

For extremely embedded applications where we can get the maximum heap size of
the application by profiling, we can improve the application performance by initially
allocating a static buffer in the global memory. By doing this, the management will not
incur any additional penalties, for example, communication overhead caused by the
use of mailbox between the SPE and the PPE. If there is residual space in the local
memory, it is also beneficial to get that whole memory for our heap objects and heap
management table. In addition, increasing the data transfer granularity also helps
a lot. We conduct these optimization techniques on every benchmark and show the
un-optimized and optimized runtime in Table III. From Table III, we see that we can
obtain performance improvement by an average of 14% for all benchmarks.

8.6. Scalability Experiment

To illustrate the scalability of our technique, we execute the same application on differ-
ent number of cores. In addition, we set the least heap region size in the local memory
for heap variables and the smallest granularity with dynamic memory allocation. We
believe this is the most aggressive configuration which has worst performance to test
our technique.

In Figure 11, we observe that the runtime increases gradually as we scale the number
of cores. This is mostly caused by the competition of DMA requests and the uses of
mailbox from different cores. The increases are larger for benchmarks rbTree and
MST, since they have less frequent localized read/write operations than the rest of
benchmarks have. The scattered heap access leads to frequent access to the global
memory, and increases the latency to serve each access when the number of cores
increases.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:16 K. Bai and A. Shrivastava

Fig. 11. Benchmarks with dynamic memory allocation in the global memory of PPE, configuring with
different number of cores.

9. SUMMARY AND FUTURE WORK

With the increasing number of cores, how to scale the memory architecture becomes
a great challenge. Limited local memory (LLM) multicore architectures become one
option to meet this needs. They are scalable memory architectures that are popular
in modern and futuristic embedded processors, for example, the IBM Cell BE. Such
architectures have a local memory in each core which is under software control. If
all the application code and data can fit into the limited local memory of the core,
the efficiency of execution is achieved; however it is not always the case, then the
application code and data must be managed between the local memory and the global
memory by explicitly inserting DMA commands in the application. While management
is needed for all data, it is extremely challenging and important to manage heap data
since it is dynamic in nature and can therefore easily overwrite stack data and generate
unexpected results. One possibility of managing heap data is through the use of the
software cache; however, it requires programmers to modify the thread code as well
as the main thread code, which can be not only counterintuitive and laborious, but
also error-prone. In this article, we present a framework to automatically manage heap
data by providing a simple and intuitive programming interface, which is composed
of two re-implemented function malloc and free and two new functions p2s and s2p
that have to be inserted before and after each heap variable access individually. Our
experiments on the IBM Cell BE demonstrate that (i) our scheme is intuitive and easy
to use; (ii) it can support almost any amount of heap data; and (iii) it scales well with
different number of cores. In addition, the single global memory management thread
on the main core we provided in our library can serve all the memory requests from
execution cores. Finally, we propose some optimizations for our heap management in
extremely embedded systems, which can further improve the runtime of applications
by an average of 14%.

Our technique can also gain improvement in the following directions. First, the
number of table entries is the same as the number of heap objects in the local memory.
In fact, given a total space in the local memory for heap, including heap variables and
heap management table entries, we can partition it in different ways to minimize the
total DMA transfer time. Second, we can reduce the number of calls to p2s and s2p
functions before/after each heap variable access by predicting if the variable will access
this heap data again at a later stage. This can be achieved by analyzing the data flow
graph and control flow graph. Finally, we can further optimize our heap management

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:17

by using prefetching and double buffering techniques, since they can overlap DMA
transfers with the task of data computing.

As multicore architectures with limited local memories become a trend, more and
more not-so-embedded applications are being and will be developed. In order to im-
prove development productivity, we are affronting the need and challenge of executing
applications on such architectures without too many changes of the natural way of
programming. We hope our work inspires more good work to meet this new challenge.

REFERENCES

ANGIOLINI, F., MENICHELLI, F., FERRERO, A., BENINI, L., AND OLIVIERI, M. 2004. A post-compiler approach to
scratchpad mapping of code. In Proceedings of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems. ACM, New York, NY, 259–267.

AVISSAR, O., BARUA, R., AND STEWART, D. 2002. An optimal memory allocation scheme for scratch-pad-based
embedded systems. ACM Trans. Embed. Comput. Sys. 1, 1, 6–26.

BAI, K., LU, D., AND SHRIVASTAVA, A. 2011a. Vector class on limited local memory (LLM) multi-core processors. In
Proceedings of the 14th International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems. 215–224.

BAI, K., SHRIVASTAVA, A., AND KUDCHADKER, S. 2011b. Stack data management for limited local memory (LLM)
multi-core processors. In Proceedings of the International Conference on Application Specific Systems,
Architectures and Processors. 231–234.

BANAKAR, R., STEINKE, S., LEE, B.-S., BALAKRISHNAN, M., AND MARWEDEL, P. 2002. Scratchpad memory: Design
alternative for cache on-chip memory in embedded systems. In Proceedings of the 10th International
Symposium on Hardware/Software Codesign. ACM, New York, NY, 73–78.

CHE, W. AND CHATHA, K. 2011a. Compilation of stream programs onto scratchpad memory based embedded
multicore processors through retiming. In Proceedings of the 48th Design Automation Conference. ACM,
New York, NY, 122–127.

CHE, W. AND CHATHA, K. 2011b. Scheduling of stream programs onto spm enhanced processors with code
overlay. In Proceedings of the 9th IEEE/ACM Symposium on Embedded Systems and Real-Time
Multimedia.

CHE, W. AND CHATHA, K. S. 2010. Scheduling of synchronous data flow models on scratchpad memory based em-
bedded processors. In Proceedings of the International Conference on Computer-Aided Design (ICCAD).
205–212.

CHE, W., PANDA, A., AND CHATHA, K. S. 2010. Compilation of stream programs for multicore processors that
incorporate scratchpad memories. In Proceedings of the Conference on Design, Automation and Test in
Europe. European Design and Automation Association, Belgium, 1118–1123.

DOMINGUEZ, A., UDAYAKUMARAN, S., AND BARUA, R. 2005. Heap data allocation to scratch-pad memory in em-
bedded systems. Embed. Comput. 1, 4, 521–540.

EGGER, B., KIM, C., JANG, C., NAM, Y., LEE, J., AND MIN, S. L. 2006a. A dynamic code placement technique
for scratchpad memory using postpass optimization. In Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems. ACM, New York, NY, 223–233.

EGGER, B., LEE, J., AND SHIN, H. 2006b. Scratchpad memory management for portable systems with a memory
management unit. In Proceedings of the 6th ACM & IEEE International Conference on Embedded
Software. ACM, New York, NY, 321–330.

EICHENBERGER, A., O’BRIEN, J. K., O’BRIEN, K. M., WU, P., CHEN, T., ODEN, P. H., PRENER, D. A., SHEPARD, J. C.,
SO, B., SURA, Z., WANG, A., ZHANG, T., ZHAO, P., GSCHWIND, M. K., ARCHAMBAULT, R., GAO, Y., AND KOO, R.
2006. Using advanced compiler technology to exploit the performance of the cell broadband engineTM
architecture. IBM Syst. J. 45, 1, 59–84.

FLACHS, B., ASANO, S., DHONG, S., HOFSTEE, H., GERVAIS, G., KIM, R., LE, T., LIU, P., LEENSTRA, J., LIBERTY, J.,
MICHAEL, B., OH, H.-J., MUELLER, S., TAKAHASHI, O., HATAKEYAMA, A., WATANABE, Y., YANO, N., BROKENSHIRE,
D., PEYRAVIAN, M., TO, V., AND IWATA, E. 2006. The microarchitecture of the synergistic processor for a cell
processor. IEEE Solid-State Circuits 41, 1, 63–70.

FRANCESCO, P., MARCHAL, P., ATIENZA, D., BENINI, L., CATTHOOR, F., AND MENDIAS, J. M. 2004. An integrated
hardware/software approach for run-time scratchpad management. In Proceedings of the 41st Annual
Design Automation Conference. ACM, New York, NY, 238–243.

GUTHAUS, M., RINGENBERG, J., ERNST, D., AUSTIN, T., MUDGE, T., AND BROWN, R. 2001. MiBench: A free, commer-
cially representative embedded benchmark suite. In Proceedings of the IEEE International Workshop
on Workload Characterization. 3–14.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:18 K. Bai and A. Shrivastava

JANAPSATYA, A., IGNJATOVIĆ, A., AND PARAMESWARAN, S. 2006. A novel instruction scratchpad memory optimiza-
tion method based on concomitance metric. In Proceedings of the Conference on Asia South Pacific Design
Automation. IEEE Press, Piscataway, NJ, 612–617.

JUNG, S. C., SHRIVASTAVA, A., AND BAI, K. 2010. Dynamic code mapping for limited local memory systems. In Pro-
ceedings of the International Conference on Application-Specific Systems, Architectures and Processors.
13–20.

KANDEMIR, M., RAMANUJAM, J., AND CHOUDHARY, A. 2002. Exploiting shared scratch pad memory space in
embedded multiprocessor systems. In Proceedings of the 39th Annual Design Automation Conference.
ACM, New York, NY, 219–224.

KANDEMIR, M., RAMANUJAM, J., IRWIN, J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A. 2001. Dynamic manage-
ment of scratch-pad memory space. In Proceedings of the 38th Annual Design Automation Conference.
ACM, New York, NY, 690–695.

KANNAN, A., SHRIVASTAVA, A., PABALKAR, A., AND LEE, J.-E. 2009. A software solution for dynamic stack manage-
ment on scratch pad memory. In Proceedings of the Asia and South Pacific Design Automation Conference.
IEEE Press, Piscataway, NJ, 612–617.

LI, L., GAO, L., AND XUE, J. 2005. Memory coloring: A compiler approach for scratchpad memory manage-
ment. In Proceedings of the 14th International Conference on Parallel Architectures and Compilation
Techniques. IEEE Computer Society, Washington, DC, 329–338.

MCILROY, R., DICKMAN, P., AND SVENTEK, J. 2008. Efficient dynamic heap allocation of scratch-pad memory. In
Proceedings of the 7th International Symposium on Memory Management. ACM Press, New York, NY,
31–40.

MONTANARO, J., WITEK, R. T., ANNE, K., BLACK, A. J., COOPER, E. M., DOBBERPUHL, D. W., DONAHUE, P. M., ENO,
J., HOEPPNER, G. W., KRUCKEMYER, D., LEE, T. H., LIN, P. C. M., MADDEN, L., MURRAY, D., PEARCE, M. H.,
SANTHANAM, S., SNYDER, K. J., STEPHANY, R., AND THIERAUF, S. C. 1997. A 160-mhz, 32-b, 0.5-w CMOS RISC
microprocessor. Digital Tech. J. 9, 1, 49–62.

NGUYEN, N., DOMINGUEZ, A., AND BARUA, R. 2005. Memory allocation for embedded systems with a compile-time-
unknown scratch-pad size. In Proceedings of the International Conference on Compilers, Architectures
and Synthesis for Embedded Systems. ACM, New York, NY, 115–125.

PABALKAR, A., SHRIVASTAVA, A., KANNAN, A., AND LEE, J. 2008. SDRM: Simultaneous determination of regions
and function-to-region mapping for scratchpad memories. In Proceedings of the International Conference
on High Performance Computing (HiPC).

STEINKE, S., GRUNWALD, N., WEHMEYER, L., BANAKAR, R., BALAKRISHNAN, M., AND MARWEDEL, P. 2002a. Reducing
energy consumption by dynamic copying of instructions onto onchip memory. In Proceedings of the 15th
International Symposium on System Synthesis. ACM, New York, NY, 213–218.

STEINKE, S., WEHMEYER, L., LEE, B., AND MARWEDEL, P. 2002b. Assigning program and data objects to scratchpad
for energy reduction. In Proceedings of the Conference on Design, Automation and Test in Europe. IEEE
Computer Society, Los Alamitos, CA, 409.

UDAYAKUMARAN, S., DOMINGUEZ, A., AND BARUA, R. 2006. Dynamic allocation for scratch-pad memory using
compile-time decisions. Trans. Embed. Comput. Sys. 5, 2, 472–511.

VERMA, M. AND MARWEDEL, P. Aug. 2006. Overlay techniques for scratchpad memories in low power embedded
processors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14, 8, 802–815.

VERMA, M., PETZOLD, K., WEHMEYER, L., FALK, H., AND MARWEDEL, P. 2005. Scratchpad sharing strategies for
multiprocess embedded systems: A first approach. In Proceedings of the 3rd Workshop on Embedded
Systems for Real-Time Multimedia (ESTImedia). 115–120.

VERMA, M., WEHMEYER, L., AND MARWEDEL, P. 2004. Cache-aware scratchpad allocation algorithm. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe. Vol. 2. IEEE Computer Society,
Washington, DC, 21264.

Received November 2010; revised July 2011; accepted January 2012

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

