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Abstract 

A space-time Galerkinileast-squares finite element formulation of the Navier-Stokes equations is presented for the analysis of 

free surface flows, moving spatial configurations and deforming fluid-structure interfaces. The variational equation is based on the 

time discontinuous Galerkin method employing the physical entropy variables. The space-time elements are oriented in time to 

accommodate the spatial deformations. If the elements are oriented along the particle paths, the formulation is Lagrangian and if 

they are fixed in time, it is Eulerian. Consequently this formulation is analogous to the arbitrary Lagrangian-Eulerian (ALE) 

technique. A novel mesh rezoning strategy is presented to orient the elements in time and adapt the fluid mesh to the changing 

spatial configuration. Numerical results are presented to show the performance of the method. 

1. Introduction 

Fluid flow problems that involve moving and deforming spatial configurations have been an area of 
active interest. Over the years both Lagrangian and Eulerian viewpoints have been formulated, each 
however with serious limitations. The Lagrangian description provides a precise definition of moving 
boundaries and is devoid of convective effects. Its major drawback is that it does not handle the 
material distortions very well and can lead to highly contorted mesh configurations. The Eulerian 
viewpoint on the other hand allows strong distortions in the fluid motion. It, however, suffers from two 
important drawbacks, namely, the presence of convective effects that arise due to relative movement 
between nodal points and fluid particles, and secondly, complex mathematical mappings between 
stationary and moving boundaries are required. In order to deal with time dependent fluid flow 
problems with changing spatial configurations in a generalized setting arbitrary Lagrangian-Eulerian 
(ALE) finite element techniques have so far been used (for background see [5,9-12,28,43] and 
references therein). 

In a relatively recent development, space-time Galerkin/least-squares finite element formulations 
with fixed spatial domains have been developed by Hughes et al. [24,26,29,38,42] and Johnson et al. 
[18,31,32] for fluid and solid mechanics problems. The variational foundations of these formulations 
employ the time-discontinuous Galerkin method and include least-squares and discontinuity-capturing 
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operators. The conceptual framework of the underlying Galerkinileast-squares method has evolved as a 
generalization of the streamline-upwind/Petrov-Galerkin method (SUPG), developed earlier by 
Hughes et al. [7,19,21] for convective transport problems. The added terms involve residuals of the 
Euler-Lagrange equations evaluated over element interiors. Consequently, these formulations preserve 
the consistency of the Galerkin method which is an important ingredient in obtaining improved 
convergence rates with higher-order interpolation, and also respect the regularity requirements on the 
functions employed. In the Galerkin/least-squares framework, general combinations of the interpola- 
tion functions (which otherwise violate the critical stability conditions in the Galerkin framework) 
become convergent [22,23] either by circumventing the stability conditions or by satisfying them [14]. 

In this paper we have extended the idea of the space-time Galerkin/least-squares finite element 
formulation of the Navier-Stokes equations to computations that involve changing spatial configura- 
tions. The basis of our formulation is a time-discontinuous Galerkin method. Due to the discontinuity 
of finite element functions at the space-time slab interfaces the spatial discretization can be changed 
from one slab to another. This provides a natural mechanism for incorporating adaptive remeshing in 
the formulation. In similar efforts based on the space-time finite element concept, Tezduyar et al. 
[2,3,4,39,44-471 have developed a deforming domain strategy and Hansbo [17] has developed a 
characteristic streamline diffusion method for the compressible and the incompressible Navier-Stokes 
equations. 

An outline of the paper is as follows. Section 2 presents a modified equation of state which 
incorporates the bulk elastic response of a liquid and thus yields a slightly compressible form of the 
Navier-Stokes equations. The strong form of the initial/boundary value problem is presented in 
Section 3. Section 4 discusses the kinematics of the moving space-time slabs and exhibits the 
relationship with the classical arbitrary Lagrangian-Eulerian technique. The discretized weighted 
residual formulation emanating from the strong form of the problem is presented next. Section 6 
presents a linear-in-time approximation of the variational equation which is appropriate for the class of 
problems considered here. Section 7 presents an arbitrary mesh rezoning strategy which successfully 
exploits the idea of arbitrary orientation in time of the space-time elements, thereby accommodating 
the spatial deformations. The issue of boundary and interface conditions is addressed in Section 8. 
Various numerical examples are presented in Section 9, and conclusions are drawn in Section 10. 

2. A 

In 

slightly compressible form of the Navier-Stokes equations 

terms of conservation variables, the compressible Navier-Stokes equations can be written as 

U,, + Fi., = F;, + 9 (2.1) 

where U is the vector of conservation variables, F, and Fy are, respectively, the vectors of advective 
and diffusive fluxes in the ith direction, i = 1, . . . , nsd, nsd is the number of space dimensions, and 9 is 
the source vector. In three dimensions these can be explicitly expressed as 

(conservation variables) (2.2) 

(Euler flux) (2.3) 

(diffusive flux) (2.4) 

(source vector) (2.5) 
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The five equations in (2.1) represent the conservation of mass, momentum and energy. In these 
relations the following notations have been used: p is the density; u = {vi} is the velocity vector; etot is 
the total energy density; p is the thermodynamic pressure; 6 = [S,,] is the Kronecker delta; r = [T,] is 
the viscous-stress tensor; 6, = 6e, and 7, = Tei where e, is the unit basis vector in the ith direction; 
q = {qi} is the heat-flux vector; b = {b,} is the body force vector per unit mass; r is the heat supply per 
unit mass; and the summation convention is assumed throughout. The total energy density is the sum of 
the internal energy density, e, and the kinetic energy density, i.e. 

(24 

2.1. The equation of state 

The equation of state for a fluid typically relates pressure to density and temperature. For the class of 
problems considered in this work we assume temperature changes to be negligible. Accordingly, we 
expand p as follows: 

dP 
P=Pref+ ap ( > 1 azp 

{&<*(p - pref) + z ap? Pr~f ( ) 
(p - PrefY + O((P - Pref>‘> (2.7) 

where pref and pref are constant reference values of pressure and density. If the changes in density are 
small, which is assumed to be the case, higher-order terms can be dropped. Therefore 

P-Plcf= ap c > ap Prcf (P - Pref) (2.8) 

This leads to an equation of state for a slightly compressible fluid in terms of the bulk modulus /3, 
defined as p = pref(ap18p)prcf, viz. 

P - Pref =$(p - Pref) (2.9) 

The additional constitutive relations are 

T,i = Au k.!i'ij + PC',., + 'j,i) (2.10) 

4, = -KT., (2.11) 

e=c,,T (2.12) 

where A and p are the viscosity coefficients, K is the thermal conductivity, c, is the specific heat at 
constant volume and T is the absolute temperature. Eq. (2.10) defines the viscous stress components 
and (2.11) is Fourier’s law of heat conduction. 

REMARK. The ideal gas relation can be written in a differential form as 

dp=RTdptRpdT (2.13) 

Assuming that the temperature gradients are insignificantly small, the second term on the right-hand 
side of (2.13) can be dropped and the resulting equation can be written as 

(P - Pref) = RT,,f(p - pref) (2.14) 

where Tref is the reference temperature. Comparing (2.9) and (2.14) we obtain a modified gas constant 
R which is defined as 

P 
R = Tref Pre f 

(2.15) 

The specific heat at constant volume c,, and the specific heat at constant pressure cP are defined as 
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(2.16) 

where y is the ratio of specific heats, i.e. y = cpIc,. Substituting (2.15) in the above expressions we get 
the modified values of c, and cp. Similarly, the Prandtl number is defined as P, = ( ~c~)/K which yields a 
modified coefficient of thermal conductivity 

YR K=gm (2.17) 

Substituting (2.16) and (2.17) in the corresponding constitutive relations introduces a factor which is 
proportional to the bulk modulus of water in the equations. 

We can write the system of equations in a quasi-linear form 

U., + AiU,j = (K,U,,),; + 9(U) (2.18) 

where Aj = F, u is the ith Euler Jacobian matrix; and K = [K,] is the diffusivity matrix, with the Kij’s 
satisfying KjiUlj = Ff. Eq. (2.18) generates a non-symmetric system of partial differential equations, i.e. 
Aj is not symmetric and K is neither symmetric nor positive-definite. The Galerkin formulation of this 
form of the Navier-Stokes equations lacks certain properties which are needed to establish stability 
proofs and convergence analyses. In terms of entropy variables V, as discussed in detail in [25,36,42,8], 
Eq. (2.1) is symmetrized via a change of variables to the following form: 

i”V,( +&y; = (g;jv,j),i + @(V) (2.19) 

where V is referred to as the vector of physical entropy variables, and 

& = u,, (2.20) 

;i; = Ai& (2.21) 

iiij = Kiji o (2.22) 

Eqs. (2.20)-(2.22) represent the Riemannian metric tensor iO, the Jacobians of the Euler fluxes 2; 
and the diffusivity-coefficient matrices iij. Explicit definition of the flux vectors and coefficient matrices 
in terms of V variables can be found in [25]. 

3. Strong form of the initial/boundary-value problem 

Let Q be an open, bounded domain in Rnsd, where nsd is the number of space dimensions. The 
closure of 0, is a, and the boundary of fit is denoted by c. It is important to note that in the present 
case the geometry of the spatial domain and the spatial boundary are also time-dependent. The unit 
outward normal vector to 4 is denoted by n = {n,}. We also assume that & admits the following 
decomposition: 

r,[Ur,,=r; (3.1) 

and 

rg, f-l r,, = 0 (3.2) 

where r,, and rhl. decompose the boundary 4 into regions where essential and natural boundary 
conditions, respectively, are prescribed. All data are assumed to be functions of space (x E fi,) and time 
(t E IO, Tl). 

Let 2 be the differential operator for the Navier-Stokes equations 
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(3.3) 

The formal statement of the initial/boundary-value problem under consideration is: Given 
V,, : f2, -+ Rndof , g : r, X 10, T[ + Rndof and h : r, x 10, T[ + Rndof, find V : R x [0, T]+- R”dof such that 
VxEfl,,tE]O, T[ 

B-$=0 on R X IO, T[ (3.4) 

V(& 0) = v,,(x) VXER,, (3.5) 

4(V) =g on Z, X 10, T[ (3.6) 

(-F,+Fy)n,=h onGx]O,T[ (3.7) 

where ndof = nsd + 2 is the number of degrees of freedom, q is a nonlinear boundary condition function, 
and g and h are the vectors of prescribed essential and natural boundary conditions, respectively. 

In practice, it is convenient to implement the boundary and initial conditions in terms of primitive 
variables. Transformation of these prescribed conditions to the physical entropy variables results in 
nonlinear relations in V as evidenced by the function q(V). Various techniques to handle these 
nonlinearities and a consistent method to calculate fluxes at the boundaries are discussed in [42]. 

4. A space-time description of the moving domains 

Let I = [0, T[ be an open time interval partitioned by an ordered series of time levels 0 = t, < t, <. . . 
<I, = T. Denoting the nth time interval Z, =]tn, tn+i[, we have I= U:ii Z, U {tl, t,, . . . , t,_,}. 

Let fin and Z, be the approximations to the nsd -dimensional spatial domain 0 with boundary Z at 
time level t,. Similarly a,, + I and r, +, are the approximations at time level t,, 1, respectively (Fig. 1). A 
space-time ‘slab’ Q, in the context of moving domains is then defined as the region enclosed between 

On? %+, and P,,, where P,, is the surface described by the boundary c as t traverses I,. P, is also 
assumed to admit the following decomposition: 

P&, u Ph = p, II (4.1) 

and 

Pg, n Ph, = 0 (4.2) 

For the nth space-time slab, let the spatial domain be subdivided into (n,,), elements fir,, 
e=l,... , (n,,),. Then, for the nth slab, we define a space-time element domain Qz as the region 
enclosed between 0:, a:+ 1 and the space-time element ‘lateral’ boundary P’, which may or may not 
be a part of the slab boundary P,,. 

Fig. 1 shows motion of the mesh during two consecutive time intervals. The displacement field of the 
spatial mesh is assumed continuous in time. Consequently, a space-time slab deforms during a 
time-step and the initial configuration of the spatial domain in a slab is identical to the final 
configuration in the previous slab. This precludes the need for a projection of the solution from the 
previous mesh onto the new mesh, which would otherwise be required if we were using non-matching 
meshes at slab interfaces. 

We now introduce a reference space-time domain 0, C Rnsd x 10, T[ and a mapping @,, : Q, + Q, 
from the reference space-time element in the (6, t) coordinate system on to the deformed physical 
element in the (x, t) coordinate system (Fig. 2) [17]. We assume the mapping @,, is sufficiently smooth, 
orientation preserving and invertible. The motion of Q, is a time-dependent family of configurations, 
written as 

(K t) = Qn,(5, t) (4.3) 
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Fig. 1. Two adjacent space-time slabs for the moving domain. 

Fig. 2. Transformation between reference and spatial domains. 

Within each space-time element, the trial solutions and the weighting functions are approximated by 
&h-order interpolatory polynomials, Pk. These functions are assumed to be H’ functions and Co 
continuous within each space-time slab, but are discontinuous across the interfaces of the slabs, namely 
at times t, , t,, . . . , t,_, . The finite element spaces for the trial and weighting functions for the 
space-time domain Q, are defined as follows: 

Trial functions in (x, t) space: 

Sf: = (V” ) Vh E (C”( Q,Jndof, V hla:, E PVQXdofy 4Vh) =dt) on pg.> 

Weighting functions in (x, t) space: 

7-t = (W” 1 Wh E (C”(Q,))“do’, Whl,: E (Pk(Q~))“dof, (dqldVh)(Vh)Wh = 0 on Pg.> 

(4.4) 

(4.5) 

See [42] for further details. 
The functions V”(x, t) and W”(x, t) are related to functions qh(zJ, t) and Gh(g, t) by means of (4.3), 

thus defining the trial and weighting function spaces in the reference space-time domain Q, in the (5, t) 
coordinate system. 

Trial functions in (5, t) space: 

Ppf: = (~“I~“(~,I)=Vh(x,t),v~Ey::,(X,t)=~~(f,t)} (4.6) 

Weighting functions in (5, t) space: 

9-f: = (9 1 iv(& t) = W”(x, t), Wh E vi, (x, t) = @Jg, t)) (4.7) 

where fh(t, t) and ch(c, t) inherit the essential boundary conditions by way of (4.4) and (4.5). 

4.1. Kinematics of the space-time slabs 

Our objective in this section is to show that the conservation equations written in the spatial 
space-time domain Q, yield the classical arbitrary Lagrangian-Eulerian form when mapped on to the 
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reference space-time domain 0,. We introduced the mapping @Jo : Q, -+ Q, in (4.3). For the space-time 
domains where time is an additional dimension, the deformation gradient generates a (nsd + 1) X (nsd + 
1) matrix of partial derivatives of the transformation Qn. For clarity of presentation we refer to this 
matrix as the space-time deformation gradient f,, as opposed to the classical spatial deformation 
gradient F. 

The space-time deformation gradient at time t, can be written as 

A,= F v,” 
[ 1 OT 1 

(4.8) 

where v,” denotes the fluid mesh velocity field in slab IZ. The mapping is assumed to be sufficiently 
smooth and invertible, therefore f,’ exists and is unique 

f-, = F-’ -F-if 
n 

OT 1 1 (4.9) 

The Jacobian determinant of the linear transformation is denoted by -?(g, t). Since @” is assumed to 
preserve orientation, J” > 0. It is important to note that 

j ‘z’det(f,) = det(F)dg’J 

The time rate of change of Jacobian (see [37, p. 861) is given by 

&t 4 
) = ? divx V: at (x.O=@JS.O 

(4.10) 

Let G(x, t) be a conserved quantity in the spatial frame (physically deforming frame). The local form 
of a conservation law in the spatial description can be written as 

$ G + div,(Gv,) = 0 
X 

(4.11) 

where v, is the fluid particle velocity field. We can write this equation as the application of a space-time 
divergence operator defined as 

O=GC= > (4.12) 

Since iG is a vector function of (x, t), its Piola transform I?(&, t) is 

I+(&, t) = @f,%(x, t) 

-F-b; 

1 

(4.13) 

- - 
Corresponding to the operator div in the spatial domain, we define DIV in the reference space-time 
domain as 

(4.14) 

Applying (4.14) to (4.13) we get 
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I% I+(& t) =$/, (?G) + DIV#F-‘G(u, -u,“)) 

= $ g (SG) + j tr(F -’ GRAD*(G(u, - u,“))) 

= $1 I (?G) +? div,(G(u, - u,“)) 

=j$ eG+~Gdiv,u~+3div,(G(u,-u~)) 

= 5 $ r G + G div, u,” + div,(G(u, - ur)) 
{ I 

(4.15) 

where we have used the Piola identity DIV,(jF -‘) = 0 in the second equation and (4.10) in the fourth 
equation. Eq. (4.15) p re resents the conservation law written in an arbitrary LagTangian-EUkTian 

framework over the moving reference domain Q,,. Consequently, the space-time technique and 
classical ALE procedure are analogous to each other. 

REMARKS. 

(1) 

(2) 

(3) 

The present approach can be considered as a mapping of the reference configuration of the 
continuum onto the current configuration (spatial configuration) of the reference domain. 
It is important to note that the mapping (4.3) is not restricted to the linear-in-time case, but 
rather it allows for higher order approximations in space and in time. 
An example of a linear-in-time mapping, also discussed in [17], is 

@J5, t) = (5 + (t - tXX5)1 t) 

where u: is the nodal velocity vector of the spatial mesh in space-time slab n. 

(4.16) 

If the mesh velocity ur = 0, then from (4.3) and (4.15) it can be seen that we recover the Eulerian 
form of the equations. However, if the mesh velocity is equal to the fluid particle velocity (i.e. u,” = u,), 
the path of the particles is approximated by the motion of the mesh. It can be seen from (4.15) that the 
convective derivative vanishes in this case and we recover the Lagrangian formulation. 

In situations where the mesh is moved in order to accommodate moving free surfaces, deforming 
interfaces, or translating objects in the fluid domain, the mesh velocity urn may not be equal to the fluid 
particle velocity. In such circumstances, the present scheme is analogous to the arbitrary Lagrangian- 
Eulerian technique. However, the advantage of the present technique is that by relaxing the continuity- 
in-time requirements on the finite element functions, a new spatial mesh can be constructed under 
circumstances of very severe deformations and the solution can be projected from the old mesh onto 
the new mesh in a variationally consistent manner. 

5. Galerkin/least-squares weighted residual formulation 

This section presents a statement of the finite element weighted residual formulation which is written 
on the current configuration, i.e. the spatial configuration of the space-time slab Q,. The formal 
statement is that within each space-time slab Q,, n = 0, . . , N - 1, find Vh E Yt such that for all 
Wh E ‘J’-i the following variational equation is satisfied 

I p (-w;;u(v~) - w;;.F,(V”) + W;;di,Vf, - Wh .i+) dQ 
n 

+ i, (Wh(t,+,).U(Vh(t,+l))) do -i, W”(t;W(V”KW~ 
n+l n 

(“edn 

+C I e=l Q; 
(.3W”). +ZVh - 4) dQ 
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= I Wh . (-F,(Vh) + F:‘(V”))n, dP p 
,I 

(5.1) 

Eq. (5.1) is linear in Wh, but nonlinear in Vh. The first three integrals on the left-hand side, together 
with the last integral on the right-hand side, constitute the time-discontinuous Galerkin formulation. 
Integration-by-parts of the time flux term gives rise to the jump term 

. . . + W"(t,') . (U(V”(t,‘)) - U(V”(t,))) da + . . . (5.2) 

This term provides a mechanism by which information is propagated from one space-time slab to the 
next. 

The fourth integral in (5.1) is the least-squares operator, which is only defined on element interiors. 9 
is the differential operator defined in (3.3), 2’Vh -F is the residual of the Navier-Stokes equations, 
and 7 is a ndof x n dof symmetric positive semidefinite matrix of intrinsic time scales. Its presence in the 
formulation enhances the stability of the numerical solution [27]. 

The boundary integrals on the right-hand side of (5.1) give rise to natural boundary conditions. A 
comprehensive account of the treatment of boundary conditions and the boundary integral is presented 
in [42]. This space-time weighted residual formulation is consistent since the exact solution of the 
Navier-Stokes equations, V, also satisfies the variational equation. 

6. Linear-in-time approximation 

The time finite element space can be selected constant-in-time, or linear-in-time, etc., resulting in a 
first-order, third-order, etc., accurate system of equations, respectively. In this work we are interested 
in transient problems with changing spatial configurations (see Fig. 3) that requires accuracy higher than 
first order in time. Consequently, we will focus on the linear-in-time finite element approximation. 

The finite element trial solution within the nth space-time slab is defined as 

V”(x, t) = c [Ay(X)(T&)V ,z,(n+,)) + fii4")(r)(.irn@)f&nJ for (13 t) E Qn 
A=l 

(6.1) 

where N,(x) and G,(x) are the spatial shape functions of node A at time levels t,+ I and t,' , respectively. 
The primary variable V, ;cn + , ) and the secondary variable vA.(,,, are the n,,<,r x 1 vectors of unknowns Vh 

t+ 
(n) 

tG) 

Fig. 3. A schematic diagram of the nodal configuration for linear-in-time space-time formulation of a one-dimensional moving 
domain. 
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at node A and times t,,, and t,‘, respectively. TM(t) and Zn(t) are the temporal shape-functions in 
space-time slab II and are defined as 

Similarly, we define the finite element weighting function for the nth space-time slab as 

(“nph) 

W”(x, t) = c for (x3 t> E en 
A=1 

(6.2) 

(6.3) 

(6.4) 

where WA++,) and gA_,,,, are the nodal values of the weighting functions (see [42] for further details). 

7. An adaptive mesh rezoning strategy 

A major challenge in the class of problems considered here lies in the development of a mesh 
rezoning technique to adapt the fluid mesh to the changing spatial configuration (for background 
concerning mesh movement schemes see [6,9,28,33,43,48] and references therein). In this section we 
present an adaptive mesh rezoning technique which is appropriate for arbitrarily shaped domains. The 
arbitrary orientation in time of the space-time elements provides an opportunity to integrate such a 
mesh moving technique in a consistent manner in the overall solution strategy. 

Let R C Rnsd be a bounded open set with piecewise smooth boundary r; it,,, 3 2 denotes the number 
of spatial dimensions. We assume that r admits the decomposition 

r=r,LJr, (7.1) 

and 

O=rmnq (7.2) 

where r, and q are the moving and the fixed portions of the boundary, respectively. 
The formal statement of the boundary-value problem is: Given g, the prescribed displacements at the 

moving boundary, find the mesh displacement field u : i2 -+ Rnsd, such that 

V*([l+r,]V)u=O in0 (7.3) 

u=g on r, (7.4) 

u=o on r, (7.5) 

Eqs. (7.3)-(7.5) are, respectively, the governing equation, the moving and the fixed boundary 
conditions. T,,, is a bounded, non-dimensional function which is designed to prevent the inversion of 
small elements in the high resolution regions of the fluid mesh. 

In coupled interaction problems the motion, g, of the interface boundaries is a function of the overall 
response of the system and not known a priori. Consequently, it is imperative to seek solution to the 
problem in an unconstrained space of functions in which the boundary conditions are not embedded 
from the outset. Accordingly, we propose an augmented Lagrangian formulation for the problem of 
mesh rezoning. 

The functional for the augmented Lagrangian formulation is 

u(u,p)=;([1+7,1vU,vU)+ (p,u-g) +;JU-g/2 (7.6) 

where E is a user specified penalty parameter, (.;) denotes the L,-norm on 0, 1.1 denotes the &-norm 
on r,, (e;) is the L,-inner product on r,, and p is the boundary Lagrange multiplier. The variational 
equation emanating from (7.6) is 
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I! fi=O 

= ([l + T,]% VW) + (9, u-s>+(P,w)+4U-g,w) 
REMARKS. 

(I) This formulation can be viewed as a combination of the penalty function 
multiplier method. It combines the two concepts to eliminate many of 
associated with each method alone (see e.g. [15]). 

(2) For p = 0, we have 

Il(U, 0) =; ([1+ T,]VU, Vu) + ; ]U - g(* 

(7.7) 

and the Lagrange 
the disadvantages 

(7.8) 

This is the classical penalty function formulation for the constraint u = g. The advantage of the 
augmented Lagrangian formulation is that due to the term (p, u - g), the exact solution of the 
problem (7.3)-(7.5) can be determined without making E tend to infinity, which, using ordinary 
penalty methods, would have the effect of causing a deterioration in the conditioning of the 
system to be solved. 

The variational form (7.7) can be expressed as: Find {u, p} E ‘Ir x W, where Zr = H’(R)“Sd and 
W = H “2(fl)rr5d, such that 

B(u, P; w, 4) = U{w, 4)) V{w, 4) (5 “1/” x W (7.9) 

where 

B(u, Pi w, 4) = ([I + ~,lVk VW) + E(U, w> + (P, w> + (4, u> 

U{w, 41) = &(W? g> + (49 ET> 
(7.10) 

Let V” and W” be finite-dimensional subspaces of 2’ and W, respectively. The discrete form of (7.9) 
can be expressed as: Find {uh, p”} E ‘Vh X Wh such that 

B(u”, pII; wh, qh) = L({ Wh, qh}) V{Wh, qh} E vh x wh (7.11) 

where 

B(Uh, ph; w/l, qh) = (Vu”, VW”) + E(Uh, w”) + (ph. w”) + (qh, u”) + c T’,(VU”, VW”),, (7.12) 
e=l 

REMARKS. 

(1) 

(2) 

We may use a conjugate gradient algorithm with diagonal preconditioning to solve the resulting 
system of equations. For a detailed account of conjugate gradient algorithms (see e.g. [13,15] and 
references therein). 
In order to have an automatic check on element distortion, a simple check on element Jacobians 
can be made, i.e. 

where 6, and 6, are the user specified tolerance parameters for the change in the area of elements 
in the current mesh, I,,,, and Jref denote the Jacobians of elements in the current and reference 
configurations, respectively. 

7.1. Design of the weight function for mesh movement 

As mentioned previously, T,,, is a positive, nondimensional and bounded function which is designed to 
prevent the inversion of smaller elements in the mesh. Our objective is to bound the absolute value of 
the relative displacement by the absolute value of the distance between points, 

(7.13) 

3 ]Vu] da (7.14) 
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Fig. 4. Weight function for various mesh refinements. 

where (Y E [0, 1) is the tolerance parameter for domain distortion. The case of least distortion in the 
smaller elements can be attained in the limit as (Y -+ 0, namely 

vu = 0 (7.15) 

T, is designed to apply this condition strongly over the smaller elements, thereby preserving their 
shapes and preventing mesh inversion. In this way, the smaller elements close to the moving interfaces 
translate with the least amount of distortion, and the larger elements in the far field deform more to 
absorb the motion. Consequently, shape of the elements is maintained in the boundary layer regions, 
resulting in a well-behaved mesh. 

A simple example of rm follows. Let A,,, and Amin represent the area of the largest and the smallest 
element in the mesh, respectively, and let A’ represent the area of the element under current 
consideration. We define T,,, for an element as 

(7.16) 

The graphical representation of the behavior of T,,, is presented in Fig. 4. The values of r,,, employed 
for the numerical simulations mimic this behavior. 

REMARK. For the degenerate case of a uniform mesh where A,,, = A, = Amin, the Laplace equation 
works well. Under such circumstances r,,, = 0 (see Fig. 4) and the additional term over the element 
interiors in (7.12) vanishes. However, as soon as any movement of the mesh takes place, it becomes 
graded, and a non-zero r activates the additional term in (7.12) for successive rezonings. 

8. Boundary conditions for fluid-structure interaction 

Fig. 5 presents various types of fluid-solid interface conditions encountered in practice. Continuity of 
displacement, velocity and traction fields must be satisfied for all times at all 
r. 

the points on the boundary 

8.1. Coupling of solid and fluid-mesh displacement fields 

In transient fluid-structure interaction problems, a Lagrangian mesh for 
the structure and maintains a sharp definition of the moving boundary. 
condition for the fluid mesh is 

the structure deforms with 
The appropriate interface 
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Fig. 5. A schematic diagram of the various types of kinematic boundary conditions frequently encountered in multi-media 

interaction problems. 

(u” - urn). n = 0 on r, (8.1) 

where n is the unit outward normal to the interface (from the structure into the fluid), r, denotes the 
interface, and us and urn represent the displacement fields of the solid and the fluid mesh at r,, 
respectively. By imposing (8.1) we keep the fluid nodes belonging to r, on the moving interface while 
permitting relative slip between the solid and the fluid meshes in the tangential direction. This condition 
is particularly useful in the analysis of free surface waves breaking against a solid wall or the transient 
response analysis of liquid-filled tanks, where we need to let the fluid mesh slide along the structure. 

In certain situations it is advantageous to move the fluid mesh together with the solid even in the 
tangential direction. In such a situation we need also apply 

(us-um).f=O onr m 

in addition to (8.1), where t is the unit tangent vector to the interface 

(8.2) 

8.2. No-slip boundary conditions for fluid-structure system 

Newtonian fluids add the restriction that the fluid particles adhere, without slipping, to the boundary, 
i.e. 

(2~” - u’) = 0 on r (8.3) 

where us and uf represent the velocity fields of the solid and the fluid particles, respectively. 
In addition to the kinematic boundary conditions we need to impose the continuity of traction at the 

fluid-solid interfaces, i.e. 

(aS+af).n=O onr (8.4) 

where us and ~~ are the stress tensors in the solid and fluid, respectively. 

8.3. Slip boundary conditions for fluid-structure system 

In the interaction of inviscid tluids with structures, only normal compatibility is required, i.e. only the 
normal component of the velocity field is continuous across the fluid-structure interface, viz. 

(us-u’)*n=O onr (8.5) 

Furthermore, in such simulations only the normal stress at the surface of the solid is equated to the 
mean pressure in the fluid while no restriction is imposed on the tangential stresses, viz. 

n*(o”+o’)n=O onr (8.6) 
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t;.uh=0 onr 

t;Tfn=O onr 

where ti, i = 1,2, are the unit vectors which span the tangent plane to l? 

(8.7) 

(8.8) 

9. Numerical examples 

This section presents some numerical simulations to demonstrate the performance and the range of 
applicability of the proposed methodology. To solve the linear matrix systems, we have used the 
GMRES iterative solver and Gauss-Siedel EBE preconditioner [41]. A global time-increment strategy 
was used for all test cases. 

9.1. Moving cylinder: Steady state solution 

In this problem we test the algorithm on a rigidly moving mesh and compare it with an essentially 
identical problem in which the mesh is stationary but subjected to a uniform flow. Adjusting the 
solutions by the uniform superposed flow results in identical solutions, and thus this comparison is a 
good initial test of the veracity of the approach. 

In this test case a circular cylinder moving at Mach 0.01 and Reynolds number 40 is introduced in a 
stationary fluid domain at time t, (Fig. 6). The Reynolds number is based on the mean stream density 
of the fluid and the velocity and diameter of the cylinder. The computational domain covers an area 
-6<xx2Oand -6s~ c 6, with a unit diameter cylinder centered at x = 0 and y = 0. An unstructured 
mesh comprising 4936 bilinear quadrilaterals with 5063 nodes is generated to solve this problem (Fig. 
7). Free stream values of p, u, and ua are prescribed (i.e. u, = u2 = 0) on the inflow, top and bottom 
boundaries. Zero heat and viscous flux conditions are imposed on the top, bottom and outflow 
boundaries. The no-slip condition u, = -1 and u2 = 0 is prescribed on the surface of the cylinder. In this 
simulation the spatial mesh also translates rigidly with the cylinder. 

The computed steady flow-field, employing an implicit, first-order predictor corrector algorithm with 
one corrector pass is show in the accompanying figures. The maximum dimension of the Krylov space is 
5. Fig. 8 presents the pressure coefficient C, = (p - ~~)li~~uf, and the friction coefficient C, = Q,,,,/ 

+PrUc, (u, is the velocity of the cylinder), developed on the upper surface of the moving cylinder. The 
solution is then compared with the steady flow-field generated by a uniform steady flow past a 
stationary cylinder at the same Reynolds number [38]. Also shown are the experimental values of C, by 

*,.. r n 
“‘ - ” 

I n qn=OI 

A_ n 
/J-Pm 

I 
I 

k=d Tin=01 

T=T, I 

p=pmrVl=V2=7in= qn = 0 I 

Fig. 6. Schematic diagram of a circular cylinder moving in a stationary flow field. 

Fig. 7. A view of the entire mesh. 
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Fig. 8. Comparison of wall quantities for stationary and moving cylinders. Pressure and skin-friction coefficients. 

Fig. 9. Absolute velocity vector field. 

Fig. 10. Relative velocity vector field. 
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Grove et al. [16, p. 661, and C, by Acrivos et al. [l, p. 371 which are in good agreement with the 
computed results. Figs. 9 and 10 present the absolute and the relative velocity vector fields developed 
around the moving cylinder while Fig. 11 presents the pressure and vorticity fields. A comparison of the 
flow fields around the moving and stationary cylinders revealed that the relative velocity, density, 
pressure and vorticity fields were virtually identical (381. 

1: 9.270 
?: 9.320 
3: 9.370 
4: 9.420 
5: 9.470 
6: 9.520 
7: 9.570 
8: 9.620 
9: 9.670 

IO: 9.724l 
11: 9.770 
12: 9.820 
13: 9.870 
14: 9.920 
15: 9.970 
16: 10.020 
17: 10.070 
18: 10.120 
19: 10.170 
20: 10.220 
21: 10.270 
22: 10.320 

Max: 10.4cm 
Mi: 9.224 

(4 

7: -5.500 
9: -3.500 

11: -1.500 
13: 0.500 
IS: 2.500 
17: 4.500 
19: 6.500 
21: 8.500 
23: 10.500 
24: 11.5cn 
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1 Miw11.589 

(b) 

Fig. 11. Pressure and vorticity fields around the moving cylinder. 
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9.2. Solitary wave propagation 

The second test case simulates the propagation of a solitary wave. Fig. 12 shows the geometry of the 
computational domain. H and d represent the maximum wave height and the still water depth, 
respectively, with H/d = 0.2. R denotes the run-up height of fluid against a rigid wall. Laitone’s 
analytical approximations have been used for a comparative study where 7(.x, t) defines the initial crest 
[40, p. 4141. 

Fig. 13 shows a complete view of the initial mesh which is composed of 6169 linear triangular 
elements. In this simulation the density is assumed to be constant and gravity g = 1. The fluid is 
assumed to be inviscid and slip boundary conditions are imposed on all interfaces. The fluid mesh is 
moved proportional to the normal component of the fluid velocity at the free surface. The time step 
increment is 0.02. In this simulation we have used an implicit, third-order predictor multicorrector 
algorithm with 3 corrector passes. The maximum dimension of the Krylov space is 10. 

Fig. 14 shows a zoomed view of the initial displacement and velocity fields. At time t = 7.7, the wave 
reaches the right wall and Fig. 15 shows the corresponding displacement and velocity fields. The wave 
reflects and at time t = 15, reaches the center of the channel as shown in Fig. 16. 

Table 1 presents the time history of the normalized run-up heights at the right and left walls and the 
normalized maximum height at the center of the channel for two complete cycles. 

9.3. Missile launch from a submarine 

This simulation presents a viscous flow-field generated around a moving submerged missile. The 
viscosity of the fluid is assumed constant and the effects of gravity have been neglected. In this 
simulation, the Mach number is 0.01 and Reynolds number based on the velocity and length of the 
missile and mean flow density of the fluid is 1000. 

Fig. 17 shows a detailed account of the boundary conditions. On all the outer boundaries, 
temperature T and velocity components u, and u2 are prescribed. On the body of the submarine, the 
no-slip condition and the temperature T are prescribed to account for the adhesion of the viscous fluid 
to the surface of the submarine and to simulate an isothermal process, respectively. On the surface of 
the missile the velocity of the fluid particles is the same as the missile velocity, i.e. u, = 0, uZ = 1. 

The computational domain is -7 d x s 7 and 0 c y s 6, with a unit length missile placed in the launch 
tube at x = 0 and y = -1. Fig. 18 shows the complete initial mesh. The missile is moved via the mesh 
rezoning technique until the shapes of the elements in the mesh start deteriorating. At this instant, a 
new mesh is constructed, and information is projected from the old mesh onto the new mesh. 

The entire simulation requires five remeshings. We will first show the process of evolution of the 
spatial mesh and a zoomed view of the tip and tail sections around the missile in the final configuration 
for a given mesh. For example, Fig. 19 presents the initial configuration, an intermediate configuration, 

Fig. 12. Details of the problem description. 

Fig. 13. A view of the entire mesh. 
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Fig. 14. Initial displacement and velocity fields. 
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Fig. 15. Displacement and velocity field at t = 7.7 
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Fig. 16. Displacement and velocity field at t = 15. 
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Numerical solution 

A. Masud, T.J.R. Hughes I Comput. Methods Appl. Mech. Engrg. 146 (1997) 91-126 109 

normalized by Laitone’s analytical solution [40, p. 4141. 

Time (s) 

0.0 
7.7 

15.0 
22.7 

30.0 
37.7 
45.0 
52.7 
60.0 

Left wall 

_ 
_ 
_ 
1.021 

_ 

0.998 
_ 

Center of channel 

1.0 

0.998 
- 

0.993 

0.990 

0.989 

Right wall 

1.026 

1.002 

_ 

and the final configuration of the first mesh. At this stage a new mesh is generated around the current 
position of the missile (see Fig. 22). It can be seen that the proposed mesh rezoning strategy prevents 
the inversion of the elements in the boundary layer regions even under very severe mesh distortions. 

In order to prevent temporal oscillations due to start-up, we move the missile from rest with a 
constant acceleration till it achieves a constant velocity Z.Q = 1. Figs. 28-32 present the pressure 

Vl =vz=O,p=p,,T=T, 

VI =o 211 = 0 
02 = 0 v-2 = 0 
T=T, T=T, 

Fig. 17. Details of the problem description. 

Fig. 18. A complete view of the initial mesh 
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Fig. 19. Spatial configuration of the first mesh at various instants. 

Fig. 20. Tip of the final configuration of first mesh. 

Fig. 21. Tail of the final configuration of first mesh. 
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contours and streamlines around the moving missile at various instants. The slight nonsymmetry in 
pressure contours in Fig. 32 is due to the fact that we are using an unstructured mesh which is not 
symmetric about the symmetry line, thereby rendering the ensuing discrete problem non-symmetric. 

We used an implicit, third-order accurate predictor multicorrector algorithm with 5 corrector passes. 
A global time step increment At = 5 x 10m3 was used and the maximum dimension of the Krylov space 
was 10. The average number of elements in the various meshes generated to solve this problem was 
12 300 with an average number of 6526 nodes in each mesh. Approximately 5.8% of the total CPU time 
was consumed in mesh rezonings. 

(a) 

W 

w 

Fig. 22. Spatial configuration of the second mesh at various instants. 
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Fig. 23. Tip of the final configuration of second mesh 

I 

Fig. 24. Tail of the final configuration of second mesh. 

9.4. Coupling of compliant coating with viscous fluid 

This test case presents the transient response of a viscous fluid coupled to a linear elastic solid. Fig. 33 
shows the details of the problem description. The effect of gravity has been neglected. The elastic 
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(a) 

Fig. 25. Spatial configuration of the fifth mesh at various instants. 

structure is modeled with a finite element formulation described in [38]. No-slip conditions are 
prescribed at the interface. The data employed in this analysis are as follows: Young’s modulus of solid, 
E = 2. x 10” Pa, Poisson’s ratio, v = 0.3, density of solid, p, = 1500 kg/m3, bulk modulus of water, 
p = 2.28 X 10’ Pa, density of fluid, pr = 1026 kg/m3, Reynolds number Re = 1000, and viscosity of the 
fluid is assumed to be constant. 

Fig. 34 shows a complete view of the initial mesh. It is composed of an unstructured mesh of 5018 
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Fig. 26. Tip of the final configuration of fifth mesh 

Fig. 27. Tail of the final configuration of fifth mesh. 
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Fig. 28. Flow field around moving missile (9517 elements). 

triangles with 2624 nodes representing the fluid subdomain and a structured mesh of 400 quadrilaterals 
with 451 nodes representing the solid subdomain. An important feature of the mesh is that at the 
fluid-structure interface, the fluid mesh has a much higher resolution than the solid mesh, and the fluid 
nodes do not necessarily coincide with the solid nodes. 

We employed an implicit, third-order accurate predictor multicorrector algorithm for the fluid 
subdomain. For the structural subdomain we used the HHT-ar method with (Y = -0.1 which results in 
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Fig. 29. Flow field around moving missile (10 139 elements). 

an unconditionally stable, second-order accurate scheme (see [20, p. 5321). The staggered solution 
procedure in which the two integrators are interfaced through the coupling terms and the integration 
process is carried out in alternating stages can be summarized as follows. 

Step 1. Solve the structural problem subject to fluid pressure along the interface and obtain the 
displacement, velocity and stress fields. 



Step 2. 

Step 3. 

Step 4. 

Step 5. 
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Fig. 30. Flow field around moving missile (11776 elements). 

117 

Use the mesh rezoning technique to update the fluid mesh. 
Generate the space-time slab by using the updated configuration of the spatial mesh at time 
level tn+, and the previous configuration at level t,. 
Impose the boundary conditions and solve for the unknown field variables in the fluid 
subdomain. 
Update the pressure field along the interface, increment time t and go to Step 1. 
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Max: 0.426 
htim -0.440 

Fig. 31. Flow field around moving missile (14 532 elements). 

We divided this simulation into three stages. In the initial stage the structure is stationary and fluid 
flows over it, developing a boundary layer. In the second stage a wave is introduced at the lower surface 
of the structure via a sinusoidal driving force 

f(x, t) = F(x) sin(&) (9.1) 
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Fig. 32. Flow field around moving missile (15 588 elements). 

where o is the angular frequency. The wavelength is spread over sixteen elements. This periodic force 
produces a transverse wave at the fluid-structure interface with displacements perpendicular to the 
propagation direction. 

Fig. 35 shows the complete view of the spatial configurations one half cycle apart. Fig. 36 shows a 
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l9=0, 

4” = 0 
Tin = 0 

f(z, t) = F(z) sin(d) 

Fig. 33. Details of problem description. 

Fig. 34. Complete view of the initial mesh. 

zoomed view of the coupled displacement field where the surface response of the solid is equated to the 
nodal response of the fluid via the mesh movement technique. It can be seen that the smaller fluid 
elements in the boundary layer region maintain their shape throughout the simulation. Figs. 37 presents 
the close-up of the coupled velocity field half cycle apart and Fig. 38 shows the streamlines in the fluid 
domain in the presence of the mean background flow. 

In the third stage, the fluid inflow is turned off while the structure is still driven by f(x, t). After some 
time the mean flow becomes insignificantly small. Fig. 39 shows the coupled velocity field generated by 
the moving interface. The amplitude of the transmitted wave decays with depth in the fluid medium, 
Fig. 39, until the mean flow almost becomes stationary in the far field. Fig. 40 shows the streamlines 
generated by the wall motion in a zero background flow. 
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09 (W 

Fig. 3.5. Displacement field half cycle apart. 

Fig. 36. Close-up of displacement field half cycle apart. 

The energy transmitted to the fluid domain gives rise to a surface pressure wave shown in Fig. 41. 
The solid horizontal line represents the mean pressure in the absence of the wall motion. Also plotted 
are the surface pressures at the end of a typical cycle for the two flow cases. 

P.S. Seismic response of liquid-filled tank 

This test case represents long-time response of a fluid-tank system with smalt structural dispiace- 
men@. Fig. 42 shows the finite efement model and the dimensions of the 2D anchored system. The fluid 
is assumed to be homogeneous, isotropic and inviscid. The density of the fluid is 1 x 10” kg/m3 and its 
bulk modulus is 1 x l@Pa. Gravity is 9.8 m/s. Slip boundary conditions are enforced at the interface. 
The tank walls are modeled with elasticity elements with in-plane rotational degrees of freedom [38]. 
These elements are stacked in five layers through the thickness to improve the bending response of the 
shell wall and plane strain conditions are assumed enforced. 

A 10 second duration modified North-South component of the 1940 El-Centro acceleration time 
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(a) 
(a) 

Fig. 37. Coupled velocity field in the presence of mean background flow. 

Fig. 38. Streamlines in the presence of mean background flow. 

history (Fig. 43) is applied at the base of the tank in the horizontal direction. The time step increment, 
also used in [35], is At = 0.02 s. 

The staggered solution algorithm described in the previous numerical simulation is employed here. 
The maximum dimension of the Krylov space is 10 with 3 corrector passes in the predictor corrector 
algorithm. Two numerical simulations have been performed. In the first simulation the convective 
effects are ignored to get a comparison with the results in the literature [35]. A plot of the sloshing 
motion at the free surface is presented in Fig. 44. Node 57 is the fluid node belonging to the free-surface 
which also lies on the fluid-solid interface. The results compare well with those of Liu et al. [35]. Node 
59 is an interior node on the free surface. The sloshing frequency of the coupled system is obtained by 
counting the number of oscillations per second in the sloshing wave plots. The second simulation is 
shown in Fig. 45, where the convective effects have been accounted for. The ratio of the free surface 
oscillation to the total depth of the tank is about 8% which makes the convective effects important close 
to the free surface. 
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Fig. 39. Coupled velocity field in zero background flow. 

Fig. 40. Streamlines in zero background flow. 
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Fig. 41. Pressure wave generation along the moving wall. 
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Fig. 42. 2D fluid-tank model. 

Fig. 43. Modified N-S component of El-Centro earthquake. 
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Fig. 44. Sloshing wave height plot. Convective effects not included (f= 5 Hz). 

Fig. 45. Sloshing wave height plot. Convective effects included (f= 5 Hz). 

10. Conclusions 

In this paper we have presented a space-time Galerkin/least-squares finite element formulation of 
the Navier-Stokes equations, suitable for fluid flow problems that involve significant changes in the 
spatial configuration. It is stable for a wide range in Reynolds numbers and allows equal-order 
interpolation for velocity and pressure. The formulation is shown to be analogous to the classical 
arbitrary Lagrangian-Eulerian techniques. However, the advantage here is that by using the discontinu- 
ous Galerkin method in time, a new mesh can be constructed under circumstances of severe mesh 
deformations and the solution can be projected onto the new mesh in a variationally consistent manner. 

We have also presented an adaptive mesh rezoning technique which is appropriate for arbitrarily 
shaped domains and accommodates triangular and quadrilateral elements. This strategy is particularly 
well-suited for implementation in a parallel processing environment because it maintains the connectivi- 
ty of the mesh. Consequently, the mapping of the data to the processing nodes of the parallel 
computers remains fixed throughout the computations. 

In this work we have adopted a continuum based approach for the coupling of fluid and structural 
subdomains. The approach is general in the sense that it allows for different discretization and solution 
strategies in the two subdomains. Efficient solution of the resulting equations of motion is achieved by a 
modular computer implementation in which separate fluid and structural analyzers are interfaced 
through coupling terms. This strategy offers the important advantage of preserving the program 
modularity and thus the general-purpose applicability and overall flexibility of the finite element 
method. Various numerical simulations are presented to show that the proposed formulation is suitable 
for a range of coupled transient problems that involve considerable changes in the spatial configuration. 
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