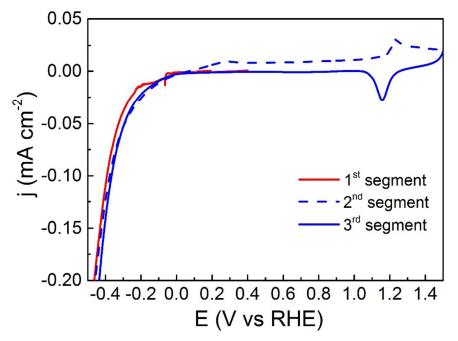
Supplementary Materials for

A Spectroscopic Study on the Nitrogen Electrochemical Reduction Reaction on Gold and Platinum Surfaces

Yao Yao ^{a,b}, Shangqian Zhu ^a, Haijiang Wang ^c, Hui Li ^b, Minhua Shao ^{a,*}

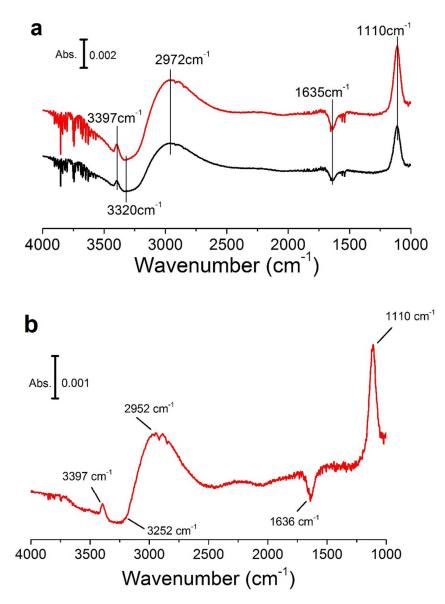
^a Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

^b Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong 518055, China


^c Department of Mechanical and Energy Engineering, South University of Science and Technology of China, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong 518055, China

Correspondence to: kemshao@ust.hk

Table of Contents


CV of Au thin-film in an Ar-saturated KOH electrolyte
Infrared spectroscopy of ammonia water in a KOH solution using ZnSe prism as window
Subtractive infrared spectroscopy of ammonia water in a KOH solution using Au film - Si prism as window
The repeated FTIR spectra of Au film in $N_2\mbox{-saturated }0.1M$ KOH 6
The repeated FTIR spectra of Au film in Ar-saturated 0.1M KOH7
FTIR spectrum of Au film in an Ar-saturated KOH electrolyte at the $2^{\rm nd}$ segment 8
The CV of Pt film in a N ₂ -saturated KOH electrolyte9
The calibration curve of the ammonia meter
Current-time plot of the Au foil

CV of Au thin-film in an Ar-saturated KOH electrolyte

Figure S1. The cyclic voltammograms of Au thin-film supported on a Si prism in Ar-saturated 0.1M KOH aqueous solution; potential scan rate: 2.5mV s⁻¹.

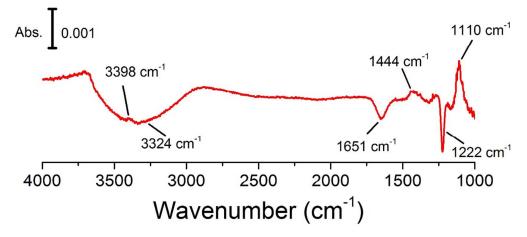
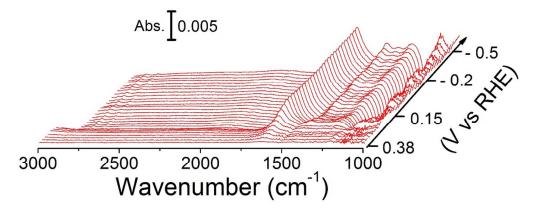
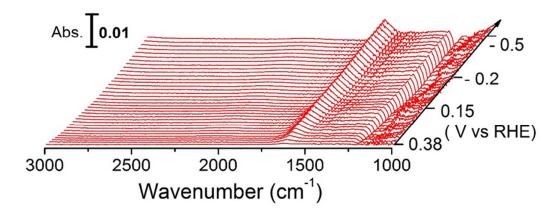

Infrared spectroscopy of ammonia water in a KOH solution using ZnSe prism as window

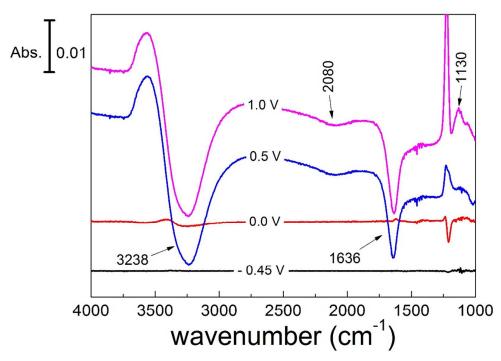
Figure S2. a) IR spectrum of 0.7M NH₃·H₂O (black line) and 1M NH₃·H₂O (red line) in a 0.1M KOH solution when using ZnSe prism as window. The reference spectrum was taken in a 0.1M KOH solution. b) Subtractive IR spectrum between 1M NH₃·H₂O and 0.7M NH₃·H₂O in a 0.1M KOH solution when using ZnSe prism as window.


Subtractive infrared spectroscopy of ammonia water in a KOH solution

using Au film - Si prism as window


Figure S3. Subtractive IR spectrum between 1M NH₃·H₂O and 0.7M NH₃·H₂O in a 0.1M KOH solution when using Au film- Si prism as window.

The repeated FTIR spectra of Au film in $N_2\mbox{-}saturated 0.1M$ KOH


Figure S4. FTIR spectra during the 1st segment from 0.4 V to -0.5 V on the Au film electrode in a N₂-saturaed 0.1 M KOH solution. The reference spectrum was taken at 0.4 V.

The repeated FTIR spectra of Au film in Ar-saturated 0.1M KOH

Figure S5. FTIR spectra during the 1st segment from 0.4 V to -0.5 V on the Au film electrode in a Ar-saturaed 0.1 M KOH solution. The reference spectrum was taken at 0.4 V.

FTIR spectrum of Au film in an Ar-saturated KOH electrolyte at the 2^{nd} segment

Figure S6. The FTIR spectra recorded in the 2nd segment from -0.5 V to 1.0 V on the Au film electrode in Ar-saturated 0.1M KOH aqueous solution. The background spectrum was taken at -0.5 V.

The CV of Pt film in a N2-saturated KOH electrolyte

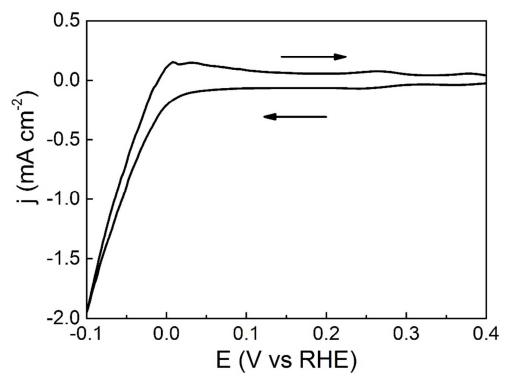


Figure S7. The cyclic voltammograms of Pt film electrode supported on a Si prism in N₂-saturated 1M KOH aqueous solution. The potential scan rate: 2.5mV s⁻¹.

The calibration curve of the ammonia meter

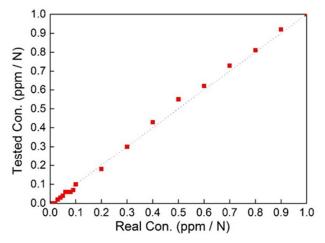


Figure S8. Calibration of ammonia meter for NH4+ measurement in a 1mM H₂SO₄ solution.

Current-time plot of the Au foil

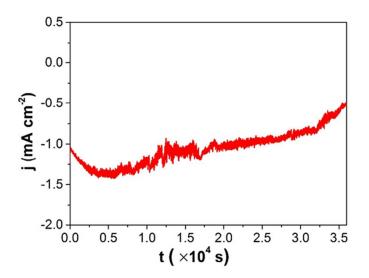


Figure S9. Current-time plot of the Au foil at -0.5 V in a N_2 -saturated 0.1M KOH solution.