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1. Introduction
Consider a distribution system consisting of a set of retail-
ers who are facing random demands of a single product.
The demands are generally correlated. It is well known in
the inventory literature that inventory centralization leads
to overall cost reduction or profit increase; see, for exam-
ple, Eppen (1979). In this setting, the retailers place orders
before observing the demands, and after the demands are
realized, excess inventory can be transshipped to retailers
with excess demand.

There is a well-developed literature on the analysis of
inventory centralization. These analyses often assume a
single decision maker who makes centralized decisions
regarding inventory, allocation, and transshipment. How-
ever, many distribution systems consist of multiple inde-
pendent decision makers who may collaborate with each
other. For example, Anupindi et al. (2001) give several
real-life examples that involve alliances of independent
retailers/distributors. One such example is the case of the
machine tool builder Okuma America Corporation, which
has 46 distributors in North and South America. Each of
the distributors carries machine tools and selected repair
parts in its inventory. When a customer orders an item that
a distributor does not have, the distributor can identify the
item’s availability in the distribution network and arrange
for intrachannel exchange of items electronically.

One important issue in such collaboration is to keep dif-
ferent parties motivated to collaborate. The willingness to
collaborate often depends on the existence of mechanisms

that allocate the cost or gain (from the collaboration) in
such a way that it is considered advantageous by all the par-
ticipants. (Even though collaboration leads to overall cost
reduction, it is not always the case that such mechanisms
exist.) Indeed, getting all parties to agree on how to share
costs and benefits was identified as one of the major barriers
to collaborative commerce in practice (see European Chem-
ical Transport Association 2006, NerveWire Inc. 2002).

In this paper, we analyze the cost allocation issue in the
inventory centralization setting using the notion of core, a
basic solution concept in cooperative game theory. Roughly
speaking, a core is the set of cost allocations under which no
group of retailers should be charged more than they would
pay if they were to separate and follow an optimal strategy
for themselves. That is, no group of retailers will be bet-
ter off by deviating from the cooperation. Thus, allocating
cost according to a core allocation may create incentives for
retailers to cooperate. However, in general, determining the
nonemptiness of a core is not straightforward. Even in cases
where a core can be shown to be nonempty, identifying an
allocation in the core is usually challenging.

We refer to our cost allocation problem as a (coopera-
tive) inventory centralization game. In this paper, we mainly
focus on the existence of core allocations of inventory cen-
tralization games. We also discuss the issue of finding a core
allocation.

1.1. Closely Related Research

Some special cases of inventory centralization games have
been studied in the literature. One special case is called
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the newsvendor game, in which all retailers are newsven-
dors with identical cost structures and the transportation cost
associated with reallocating inventory after observing the
demand is ignored (see Gerchak and Gupta 1991). Hartman
et al. (2000) show that the newsvendor game has a nonempty
core under special assumptions on demand distributions.
This result has been generalized independently by Müller
et al. (2002) and Slikker et al. (2001), who show that the
core is always nonempty regardless of the demand distribu-
tions. The result is still valid even when there are an infinite
number of retailers, as proved by Montrucchio and Scarsini
(2007). Moreover, the newsvendor game is not concave in
general (for the definition of a concave game, please refer
to §2.1). A paper by Ozen et al. (2005) discusses the con-
vexity of the newsvendor game under special assumptions
about the demand distributions.

More-general inventory centralization games have been
studied by Slikker et al. (2005) and by Ozen et al. (2008),
who extend the newsvendor game in two ways. First, they
include transportation costs in their models. Second, in their
settings, the cost parameters of the retailers can be different.
Although the models are much more complicated than the
one studied in Hartman et al. (2000), Slikker et al. (2005)
and Ozen et al. (2008) still manage to show that the games
have nonempty cores.

Anupindi et al. (2001) study a two-stage model that is
closely related to the one in Slikker et al. (2005). In their
model, the retailers do not fully cooperate. In the first stage,
before demand realization, each retailer makes its own deci-
sion on how much to order. In the second stage, after observ-
ing the demands, the retailers can cooperate by reallocating
their inventories. Granot and Sošić (2003) analyze a similar
problem but allow retailers to decide how much inventory
to share with others.

The notion of core has been used to analyze cost allo-
cation problems in other inventory management models as
well, including lot-sizing models (van den Heuvel et al.
2007, Chen and Zhang 2008) and joint replenishment mod-
els (Meca et al. 2004, Anily and Haviv 2007, Dror and Hart-
man 2007, Zhang 2009).

Applications of game theory in analyzing coopera-
tions among supply chain agents can also be found in
Nagarajan and Sošić (2007). For a comprehensive review,
see Nagarajan and Sošić (2008).

1.2. Our Results and Approach

The goal of our paper is to present a unified approach to
analyze the inventory centralization games considered in
Hartman et al. (2000), Müller et al. (2002), Slikker et al.
(2001, 2005), and Ozen et al. (2008) using the duality the-
ory of stochastic programming developed by Rockafellar
and Wets (1976). To illustrate the basic idea, we will mainly
focus on the game proposed by Ozen et al. (2008). However,
it is important to point out that the stochastic programming
approach can be applied in settings well beyond Ozen et al.
(2008).

Our main results can be summarized as follows:
• We formulate the inventory centralization problem as a

stochastic linear program. Then, we show that the nonempti-
ness of the core of the general inventory game studied in
Ozen et al. (2008) follows directly from the strong duality
of stochastic linear programming. This results in a much
simpler proof than that in Ozen et al. (2008). Moreover,
the stochastic linear programming approach to the inventory
games offers a constructive proof to the nonemptiness of
the core, i.e., a core allocation can be defined by any given
optimal-dual solution. For a special case, i.e., the newsven-
dor game studied in Hartman et al. (2000) and Müller et al.
(2002), the dual admits a simple closed-form solution.
• We further illustrate our duality approach in a setting

where the cost structure is nonconvex, and thus the strong
duality theory of Rockafellar and Wets (1976) may not
directly apply. In particular, we consider inventory games
with concave ordering cost, which reflects possible quan-
tity discounts. We show that if the dual solution has certain
property, then the game has a nonempty core. Furthermore,
we prove that this property always holds for the newsven-
dor with concave ordering cost, and thus it has a nonempty
core. We remark that although the dual is in the form of an
infinite-dimensional stochastic linear program, it admits a
closed-form solution. Constructing such a dual solution only
requires finding an optimal order quantity for the newsven-
dor problem with concave ordering cost.
• Finally, we show that even in a very simple setting,

determining whether an allocation is in the core of the
newsvendor game is NP-hard. Therefore, this NP-hardness
result applies to other inventory centralization games as
well. We include this result mainly for the completeness of
the paper because testing membership of the core for a given
allocation has been a standard research question in (compu-
tational) cooperative game theory; see, for example, Deng
and Papadimitriou (1994) and Faigle et al. (1997).

Now we briefly discuss our results and approach. Our
approach is motivated by the work of Owen (1975), who
used linear programming duality to show the nonemptiness
of the core for the (deterministic) linear production game.
Owen’s approach has become one of the systematic tools
in analyzing cooperative games and has found numerous
applications; see, for example, Granot (1986) and Tamir
(1991). The allocation defined by a dual solution is often
called Owen’s point, which has become the subject of many
papers in cooperative game theory. Therefore, although we
focus only on inventory centralization games in this paper,
we expect that the stochastic programming duality approach
will find more applications in analyzing cooperative games
with uncertainty.

The duality approach has other advantages as well. For
example, it provides a constructive proof for the nonempti-
ness of the core for inventory centralization games. This
is in contrast with the existence proofs of previous works
in this area. Since the first submission of our paper, we
became aware of the paper by Montrucchio and Scarsini
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(2007), which proposes an explicit core allocation for the
newsvendor game when the demand distribution is contin-
uous. Recall that the newsvendor game assumes identical
cost structures and no transportation cost. It is interesting
to notice that for this special case, the core allocation sug-
gested in Montrucchio and Scarsini (2007) is captured by
the allocation defined by the dual solution. Moreover, it is
not clear how the constructive proof in Montrucchio and
Scarsini (2007) can be generalized for other inventory cen-
tralization games such as those in Slikker et al. (2005) and
Ozen et al. (2008). On the other hand, our approach is appli-
cable to much more general settings; please see the discus-
sion in §6.

From a computational point of view, one needs to solve
the dual of a two-stage stochastic linear program to com-
pute a core allocation. This might be considered as one
drawback of the stochastic programming duality approach,
especially when the size of the stochastic linear program
is too large. Nonetheless, the duality approach provides a
way to compute a core allocation, at least for problems of
moderate sizes. Future development of stochastic program-
ming and computing technologies might make it possible
to solve large-scale stochastic linear programs more effi-
ciently. Furthermore, high-quality near-optimal solutions to
two-stage stochastic linear programs can be obtained by
using sampling techniques (Shapiro and Homem-de-Mello
1998, Linderoth et al. 2006). Therefore, an approximate
core allocation may be computed relatively efficiently. This
could be sufficient for many applications. Because the pur-
pose of this paper is mainly to suggest a systematic approach
to analyze cooperative games using stochastic programming
duality, we do not get into details of solving stochastic linear
programs.

The rest of this paper is organized as follows. In §2, we
introduce the model, the associated inventory game, and
some solution concepts in cooperative game theory. In §3,
we use stochastic linear programming duality to derive the
result for inventory games with linear ordering cost. In §4,
we develop a strong duality result for the inventory central-
ization problem with concave ordering cost, and employ it
to show that the core of the newsvendor game is nonempty.
In §5, we prove the NP-hardness of testing the membership
in the core of the newsvendor game. Finally, we discuss
possible applications of the duality approach in §6.

2. Preliminaries

2.1. Cooperative Games

Here we briefly introduce the concepts of cooperative game
theory that will be used in this paper. Let N = �1�2� � � � � n�
be the set of players. A collection of players S ⊆ N is
called a coalition. The set N is sometimes referred to as
the grand coalition. A characteristic cost function C	S
 is
defined for each coalition S ⊆N , which could be the mini-
mum total cost that coalition S should pay if the members

of S decide to secede from the grand coalition and cooper-
ate only among themselves. A cooperative game is defined
by the pair 	N �C
. For each subset S ⊂N , the cooperative
game 	S�C
 is called a subgame. The game 	N �C
 is called
a concave (cost) game if for every pair of subsets S, T ⊆N ,
C	S
+C	T 
�C	S ∪ T 
+C	S ∩ T 
.

Given a cooperative game, there are many ways to divide
the cost (or the value) of the game among the players. The
cost allocation issue has been extensively studied in the lit-
erature of cooperative game theory. In this paper, we focus
on core allocations, which are defined below.

A vector l = 	l1� l2� � � � � ln
 is called an imputation of
the game 	N �C
 if

∑
j∈N lj = C	N
 and lj � C	�j�
 for

every j ∈ N . One can interpret an imputation as a division
of C	N
 that charges every player at most as much as she
will pay by herself. When we generalize this idea to every
coalition of players, we get the notion of core.

Definition 1. An allocation l = 	l1� l2� � � � � ln
 is in the
core of the game 	N �C
, if

∑
j∈N lj = C	N
 and for any

subset S ⊆N ,
∑

j∈S lj �C	S
.

Roughly speaking, a core is the set of cost allocations
under which no coalition should be charged more than they
would pay if they were to separate and follow an optimal
strategy for themselves. That is, no coalition will be better
off by deviating from the grand coalition. If the core of a
game is nonempty, then there is at least one allocation of
the cost that is considered advantageous by all the players.

It is wellknown that the core of a concave game is always
nonempty. It is also known that the newsvendor game is not
concave in general (Ozen et al. 2005).

2.2. The Inventory Model

We consider a distribution system consisting of a supplier,
a set of m warehouses denoted by W = �1�2� � � � �m�, and a
set of n retailers denoted by N = �1�2� � � � � n�. The retail-
ers sell a single type of goods. Each retailer j ∈ N faces a
random demand dj	�
 with E�dj	�
� < 
, where uncer-
tainty is represented in terms of random experiments with
outcomes denoted by �. The set of all outcomes is denoted
by �. Also, each retailer j operates a set of warehouses
Zj ⊆W . If a subset S ⊆N of retailers forms a coalition, then
any retailer in S is allowed to use any warehouse in

⋃
j∈S Zj ,

i.e., the set of warehouses that are operated by the retailers
in S. Finally, for any coalition S, let dS	�
= 	dj	�

j∈S and
dS = 	dj
j∈S , where dj is the realized demand of retailer j .

The sequence of events happens as follows. At the begin-
ning, before observing the random demands, each ware-
house i associated with retailers in the coalition S orders a
certain amount of goods, say yi, from the supplier by paying
a cost of ci per unit. Because we are considering a single-
period problem, the lead time can be assumed without loss
of generality to be zero.

Then, the demands are realized and the realized demand
of coalition S is denoted by dS . After the realization of
demands, all goods at the warehouses are allocated to the
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retailers, say xij units of goods are shipped from warehouse i
to retailer j . The transportation cost of sending one unit of
good from i to j is sij . For each retailer j , if the total amount
of goods received from the warehouses is more than the
realized demand dj , it pays a per-unit holding cost of hj for
excess inventory; on the other hand, the unsatisfied demands
are lost and retailer j pays a per-unit penalty cost of pj for
lost sales.

We remark that each coalition is responsible for not only
the transportation cost, inventory holding cost, and penalty
cost incurred at the retailers in the coalition, but also the
ordering cost incurred at the associated warehouses. The
coalition makes the decision on the order quantity of each
warehouse.

In this model, yi, i = 1�2� � � � �m, is the first-stage deci-
sion variable. After the demands are realized, a recourse
decision should be made, which is the amount of goods sent
from warehouse i to retailer j , i.e., xij . For the coalition
S ⊆N , the goal is to minimize the expected total cost for the
coalition, which includes the ordering cost, transportation
cost, inventory holding cost, and penalty cost.

Denote the minimum expected cost of the coalition S by
C	S
, which is the optimal objective value of the following
two-stage stochastic linear program:

C	S
=min
∑

i∈⋃j∈S Zj

ciyi + E�f 	y�dS	�

�

s.t. yi � 0� i ∈⋃
j∈S

Zj� (1)

where y = 	yi
i∈⋃j∈S Zj
, and f 	y�dS
 is defined by

f 	y�dS
 �=min
∑
j∈S

pjzj +
∑
j∈S

hjIj +
∑

i∈⋃j∈S Zj � j∈S
sijxij

s.t. zj +
∑

i∈⋃j∈S Zj

xij � dj� j ∈ S�

Ij −
∑

i∈⋃j∈S Zj

xij �−dj� j ∈ S�

yi −
∑
j∈S

xij = 0� i ∈⋃
j∈S

Zj�

zj � Ij � xij � 0�

where zj and Ij denote the lost sales and the excess inven-
tory of retailer j , respectively. In the second-stage formula-
tion, the first constraint implies that unsatisfied demand is
lost, the second constraint corresponds to the excess inven-
tory, and the third constraint implies that the warehouses
will not hold any inventory at the end.

The cooperative inventory centralization game is the
pair 	N �C
, where the characteristic function C is defined
by (1).

Remark 1. As mentioned in Ozen et al. (2008), the model
described above is general enough to capture the case where
there is no warehouse and only retailers can place orders. To
see this, we let W =N , and for each j ∈N we let Zj = �j�.
Therefore, if only a subset of retailers S cooperates, they
can reallocate the goods among themselves.

Remark 2. The assumption that the warehouses do not
hold inventory is not critical and is merely for the ease of
presentation. In fact, for each warehouse i, we can con-
sider an auxiliary retailer j	i
 attached to it. The demand of
retailer j	i
 and the transportation cost si� j	i
 are both set to
be zero. Furthermore, the holding cost at retailer j	i
 is the
same as that at warehouse i. In this new distribution system,
any inventory held at warehouse i can be assumed to be held
at retailer j	i
. Therefore, we can assume without loss of
generality that the warehouses do not hold any inventory.

Remark 3. In this inventory game, we focus only on the
allocation of the expected cost. One may wonder whether it
is possible to derive a stable allocation of the actual cost for
each demand realization. More precisely, let’s assume that
x	S
 is an optimal decision (before the realization of the
random demand) to the coalition S. Assume that the cost of
coalition S, under optimal decision x	S
, is C	S�x	S
��


in scenario �. Therefore, it would be nice if we can find an
allocation 	lj	�
� j ∈N
 for each scenario � such that

∑
j∈N

lj	�
=C	N�x	N
��
�

∑
j∈S

lj 	�
�C	S�x	S
��
 ∀S ⊆N�

If such an allocation exists, it implies that we can allocate
the actual cost for each demand realization, and the allo-
cation is stable in every scenario. Unfortunately, Hartman
and Dror (2005) have shown that such an allocation does
not exist in general, even for the newsvendor game. On the
other hand, it is easy to see that if there is a core allocation
	lj � j ∈ N
 for the (expected cost) game 	N �C
, then we
can define

lj 	�
= "jC	N �x	N
��
�

where

"j =
lj∑
k∈N lk

�

It is straightforward to verify that

∑
j∈N

lj	�
=C	N�x	N
��
�

∑
j∈S

E�lj 	�
�� E�C	S�x	S
��
� ∀S ⊆N�

That is, before the demand is realized, the retailers can agree
on a cost allocation rule, which allocates the actual cost in
each scenario, and the allocation is stable with respect to
the expected cost of each coalition.
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3. Inventory Games with Linear
Ordering Cost

3.1. Dual of the Inventory Problem

Problem (1) is a special case of the following two-stage
stochastic linear program:

min $T
1 x1 + E�g	x1��
�

s.t. A11x1 = b1�

x1 � 0�

(2)

where for each � ∈�,

g	x1��
=min $T
2 x2

s.t. A12x1 +A22x2 = b2	�
�

x2 � 0�

The dual of problem (2) is

max E�bT
1 (1 + bT

2 	�
(2	�
�

s.t. AT
11(1 + E�AT

12(2	�
�� $1�

AT
22(2	�
� $2 ∀� ∈��

(3)

If the set � is finite, problem (2) is just a linear program,
and the strong duality of linear programming applies if the
problem is feasible. However, for general �, the situation is
more complicated. Rockafellar and Wets (1976) presented
conditions under which the optimal objective values of the
primal and the dual are equal. To introduce their result, we
need the following definition.

Definition 2. The stochastic program (2) is said to have
relatively complete recourse if for any x1 ∈ �x1� A11x1 = b1�
x1 � 0�, E�g	x1��
� <
.

Then, the results of Rockafellar and Wets (1976) imply
the following theorem (see also Korf 2004, Theorem 1.3).

Theorem 1. If 	2
 is strictly feasible and has relatively
complete recourse, then the optimal objective value of 	2

is equal to the optimal objective value of 	3
.

Now we apply Theorem 1 to the inventory centralization
problem (1) under investigation. It is easy to see that the
dual problem of (1) is

max E
[∑

j∈S
	)j	�
−*j	�

dj	�


]

s.t. E�+i	�
��ci� i∈⋃
j∈S

Zj�

)j	�
�pj� j ∈S��∈��

*j	�
�hj� j ∈S��∈��

)j	�
−*j	�
−+i	�
�sij � j ∈S� i∈⋃
j∈S

Zj��∈��

)j	�
�0� *j	�
�0� �∈��

which can be further simplified as

(Dual)S max E
[∑

j∈S
(j	�
dj	�


]

s.t. E�+i	�
�� ci� i ∈⋃
j∈S

Zj�

(j	�
−+i	�
� sij �

j ∈ S� i ∈⋃
j∈S

Zj� � ∈��

(j	�
� pj� j ∈ S� � ∈��

(j	�
�−hj� j ∈ S� � ∈��

(4)

We now provide some intuition on the dual. We assume
that a company has to satisfy demands at the retailer stores.
There are two alternative approaches to satisfy the demand.
In the first approach, the company will place orders through
the warehouses and allocate inventory to the retailer stores.
The company would like to do this at a minimal cost. This is
exactly the primal problem (1). In the second approach, the
company outsources the ordering and allocation to another
entity, which will charge the company depending on the
realization of the underlying uncertainty. The entity would
like to maximize the total charge. However, given the com-
pany’s alternative approach, the company may impose cer-
tain constraints on the charge. Specifically, given the under-
lying primitive uncertainty �, the entity will charge a final
unit price (j	�
 for demand at retailer store j . This charge
will compensate the unit price, +i	�
, charged by warehouse
i if the demand is satisfied by the order from the ware-
house plus the transportation cost. The company insists that
the expected unit price for each warehouse should be no
more than the unit ordering cost; otherwise the company has
incentive to place the order itself. This gives the first con-
straint. The second constraint implies that the final unit price
charged should be no more than the unit price imposed by
the corresponding warehouse plus the transportation cost.
The third constraint implies that the final unit price should
be no more than the lost-sales penalty cost; otherwise the
company is better off by ordering nothing and paying lost-
sales penalty. The last constraint implies that the final unit
price should be no less than the negative inventory holding
cost (i.e., the compensation to the company should be no
more than the inventory holding cost); otherwise, the com-
pany would be better off by reporting a higher demand to
the other entity and holding inventory.

The following result is an immediate consequence of The-
orem 1.

Corollary 1. For any collection of retailers S ⊆N , C	S

is equal to the optimal value of (4).

Proof. Given E�dj	�
� < 
 for any j ∈ N , it is straight-
forward to verify that problem (1) satisfies the conditions of
Theorem 1. �
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3.2. Nonemptiness of the Core

Now we are ready to prove our first result. Denote by
	(	�
�+	�

 an optimal solution of (Dual)S with S = N .
Then, define

lj = E�(j	�
dj	�
�� (5)

Theorem 2. The vector l = 	l1� � � � � lN 
 defined by 	5
 is
an allocation in the core of the cooperative inventory game
	N �C
.

Proof. By definition,

∑
j∈N

lj =
∑
j∈N

E�(j	�
dj	�
��

From Corollary 1 and the fact that 	(	�
�+	�

 is the opti-
mal solution of (Dual)N , we know that

∑
j∈N

E�(j	�
dj	�
�=C	N
�

Therefore, l = 	l1� � � � � lN 
 is an allocation of the coopera-
tive game 	N �C
.

On the other hand, because 	(	�
�+	�

 is a feasible
solution to (Dual)N , then 	(	�
�+	�

 (actually by restrict-
ing it to the set S) gives us a feasible solution to (Dual)S ,
for any S ⊆N .

The objective function of (Dual)S corresponding to the
feasible solution (j	�
 is

E
[∑

j∈S
(j	�
dj	�


]
=∑

j∈S
E�(j	�
dj	�
�=∑

j∈S
lj �

Recall that, by Corollary 1, C	S
 is equal to the optimal
value of (Dual)S . Therefore,

∑
j∈S

lj �C	S
�

which shows that the allocation l = 	l1� � � � � lN 
 is in the
core. �

Theorem 2 suggests a way to compute an allocation in
the core. In particular, if there is only a finite number of
scenarios, the allocation can be easily computed by solving
a linear program.

In the following example, we show that the core may be
larger than the set of vectors derived from the optimal-dual
prices.

Example 1. Consider an example where there is only one
warehouse 1 and two retailers 1 and 2. The cost parameter
is given by

c1 = 5� p1 = p2 = 10� h1 = h2 = 2�

and the transportation costs are all equal to zero. The ran-
dom demands that the two retailers face are specified by

a set � = ��1��2��3� so that �1 happens with probabil-
ity 0�3, �2 happens with probability 0�5, and �3 happens
with probability 0�2. Furthermore,

	d1	�k
�d2	�k

=



	2�1
 if k= 1�

	1�3
 if k= 2�

	5�5
 if k= 3�

In this case, it is easy to verify that C	�1�2�
 = 32�6,
C	�1�
= 16, and C	�2�
= 20�2. Also, 	(	�k
� k= 1�2�3

= 	−2�7�2�10
 is the unique dual-optimal solution. This
optimal-dual solution defines a unique vector l =
	12�4�20�2
 that is in the core. (Please refer to the electronic
companion at http://or.journal.informs.org/ for the details.)

However, by definition, the core of this game is given by
the set{
	l1� l2
 � l1 + l2 = 32�6� l1 � 16� l2 � 20�2

}
�

Therefore, the allocation 	12�4�20�2
 defined by the
optimal-dual solution is a true subset of the core.

3.3. A Special Case: Newsvendor Game

In this subsection, we consider a special case of (1), the
newsvendor problem. We show that the dual of the newsven-
dor problem has a closed-form solution under very general
conditions. Recall that the newsvendor game assumes that
all retailers (newsvendors) have the same cost structure and
the transhipment cost is zero. If we denote by d	�
 the sum
of individual retailer’s demand, we can drop the subscript
of all the cost parameters, and assume that there is only one
retailer who is facing a random and nonnegative demand
d	�
.

Let F 	·
 be the cumulative distribution of d	�
. For any
v > 0, define

F−	v
= lim
m→
F

(
v− 1

m

)
/ (6)

let F−	0
= 0. Observe that F 	·
 is nondecreasing and right
continuous so that the limit in (6) is always attained.

Now the primal of the newsvendor problem becomes

(Linear-P) min G	y
 �= cy+ E�Q	y�d	�

�

s.t. y � 0�

where

Q	y�d	�

= p	d	�
− y
+ +h	y−d	�

+

with 2+ =max�2�0�.
Note that the subdifferential set of Q	y�d	�

 with

respect to y is given as follows:

3Qy	y�d	�

=



h if d	�
 < y�

�−p�h� if d	�
= y�

−p otherwise�
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According to (Birge and Louveaux 1997, Chapter 3,
Corollary 12), 4 is an optimal solution to the above problem
if and only if there exists 5� 0 with 45= 0 such that

5 ∈ c+E�3Qy	4�d	�

�

= �	p+h
F−	4
− 	p− c
� 	p+h
F 	4
− 	p− c
��

which immediately implies the following result.

Lemma 1. For any optimal solution 4, F 	4
 � 	p− c
/
	p+h
. Moreover, if 4 > 0, then F−	4
 � 	p− c
/
	p+h
� F 	4
�

The dual of (Linear-P) is very simple:

(Linear-D) max E�d	�
(	�
�

s.t. E�(	�
�� c�

−h�(	�
� p ∀� ∈��

In the following, we show that problem (Linear-D) has a
closed-form solution.

Theorem 3. Assume that d	�
 � 0. Let 4 be any optimal
solution to (Linear-P) and let

(	�
=



−h if d	�
 < 4�

p−8 if d	�
= 4�

p otherwise�

(7)

where

8=



∈ �0� p+h� if F 	4
= F−	4
�(
p− c− 	p+h
F−	4


F 	4
− F−	4


)+
if F 	4
 > F−	4
�

Then, (	�
 is an optimal solution to problem (Linear-D).

The proof follows from the economic interpretation of
the optimal-dual variable (	�
. Indeed, because an optimal-
dual variable (	�
 is the marginal cost (or shadow price)
per unit increase of the demand d	�
, it must be an ele-
ment in the subdifferential set of Q	y�d	�

 with respect
to d	�
, i.e.,

(	�
 ∈ 3Qd	y�d	�

=−3Qy	y�d	�

�

In fact, one can verify that the optimal-dual solutions are
precisely those subgradients in the subdifferential set that
satisfy the optimality conditions, which is given exactly by
Theorem 3.

4. Inventory Games with Concave
Ordering Cost

In this section, we consider another aspect that could moti-
vate the retailers to cooperate: The ordering cost is a

concave function of the order quantity. This cost structure is
widely used in practice. For example, it arises when suppli-
ers provide incremental discount to additional units beyond
some threshold.

The inventory game that we consider in this section is
exactly the same as the one described in §2.2, except that
we assume that the ordering cost of retailer i, denoted by
ci	·
, is a concave function of the order quantity. For ease
of presentation, we assume that ci	·
 is continuously differ-
entiable. Also, we assume that the demand of each retailer
is nonnegative. For any coalition S, the characteristic cost
function C	S
 is defined by

C	S
= min
yi�0� i∈⋃j∈SZj

∑
i∈⋃j∈S Zj

ci	yi
+ E�f 	y�dS	�

�� (8)

where f 	y�dS
 is given in (1).

4.1. A General Result

To study the cooperative game with the characteristic func-
tion C	S
 defined by (8), we consider the duality result
concerning the following two-stage stochastic program that
generalizes (2):

o∗ �=min
y1∈:

$1	y1
+ E�g	y1��
�� (9)

where $1	·
 is a concave function with $1	0
= 0,

:= �x1� A11x1 = b1� x1 � 0��

and for each � ∈�,

g	x1��
=min $T
2 x2

s.t. A12x1 +A22x2 = b2	�
�

x2 � 0�

Let ;$1	·
 be a supergradient of the concave function
$1	·
. It follows directly from the concavity of $1	x1
 and
the definition of supergradient (see Rockafellar 1970) that

$1	y1
=min
x1∈:

$1	x1
− 	;$1	x1


T x1 + 	;$1	x1



T y1�

Consequently,

o∗ =min
y1∈:

min
x1∈:

$1	x1
− 	;$1	x1


T x1

+ 	;$1	x1


T y1 + E�g	y1��
�

=min
x1∈:

min
y1∈:

$1	x1
− 	;$1	x1


T x1

+ 	;$1	x1


T y1 + E�g	y1��
��

Therefore, we obtain immediately that

o∗ =max o

s.t. o� $1	x1
− 	;$1	x1


T x1 +min

y1∈:
	;$1	x1



T y1

+ E�g	y1��
� ∀x1 ∈:�
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However, notice that for any given x1, the minimization
problem

min
y1∈:

	;$1	x1


T y1 + E�g	y1��
�

is a two-stage linear program whose dual is

max E�bT
1 <1 + bT

2 	�
<2	�
�

s.t. AT
11<1 + E�AT

12<2	�
�� ;$1	x1
�

AT
22<2	�
� $2 ∀� ∈��

Thus, we have

o∗ =max o

s.t. o� $1	x1
− 	;$1	x1


T x1

+ E�bT
1 <1	x1
+ bT

2 	�
<2	x1��
� ∀x1 ∈:�

AT
11<1	x1
+E�AT

12<2	x1��
��;$1	x1
 ∀x1∈:�

AT
22<2	x1��
� $2 ∀x1 ∈:�� ∈��

Furthermore, for any given x1, one can define variables
=1	x1
 and =2	x1��
 so that

$1	x1
− 	;$1	x1


T x1 � E�bT

1 =1	x1
+ bT
2 	�
=2	x1��
��

We further define (1 and (2	�
 so that (1 � =1	x1
+<1	x1

and (2	�
 � =2	x1��
+ <2	x1��
, for any x1 ∈ :. It can
be easily verified that

o∗ =max E�bT
1 (1 + bT

2 	�
(2	�
�

s.t. (1 � =1	x1
+ <1	x1
 ∀x1 ∈:�

(2	�
� =2	x1��
+ <2	x1��


∀x1 ∈:� � ∈��

E�bT
1 =1	x1
+ bT

2 	�
=2	x1��
�

� $1	x1
− 	;$1	x1


T x1 ∀x1 ∈:�

AT
11<1	x1
+ E�AT

12<2	x1��
�

� ;$1	x1
 ∀x1 ∈:�

AT
22<2	x1��
� $2 ∀x1 ∈:� � ∈��

(10)

Now we focus on the inventory model. Notice that prob-
lem (8) is a special case of problem (9). From the strong
duality of problem (9), we obtain

C	S
=max E
[∑

j∈S
dj	�
(j	�


]

s.t. (j	�
�=j	x��
+<j	x��


∀x�0� j ∈S��∈��

E
[∑

j∈S
dj	�
=j	x��


]

�
∑

i∈⋃j∈S Zj

	ci	xi
−c′i	xi
xi
 ∀x�0� (11)

E�<j	x��
��sij+c′i	xi


∀x�0�j ∈S�i∈⋃
j∈S

Zj�

−hj �<j	x��
�pj

∀x�0�j ∈S��∈�� (12)

This result can also be obtained by using the strong duality
result for the so-called DC programming; see Toland (1979).

The intuition of problem (11) is similar to the one for
problem (4). The difference here is that for a concave order-
ing cost, if the order quantity of i is xi, one can think of the
cost being decomposed to a proportional cost c′i	xi
 and a
fixed cost ci	xi
− c′	xi
xi. Thus, in addition to the charge
<	x��
 to compensate the proportional cost and the trans-
portation cost, a charge =j	x��
 to each unit demand of
retailer j will be incurred to compensate the fixed cost.

Denote by 	(	�
�=	x��
� <	x��

 an optimal solution
to problem (11) with S = N . Now we are ready to present
the main result of this subsection. The proof of the following
theorem is similar to that of Theorem 2.

Theorem 4. Define lj = E�(j	�
dj	�
�, j ∈ N . Then,
the vector 	l1� � � � � ln
 is an allocation in the core of
the inventory game 	N �C
 with concave ordering cost, if
=	x��
� 0 for any x� 0 and any � ∈�.

Theorem 4 requires the condition that =	x��
 � 0 for
any x � 0 and any � ∈�. We would like to point out that
this condition is only a sufficient condition. It guarantees
that any optimal-dual solution to the grand coalition N is
feasible to the dual problem of coalition S ⊆N .

However, this sufficient condition does not hold in gen-
eral. In fact, we can show that the core of the inventory
game with concave ordering cost could be empty. Indeed,
consider the case with deterministic demand. Assume that
only a fixed cost is incurred at each warehouse if it orders;
otherwise, the ordering cost is zero. Under this assumption,
the inventory game reduces to the so-called facility location
game studied by Goemans and Skutella (2004). It is shown
in Goemans and Skutella (2004) that the core of the facility
location game could be empty.

Nonetheless, the sufficient condition in Theorem 4 may
hold in some cases. In the next subsection, we show that
the condition holds for the newsvendor game with concave
ordering cost.

4.2. Newsvendor Game with Concave
Ordering Cost

For the newsvendor game, the minimization problem of the
grand coalition is

(Concave-P) min c	x
+ g	x


s.t. x� 0�

where c	x
 is a concave function of x with c	0
= 0,

g	x
= hE�	x−d	�

+�+pE�	d	�
− x
+��
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and d	�
 is the sum of individual retailer’s demand. It is
clear that g	·
 is a convex function of x.

For ease of presentation, we assume that c	x
 is continu-
ously differentiable. However, all our results still hold when
c	x
 is a general concave function with c	0
 = 0. For the
rest of this section, we assume that x∗ is an optimal solution
to problem (Concave-P).

It is clear that problem (Concave-P) is a special case of
problem (8). Therefore, we can derive the dual of problem
(Concave-P) as follows:

(Concave-D)

max E�d	�
(	�
� (13)

s.t. (	�
� l	x��
+ v	x��


for all x� 0� � ∈�� (14)

E�l	x��
d	�
�� c	x
− c′	x
x

for all x� 0� (15)

E�v	x��
�� c′	x
 for all x� 0� (16)

−h� v	x��
� p for all x� 0�� ∈�� (17)

The variables v	x��
 and l	x��
 in (Concave-D) corre-
spond to the variables <	x��
 and =	x��
 in problem (11),
respectively.

Our main result of this subsection is to construct an
optimal closed-form solution to (Concave-D) such that
l	x��
 � 0 for any x � 0 and any � ∈�. By Theorem 4,
this leads to a core allocation to the newsvendor game with
concave ordering cost.

The construction of the dual solution relies on the prop-
erty of the following problem defined for every fixed x� 0:

(CPLx) min c′	x
y+ g	y


s.t. y � 0�

and its dual

(CDLx) max E�v	x��
d	�
�

s.t. E�v	x��
�� c′	x
�

−h� v	x��
� p ∀� ∈��

By the concavity of c	x
, we know that:

Lemma 2. Any optimal solution x∗ to problem (Concave-P)
is optimal to the problem (CPLx∗ ).

The following two lemmas are also useful in the con-
struction of the dual solution. We present the proofs in the
appendix.

Lemma 3. For any x� 0,

	p+h
E�d	�
>	d	�
 ∈ �0� x�
�

= pE�d	�
�− g	x
− x	p− 	p+h
F 	x

� (18)

Lemma 4.

	p+h
E�d	�
>	d	�
 ∈ �0� x∗�
�

+ x∗	p− 	p+h
F 	x∗

� c	x∗
� (19)

Now we define

q∗ �= inf�q� 	p+h
E�d	�
>	d	�
 ∈ �q� x∗�
�

+ x∗	p− 	p+h
F 	x∗

� c	x∗
��

The existence of q∗ ∈ �0� x∗� is implied by Lemma 4 and by
the facts that p− c′	x∗
− 	p+h
F 	x∗
� 0 (which follows
from Lemmas 2 and 1) and c	x∗
− c′	x∗
x∗ � 0. Also, it is
easy to verify that if q∗ = 0 or if F 	·
 is continuous at q∗,
i.e, F 	q∗
= F−	q∗
, then we must have

	p+h
E�d	�
>	d	�
 ∈ �q∗� x∗�
�

+ x∗	p− 	p+h
F 	x∗

= c	x∗
� (20)

We are now ready to construct the dual-optimal solution.
Let 4	x
 be any optimal solution for problem (CPLx) for
x �= x∗, and let 4	x∗
= x∗, which is an optimal solution to
(CPLx∗ ). For each x� 0 and �, define

v∗	x��
=



−h if d	�
 < 4	x
�

p−8	x
 if d	�
= 4	x
�

p otherwise�

(∗	�
=



p if d	�
 > q∗�
@∗ −h if d	�
= q∗�
−h otherwise�

and

l∗	x��
= 	(∗	�
− v∗	x��

+�

where

8	x
=




0 if F 	4	x

= F−	4	x

�(
p− c′	x
− 	p+h
F−	4	x



F 	4	x

− F−	4	x



)+

if F 	4	x

 > F−	4	x

�

and

@∗=




0 if 	F 	q∗
−F−	q∗

q∗=0�

	c	x∗
−	p+h
E�d	�
>	d	�
∈	q∗�x∗�
�
−x∗	p−	p+h
F 	x∗


·		F 	q∗
−F−	q∗

q∗
−1�

otherwise.

It is clear from the construction that l∗	x��
� 0 for any
x� 0 and any � ∈�. Now we are ready to present our main
result of this subsection.
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Theorem 5. 	(∗� v∗� l∗
 defined above is an optimal solu-
tion to (Concave-D).

This result then directly implies that the newsvendor
game with concave ordering cost has a nonempty core. More
specifically, let 	(∗� v∗� l∗
 be optimal to (Concave-D) with
l∗ � 0 and d	�
=∑

j∈N dj	�
. Define

lj = E�(∗
j 	�
dj	�
�� (21)

Theorem 6. The vector l= 	l1� � � � � lN 
 is an allocation in
the core of the newsvendor game with concave ordering
cost.

Theorem 6 is based on the assumption that the concave
ordering cost function is continuously differentiable. This
differentiability assumption is only made for ease of presen-
tation and can be relaxed.

We would like to point out that although (Concave-D) is
an infinite-dimension stochastic linear program, it admits a
closed-form solution. Therefore, we do not have to use algo-
rithms designed for the general infinite-dimension stochas-
tic linear program to solve (Concave-D). This observation
is illustrated through the following example.

Example 2. Consider an example where there are three
retailers 1, 2, and 3. The cost parameters are given by

p= 5� h= 1� c	x
=
{

3x if 0� x < 6�

6+ 2x if x� 6�

The random demands that the three retailers face are spec-
ified by a set � = ��1��2��3� so that �1 happens with
probability 0�2, �2 happens with probability 0�4, and �3

happens with probability 0�4. Furthermore,

	d1	�k
�d2	�k
�d3	�k

=



	4�3�3
 if k= 1�

	4�4�4
 if k= 2�

	4�6�4
 if k= 3�

In this case, it is easy to verify that C	�1�2�3�
 = 34�4,
C	�1�2�
 = 26�2, C	�1�3�
 = 22�2, C	�2�3�
 = 26�4,
C	�1�
= 12, C	�2�
= 16�2, and C	�3�
= 12�2.

Now consider the dual problem of the grand coalition
with aggregated demand. The optimal ordering quantity is
x∗ = 12, which can be easily computed. Furthermore, recall
the definition of q∗:

q∗ �= inf�q� 	p+h
E�d	�
>	d	�
 ∈ �q� x∗�
�

+ x∗	p− 	p+h
F 	x∗

� c	x∗
��

Notice that c	x∗
 = 6 + 12 · 2 = 30 and F 	x∗
 = 0�6. It
follows that

	p+h
E�d	�
>	d	�
 ∈ �q� x∗�
�

+ x∗	p− 	p+h
F 	x∗

� c	x∗


if and only if q > x∗. Therefore, q∗ = x∗ = 12. Then, from
the definition of @∗, we get @∗ = 11/4. Thus, by construc-
tion, the optimal-dual solution is given by

	(∗	�1
�(
∗	�2
�(

∗	�3

= 	−1�7/4�5
�

Now, the cost allocation defined by (21) is given by

l1 = 0�2 · 	−1
 · 4+ 0�4 · 	7/4
 · 4+ 0�4 · 5 · 4= 10�

l2 = 0�2 · 	−1
 · 3+ 0�4 · 	7/4
 · 4+ 0�4 · 5 · 6= 14�2�

l3 = 0�2 · 	−1
 · 3+ 0�4 · 	7/4
 · 4+ 0�4 · 5 · 4= 10�2�

One can easily verify that this allocation is indeed in the
core.

5. Testing Membership of the Core
Another important question concerning the inventory game
is to check whether or not a given allocation is in the core.
In this section, we show that even for a very simple case,
the problem is NP-hard. More formally, we consider the
following problem:

Problem TMOC
Instance: A cooperative newsvendor game 	N �C
 and a

vector l= 	l1� � � � � ln
 with
∑

j∈N lj =C	N
.
Question: Is l not an element of the core of the game, i.e.,

does there exist a coalition S ⊆N such that
∑

j∈S lj > C	S
?

Theorem 7. Problem TMOC is NP-hard.

Proof. To prove the hardness, we establish a polynomial
transformation from the subset sum problem to the TMOC.
The subset sum problem is a well-known NP-complete
problem that can be described as follows:

Subset Sum
Instance: A set of integers �a1� a2� � � � � an�.
Question: Is there a subset S ⊆ �1�2� · · · � n� such that∑
j∈S aj = 0?

Given an instance of the Subset Sum problem, we con-
struct an instance of the TMOC as follows. There are n+ 1
retailers, i.e., N = �1�2� � � � � n + 1�. Let the vector l =
	1/	n+ 1
� � � � �1/	n+ 1

. Let the ordering cost c= 0; the
inventory holding cost and penalty cost are equal to 2, i.e.,
p= h= 2. The random demand is given by

d	�
= 	d1	�
� � � � � dn	�
�dn+1	�



=
{
	d1

1�d
1
2� � � � � d

1
n�d

1
n+1
� with probability= 0�5�

	d2
1�d

2
2� � � � � d

2
n�d

2
n+1
� with probability= 0�5�

such that d1
j , d

2
j are nonnegative, and d1

j −d2
j = 2aj for each

j = 1�2� � � � � n, and d1
n+1 −d2

n+1 = 1− 2
∑n

j=1 aj .
Let āj = 2aj for j = 1�2� · · · � n, and ān+1 =

1− 2
∑n

j=1 aj . Then,

n+1∑
j=1

āj = 1�
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Therefore, for any S ⊆N ,

C	S
=min
y�0

E
[
2

∣∣∣∣∑
j∈S

dj	�
− y

∣∣∣∣
]

=min
y�0

∣∣∣∣∑
j∈S

d1
j − y

∣∣∣∣+
∣∣∣∣∑
j∈S

d2
j − y

∣∣∣∣
=
∣∣∣∣∑
j∈S

d1
j −

∑
j∈S

d2
j

∣∣∣∣
=
∣∣∣∣∑
j∈S

āj

∣∣∣∣�
Then,

C	N
=
∣∣∣∣∑
j∈N

āj

∣∣∣∣= 1=∑
j∈N

lj �

which implies that l is an allocation. Now we show that
the allocation l = 	1/	n+ 1
� � � � �1/	n+ 1

 is not in the
core of the newsvendor game if and only if there exists a
subset S ⊆ �1�2� � � � � n� such that

∑
j∈S aj = 0. Then, the

NP-hardness of problem TMOC follows immediately.
Case 1. If l is not in the core, then there exists a T ⊂N

such that

C	T 
 <
∑
j∈T

lj � 1�

and hence C	T 
 = 0. This is because C	T 
 = �∑j∈T āj �
and all aj are integers, which implies that C	T 
 is also an
(nonnegative) integer. Therefore,∑
j∈T

āj = 0�

We claim that n + 1 � T because all āj = 2aj , j =
1�2� � � � � n, are even, whereas ān+1 is odd. Therefore, T ⊆
�1�2� � � � � n�. Then,

∑
j∈T

aj =
1
2

∑
j∈T

āj = 0�

Case 2. If l is in the core, then for every T ⊆N , C	T 
�∑
j∈T lj > 0. However, for S ⊆ �1�2� � � � � n�⊂N ,

C	S
=
∣∣∣∣∑
j∈S

āj

∣∣∣∣= 2

∣∣∣∣∑
j∈S

aj

∣∣∣∣�
Thus,

∑
j∈S aj �= 0 for all S ⊆ �1�2� � � � � n�.

This completes the proof. �

6. Concluding Remarks
In this paper, we demonstrated the power of the stochas-
tic programming duality approach in analyzing a broad
class of stochastic inventory centralization games. Although
we mainly focused on the model proposed by Ozen et al.

(2008), the approach is readily applicable to more-general
models. Here we describe a few examples.

In a paper by Ozen et al. (2006), an inventory central-
ization game with delivery restrictions is studied. The new
element of this game, compared to the one described in §2.2,
is that each retailer j is associated with a critical demand
level Bj . If the realized demand of j , dj , is lower than Bj ,
then only dj units need to be satisfied; otherwise, at least
Bj units of demand or retailer j need to be satisfied. It is
also required that before the demand realization, the total
amount of goods ordered should be at least

∑
j∈S Bj for any

coalition j . To analyze this game, we can simply add one
constraint∑
i∈⋃j∈S Zj

yi �
∑
j∈S

Bj

to the first-stage formulation of the stochastic linear pro-
gram (1), and add another set of constraints∑
i∈⋃j∈S Zj

xij �min�Bj� dj�� j ∈ S�

to the second-stage formulation. We can then write the dual
of this new stochastic linear program. Using the duality
approach, we can identify a core allocation of this coopera-
tive game. We remark that the model in Ozen et al. (2006)
is actually slightly simpler than what we described above
in that the transportation cost of allocating inventory was
ignored.

In another paper, Ozen et al. (2007) propose an interest-
ing three-stage inventory centralization game. At the time
orders are placed by the warehouses, the demand distribu-
tions of retailers are known, but not the exact values of the
demands. In the second stage, after orders arrived at ware-
houses, retailers observe demand signals and update their
demand forecast. In the last stage, inventory is allocated
to the retailers, and the actual demands are realized. This
inventory model can be formulated as a three-stage stochas-
tic linear program. The same duality approach in this paper
has been applied to identify a core allocation for the three-
stage inventory centralization game. We should mention that
Ozen et al. (2007) contains other interesting results as well.

Recently, Chen (2009) analyzed an inventory centraliza-
tion game with price-dependent demand. It has been shown
that the core of this game is nonempty by utilizing the
strong duality of more general stochastic convex program-
ming. Chen (2009) also shows how to find a core allocation
for the newsvendor game with general quantity discount.

The stochastic programming duality approach may also
be applied to inventory centralization games with multiple
products, where the demands for these products can be cor-
related.

Indeed, as the strong duality of linear programming has
played an important role in studying deterministic coopera-
tive games, we expect that the duality theory of stochastic
linear programming may well play a similar role in studying
cooperative games with stochastic elements in other supply
chain settings and beyond.
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7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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