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Abstract

In this paper, we propose an empirical modeling approach for social networks. To embed

the concept of strategic network formation into the model, we motivate the model specification

by an economic game in which individuals choose friendship links and economic activities with

interactions. By allowing individuals to respond to economic incentives stemming from friend

interactions on certain activities when making friendship decisions, our structural setting generates

the following two advantages. First, one can evaluate the importance of economic incentives from

certain interactions when individuals choose their friends. Second, the possible friendship selection

bias in interaction outcomes will be corrected when the network formation is explicitly modeled.

The proposed model is applied to American high school students’ friendship networks in the Add

Health data. From two activity outcomes, namely, students’ GPAs and smoking frequencies,

we find a significant economic incentive effect from GPA, but not from smoking, on friendship

formation. These results suggest that helping one another on academic learning is important for

forming friendships, while joy of smoking together may be not. However, outcomes of both GPA

and smoking frequency are subject to significant positive network interactions.

JEL classification: C21, C25, I21, J13

Keywords: network formation, network interaction, selectivity, Bayesian estimation
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1 Introduction

Economic research on social networks has grown rapidly over the past two decades. For many

economic issues, the role of social networks as a major channel to disseminate information or

facilitate activities is revealed.1 Accompanying with wide applications of network concepts in

economics, an immediate question faced by both theorists and practitioners is to understand how

networks are formed. This question is not just interesting in its own right, but also important

to analyze how changes of network structures affect economic outcomes.2 From development of

theory on network formation, the most recognized concept is strategic network formation proposed

by Jackson and Wolinsky (1996). After their seminal work, theorists enthusiastically apply this

concept on building network formation models and discuss the tradeoff between network stability

and efficiency (See survey in Jackson, 2008, 2009, and relevant chapters in Handbook of social

economics edited by Benhabib, Bisin, and Jackson, 2011). Built on richness of theory, new empirical

strategies to embed the concept of strategic network formation in real networks would be highly

desirable for economic network studies.3

In this paper, an empirical modeling approach for static networks is proposed in response to the

literature.4 A static network refers to a cross sectional case where only one observation of a network

1For example, job finding and labor force participation (Calvó-Armengol and Jackson, 2004, 2007; Bayers et al.,

2008); social learning and knowledge diffusion (Conley and Udry, 2001, 2010); risk sharing and insurance (Fafchamps

and Gubert, 2007a, 2007b); obesity transmission (Christakis and Fowler, 2007, Flower and Christakis, 2008); peer

effects on students’ academic achievement (Calvó-Armengol et al., 2009), sport and club participation (Bramoullé

et al., 2009; Liu et al., 2011) and juvenile delinquencies or criminal activities (Ballester et al., 2010; Pattcchini and

Zenou, 2008, 2012, Bayer et al., 2009, etc.)
2As a network might be formed in order to achieve favorable economic consequences, there is an empirical need

to correct for possible endogeneity bias in network (or peer) effects on outcomes due to friendship selection. In the

context of network interactions, no matter whether the research objects are labors, adolescents, or delinquents, in

order to understand peer effects among these groups, one would like to know how individuals choose their friends.

The choice of friendships might amplify observed peer interaction effects due to related unobserved factors behind

both decisions of friendships and economic activities (Weinberg, 2008). Hence, to study network interaction effects on

economic outcomes without considering endogenous friendship selections might lead to an upward biased estimate.

With regard to this problem, Hsieh and Lee (2012) propose a latent variables approach in order to capture possibly

important unobserved driving factors and use them to link network formation and social or peer interactions on

economic activity outcomes.
3Some existing empirical examples include Fafchamps and Gubert (2007a, 2007b) and Comola (2008), which

study the risk-sharing and insurance networks in rural areas of developing countries. Mayer and Puller (2008),

Christakis et al. (2010), Currarini et al. (2010), Mele (2010), and Hsieh and Lee (2012) study friendship networks

of American high school and college students.
4Except the economic literature, network formation models for static networks are also developed in the statistical

literature. One example is the exponential random graph model (ERGM) proposed by Frank and Struss (1986), or
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is available.5 The specification of the model, motivated from the concept of strategic network

formation, is based on an economic game where individuals determine both friendship links and

economic activities with interactions. This game setting is modified from Hsieh and Lee (2012) by

adding a device that individuals respond to economic incentives stemming from friend interactions

on certain activities when making friendship decisions. This device is meaningful because in most

of the survey data which contain friendship information, respondents are asked to nominate friends

in general, but not for any specific purpose. Therefore, it remains interesting to see which activities

with network interactions would provide significant economic incentives for forming friendships.

The advantage of modeling both the network formation and network interactions on outcomes

under a structural framework is in fact twofold. We can not only evaluate the importance of

individuals’ incentives as they stem from choosing their friends, the resulting model can also correct

possible friendship selection biases in outcomes with interactions. We apply this modeling approach

to study American high school students’ friendship networks in the Add Health data. From two

activity outcomes that are considered in the paper, namely, a student’s GPA and how frequently

a student smokes in an usual week, we find a significant economic incentive effect from GPA but

not from smoking, which suggests that helping one another on academic learning is a factor for

building friendships, while joy of smoking together is not. Furthermore, estimated endogenous

effects from outcome equations under our structural setting are smaller than those from studying

outcome equations alone with networks assumed to be exogenously given. The latter shows our

structural approach is effective in correcting possible upward biases in interaction effects due to

endogenous friendship selections.

The challenge of modeling static networks by the concept of strategic network formation comes

from the fact that, as contrary to a dynamic setting, neither the order of linking nor how each

link depends on previous existing links are observed. Therefore, one would model a network as

a polychotomous choice with 2m(m−1) alternatives jointly by individuals, where m is the size of

the network. The estimation of such a model is computationally intensive because discrete choice

more generally, the p∗ model by Wasserman and Pattison (1996), which formulates the propensity of the network

formation from observed network features, such as stars, triangles, etc. Another example is the latent position model

by Hoff et al. (2002) and Handcock et al. (2007), which introduces unobserved latent variables to create dependence

between links and use them to visualize the network. See survey of statistical models in Goldenber et al. (2009).

The main concern of using those statistical network models from an economic view is that they do not provide

causal interpretations, which are, however, the central spirit of an economic study.
5We focus on a static setting because most of the available network data are cross sectional ones without dynamics.

Few students’ friendship network data which have panel waves can be found in the literature of stochastic actor-based

dynamic network modeling proposed by Snijders et al. (2010).
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variables increase exponentially with the size of the network. Furthermore, the implied model

might contain multiple equilibria which requires investigators to specify an equilibrium selection

rule or treat the model as an incomplete one. To prevent all of those complexities, few empirical

studies choose to assume pairwise independence between network links. For example, Fafchamps

and Gubert (2007a, 2007b) and Comola (2008) rely on the pairwise independence assumption

which allows them to focus on individual and dyad-specific variables to explain network links. The

estimation of those models can be done by a standard maximum likelihood approach since the

likelihood of the whole network is just the product of likelihoods from each pairwise links. How-

ever, as noted by Bramoullé and Fortin (2009), the assumption of pairwise independence is too

strong because it requires that the latent utility behind each pairwise link is separable.6 One way

suggested in Christakis et al. (2010) to bypass the problem of multiple equilibria from modeling

networks without the pairwise independence assumption is to augment networks with a dynamic

formation process. They assume a sequential process which only allows a single pair of individuals

to establish (or terminate) a link at each period. By additionally assuming that individuals only

concern the current state of the network but not future, they simplify the computation and elim-

inate the concern of multiple equilibria. With an artificial order of meetings simulated within a

finite number of periods, they estimate model parameters using the Bayesian approach.

Mele (2010) also models static networks with a dynamic formation process. But instead of

simulating artificially sequential meetings during estimation, he uses a random meeting technol-

ogy and shows that observed networks can be viewed as realizations from a stable equilibrium

distribution. His model is relevant to us as he also uses an economic game with individual utility

maximization. However, there are three major differences between Mele’s modeling approach and

ours. First, the utility function proposed in Mele (2010) is restrictive. For the purpose of charac-

terizing the network formation game as a potential game, which has an advantage of summarizing

individual incentives by an aggregated potential function, he only include certain specific terms in

the individual utility function. In this paper we show that, if one begins with specifying a negative

potential (negpotential) function in an exponential distribution framework, an implied individual

utility function from the negpotential function can be used to justify network formation as either

a cooperative game or a non-cooperative game. The specification of the negpotential function can

be very general, which is allowed to capture any relevant network characteristics or individual in-

centives. Also, any constraints on parameters in the implied individual utility can be understood.

6This means that the utility derived from a network is equal to the sum of utilities from each link and is not

affected by any other links in the network.
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Second, we focus on a static game with complete information rather than a dynamic game and

therefore do not require any random meeting technology. Third, we primarily concern modeling

both network and activity decision processes, which is more general than only a network decision

process considered in Mele (2010).

The remainder of this paper is organized as follows. Section 2 presents an economic game of

network formation which motivates the empirical model. A Bayesian estimation method for the

proposed model is discussed in Section 3. Section 4 includes an application of the model to high

school students’ friendship networks in the Add Health data. The paper is concluded in Section

5. We leave details of the MCMC sampling procedures, techniques and a simulation study in

appendices.

2 An economic game for network formation

Assume individuals make their decisions on friendships and economic activities in a two-stage pro-

cess.7 In the first stage, individuals choose friends to maximize their link-associated utilities. In

the second stage, individuals interact with their friends and choose economic activities to maximize

their activity-associated utilities. One of our focuses on friendship formation is to consider the pos-

sibility that friendship be built upon pursuing economic incentives from friend interactions, e.g.,

students get along with other students with intention to help one another on academic learning, or

delinquents hang out with other delinquents with intention to share knowledge or interests of their

behaviors, etc. We allow the link-associated utility to contain economic incentives represented by

activity-associated utilities which will be realized in the second stage. This two-stage process can

be characterized as a two-stage static game. Individuals adopt strategies on choosing friends and

economic activities in order to obtain utilities as payoffs of the game. There is perfect information

between the two-stages. Within each stage, players move simultaneously with complete informa-

tion. The equilibrium of this two-stage game satisfies the principle of sequential rationality, i.e.,

a player’s strategy should specify optimal actions at every point in the game tree (Mas-Colell et

al., 1995). Hence, one can solve the equilibrium of this game by backward induction as follows:

First, determine equilibrium activity outcomes in the second stage with network interactions and

7One may interpret our modeling approach from simultaneous decisions on friendships and economic activities.

In such a case, both types of decisions are made simultaneously and would affect each other. By interpreting it

as a two-stage process, one can focus on friendship decisions in the first stage and activity decisions in the second

stage. It gives us an advantage to emphasize the importance of economic incentives stemming from interactions on

activity outcomes in the second stage.
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calculate the corresponding equilibrium activity-associated utilities. Second, by incorporating the

equilibrium activity-associated utilities into the link-associated utilities in the first stage, solve for

the equilibrium network.

Assume that individuals are placed in a pre-specified group setting, such as students in a school-

grade, workers in a company, delinquents in a neighborhood, etc.8 Let Wg be a mg×mg adjacency

matrix (sociomatrix) representing a network of mg individuals (size) in the group g, where g =

1, · · · , G withG being the total number of groups in a sample. Each wij,g is a dichotomous indicator

which equals to one if individual i is making individual j as a friend and zero if not. The diagonal

elements wii,g’s are set to structural zeros. Let xi,g be a k-dimensional row vector containing

individual i’s exogenous characteristics and the mg × k dimensional matrix Xg is a collection of

such vectors in the group g. For economic activity outcomes, we consider two types of variables,

continuous and Tobit-type.9 Let yi,cg (yi,tg) denotes individual i’s continuous (Tobit-type) activity

outcome in the group g, then Ycg = (y1,cg, y2,cg, · · · , ymg,cg)
′ and Ytg = (y1,tg, y2,tg, · · · , ymg,tg)

′

are mg-dimensional column vectors for all members’ continuous and Tobit-type outcomes in the

group g.

2.1 Activity-associated utility with interaction effects – continuous and

Tobit-type outcomes

We may first discuss the pursuit of economic activities in the second stage of the game.

Continuous Outcomes

Consider a continuous activity outcome variable yi,cg. Depending on a network Wg, a profile

of economic activities Ycg, an unobserved group fixed-effect αcg, and an idiosyncratic shock εi,cg,

which is known among individuals but not to the econometrician, an individual’s activity-associated

utility is assumed to take the following quadratic form:

ui,cg(Ycg,Wg) =

xi,gβ1c +

mg∑
j=1

wij,gxj,gβ2c + αcg + εi,cg

 yi,cg −
1

2
y2
i,cg + λcyi,cg

mg∑
j=1

wij,gyj,cg,

(1)

8It would be of an interest to consider in certain situations that a specific group can be selected instead of given.

Here we are focusing on the setting with reference to the Add Health data where grade as a group would be less

subject to selectivity. Those issues of selection into groups will be left for future study.
9The case of binary variable will not be considered in the main article because of various model specifications of

it, which deserve more detailed consideration. We have a discussion of it in the Appendix A.
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for i = 1, · · · ,mg. This quadratic utility function has been widely applied in the studies of peer

effects, including Ballester et al. (2006), Calvó-Armengol et al. (2009), etc. The first and the second

terms show that the utility is concave in the individual’s own activity. The third term reflects a

complementary effect (competitive effect) from peer’s activities if λc ≥ 0 (λc ≤ 0). By the theorem

of Ballester et al. (2006), as long as |λc| is less than the largest eigenvalue of Wg,
10 an unique

interior Nash equilibrium of activity outcomes from this simultaneous-move subgame is given by

y∗i,cg(Wg) = xi,gβ1c +

mg∑
j=1

wij,gxj,gβ2c + αcg + εi,cg

+

∞∑
k=1

λkc

mg∑
j=1

(
W k
g

)
ij

(
xj,gβ1c +

mg∑
l=1

wjl,gxl,gβ2c + αcg + εj,cg

)
, (2)

for i = 1, · · · ,mg and the corresponding activity-associated utility is ui,cg(y
∗
i,cg(Wg)) = 1

2y
∗2
i,cg(Wg).

By stacking individual equilibrium activity outcomes from Eq. (2), one can obtain a vector of

equilibrium outcomes:

Y ∗cg(Wg) = S−1
cg (Wg)(Xgβc + lgαcg + εcg), (3)

where Scg(Wg) = Img
− λcWg, Xg = (Xg,WgXg), βc = (β′1c, β

′
2c)
′, εcg = (ε1,cg, · · · , εmg,cg)

′, and

lg being a mg-dimensional vector of ones. Eq. (3) can be recognized as the reduced form of the

spatial autoregressive (SAR) model used in Lee et al. (2010), Lin (2010), Hsieh and Lee (2012),

etc., on studies of network interactions.11

Tobit-type Outcomes

In certain cases an activity outcome might be continuous but nonnegative, i.e., a Tobit-type variable

which is left-censored at the value zero. To model Tobit-type activity outcomes, we should impose

a constraint, yi,tg ≥ 0, in the individual activity-associated utility of Eq (1) with yi,cg replaced by

yi,tg. Under this constraint, the Nash equilibrium of the outcome vector can be summarized by

the equation:

Y ∗tg(Wg) = max
(

0, Ÿ ∗tg

)
with Ÿ ∗tg = λtWgY

∗
tg + Xgβt + lgαtg + εtg, (4)

10One may also use a slightly stronger sufficient condition, ‖ λWg ‖∞< 1, which is considered in Liu and

Lee (2010).
11The SAR model has the specification Ycg = λcWgYcg + Xgβc + lgαcg + εcg , where the coefficient λc represents

the endogenous effect, βc represents the own and contextual effects of exogenous regressors. The group fixed-effect

αcg captures unobserved environmental factors shared by group members and hence will control for correlated effects

and possible selections into a group.
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where Ÿ ∗tg represents a vector of latent variables. We may call Y ∗tg the simultaneous-Tobit out-

come.12 The solution Y ∗tg must satisfy Y ∗tg ≥ λtWgY
∗
tg + Xgβt + lgαtg + εtg such that Y ∗tg ≥ 0, and

y∗i,tg = λt
∑mg

j=1 wij,gy
∗
j,tg + xi,gβ1t +

∑mg

j=1 wij,gxj,gβ2t + αtg + εi,tg whenever y∗i,tg > 0. Under the

conditions as in Amemiya (1974) for a general simultaneous Tobit equation system,13 the solution

Y ∗tg is unique and can be obtained from a constrained quadratic programming problem

Y ∗tg = min
Ytg

 Y ′tg[(Img
− λtWg)Ytg −Xgβt − lgαtg − εtg] :

Ytg ≥ 0, (Img
− λtWg)Ytg −Xgβt − lgαtg − εtg ≥ 0

 . (5)

As an alternative, we show that with proper restricted parameter space on λt, the solution can be

conveniently obtained via a contraction mapping algorithm provided in the Appendix B.

2.2 Link-associated utility and the exponential probability distribution

Back to the first stage of the game where individuals make their friendship decisions, an individual

link-associated utility vi,g from a network g may be specified to capture various observed network

characteristics as well as economic incentives stemmed from the second stage. As in a static game

setting with complete information, individual i’s friendship choices may depend on network links

of other individuals in the group. For example, individuals of popularity in a network may attract

more links. If this static game is non-cooperative, with a specified individual utility function vi,g,

his/her choices will be

max
wi.,g

vi,g (wi.,g,W−i.,g) , (6)

where wi.,g represents the ith row of Wg, and W−i.,g is the Wg with its ith row removed. Due

to the nature of simultaneous moves, an equilibrium of this game determined by Eq. (6) for each

individual in the group will be characterized as a Nash equilibrium. As the system via Eq. (6) is

a simultaneous discrete choice one, there can be multiple Nash equilibria. However, with properly

specified utility functions, the existence of an unique Nash equilibrium is possible. Instead of a

12Another possible way to handle the Tobit-type activity outcome is to assume individuals choose latent activities

based on Eq (1) without the nonnegative constraint, but only the Tobit-type outcomes are observed, i.e., the

observed outcome y∗i,tg = max{0, ÿ∗i,tg} with a latent variable ÿ∗i,tg from Eq (1). We may call this case the latent-

Tobit outcome to distinguish it from the simultaneous-Tobit outcome.
13A sufficient condition for a unique solution of this quadratic programming problem is that the quadratic objective

function is strictly concave, which will be guaranteed if Img−
λt
2

(Wg+W ′g) is positive definite. A necessary and suffi-

cient condition is every principle minor of (Img−λtWg) is positive. Another sufficient condition is that (Img−λtWg)

has positive dominant diagonals, i.e., there exists positive di, i = 1, · · · ,mg such that di > |λt|
∑mg

j 6=i |Wij,g |dj for

all i = 1, · · · ,mg .
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non-cooperative game, we may also consider this static game to be cooperative in which an unique

equilibrium will be guaranteed with maximization of the aggregated utility. Both game concepts

provide useful insights for us to model the observed equilibrium network and hence we pursue both

strategies and show how they can be related.

We prefer that our empirical specification of the utility function will result in a statistical

estimation framework which describes an observed network Wg as a realization from an exponential

distribution on a network space. The exponential distribution framework is basic for random

graph and p∗ network models in the statistical literature (Frank and Struss, 1986; Wasserman and

Pattison, 1996). A network space Ωg for a group g consists of all possible network patterns W for

that group. An exponential distribution for Wg has a probability specification in the form

P (Wg) = exp(Qg(Wg))/
∑
W∈Ωg

exp(Qg(W )) (7)

for a function Qg. A specification of the function Qg gives a specific exponential distribution of

networks. In the statistical mechanics literature (e.g., Ruelle 1969), −Qg plays a role of a potential

energy function, and Qg is referred to as a negpotential function. In the random graph statistical

literature, Qg(Wg) may consist of various network statistics. The exponential probability function

implies that conditional probabilities will also take the logistic form, which gives rise the notion of a

Markov random field in spatial statistics (see, e.g., Cressie, 1993). The interest on the exponential

distribution for networks is due to its computational tractability as witnessed by the statistical

literature (See Strauss and Ikeda, 1990; Geyer and Thompson, 1992; Snijders, 2002; Liang, 2010).

To incorporate economic rationality for this distribution, one may allow an individual’s utility vi,g

to incorporate observed or unobserved (from an econometrician’s view) individual characteristics,

and relevant network characteristics. The deterministic components of vi,g for all i in the group g

will then be part of a negpotential function.

The specification of a model via a negpotential function in the exponential distribution will

ensure the implied statistical model is model coherent, i.e., the econometric model has a well

defined probability structure for an observed equilibrium network. For a multivariate system with

discrete choices or limited dependent variables, a coherent model reflects an unique equilibrium

generated by the system (see, e.g, Amemiya (1974) on a multivariate Tobit model). For our network

formation process, in order to have the existence of an unique equilibrium, a possible modeling

strategy is to embed individual link utilities into a negpotential function and use the specified

negpotential function to study the network as a whole.
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2.2.1 The specification of an individual link-associated utility

As motivated by several economic and statistical studies on network formation, we consider the

following individual link-associated utility specification,

vi,g(Wg) =

mg∑
j=1

wij,gψij,g︸ ︷︷ ︸
Exogenous Effects

+ $i,g(wi.,g,W−i.,g)η︸ ︷︷ ︸
Network Structure Effects

+

d̄∑
d=1

δd
2
y∗2i,dg(Wg)︸ ︷︷ ︸

Economic Incentive Effects

. (8)

In Eq. (8), the exogenous effects capture influences from individual-specific and dyad-specific ex-

ogenous characteristics on the link utility. The function ψij,g has an explicit expression

ψij,g = ci,gγ1 + cj,gγ2 + cij,gγ3. (9)

The variable ci,g (cj,g) in Eq. (9) is a s̄-dimensional row vector of individual-specific characteristics

and the variable cij,g is a q̄-dimensional row vector of dyad-specific characteristics, such as the

same age, sex or race shared by each pair of individuals (i, j) in the group g to capture the utility

from homophily of observed characteristics in friendship formation. The idea of using ci,g, cj,g and

cij,g in explaining the link decisions is from Fafchamps and Gubert (2007a, 2007b) in the study

of risk-sharing network formation. For notational simplicity, we let Cg = {ci,g, cj,g, cij,g} and

γ = (γ′1, γ
′
2, γ
′
3)′. The network structure effects in Eq. (8) capture influences from link dependence

within the network on individual i’s link utility, where $i,g(wi.,g,W−i.,g) represents a h̄-dimensional

row vector of summary statistics constructed from components of Wg and η is a corresponding

vector of coefficients. The idea of considering network structure effects in Eq. (8) comes from the

p∗ models (Wasserman and Pattison, 1996; Snijders et al., 2006), the actor-based dynamic network

model (Snijders et al., 2010), and the model of Mele (2010). In the p∗ models, summary network

statistics such as the number of k-stars and k-triangles, k ∈ N, are used for the network structure

effects to measure how likely those network patterns appear in observed networks. The coefficients

of those network structure effects do not represent causal relationships. In the actor-based dynamic

network model and the model of Mele (2010), the summary statistics used for the network structure

effects are economically motivated and constructed from the number of individuals’ reciprocal,

outward, inward, and transitive links. The coefficients of those network structure effects provide

causal interpretations. The empirical specification of the network structure effects used in this

paper will be discussed later in Section 4.1.

The novel effects considered in this paper for an individual link-associated utility are economic

incentive effects from network interactions, which are represented by the activity-associated utilities

that will be realized in the second stage. There may be several (d̄) economic activities which
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provide economic incentives for forming friendships. The coefficients of these economic incentive

effects are denoted as δ = (δ1, · · · , δd̄)′. As noted by Ballester et al. (2006), activity-associated

utilities will always increase with the number of links in the network if network interactions provide

complementary effects on activity outcomes. Since individuals’ link decisions partially depend on

the activity-associated utilities, they might choose to add as many links as possible if there were

no cost on the link formation. To mitigate such a strong incentive to form links, we rely on the

existence of nontrivial negative exogenous and network structure effects which represent possible

costs of adding friendship links.14

Based on the link utility vi,g in Eq. (8), its specification implies that, in particular, each pairwise

friendship link from individual i to individual j will depend on whether the difference of utilities,

vi,g(wij,g = 1,W−ij,g)−vi,g(wij,g = 0,W−ij,g), is greater than zero or not, where W−ij,g represents

the existing links except the entry (i, j) in Wg. Using vi,g(Wg) defined in Eq. (8), one has

vi,g(wij,g = 1,W−ij,g)− vi,g(wij,g = 0,W−ij,g)

= ψij,g + ($i,g(wij,g = 1,W−ij,g)−$i,g(wij,g = 0,W−ij,g))η

+

d̄∑
d=1

δd
2

(
y∗2i,dg(wij,g = 1,W−ij,g)− y∗2i,dg(wij,g = 0,W−ij,g)

)
. (10)

One should note that if W−ij,g were not expected to have any effects on the link decision wij,g,

including those in the economic incentive effects, then only the exogenous effects should be included

in Eq. (8). In such a case, each pairwise link decisions would be independent.

14Based on our economic theory, the activity outcomes {yi,dg}d̄d=1 enter into the link-associated utility of Eq. (8)

through economic incentive effects. It is also possible to have another economic theory which implies that yi,dg ,

yj,dg (or |yj,dg − yi,dg |) appear in ψij,g of Eq. (8) for capturing individual-specific (or dyadic-specific) effects. Such

a theory will emphasize that activity outcomes (or the absolute difference of activity outcomes) directly affect the

utility of friendship links. For example, one may consider activities which are usually engaged by one person, e.g.,

watching TV, playing video games, etc. The more time students spend on those activities, the less time they can

spend on associating with friends. Hence, yi,dg and yj,dg , which denote the time individual i and j spend on one of

those activities, should be specified in the function ψij,g to capture the influences on the link utility. However, those

activities would still be subject to friendship interactions as friends may share information about new games or TV

programs so that individuals spend even more time on those activities. In another example, we can consider that

the frequency of delinquent behaviors is the activity outcome. Students care |yj,dg − yi,dg | in forming friendships

as differences in levels of their delinquent behaviors could create negative effects on their utilities. In terms of

estimation, having yi,dg , yj,dg or |yj,dg − yi,dg | in the link utility will not cause large changes on the Bayesain

approach and corresponding MCMC algorithms proposed in this paper.
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2.2.2 The negpotential function in a cooperative game

Under a cooperative game setting, an unique equilibrium of the network formation game would be

a realization, Wg, chosen by a social planner which maximizes the aggregated link utility Vg(Wg).

By summing individual utilities from Eq (8), one has

Vg(Wg) =

mg∑
i=1

vi,g(Wg)

=

mg∑
i=1

mg∑
j=1

wij,gψij,g +

mg∑
i=1

$i,g(wi.,g,W−i.,g)η +

d̄∑
d=1

δd
2
Y ∗dg(Wg)

′Y ∗dg(Wg). (11)

To relate Vg(Wg) to the exponential probability distribution of Wg, we introduce a disturbance

ξW for each network pattern W in Ωg additively to Vg(W ). The disturbance ξW is assumed to

be observable to the planner but not the econometrician. Thus, Wg is the formed network if and

only if Vg(Wg) + ξWg
= maxW∈Ωg

{Vg(W ) + ξW }. By assuming that ξW ’s are i.i.d. type I extreme

value distributed, we have a polychotomous choice logit model with the exponential probability in

Eq. (7) with the negpotential function Qg being Vg.

2.2.3 The negpotential function in a non-cooperative game

Instead of a cooperative game, one may model the formation process as a non-cooperative game

with an individual utility function ṽi,g which results in an unique Nash equilibrium. Let ξwi. be

a disturbance for each link pattern of individual i in Ωig, which is the set of all link patterns

for individual i in the group g. The utility maximization for link decisions of individual i is

ṽi,g(wi.,g)+ξwi.,g
= maxwi.∈Ωig

{ṽi,g(wi.,W−i.)+ξwi.
}. The specification proposed for the function

vi,g in Eq. (8) may not be able to directly apply to ṽi,g as it might cause multiple equilibria. To

find a specification of ṽi,g which not only includes utility components in the function vi,g but also

ensures an unique equilibrium, one possibility is to treat the game as a potential game and use a

pre-specified function Qg for the potential function. Monderer and Shapley (1996) shows that a

potential game possesses an unique pure-strategy Nash equilibrium when the equilibrium outcome

maximizes the value of the potential function.15 The exponential distribution in Eq. (7) implies

the conditional probability distribution for individual i’s link decisions as

P (wi.,g|W−i.,g) =
P (wi.,g,W−i.,g)

P (W−i.,g)
=

exp(Qg(wi.,g,W−i.,g))∑
wi.∈Ωig

exp(Qg(wi.,W−i.))
, (12)

15If one considers local maximum values of the potential function, then there may be multiple pure-strategy or

mixed-strategy equilibria.
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which is also a logistic probability. As in McFadden (1973), one may give an economic justifica-

tion for this probability as a result from an individual’s utility maximization over discrete choice

alternatives as Qg(wi.,g,W−i.,g) + ξwi.,g
= maxwi.∈Ωig

(Qg(wi.,W−i.) + ξwi.
), where ξwi.

’s are i.i.d.

type I extreme value distributed over Ωi,g. Thus, we may take the function Qg(wi.,g,W−i.,g) as

the individual utility function ṽi,g(wi.,g) in a non-cooperative game. The exponential probability

distribution further implies, for each binary link decision, a binary logit as

P (wij,g|W−ij,g) =
P (wij,g,W−ij,g)

P (W−ij,g)
=

exp(Qg(wij,g,W−ij,g))

exp(Qg(wij,g,W−ij,g)) + exp(Qg(1− wij,g,W−ij,g))
. (13)

This conditional probability may also be justified with an utility maximization setting. Individual

i will make a friend with individual j if

Qg(wij,g = 1,W−ij,g) + ξwij,g=1,W−ij,g
≥ Qg(wij,g = 0,W−ij,g) + ξwij,g=0,W−ij,g

. (14)

If one considers to first write down an individual utility function for the network formation

game, the negpotential function can always be constructed as the sum of these pre-specified indi-

vidual utility functions from the whole network. However, under few cases one may have another

negpotential function which is not equal to the sum of the pre-specified individual utility func-

tions. One example can be found in Mele (2010). In his network formation model, some selected

effects from direct, mutual and indirect friends are specified in an individual utility function with

constrained coefficients. Those effects correspond to the exogenous effect, reciprocality effect, re-

ceiver’s expansiveness effect, and sender’s popularity effect by our paper’s terminology. Based on

this individual utility function, which we denote as v̆i,g(Wg), he writes down a special negpotential

function Q̆g(Wg) where

Q̆g(wij,g = 1,W−ij,g)− Q̆g(wij,g = 0,W−ij,g) = v̆i,g(wij,g = 1,W−ij,g)− v̆i,g(wij,g = 0,W−ij,g),

however, Q̆g(Wg) 6=
∑mg

i=1 v̆i,g(Wg). Such a special negpotential function would only exist when the

specified individual utility function has certain constraints on included terms or coefficients, as in

Mele (2010). On the contrary, the negpotential function constructed by the sum of individual utility

function always exists, but one might not prevent having a number of constraints on parameters

to reflect externality or for parameter identification. Instead of a pre-specified individual utility

functions, our modeling strategies also suggest that one can first specify a negpotential function

and use its implied utility to justify an exponential distribution specification on network formation

as either a cooperative game or a non-cooperative game. The specified negpotential function can

be rich enough to incorporate a variety of interesting network statistics or individual incentives and

parameter constraints in the implied utility function can be understood. For empirical applications,

13



our network model is defined as the exponential probability function of Eq. (7) with the negpotential

function Qg replaced by the aggregated link utility function Vg of Eq. (11).

2.2.4 Identification

The identification of our network model is similar to standard discrete choice models, comes from

differences in utility. To identify (or estimate) parameters in the aggregated utility function Vg, it

requires that the parameters in Vg(wij,g = 1,W−ij,g)− Vg(wij,g = 0,W−ij,g) can be identified (or

estimated). The identification of parameters would be guaranteed as long as the summary network

statistics being considered in Vg are not linearly dependent. We also need to normalize the variance

of the disturbance ξw to one to eliminate the concern of arbitrary scaling problem in discrete choice

models. After all, we require the parameters of economic incentive effects from activity outcomes

to be nonnegative. This constraint is not needed for identification but can helps us to prevent the

negative case which violates the spirit of our economic model.

There are two advantages of modeling the endogenous network formation and activity outcomes

jointly under our structural framework. First, it allows us to study how individuals respond to

economic incentives from network interactions when choosing their friends, which are revealed

by the coefficients δd’s. Second, it handles the bias problem on the interaction effects caused by

friendship selections. The disturbance term εg appears in both the friendship and activity decision

processes. Hence, it captures unobserved factors which contribute to these two decisions. In the

next section we will discuss estimation issues of our model.

3 Model estimation

3.1 The likelihood functions of models

We first provide the likelihood function of our model with economic incentives from either a single

continuous or a single Tobit-type activity outcome. Then we introduce correlations between dis-

turbances for the bivariate case. The joint likelihood function based on this bivariate case will be

used for the posterior analysis in section 3.2.

Continuous Outcomes

Given the model structure built by continuous activity outcomes of Eq. (3), the aggregated link

utility of Eq. (11), and the assumption of the exponential distribution for networks, we consider

the parametric approach to estimate those equations. Individual idiosyncratic shocks εi,cg’s in the

outcome equation are assumed i.i.d. normally distributed with a zero mean and a variance equal

14



to σ2
εc . With the economic incentive effect from one continuous outcome Y ∗cg, the joint probability

function of the outcome Y ∗cg and the network W ∗g can be written as

P (W ∗g , Y
∗
cg|θc, αcg) = P (Y ∗cg|W ∗g , θc, αcg) · P (W ∗g |θc, αcg)

= |Scg(W ∗g )| · f(εcg|W ∗g , θc, αcg) · P (W ∗g |θc, αcg)

= |Scg(W ∗g )| · f(εcg|θc, αcg) · P (W ∗g |εcg, θc, αcg)

= |Scg(W ∗g )| · f(εcg|θc, αcg) ·
exp(Vg(W

∗
g , εcg, θc, αcg))∑

W exp (Vg(W, εcg, θc, αcg))
, (15)

where

f(εcg|θc, αcg) = (2π)−
mg
2

(
σ2
εc

)−mg
2 exp

(
− 1

2σ2
εc

ε′cgεcg

)
,

with εcg = Scg(W
∗
g )Y ∗cg−Xgβc−lgαcg and θc = (γ′, η′, δc, λc, β

′
c, σ

2
εc) being the vector of parameters.

Tobit-type Outcomes

For the simultaneous Tobit-type activity outcome, we can divide the mg agents in the network

g into two blocks such that the first mg1 agents have outcome variables equal to zero and the

remaining agents from mg1 + 1 to mg have positive outcome variables. According to Eq. (4), the

observed activity outcome vector Y ∗tg and network W ∗g can be conformably decomposed into Ÿ ∗tg1

Y ∗tg2

 = λt

 W ∗11,g W ∗12,g

W ∗21,g W ∗22,g

 Y ∗tg1

Y ∗tg2

+

 X1g

X2g

β1t

+

 W ∗11,g W ∗12,g

W ∗21,g W ∗22,g

 X1g

X2g

β2t +

 lg1

lg2

αtg +

 εtg1

εtg2

 ,

where Y ∗tg1 = 0, Y ∗tg2 > 0, and the latent variables Ÿ ∗tg1 ≤ 0. Individual idiosyncratic shocks εi,tg’s

are assumed i.i.d. normally distributed with a zero mean and a variance equal to σ2
εt . If economic

incentive effect is only from one single Tobit-type outcome, the likelihood function of Y ∗tg and W ∗g

15



can be written as

P (Y ∗tg,W
∗
g |θt, αtg)

= P (Y ∗tg1 = 0, Y ∗tg2,W
∗
g |θt, αtg)

=

∫
I(Y ∗tg1 = 0, Ÿ ∗tg1) · P (Ÿ ∗tg1, Y

∗
tg2,W

∗
g |θt, αtg) · dŸ ∗tg1

=

∫ −(λtW
∗
12,gY

∗
tg2+X1gβ1t+(W∗11,gX1g+W∗12,gX2g)β2t)

−∞
P (εtg1, Y

∗
tg2,W

∗
g |θt, αtg) · dεtg1

=

∫ −(λtW
∗
12,gY

∗
tg2+X1gβ1t+(W∗11,gX1g+W∗12,gX2g)β2t)

−∞

∣∣Img−mg1 − λtW ∗22,g

∣∣ · f(εtg1, εtg2|W ∗g , θt, αtg)·

P (W ∗g |θt, αtg) · dεtg1

=

∫ −(λtW
∗
12,gY

∗
tg2+X1gβ1t+(W∗11,gX1g+W∗12,gX2g)β2t)

−∞

∣∣Img−mg1
− λtW ∗22,g

∣∣ · f(εtg1, εtg2|θt, αtg)·

P (W ∗g |εtg1, εtg2, θt, αtg) · dεtg1

=

∫ −(λtW
∗
12,gY

∗
tg2+X1gβ1t+(W∗11,gX1g+W∗12,gX2g)β2t)

−∞

∣∣Img−mg1 − λtW ∗22,g

∣∣ · f (εtg1, εtg2|θt, αtg) ·

exp
(
Vg(W

∗
g , εtg1, εtg2; θt, αtg)

)∑
W exp (Vg(W, εtg1, εtg2; θt, αtg))

· dεtg1, (16)

where I(Y ∗tg1 = 0, Ÿ ∗tg1) is a dichotomous indicator which is equal to 1 when Ÿ ∗tg1 is negative and

equal to 0, otherwise. Also, εtg2 =
(
Img−mg1

− λtW ∗22,g

)
Y ∗tg2−X2gβ1t−(W ∗21,gX1g+W ∗22,gX2g)β2t−

l2gαtg and θt = (γ′, η′, δt, λt, β
′
t, σ

2
εt).

Economic incentive effects can be from d̄ outcomes mixed with the continuous ones and the

Tobit-type ones. For simplicity, considering a model of d̄ = 2 which consists of one continuous and

one Tobit-type outcomes where the disturbances εi,tg and εi,cg follow a joint normal distribution,

(εi,tg, εi,cg) ∼ i.i.d. N2

 0

0

 ,

 σ2
εt σεtc

σεct σ2
εc

 , i = 1, · · · ,mg. (17)

From Eq. (17), one has

εtg = σεtcσ
−2
εc εcg + ug, ug ∼ Nmg

(0, σ2
uImg

), (18)

where σ2
u = (σ2

εt − σεtcσ
−2
εc σεct). Let θct = (γ′, η′, δc, δt, λc, λt, β

′
c, β
′
t, σ

2
εc , σ

2
εt , σεtc), the joint likeli-
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hood function of Y ∗tg, Y
∗
cg and W ∗g can be written as

P (Y ∗tg, Y
∗
cg,W

∗
g |θct, αcg, αtg)

= P (Y ∗tg|Y ∗cg,W ∗g , θct, αcg, αtg) · P (Y ∗cg|W ∗g , θct, αcg) · P (W ∗g |θct, αcg, αtg)

=

∫ −(λtW
∗
12,gY

∗
t2g+X1gβt1+(W∗11,gX1g+W∗12,gX2g)βt2)

−∞

∣∣Img−mg1
− λtW ∗22,g

∣∣ · f (εtg|εcg, θct, αtg, αcg) ·

|Scg(W ∗g )| · f(εcg|θc, αcg) · P (W ∗g |εcg, εtg, θct, αcg, αtg) · dεt1g

=

∫ −(λtW
∗
12,gY

∗
t2g+X1gβt1+(W∗11,gX1g+W∗12,gX2g)βt2)

−∞

∣∣Img−mg1
− λtW ∗22,g

∣∣ · f (ug|εcg, θct, αtg, αcg) ·

|Scg(W ∗g )| · f(εcg|θc, αcg) ·
exp(Vg(W

∗
g , εcg, εtg, θct, αtg, αcg))∑

W exp (Vg(W, εcg, εtg, θct, αtg, αcg))
· dεtg1. (19)

If εtg and εcg are uncorrelated, i.e., σεtc = σεct = 0, then

P (Y ∗cg, Y
∗
tg,W

∗
g |θct, αcg, αtg)

=

∫ −(λtW
∗
12,gY

∗
t2g+X1gβt1+(W∗11,gX1g+W∗12,gX2g)βt2)

−∞

∣∣Img−mg1 − λtW ∗22,g

∣∣ · f (εtg|θt, αtg) ·

|Scg(W ∗g )| · f(εcg|θc, αcg) ·
exp(Vg(W

∗
g , εcg, εtg, θct, αtg, αcg))∑

W exp (Vg(W, εcg, εtg, θct, αtg, αcg))
· dεtg1. (20)

One main issue we will encounter during the estimation is to calculate the likelihood function

of the exponential distribution for the network. When the network size is large, its calculation

is almost impossible since it requires evaluating all network patterns in Ωg for the denominator

of the exponential distribution function.16 Hence, the standard maximum likelihood estimation

approach would be infeasible. This problem applies to all the p∗ models for networks and can

be traced back to the spatial analysis in Besag (1974). To deal with this problem, we turn to

the Bayesian estimation with an effective MCMC technique developed to handle an intractable

normalizing term in the the posterior density function.17

16For example, even in a network with just 5 individuals, it needs to evaluate 24×5 = 220 possible network

realizations for the denominator.
17There are also several classical approaches that have been proposed. The first is the maximum pseudo-likelihood

approach (MPL). This approach was first mentioned in Besag (1974) and later be applied to the network study in

Strauss and Ikeda (1990). A pseudo-likelihood simply uses the product of conditional probabilities for estimation.

The estimates from the MPL would not be the MLE. One may use the estimates from the MPL as initial values

for other estimation approaches. Another approach is the Monte Carlo maximum likelihood (MCML) estimation

approach which simulates auxiliary networks for approximating the denominator of the exponential distribution

density function with its simulated counterpart (Geyer and Thompson, 1992). One shortcoming of the MCML

approach is that the choice of initial values during the optimization algorithm plays a critical role. They have to be

close enough to the true parameter values, otherwise, the convergence of the algorithm might not be attained (Bartz
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Suppose we have a likelihood function of y given the parameter θ which takes the form P (y|θ) =

f(y; θ)/D(θ), where D(θ) is an intractable normalizing term. In the usual Metropolis-Hastings (M-

H) algorithm, we generate a new parameter θ̃ from a proposal distribution q(·|θ). Then updating

the previous draw θ to the new draw θ̃ with an acceptance probability α. Denoting π(θ) as the

prior probability of θ, the acceptance probability α is computed as

α(θ̃|θ) = min

{
1,
P (θ̃|y)q(θ|θ̃)
P (θ|y)q(θ̃|θ)

}
= min

{
1,
π(θ̃)f(y; θ̃)q(θ|θ̃)
π(θ)f(y; θ)q(θ̃|θ)

· D(θ)

D(θ̃)

}
.

We can see that the normalizing terms are left in both the numerator and denominator and will

not cancel out, so the evaluation of the acceptance-rejection criterion with α would be intractable.

Murray et al. (2006) first show that by introducing auxiliary variables into the model, the accep-

tance probability can be replaced with

α(θ̃|θ, x) = min

{
1,
π(θ̃)P (y|θ̃)q(θ|θ̃)
π(θ)P (y|θ)q(θ̃|θ)

· P (x|θ)
P (x|θ̃)

}
= min

{
1,
π(θ̃)f(y; θ̃)q(θ|θ̃)
π(θ)f(y; θ)q(θ̃|θ)

· f(x; θ)

f(x; θ̃)

}
, (21)

where the auxiliary variable x is simulated from the likelihood function f(x; θ̃)/D(θ̃) with the exact

sampling (Propp and Wilson, 1996). In this acceptance probability, all normalizing terms cancel

out and the other terms left are computable. This algorithm bypasses evaluating the normalizing

terms. However, implementing the exact sampling is time consuming. In order to save time on

the computation, Liang (2010) proposes a ‘double M-H algorithm’ which utilizes the reversibility

condition and shows that when x is simulated by m iterations of the usual M-H algorithm starting

from y, the acceptance probability of the exchange algorithm can be obtained regardless of the

value of m. This gives the double M-H algorithm an advantage as a small value of m can be

used, removing the need of the exact sampling. Due to this computational efficiency, we adopt the

double M-H algorithm in this study.

One thing worth to mention is that, in this paper we have provided a technical modification

on the standard double M-H algorithm to make it simplify the simulation and better fit into our

application. When using the standard double M-H algorithm to update θ from P (θ|{Y ∗g }, {W ∗g }),

it requires to simulate auxiliary networks {W̃g} and outcomes {Ỹg}. However, {Ỹg} would be

redundant as they can be fully replaced by a function of {W̃g}. Therefore, we modify the standard

double M-H acceptance probability in Eq. (21) to

α(θ̃|θ, x) = min

{
1,
π(θ̃)P (y|θ̃)q(θ|θ̃)
π(θ)P (y|θ)q(θ̃|θ)

· P
∗(x|θ)

P ∗(x|θ̃)

}
= min

{
1,
π(θ̃)f(y; θ̃)q(θ|θ̃)
π(θ)f(y; θ)q(θ̃|θ)

· f
∗(x; θ)

f∗(x; θ̃)

}
, (22)

et al., 2008; Caimo and Friel, 2010). The Robbins-Monro approach used in Snijders (2002) to simulate auxiliary

networks for constructing simulated moments usually accepts a wide range of initial values which will lead to a

convergent algorithm.
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where the density function P ∗(x|θ) = f∗(x; θ)/D(θ) can be different from P (x|θ) but shares the

same normalizing term D(θ).18 This modification allows us to construct the double M-H algorithm

acceptance probability by only simulating auxiliary networks. The validity of the Markov chain

based on the acceptance probability in Eq. (22), i.e., the reversibility condition of the transition

density p(θ̃|θ) = α(θ̃|θ)q(θ̃|θ) is provided in the Appendix C-1. Moreover, to improve the perfor-

mance of the double M-H algorithm when the vector of parameters is in high-dimension, we use

the adaptive algorithm by Robert and Rosenthal (2009) for proposing candidate draws. The detail

of the adaptive algorithm is provided in the Appendix C-2.

3.2 Posterior distributions of parameters and the MCMC

Here we show the posterior distributions of parameters based on the model which considers both

continuous and Tobit-type activity outcomes. For dealing with Tobit-type outcome variables under

the Bayesian approach, it is natural to include the sampling of latent variables {Ÿ ∗tg1} during the

MCMC procedure along with other unobservables as an augmentation (Albert and Chib, 1993).

By Bayes’ theorem, the joint posterior distribution of the parameters and unobservables in the

model is

P
(
θct, {αcg}, {αtg}, {Ÿ ∗tg1}|{Y ∗cg}, {Y ∗tg}, {W ∗g }

)
∝ π(θct, {αcg}, {αtg})

G∏
g=1

{(
mg1∏
i=1

I(y∗i,tg = 0) · I(ÿ∗i,tg ≤ 0)

)
· P
(
Y ∗tg, Y

∗
cg,W

∗
g , Ÿ

∗
tg1|θct, αcg, αtg

)}
,

(23)

where π(·) represents the density function of the prior distribution and exogenous variables {Xg}

and {Cg} are suppressed from the above expression for simplicity. We assume independence be-

tween prior distributions, i.e., π(θct, {αcg}, {αtg}) = π1(θct)π2({αcg})π3({αtg}). It is not easy to

directly simulate draws from the joint posterior density in Eq. (23). But one can use the Gibbs

sampling algorithm and work on the marginal posterior densities of parameters. By properly block-

ing parameters in θct into subgroups, we define prior distributions for parameters in the model as

18More explicitly, P (y|θ) is the joint density function of {Y ∗g } and {W ∗g } and P ∗(x; θ) is simply the density

function of {W̃g}.
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follows:

φ = (γ′, η′, δc, δt) ∼ T N 2s̄+q̄+h̄(φ0,Φ0), (24)

λc, λt ∼ U [−1/τG, 1/τG], (25)

βc, βt ∼ N2k(β0, B0), (26)

σ = (σ2
εc , σ

2
εt , σεct) ∼ T N 3 (σ0,Σ0) , (27)

αcg, αtg ∼ N (α0, A0), g = 1, · · · , G, (28)

where T N s represents a truncated multivariate normal distribution of dimension s and I G (a, b)

represents a inverse-gamma distribution with a shape parameter a and a scale parameter b.

These prior distributions, except for λc and λt, are conjugate priors commonly used in the

Bayesian literature. We assign γ, η, δc and δt into the group φ since they are all linear coef-

ficients in the function Vg(Wg). The prior distribution of φ is the truncated normal which is

defined on a convex area O where δc and δt are nonnegative. For λc and λt, they are inde-

pendent and we employ a uniform prior for each suggested in Smith and LeSage (2002). We

restrict the valid value of λc between −1/τG to 1/τG, where τG = max{τ∗1 , · · · , τ∗G} and τ∗g =

min{max1≤i≤mg

∑mg

j=1 |wij,g|,max1≤j≤mg

∑mg

i=1 |wij,g|}19. σ2
εc , σ2

εt and σεct are put into a group

called σ. We specify a truncated distribution for σ to an area T where σ2
εc , σ2

εt and σεct together

form a proper correlation matrix. For group effects, αcg and αtg, as they are treated as fixed

effects, hyperparameters in its prior distribution will not be updated. Applying the Gibbs sam-

pling, random draws can be simulated from the conditional posterior distribution for each of the

parameter groups. Here we list the set of conditional posterior distributions required by the Gibbs

sampler:

(i) P
(
Ÿ ∗tg1

∣∣∣ θct, αcg, αtg, Y ∗cg, Y ∗tg,W ∗g ), g = 1, · · · , G.

By the Bayes’ theorem,

P
(
Ÿ ∗tg1

∣∣∣ θct, αcg, αtg, Y ∗cg, Y ∗tg,W ∗g )
∝

(
mg1∏
i=1

I(y∗i,g = 0)I(ÿ∗i,g ≤ 0)

)
f(Ÿ ∗tg1, Y

∗
cg, Y

∗
tg,W

∗
g |θct, αcg, αtg), g = 1, · · · , G.

(29)

(ii) P (φ|{Ÿ ∗tg1}, {Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\φ, {αcg}, {αtg}), where θct\φ stands for θct without φ. By

19This interval is suggested by Kelejian and Prucha (2010) in which Img − λWg is nonsingular for all values of λ

in this interval.
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Bayes’ theorem, we have

P (φ|{Ÿ ∗tg1}, {Y ∗cg}, {Y ∗tg}, {W ∗g }, θct − φ, {αcg}, {αtg})

∝ T N 2s̄+q̄+8(φ;φ0,Φ0) ·
G∏
g=1

P (Ÿ ∗tg1, Y
∗
cg, Y

∗
tg,W

∗
g |θct, αtg, αcg), φ ∈ O. (30)

(iii) P (λc|{Ÿ ∗tg1}, {Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\λc, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (λc|{Ÿ ∗tg1}, {Y ∗cg},{Y ∗tg}, {W ∗g }, θct\λc, {αcg}, {αtg})

∝
G∏
g=1

P (Ÿ ∗tg1, Y
∗
cg, Y

∗
tg,W

∗
g |θct, αtg, αcg), (31)

where λc ∈ A = [−1/τG, 1/τG].

(iv) P (λt|{Ÿ ∗tg1}, {Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\λt, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (λt|{Ÿ ∗tg1}, {Y ∗cg},{Y ∗tg}, {W ∗g }, θct\λt, {αcg}, {αtg})

∝
G∏
g=1

P (Ÿ ∗tg1, Y
∗
cg, Y

∗
tg,W

∗
g |θct, αtg, αcg), (32)

where λt ∈ A = [−1/τG, 1/τG].

(v) P (βc|{Ÿ ∗tg1}, {Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\βc, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (βc|{Ÿ ∗tg1},{Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\βc, {αcg}, {αtg})

∝ N (βc;β0, B0) ·
G∏
g=1

P (Ÿ ∗tg1, Y
∗
cg, Y

∗
tg,W

∗
g |θct, αtg, αcg). (33)

(vi) P (βt|{Ÿ ∗tg1}, {Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\βt, {αcg}, {αtg}).

By applying Bayes’ theorem, we have

P (βt|{Ÿ ∗tg1},{Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\βt, {αcg}, {αtg})

∝ N (βt;β0;B0) ·
G∏
g=1

P (Ÿ ∗tg1, Y
∗
cg, Y

∗
tg,W

∗
g |θct, αtg, αcg). (34)
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(vii) P (σ|{Ÿ ∗tg1}, {Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\σ, {αcg}, {αtg}).

After removing irrelevant arguments from the conditional posterior distribution of σ, by

applying Bayes’ theorem, we have

P (σ|{Ÿ ∗tg1}, {Y ∗cg}, {Y ∗tg}, {W ∗g }, θct\σ, {αcg}, {αtg})

∝ T N 3 (σ;σ0,Σ0) ·
G∏
g=1

P (Ÿ ∗tg1, Y
∗
cg, Y

∗
tg,W

∗
g |θct, αtg, αcg). (35)

(viii) P (αcg|Ÿ ∗tg1, Y ∗cg, Y ∗tg,W ∗g , θct, αtg), g = 1, · · · , G.

By applying Bayes’ theorem, we have

P (αcg|Ÿ ∗tg1,Y ∗cg, Y ∗tg,W ∗g , θct, αtg)

∝ N (αcg;α0, A0) · P (Ÿ ∗tg1, Y
∗
cg, Y

∗
tg,W

∗
g |θct, αtg, αcg), g = 1, · · · , G. (36)

(ix) P (αtg|Ÿ ∗tg1, Y ∗cg, Y ∗tg,W ∗g , θct, αcg), g = 1, · · · , G.

By applying Bayes’ theorem, we have

P (αtg|Ÿ ∗tg1,Y ∗cg, Y ∗tg,W ∗g , θct, αcg)

∝ N (αtg;α0, A0) · P (Ÿ ∗tg1, Y
∗
cg, Y

∗
tg,W

∗
g |θct, αtg, αcg), g = 1, · · · , G. (37)

All of the conditional posterior distributions are not available in a closed form and hence, we use

the double M-H algorithm to draw from those conditional distributions. It has been shown in

Tierney (1994), Chib and Greenberg (1996) that the combination of Markov chains (Metropolis-

within-Gibbs) is still a Markov chain with the invariant distribution equal to the correct objective

distribution. The procedure of the MCMC sampling can start with arbitrary initial values for

{α(0)
cg }, {α(0)

tg }, and θ
(0)
ct , and then sampling sequentially from the above set of conditional posterior

distributions. The detailed implementation steps of the MCMC sampling based on the model

with both the continuous and Tobit-type activity outcomes are provided in the Appendix C-3. To

examine the computational aspects of our MCMC algorithms, especially with the use of double

M-H algorithm, we have conducted a simple simulation study and its results show that the double

M-H algorithm can handle the problem of normalizing terms without problem. The details of this

simulation study are left in the Appendix D.
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4 Empirical Study

We apply our model to study American high school students’ friendship networks in the Add

Health data, which is a national survey based on 7th to 12th grades from 132 schools.20 Four

waves of surveys were conducted between 1994 to 2008. In the wave I in-school survey, the total of

90,182 students were interviewed. Each respondent answered questions about their demographic

backgrounds, academic performances, health related behaviors, etc., and most uniquely, they were

asked to nominate up to five male and five female friends which provide information of their

friendship networks. In the following waves of in-home surveys, more information about students’

families and living neighborhoods are available for a subset of the total sample. To accommodate

most of students’ nominated friends into our studying framework, the sample used in this study

is constructed from the wave I in-school survey. We consider two activity outcomes which may be

relevant for friendship formation. One is a student’s academic performance (measured by GPA),

which is represented by a continuous variable.21 Another is how frequently a student smokes in an

usual week, which is represented by a Tobit-type variable.

In the context of social interactions, both students’ academic performances and smoking be-

haviors are extensively studied as they have important long-term consequences on students’ future

lives and health.22 To obtain interaction effects on these two objects, researchers face difficulties of

identification from endogenous selections into groups, correlated effects from group-level unobserv-

ables (Moffitt, 2001), and separating the endogenous interaction effect from contextual effects in a

linear model (the reflection problem by Manski, 1993). Sizes of peer effects reported in the litera-

ture usually differ from each other due to uses of different data sets or different strategies to deal

with the identification problem. However, researchers generally provide evidence of the existence

for peer effects. Hsieh and Lee (2012) further considers the identification problem on peer effects

20This is a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris, and

funded by a grant P01-HD31921 from the National Institute of Child Health and Human Development, with coop-

erative funding from 17 other agencies. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle

for assistance in the original design. Persons interested in obtaining data files from Add Health should contact Add

Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524 (addhealth@unc.edu). No

direct support was received from grant P01-HD31921 for this analysis.
21GPA is regarded as a proxy for studying activities.
22For studying peer effects on students’ academic performance, see Hoxby (2000), Hanushek et al. (2003), Sac-

erdote (2001), Zimmerman (2003), etc., on using the linear-in-means model and Calvó-Armengol et al. (2009),

Lin (2010), Boucher et al. (2010), Liu et al. (2011) on using the SAR model. For students’ smoking behaviors,

see evidences of peer effects on Powell et al. (2005), Gaviria and Raphael (2001), Clark and Loheac (2007), Lund-

borg (2006) and Fletcher (2010).
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caused by endogenous friendship selections within a group when using the SAR model for studying

network interactions. They show that the endogenous effect obtained from the SAR model without

controlling the endogeneity of the adjacency matrix will be upward biased and this endogeneity

problem can be resolved by a modeling approach with unobservables in both the outcome and

network formation processes. In the present study, we confirm their findings that the endogenous

effect would be smaller after controlling endogenous formation of friendship networks. Moreover,

we will show that the benefit from helping one another in academic learning is an important factor

for students to form friendships.

4.1 The empirical specification of network structure effects in the link-

associated utility

For empirical applications, we consider the following specification of the network structure effects

in the link-associated utility of Eq. (8),23

$i,g(wi.,g,W−i.,g)η

= η1

mg∑
j=1

wij,gwji,g︸ ︷︷ ︸
Reciprocality Effect

+ η2

mg∑
j=1

wij,g

mg∑
k 6=j

wik,g

+ η3

mg∑
j=1

wij,g

mg∑
k 6=j

wik,g

2

︸ ︷︷ ︸
Sender′s Expansiveness Effect

+ η4

mg∑
j=1

wij,g

mg∑
k 6=i

wkj,g


︸ ︷︷ ︸
Receiver′s Popularity Effect

+ η51

mg∑
j=1

wij,g

(
mg∑
k

wik,gwkj,g

)
+ η52

mg∑
j=1

wij,g

(
mg∑
k

wki,gwkj,g

)
+ η53

mg∑
j=1

wij,g

(
mg∑
k

wik,gwjk,g

)
︸ ︷︷ ︸

Transitive Triads Effect

+ η6

mg∑
j=1

wij,g

(
mg∑
k

wjk,gwki,g

)
︸ ︷︷ ︸

Three Cycles Effect

. (38)

In Eq. (38), the reciprocality effect reflects the utility from reciprocal friendships. Since each link

decision is made by one individual without mutual consents from the other, the possibility of

reciprocality may be a factor in an individual’s link decision. The sender’s expansiveness effect

in Eq. (38) reflects the utility from being an outgoing person who actively nominate friends. The

statistics involved are the sender’s outdegrees and their squares. We expect the coefficient η3 would

be negative to reflect the reality that individuals might not make friends with everybody due to

limited resources, e.g., time, energy, etc. The receiver’s indegree is used to measure the receiver’s

23The effects we consider here are mostly mentioned in Snijders et al. (2010) except the squared term of sender’s

outdegrees to capture a nonlinear expansiveness effect. In practice, our formulations can be modified to incorporate

any relevant utility specification.
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popularity effect in Eq. (38), which reflects the utility from making a friend with someone who is

popular. The transitive triads effect and the three cycles effect reflect the utility from engaging in

a transitive relationship, i.e., friends of my friends are my friends. However, they are distinguished

by directions of links. We allow different coefficients to capture their possibly distinctive effects

on the utility. From Kovář́ık and van der Leij (2012), transitive triads effects may be linked

to individual’s sense of risk aversion. The three-cycles effect can be interpreted as an opposite

hierarchy effect (Snjiders et al., 2010). If the coefficient η6 is negative, it implies a local hierarchy

among linked individuals.

Given $i,g(wi.,g,W−i.,g)η in Eq. (38), the term
∑mg

i=1$i,g(wi.,g,W−i.,g)η in the aggregated link

utility of Eq.(11) can be written as

mg∑
i=1

$i,g(wi.,g,W−i.,g)η

= η1tr(W 2
g ) + η2(l′gW

′
gWglg − l′gWglg)

+ η3(l′gW
′
gDiag(Wglg)Wglg − 2l′gW

′
gWglg + l′gWglg)

+ η4(l′gWgW
′
glg − l′gWglg) + (η51 + η52 + η53)tr(W 2

gW
′
g) + η6tr(W 3

g ), (39)

where Diag(A) is a n × n diagonal matrix with its diagonal elements formed by the entries of a

n× 1 vector of A. One can see that parameters η51, η52 and η53 are not separately identified from

Eq. (39). Hence, without loss of generality, we will use η5 for η51 + η52 + η53 hereafter.

4.2 Data summary

To ease the computation burden, we only work with small networks in this study. The following

steps are used to construct the sample. First, we group students by their school-grades and

friendships are considered inside groups.24 Second, we focus on senior high school students from

9th to 12th grades. Third, we restrict our network sample to those groups of the size between 10

to 50 (10 to 60 for the smoking case). After removing missing observations on outcome variables

in each group, there are total 1,177 (1,476 for the smoking case) respondents from 47 networks (44

networks for the smoking case) left for analysis.25 Those networks have the average size equal to

25.043 (33.546 for the smoking case), average density equal to 0.142 (0.108 for the smoking case),

24In the Add Health data, about 80% of friendship nominations happen within the same grade. Hence, about

20% of links will miss due to the design of network boundary.
25For the smoking sample, we remove groups in which there are fewer than three students who have ever smoked.

The number of missing observation is equal to 113 (9.6%) for the GPA sample and 34 (2%) for the smoking sample.
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average outdegree equal to 2.564 (2.866 for the smoking case), and average clustering coefficient26

equal to 0.327 (0.332 for the smoking case). In the network model, we capture individual-specific

effects by a dummy variable of whether a student is older than the group average or not. Three

other dummy variables – whether a pair of students has a same age, same sex, or same race are

used to capture dyadic-specific effects. For the activity outcome equation, the continuous variable,

GPA, is calculated by the average of respondent’s reported grades from several subjects, including

language, social science, mathematics, and science, and each of which has a value between 1 to 4.

The Tobit-type variable, smoking, is obtained from the survey question, “During the past twelve

months, how often did you smoke cigarettes?” and we transform the responses to a weekly base.

The choice of independent variables used in the outcome equation follows from Lin (2010), Lee et

al. (2007, 2010) and Hsieh and Lee (2012). A complete list of variables is in Table 1. In Figure 1

and 2, we plot two networks – one is from the GPA sample and another is from the smoking

sample. From these two figures, one can observe that students who have higher GPAs tend to

receive more friendship nominations than those who have lower GPAs. This observation does

not seem to be evident for smoking behaviors, but one can find that smokers are friends of each

other. Our estimation results shown in the next subsection will provide evidences for the economic

incentive stemming from benefits of helping one another in academic learning, but not from joy of

smoking together, on friendship decisions. Moreover, our results show that interaction effects on

improving GPA or increasing smoking frequency are significant.

To obtain estimates from the Bayesian estimation in this empirical study, the values of hyperpa-

rameters in the prior distributions are set as follows: φ0 = 0; Φ0 = 10I2s̄+q̄+h̄; β0 = 0; B0 = 10I2k;

κ0 = 0.1; %0 = 2; α0 = 0; A0 = 400. These specified values of hyperparameters are designed to

allow relative flat prior densities over the range of the parameter spaces.

4.3 Estimation results

We first estimate the model with a single economic incentive effect from GPA and report results

in Table 2. Results in the first two columns are obtained separately from the full model and the

outcome equation alone with networks assumed exogenous. For examining possible consequences

of dropping the 10% missing observations on GPA in the sample, results in the third column are

obtained from the full model with a Bayesian data augmentation approach to recover the missing

26The clustering coefficient is calculated as the total fraction of transitive triples in the network, i.e.,

C(Wg) =

∑
i;j 6=i;k 6=i,j wij,gwjk,gwik,g∑
i;j 6=i;k 6=i,j wij,gwjk,g

.
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observations.27 The values shown for each parameter are the mean and the standard deviation (in

parenthesis) from posterior draws. From the network model in the first column, we observe that

whether being older than the group average or not does not have a significant effect on sending or

receiving friendship nominations. However, three dyadic-specific effects we consider are all positive

and significant, where the effect of the same race is strongest, followed by the effect of the same

sex. Among network structure effects, the positive and strong reciprocality effect is consistent with

findings in the literature (Snijders et al., 2010, Mele, 2010), which reflects that mutual friendship

nominations are pervasive among students. In our sample, 49.8 percent of friendship links are

reciprocal. The sender’s expansiveness effect is concave as the coefficient of the first order term is

positive and the coefficient of the second order term is negative. This result confirms our conjecture

that limited resources, e.g., time, energy, money, etc., might constraint students from making too

many friends. The receiver’s popularity effect is negative, which suggests that students between 9th

to 12th grades in our sample do not prefer to make a friend with someone who is popular, i.e., having

received many friendship nominations. The positive and strong transitive triads effect shows that

transitive relationships are valued by students. When accompanying with the negative three cycles

effect, as discussed in Snijders et al. (2010), it reveals a certain degree of local hierarchy among

students. The last parameter of the network model, the economic incentive effect, is found to be

positive and significant. Therefore, for high school students in our sample, potential benefits from

helping one another in academic learning is a factor which determines their friendship decisions.

From the outcome equation in the first column, the estimated endogenous effect is equal to

0.021 and significant. It implies that, on average, one standard deviation increase in total friends’

GPAs will increase a student’s GPA by 0.154 units. The social multiplier effects across students

and groups implied by this estimate have the maximum and average equal to 1.248 and 1.060,

respectively.28 From estimated own and contextual effects, we observe that for students who are

older, male, or whose moms have education less than high school tend to have lower GPAs.29 Also,

students’ GPAs could be negatively affected by having friends who are either older, male, Black or

27At the time we drop observations with missing outcome variables, we also drop the potential links connected

to these observations. Since we study network formation and network interactions, if many links were dropped,

the resulting estimates of parameters might be biased. These missing observations can be treated as unobserved

random variables and updated with other unknown parameters by the MCMC sampling. The advantage of doing

this is that we could retrieve information provided by these missing observations and obtain consistent and efficient

estimates.
28The vector of social multiplier effects can be calculated by (Img − λWg)−1lmg .
29We do not interpret estimates which are insignificant, i.e., the posterior standard deviation is close to or larger

than the posterior mean.
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Asian.

When estimating the outcome equation alone by treating the adjacency matrix as exogenously

given, results in the second column show that, the estimate of the endogenous effect as well as

its standard deviation are nearly double than those obtained from the full model. Meanwhile,

estimated own and contextual effects are also different from those of the full model and have

larger standard deviations. Those differences between results in the first and second columns show

the problem of friendship selection bias in outcomes and this problem can be remedied by our

proposed system of models. In the third column, with missing observations on GPA augmented

during the estimation procedure, we do not observe significant changes on estimates of parameters

in the network model and the endogenous effect in the outcome equation, when comparing to the

first column. Although there are few changes on estimates of own and contextual effects, these

are insignificant estimates. The advantage of using this data augmentation approach can be seem

from smaller standard deviations of posterior draws for parameters in both the network model and

the outcome equation.

Next we turn to the model with a single economic incentive effect from smoking. Estimation

are done separately for the full model and the outcome equation alone with networks assumed

exogenous and results are reported in the first and the second columns of Table 3. As there

are only 2% of missing observations on the variable of smoking, we do not think it is necessary

to recover them. From the network model in the first column, we again find that being older

than the group average or not does not have a significant effect on sending or receiving friendship

nominations. The estimates of dyad-specific effects show that being same sex or same race are

important for friendship decisions, while being same age is not. Network structure effects are

generally found similar to those in the case of GPA. An exceptional finding is that the economic

incentive effect from smoking is small and insignificant. Hence we can know that, for students in

our sample, they do not consider joy of smoking together as a factor for their friendship decisions.

From the outcome equation of the full model, the estimated endogenous interaction effect is equal

to 0.080 and significant, which implies that, on average, one standard deviation increase in total

friends’ smoking frequencies will increase a student’s smoking frequency by 0.425 units. The social

multipliers across students and groups implied by this estimate have the maximum and average

equal to 2.708 and 1.345, respectively. Estimated own and contextual effects show that students

who are Black, or who live with both parents tend to smoke less than their counterparts. Also, a

student may smoke less if having friends who are male or Asian. As shown in the second column,

the estimated endogenous effect from the outcome equation alone is equal to 0.088, which is not
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significantly different from that obtained from the full model. Although several estimated own and

contextual effects are different from what are obtained from the full model, those are insignificant

effects. These results suggest that outcomes of network interactions for smoking are not subject

to friendship selection biases.

Lastly, for robustness checks, we estimate the model with economic incentive effects from both

GPA and smoking and report results in Table 4.30 In the network model, a strong and significant

economic incentive effect is still found from GPA, while it is not found from smoking. By comparing

results between the full model and the outcome equations alone with networks assumed exogenous,

we observe a significant friendship selection bias on the estimated endogenous effect for GPA,

which changes from 0.049 when estimating the outcome equation alone to 0.025 when estimating

the full model. For smoking, due to a small and insignificant incentive effect, we do not find clear

evidences of friendship selection biases in effects of network interactions. After all, the covariance of

disturbances in outcome equations between GPA and smoking is found to be -0.653 and significant.

5 Conclusion

An important reason why researchers study network structures is to analyze network impacts

on outcomes. As mentioned in Jackson (2011, section 5), if networks only serve as conduits for

diffusion, e.g., diseases or ideas, given the network structure, the impacts on outcomes are sort

of mechanical and one do not need to worry any feedback effects from outcomes. However, for

studying impacts of friendship networks on outcomes, both the network structure and the strategic

interactions between networks and outcomes should be considered. This extra consideration should

be reflected on a dynamic or static equilibrium model. In this paper, we propose a static equilibrium

model which takes into account those features. The modeling approach used in this paper assumes

that students respond to economic incentives stemming from interactions with friends on certain

behaviors when making their friendship decisions. The empirical results show that, American

high school students regard achieving better academic outcomes through friendship interactions

as a significant incentive for forming friendships, while the same incentive effect is not found from

smoking behaviors. A valuable byproduct of our approach, which contributes to the literature of

social interactions, is to correct the possible friendship selection biases in interaction effects.

Some issues which are not emphasized in this paper remain important for future extensions.

30The sample used for estimating this model is based on the original GPA sample where we remove missing

observations on smoking within groups and remove groups in which there are fewer than three students who have

ever smoked. The resulting sample has 1,062 observations and 37 groups.
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The first is the problem of possible multiple equilibria in the simultaneous network formation

game. We circumvent this problem in the present paper by assuming a benevolent social planner

who manages the overall network links to maximize the aggregated utility or each individuals

internalize the generated externality during the friendship formation process. Those assumptions

are questionable for general friendship networks. When discarding these assumptions, one could

either provide an equilibrium selection rule or characterize the estimation problem with moment

inequalities. The second issue to consider is missing links which are prevalent in empirical network

data. Missing links could happen due to the specification of the network boundary, survey non-

responses or the fixed choice design, e.g., nominate best ten friends by the survey design. Those

three causes are all relevant to our use of the Add Health data. Kossinets (2006) uses simulation

methods to examine impacts of missing links due to these causes and finds that biases of missing

links in estimated network statistics due to the network boundary specification and the fixed

choice design are dramatic.31 A simple solution to overcome missing links due to the network

boundary is to examine results under various network boundaries as robustness checks. This

has not been done in the present paper due to the capacity to handle computation with large

networks. For dealing with missing links from the second and third causes, the likelihood-based

approach (Robins et al., 2004, Gile and Handcock, 2006) and imputation (Huisman, 2009) provide

few possible solutions. For potential biases brought by missing network links in outcomes with

network interactions, Chandrasekhar and Lewis (2012) and Liu (2012) have useful discussions. The

third issue to consider is the dynamic evolution of networks and outcomes. The work of Snijders et

al. (2010) is surely leading the direction of this research. Soon or later, panel network data would

become more available for network researchers and different modeling and estimation approaches

should be highly desirable.

31However, for data collection purpose, researchers tend to believe that if an individual is allowed to fill in many

friends as possible, that might be a difficult task for the individual, and the filled-in responses might not reflect

what one would hope for from a survey. There are various opinions on this issue by survey scholars.
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APPENDIX A: The case of binary activity outcome variable

For binary outcomes variables, we assume the vector of latent outcomes follow the SAR model,

i.e.,

Ÿ ∗bg = λbWgŸ
∗
bg + Xgβb + lgαbg + εbg εbg ∼ Nmg

(0, Img
), (40)

and the observed outcomes are determined by

y∗i,bg = I{ÿ∗i,bg ≥ 0}

= I
{

(Img
− λbWg)

−1
i (Xgβb + lgαbg + εbg) ≥ 0

}
= I

{
S−1
bg,i(Xgβb + lgαbg + εbg) ≥ 0

}
, (41)

where S−1
bg,i is the ith row of S−1

bg , and I{·} represents an indicator function. The normalization

of the variance of εbg to one is a standard practice to deal with the arbitrary scaling problem in

binary choice models. This specification is meaningful in the sense that the latent variables in

Ÿ ∗bg can be treated as unobserved utilities, motivations or intensions from individuals. Interactions

between individuals may be generated via inter-dependences of these latent variables and then

their interactions are reflecting on the observed binary outcomes of Y ∗bg. To estimate the model

with economic incentive effects from binary outcomes, we can follow a similar approach used for

the Tobit-type outcomes by including the sampling of latent variables {Ÿ ∗bg} along with other

unobservables in the MCMC procedure. Hence, the details of the estimation procedure will not be

repeated again.

APPENDIX B: A contraction mapping algorithm for solving the unique solution

from the simultaneous Tobit outcome equation

To find out the solution of Eq. (5), we may consider a contraction mapping algorithm. Denote

a ∨ 0 = max{a, 0} for a scalar a. Consider a mapping h : R
mg

+ → R
mg

+ where R
mg

+ = {Y : Y ∈

Rmg , Y ≥ 0} defined by

h(Y ) = (λWgY + Zg) ∨ 0 =


(λw1.,gY + Z1,g) ∨ 0

...(
λwmg.,gY + Zmg,g

)
∨ 0

 ,
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where Zg = Xgβ + lgαg + εg, wi.,g is the ith element of Wg, and Zi,g is the ith row of Zg. For any

Y1 and Y2 in R
mg

+ ,

‖ h(Y1)− h(Y2) ‖∞ =‖ ((λWgY1 + Zg) ∨ 0)− ((λWgY2 + Zg) ∨ 0) ‖∞

= max
i=1,··· ,mg

|((λwi.,gY1 + Zi,g) ∨ 0)− ((λwi.,gY2 + Zi,g) ∨ 0)|

≤ max
i=1,··· ,mg

|λwi.,g(Y1 − Y2)| =‖ λWg(Y1 − Y2) ‖∞

≤‖ λWg ‖∞ · ‖ Y1 − Y2 ‖∞ .

Thus, if ‖ λWg ‖∞< 1, h(Y ) is a contraction mapping. As h(Y ) is a contraction mapping, there

exists a unique fixed point Y ∗g such that h(Y ∗g ) = Y ∗g . This Y ∗g is the unique solution for this

simultaneous Tobit equation because Y ∗g = h(Y ∗g ) = (λWgY
∗
g + Zg) ∨ 0, which gives Y ∗g ≥ 0,

Y ∗g ≥ λWgY
∗
g + Zg and y∗i,g = λwi.,gY

∗
g + Zi,g whenever y∗i,g > 0 for any i in the group g. This

contraction mapping feature suggests a simple iterative algorithm to solve for Y ∗g given values of

λ, Wg and Zg.

APPENDIX C-1: The reversibility condition of the modified double M-H algorithm

To show one can successfully draw from a target density P (θ|y) (assuming θ is continuous for

simplicity) by using the double M-H algorithm with the acceptance probability of Eq. (22), we need

to show the Markov chain based on the transition density p(θ̃|θ) = α(θ̃|θ)q(θ̃|θ) is reversible, and

therefore, P (θ|y) is an invariant distribution. One should note that the acceptance probability of

Eq. (22) is conditioning on drawing x from the density P ∗(x|θ̃). To check the reversibility condition

of this modified double M-H algorithm, we need the unconditional acceptance probability, that is

α(θ̃|θ) =

∫
α(θ̃|θ, x)P ∗(x|θ̃)dx

=

∫
min

{
π(θ̃)P (y|θ̃)q(θ|θ̃)
π(θ)P (y|θ)q(θ̃|θ)

· P
∗(x|θ)

P ∗(x|θ̃)
, 1

}
P ∗(x|θ̃)dx

=

∫
min

{
P (θ̃|y)q(θ|θ̃)
P (θ|y)q(θ̃|θ)

P ∗(x|θ), P ∗(x|θ̃)

}
dx

because x has the density P ∗(x|θ̃). We want to check if the following equality holds,

P (θ|y)α(θ̃|θ)q(θ̃|θ) = P (θ̃|y)α(θ|θ̃)q(θ|θ̃).

From the left hand side,

P (θ|y)α(θ̃|θ)q(θ̃|θ) =

∫
min

{
q(θ|θ̃)P (θ̃|y)P ∗(x|θ), q(θ̃|θ)P (θ|y)P ∗(x|θ̃)

}
dx.

32



From the right hand side,

P (θ̃|y)α(θ|θ̃)q(θ|θ̃) =

∫
min

{
q(θ̃|θ)P (θ|y)P ∗(x|θ̃), q(θ|θ̃)P (θ̃|y)P ∗(x|θ)

}
dx.

Those two are equal. Hence, the reversibility condition is satisfied.

APPENDIX C-2: The Adaptive Metropolis (AM) algorithm

One difficulty faced by the M-H algorithm is that, when the dimension of the draw is large,

the convergence of the Markov chain might be slow when proposals were poor. To improve the

efficiency of the M-H algorithm, we consider the Adaptive Metropolis (AM) algorithm introduced

by Haario et al.(2001). The idea of the AM algorithm is to provide effective proposals for the

M-H algorithm. The standard M-H algorithm uses the random walk proposal which has mean

equal to the previous draw and its covariance equal to an identity matrix. It is often the case that

the target distribution will not be well characterized with an identity matrix. The AM algorithm

suggests to use the covariance of historical MCMC draws to form the covariance matrix of the

proposal distribution. Suppose we use the M-H algorithm to update the parameter vector θ, say

dimension K. At the iteration t with historical MCMC draws (θ(0), θ(1), · · · , θ(t−1)), the AM

proposal suggested by Robert and Rosenthal (2009)32 is

qt(θ|θ(0), · · · , θ(t−1))

=

 NK

(
θ(t−1), IK

0.12

K

)
t ≤ 2K

(1− ρ)NK

(
θ(t−1),Cov(θ(0), · · · , θ(t−1)) 2.382

K

)
+ ρNK

(
θ(t−1), IK

0.12

K

)
t > 2K,

(42)

where the scaling factor 2.382/K is suggested in Gelman et al. (1996), which optimizes the mixing

properties of the Metropolis search in the case of Gaussian proposals. This AM proposal is a

mixture of two normal distributions with a ratio parameter ρ. This works as an extra safe scheme

to prevent us to generate the proposal from a problematic value of Cov(θ(0), θ(1), · · · , θ(t−1)), e.g.,

singular. In this paper we set ρ as 0.05 following Robert and Rosenthal (2009).

APPENDIX C-3: The algorithm of the MCMC sampling for the model with both

continuous and simultaneous Tobit outcome variables

32They have proved the ergodicity of the resulting MCMC using this AM proposal in their paper.
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At the rth run of the iteration, perform the following steps:

Step I. For g = 1, · · · , G, simulate Ÿ
∗(r)
tg1 from P (Ÿ ∗tg1|θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg , Y ∗tg, Y

∗
cg,W

∗
g ) by the

double M-H algorithm.

(a) propose ˜̈Y ∗tg1 from a AM proposal q
(
Ÿ ∗tg1

∣∣∣Ÿ ∗(0)
tg1 , · · · , Ÿ ∗(r−1)

tg1

)
.

(b) Calculate

ε̃tg1 = ˜̈Y ∗tg1−(λ(r−1)
t W ∗12,gY

∗
tg2 +X1gβ

(r−1)
1t + (W ∗11,gX1g +W ∗12,gX2g)β

(r−1)
2t + lg1α

(r−1)
tg

)
and ε

(r−1)
tg2 =

(
Img−mg1

− λ(r−1)
t W ∗22,g

)
Y ∗tg2−X2gβ

(r−1)
1t −(W ∗21,gX1g+W

∗
22,gX2g)β

(r−1)
2t −

lg2α
(r−1)
tg . Denote ε̃tg =

(
ε̃′tg1, ε

(r−1)′

tg2

)′
. To make a distinction, denote ε

(r−1)
tg =(

ε
(r−1)′

tg1 , ε
(r−1)′

tg2

)′
with

ε
(r−1)
tg1 = Ÿ

∗(r−1)
tg1 −

(
λ

(r−1)
t W ∗12,gY

∗
tg2 +X1gβ

(r−1)
1t + (W ∗11,gX1g +W ∗12,gX2g)β

(r−1)
2t + lg1α

(r−1)
tg

)
.

Also calculate ε
(r−1)
cg =

(
Img
− λ(r−1)

c W ∗g

)
Y ∗cg −Xgβ

(r−1)
1c −W ∗gXgβ

(r−1)
2c − lgα(r−1)

cg .

(c) Given ε̃tg and ε
(r−1)
cg from (b), simulate an auxiliary network W̃g by m runs of the M-H

algorithm based on33

P (Wg|ε̃tg, ε(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α(r−1)

cg ) =
exp

(
Vg(Wg, ε̃tg, ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg )

)
∑
W exp

(
Vg(W, ε̃tg, ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg )

)
starting from W ∗g , i.e., first set the initial auxiliary network Wg equal to W ∗g . For each

entry of Wg, wij,g, i 6= j, in turn, we propose w̃ij,g = 1 − wij,g. With the acceptance

probability

α(w̃ij,g|wij,g) = min

exp
(
Vg(w̃ij,g,W−ij,g, ε̃tg, ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg )

)
exp

(
Vg(wij,g,W−ij,g, ε̃tg, ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg )

) , 1
 ,

updating wij,g to w̃ij,g.

33In practice, we set m = 2mg(mg − 1) where mg is the size of the network g.
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(d) With the acceptance probability equal to

α
(˜̈Y ∗tg1 ∣∣∣Ÿ ∗(r−1)

tg1

)
= min


P
(˜̈Y ∗tg1, Y ∗tg, Y ∗cg,W ∗g ∣∣∣θ(r−1)

ct , α
(r−1)
tg , α

(r−1)
cg

)
P
(
Ÿ
∗(r−1)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g

∣∣∣θ(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg

) ·
P
(
W̃g

∣∣∣ε(r−1)
tg , ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg

)
P
(
W̃g

∣∣∣ε̃tg, ε(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg

) ·
I
(˜̈Y ∗tg1 < 0

)
I
(
Ÿ
∗(r−1)
tg1 < 0

) , 1


= min

 f
(
ε̃tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε

(r−1)
cg

)
exp

(
Vg

(
W ∗g , ε̃tg, ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg

))
f
(
ε
(r−1)
tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε

(r−1)
cg

)
exp

(
Vg

(
W ∗g , ε

(r−1)
tg , ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg

)) ·
exp

(
Vg

(
W̃g, ε

(r−1)
tg , ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg

))
exp

(
Vg

(
W̃g, ε̃tg, ε

(r−1)
cg , θ

(r−1)
ct , α

(r−1)
tg , α

(r−1)
cg

)) ·
I
(˜̈Y ∗tg1 < 0

)
I
(
Ÿ
∗(t−1)
tg1 < 0

) , 1


set Ÿ
∗(r)
tg1 with ˜̈Y ∗tg1. Otherwise, set Ÿ

∗(r)
tg1 = Ÿ

∗(r−1)
tg1 .

Step II. Simulate φ(r) from P
(
φ
∣∣∣{Ÿ ∗(r)tg1 }, {Y ∗tg}, {Y ∗cg}, {W ∗g },Υ(r−1)

)
by the double M-H algo-

rithm, where Υ(r−1) denotes the rest of paramters evaluted at the (r − 1)th iteration.

(a) propose φ̃ from a AM proposal q(φ|φ(0), · · · , φ(r−1))

(b) For g = 1, · · · , G, calculate

ε
(r−1)
tg1 = Ÿ

∗(r)
tg1 −

(
λ

(r−1)
t W ∗12,gY

∗
tg2 +X1gβ

(r−1)
1t + (W ∗11,gX1g +W ∗12,gX2g)β

(r−1)
2t + lg1α

(r−1)
tg

)
and ε

(r−1)
tg2 =

(
Img−mg1

− λ(r−1)
t W ∗22,g

)
Y ∗tg2−X2gβ

(r−1)
1t −(W ∗21,gX1g+W

∗
22,gX2g)β

(r−1)
2t −

lg2α
(r−1)
tg . Denote ε

(r−1)
tg =

(
ε
(r−1)′

tg1 , ε
(r−1)′

t2g

)′
. Also calculate ε

(r−1)
cg =

(
Img
− λ(r−1)

c W ∗g

)
Y ∗cg−

Xgβ
(r−1)
1c −W ∗gXgβ

(r−1)
2c − lgα(r−1)

cg .

(c) For g = 1, · · · , G, given ε
(r−1)
tg and ε

(r−1)
cg from (b), simulate an auxiliary network W̃g by

m runs of the M-H algorithm based on

P (Wg|ε(r−1)
tg , ε(r−1)

cg , φ̃,Υ(r−1)) =
exp

(
Vg

(
Wg, ε

(r−1)
tg , ε

(r−1)
cg , φ̃,Υ(r−1)

))
∑
W exp

(
Vg

(
W, ε

(r−1)
tg , ε

(r−1)
cg , φ̃,Υ(r−1)

))
starting from W ∗g . See details in Step I. part (c).
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(d) With the acceptance probability equal to

α(φ̃|φ(r−1))

= min


G∏
g=1

 P
(
W ∗g |ε

(r−1)
tg , ε

(r−1)
cg , φ̃,Υ(r−1)

)
P
(
W ∗g |ε

(r−1)
tg , ε

(r−1)
cg , φ(r−1),Υ(r−1)

) ·
P
(
W̃g|ε(r−1)

tg , ε
(r−1)
cg , φ(r−1),Υ(r−1)

)
P
(
W̃g|ε(r−1)

tg , ε
(r−1)
cg , φ̃,Υ(r−1)

)
 N2s̄+q̄+h̄(φ̃|φ0,Φ0)

N2s̄+q̄+h̄(φ(r−1)|φ0,Φ0)
· I(φ̃ ∈ O)

I(φ(r−1) ∈ O)
, 1


= min


G∏
g=1

 exp
(
Vg

(
W ∗g , ε

(r−1)
tg , ε

(r−1)
cg , φ̃,Υ(r−1)

))
exp

(
Vg

(
W ∗g , ε

(r−1)
tg , ε

(r−1)
cg , φ(r−1),Υ(r−1)

)) ·
exp

(
Vg

(
W̃g, ε

(r−1)
tg , ε

(r−1)
cg , φ(r−1),Υ(r−1)

))
exp

(
Vg

(
W̃g, ε

(r−1)
tg , ε

(r−1)
cg , φ̃,Υ(r−1)

))
 N2s̄+q̄+h̄(φ̃|φ0,Φ0)

N2s̄+q̄+h̄(φ(r−1)|φ0,Φ0)
· I(φ̃ ∈ O)

I(φ(r−1) ∈ O)
, 1

 ,

set φ(r) with φ̃. Otherwise, set φ(r) = φ(r−1).

Step III. Simulate λ
(r)
c from P (λc|{Ÿ ∗(r)tg1 }, {Y ∗tg}, {Y ∗cg}, {W ∗g }, φ(r),Υ(r−1)) by the double M-H

algorithm.

(a) propose λ̃c from a random walk proposal density q(λc|λ(r−1)
c )

(b) For g = 1, · · · , G, calculate ε̃cg =
(
Img − λ̃cW ∗g

)
Y ∗cg − Xgβ

(r−1)
1c − W ∗gXgβ

(r−1)
2c −

lgα
(r−1)
cg . and ε

(r−1)
cg =

(
Img
− λ(r−1)

c W ∗g

)
Y ∗cg − Xgβ

(r−1)
1c − W ∗gXgβ

(r−1)
2c − lgα

(r−1)
cg .

Also calculate

ε
(r−1)
tg1 = Ÿ

∗(r)
tg1 −

(
λ

(r)
t W ∗12,gY

∗
tg2 +X1gβ

(r−1)
1t + (W ∗11,gX1g +W ∗12,gX2g)β

(r−1)
2t + lg1α

(r−1)
tg

)
and ε

(r−1)
tg2 = (Img−mg1

− λ(r)
t W ∗22,g)Y

∗
tg2 −X2gβ

(r−1)
1t − (W ∗21,gX1g +W ∗22,gX2g)β

(r−1)
2t −

lg2α
(r−1)
tg Denote ε

(r−1)
tg =

(
ε
(r−1)′

tg1 , ε
(r−1)′

tg2

)′
.

(c) For g = 1, · · · , G, given ε̃cg and ε
(r−1)
tg in (b), simulate an auxiliary network W̃g by m

runs of the M-H algorithm based on

P (Wg|ε̃cg, ε(r−1)
tg , φ(r), λ̃c,Υ

(r−1)) =
exp

(
Vg

(
Wg, ε̃cg, ε

(r−1)
tg , φ(r), λ̃c,Υ

(r−1)
))

∑
W exp

(
Vg

(
W, ε̃cg, ε

(r−1)
tg , φ(r), λ̃c,Υ(r−1)

))
starting from W ∗g . See details in Step I. part (c).
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(d) Let A = [−1/τG, 1/τG], with the acceptance probability equal to

α(λ̃c|λ(r−1)
c )

= min


G∏
g=1

 P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g |φ(r), λ̃c,Υ

(r−1)
)

P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g |φ(r), λ

(r−1)
c ,Υ(r−1)

) ·
P
(
W̃g|ε(r−1)

cg , ε
(r−1)
tg , φ(r), λ

(r−1)
c ,Υ(r−1)

)
P
(
W̃g|ε̃cg, ε(r−1)

tg , φ(r), λ̃c,Υ(r−1)
)

 · I(λ̃c ∈ A)

I(λ
(r−1)
c ∈ A)

, 1


= min


G∏
g=1

 f
(
ε
(r−1)
tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε̃cg

)
f
(
ε
(r−1)
tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε

(r−1)
cg

) ·
∣∣∣Img − λ̃cW ∗g

∣∣∣∣∣∣Img − λ
(r−1)
c W ∗g

∣∣∣ · f(ε̃cg)

f(ε
(r−1)
cg )

·

exp
(
δ(r)c

2 Y ∗
′

cg (W̃g, ε
(r−1)
cg )Y ∗cg(W̃g, ε

(r−1)
cg )

)
exp

(
δ
(r)
c

2 Y ∗′cg (W̃g, ε̃cg)Y ∗cg(W̃g, ε̃cg)
)

 · I(λ̃c ∈ A)

I(λ
(r−1)
c ∈ A)

, 1

 ,

set λ
(r)
t with λ̃t. Otherwise, set λ

(r)
t = λ

(r−1)
t .

Step IV. Simulate λ
(r)
t from P (λt|{Ÿ ∗(r)tg1 }, {Y ∗tg}, {Y ∗cg}, {W ∗g }, φ(r),Υ(r−1)) by the double M-H

algorithm.

(a) propose λ̃t from a random walk proposal density q(λt|λ(r−1)
t )

(b) For g = 1, · · · , G, calculate

ε̃tg1 = Ÿ
∗(r)
tg1 −

(
λ̃tW

∗
12,gY

∗
tg2 +X1gβ

(r−1)
1t + (W ∗11,gX1g +W ∗12,gX2g)β

(r−1)
2t + lg1α

(r−1)
tg

)
and ε̃tg2 = (Img−mg1 − λ̃tW

∗
22,g)Y

∗
tg2 − X2gβ

(r−1)
1t − (W ∗21,gX1g + W ∗22,gX2g)β

(r−1)
2t −

lg2α
(r−1)
tg . Denote ε̃tg =

(
ε̃′tg1, ε̃

′
tg2

)′
. To make a distinction, denote ε

(r−1)
tg =

(
ε
(r−1)′

tg1 , ε
(r−1)′

tg2

)′
with ε

(r−1)′

tg1 and ε
(r−1)′

tg2 calculated based on λ
(r−1)
t . Also calculate

ε
(r−1)
cg =

(
Img − λ

(r)
c W ∗g

)
Y ∗cg −Xgβ

(r−1)
1c −W ∗gXgβ

(r−1)
2c − lgα(r−1)

cg .

(c) For g = 1, · · · , G, given ε̃tg and ε
(r−1)
cg in (b), simulate an auxiliary network W̃g by m

runs of the M-H algorithm based on

P (Wg|ε̃tg, ε(r−1)
cg , φ(r), λ(r)

c , λ̃t,Υ
(r−1)) =

exp
(
Vg

(
Wg, ε̃tg, ε

(r−1)
cg , φ(r), λ

(r)
c , λ̃t,Υ

(r−1)
))

∑
W exp

(
Vg

(
W, ε̃tg, ε

(r−1)
cg , φ(r), λ

(r)
c , λ̃t,Υ(r−1)

))
starting from W ∗g . See details in Step I. part (c).
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(d) Let A = [−1/τG, 1/τG], with the acceptance probability equal to

α(λ̃t|λ(r−1)
t )

= min


G∏
g=1

 P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g |φ(r), λ

(r)
c , λ̃t,Υ

(r−1)
)

P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg, ,W

∗
g |φ(r), λ

(r)
c , λ

(r−1)
t ,Υ(r−1)

) ·
P
(
W̃g|ε(r−1)

tg , ε
(r−1)
cg , φ(r), λ

(r)
c , λ

(r−1)
t ,Υ(r−1)

)
P
(
W̃g|ε̃tg, ε(r−1)

cg , φ(r), λ
(r)
c , λ̃t,Υ(r−1)

)
 · I(λ̃t ∈ A)

I(λ
(r−1)
t ∈ A)

, 1


= min


G∏
g=1


∣∣∣Img−mg1

− λ̃tW ∗22,g

∣∣∣ f (ε̃tg − σ(r−1)
εtc (σ

2(r−1)
εc )−1ε

(r−1)
cg

)
∣∣∣Img−mg1 − λ

(r−1)
t W ∗22,g

∣∣∣ f (ε(r−1)
tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε

(r−1)
cg

) ·
exp

(
δ
(r)
t

2 Y ∗
′

tg (W ∗g , ε̃tg)Y
∗
tg(W

∗
g , ε̃tg)

)
exp

(
δ
(r)
t

2 Y ∗
′

tg (W ∗g , ε
(r−1)
tg )Y ∗tg(W

∗
g , ε

(r−1)
tg )

) ·
exp

(
δ
(r)
t

2 Y ∗
′

tg (W̃g, ε
(r−1)
tg )Y ∗tg(W̃g, ε

(r−1)
tg )

)
exp

(
δ
(r)
t

2 Y ∗
′

tg (W̃g, ε̃tg)Y ∗tg(W̃g, ε̃tg)

)
 I(λ̃t ∈ A)

I(λ
(r−1)
t ∈ A)

, 1

 ,

set λ
(r)
t with λ̃t. Otherwise, set λ

(r)
t = λ

(r−1)
t .

Step V. Simulate β
(r)
c from P (βc|{Ÿ ∗(r)1g }, {Y ∗tg}, {Y ∗cg}, {W ∗g }, φ(r), λ

(r)
t , λ

(r)
c ,Υ(r−1)) by the double

M-H algorithm.

(a) propose β̃c from a AM proposal q(βc|β(0)
c , · · · , β(r−1)

c ).

(b) For g = 1, · · · , G, calculate ε̃cg =
(
Img − λ

(r)
c W ∗g

)
Y ∗cg − Xgβ̃1c −W ∗gXgβ̃2c − α(r−1)

cg

and ε
(r−1)
cg =

(
Img
− λ(r)

c W ∗g

)
Y ∗cg − Xgβ

(r−1)
1c − W ∗gXgβ

(r−1)
2c − lgα(r−1)

cg . Also calcu-

late ε
(r−1)
tg2 =

(
Img−mg1

− λ(r)
t W ∗22,g

)
Y ∗tg2−X2gβ

(r−1)
1t − (W ∗21,gX1g+W ∗22,gX2g)β

(r−1)
2t −

lg2α
(r−1)
tg and

ε
(r−1)
tg1 = Ÿ

∗(r)
tg1 −

(
λ(r)W ∗12,gY

∗
tg2 +X1gβ

(r−1)
1t + (W ∗11,gX1g +W ∗12,gX2g)beta

(r−1)
2t + lg1α

(r−1)
tg

)
.

Denote ε
(r−1)
tg =

(
ε
(r−1)′

tg1 , ε
(r−1)′

tg2

)′
.

(c) For g = 1, · · · , G, given ε̃cg and ε
(r−1)
tg from (b), simulate an auxiliary network W̃g by m

runs of the M-H algorithm based on

P (Wg|ε̃cg, ε(r−1)
tg , φ(r), λ(r)

c , λ
(r)
t , β̃c,Υ

(r−1))

=
exp

(
Vg(Wg, ε̃cg, ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β̃c,Υ

(r−1))
)

∑
W exp

(
Vg(W, ε̃cg, ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β̃c,Υ(r−1))

)
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starting from W ∗g . See details in Step I. part (c).

(d) With the acceptance probability equal to

α(β̃c|β(r−1)
c )

= min


G∏
g=1

 P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g

∣∣∣φ(r), λ
(r)
c , λ

(r)
t , β̃c,Υ

(r−1)
)

P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g

∣∣∣φ(r), λ
(r)
c , λ

(r)
t , β

(r−1)
c ,Υ(r−1)

) ·
P
(
W̃g

∣∣∣ε(r−1)
cg , ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r−1)
c ,Υ(r−1)

)
P
(
W̃g

∣∣∣ε̃cg, ε(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β̃c,Υ(r−1)

)
 · N2k(β̃c|β0, B0)

N2k(β
(r−1)
c |β0, B0)

, 1


= min


G∏
g=1

 f
(
ε
(r−1)
tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε̃cg

)
f
(
ε
(r−1)
tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε

(r−1)
cg

) · f (ε̃cg)

f
(
ε
(r−1)
cg

) ·
exp

(
δ(r)c

2 Y ∗
′

cg (W̃g, ε
(r−1)
cg )Y ∗cg(W̃g, ε

(r−1)
cg )

)
exp

(
δ
(r)
c

2 Y ∗′cg (W̃g, ε̃cg)Y ∗cg(W̃g, ε̃cg)
)

 · N2k(β̃c|β0, B0)

N2k(β
(r−1)
c |β0, B0)

, 1


set β

(r)
c with β̃c. Otherwise, set β

(r)
c = β

(r−1)
c .

Step VI. Simulate β
(r)
t from P (βt|{Ÿ ∗(r)1g }, {Y ∗tg}, {Y ∗cg}, {W ∗g }, φ(r), λ

(r)
t , λ

(r)
c , β

(r)
c ,Υ(r−1)) by the

double M-H algorithm.

(a) propose β̃t from a AM proposal q(βt|β(0)
t , · · · , β(r−1)

t ).

(b) For g = 1, · · · , G, calculate

ε̃tg1 = Ÿ
∗(r)
tg1 −

(
λ

(r)
t W ∗12,gY

∗
tg2 +X1gβ̃t1 + (W ∗11,gX1g +W ∗12,gX2g)β̃t2 + lg1α

(r−1)
tg

)
and

ε̃tg2 =
(
Img−mg1

− λ(r)
t W ∗22,g

)
Y ∗tg2 − X2gβ̃t1 − (W ∗21,gX1g + W ∗22,gX2g)β̃t2 − lg2α(r−1)

tg .

Denote ε̃tg =
(
ε̃′tg1, ε̃

′
tg2

)′
. To make a distinction, ε

(r−1)
tg =

(
ε
(r−1)′

tg1 , ε
(r−1)′

tg2

)′
is calculated

based on β
(r−1)
t . Also calculate ε

(r−1)
cg =

(
Img
− λ(r)

c W ∗g

)
Y ∗cg −Xgβ

(r)
c1 −W ∗gXgβ

(r)
c2 −

lgα
(r−1)
cg .

(c) For g = 1, · · · , G, given ε̃tg and ε
(r−1)
cg from (b), simulate an auxiliary network W̃g by m

runs of the M-H algorithm based on

P (Wg|ε̃tg, ε(r−1)
cg , φ(r), λ(r)

c , λ
(r)
t , β(r)

c , β̃t,Υ
(r−1))

=
exp

(
Vg(Wg, ε̃tg, ε

(r−1)
cg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , β̃t,Υ

(r−1))
)

∑
W exp

(
Vg(W, ε̃tg, ε

(r−1)
cg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , β̃t,Υ(r−1))

)
See details in Step I. part (c).
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(d) With the acceptance probability equal to

α(β̃t|β(r−1)
t )

= min


G∏
g=1

 P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g

∣∣∣φ(r), λ
(r)
c , λ

(r)
t , β

(r)
c , β̃t,Υ

(r−1)
)

P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g

∣∣∣φ(r), λ
(r)
c , λ

(r)
t , β

(r)
c , β

(r−1)
t ,Υ(r−1)

) ·
P
(
W̃g

∣∣∣ε(r−1)
cg , ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , β

(r−1)
t ,Υ(r−1)

)
P
(
W̃g

∣∣∣ε̃cg, ε(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , β̃t,Υ(r−1)

)
 · N2k(β̃t|β0, B0)

N2k(β
(r−1)
t |β0, B0)

, 1


= min


G∏
g=1

 f
(
ε̃tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε

(r−1)
cg

)
f
(
ε
(r−1)
tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε

(r−1)
cg

) ·
exp

(
δ
(r)
t

2 Y ∗
′

tg (W ∗g , ε̃tg)Y
∗
tg(W

∗
g , ε̃tg)

)
exp

(
δ
(r)
t

2 Y ∗
′

tg (W ∗g , ε
(r−1)
tg )Y ∗tg(W

∗
g , ε

(r−1)
tg )

) ·
exp

(
δ
(r)
t

2 Y ∗
′

tg (W̃g, ε
(r−1)
tg )Y ∗cg(W̃g, ε

(r−1)
tg )

)
exp

(
δ
(r)
t

2 Y ∗
′

tg (W̃g, ε̃cg)Y ∗tg(W̃g, ε̃tg)

)
 · N2k(β̃t|β0, B0)

N2k(β
(r−1)
t |β0, B0)

, 1


set β

(r)
t with β̃t. Otherwise, set β

(r)
t = β

(r−1)
t .

Step VII. Simulate σ(r) from P (σ|{Ÿ ∗(r)1g }, {Y ∗tg}, {Y ∗cg}, {W ∗g }, φ(r), λ
(r)
t , λ

(r)
c , β

(r)
c , β

(r)
t ,Υ(r−1)) by

the standard M-H algorithm.

(a) propose σ̃ from a AM proposal q(σ|σ(0), · · · , σ(r−1)).

(b) For g = 1, · · · , G, calculate

ε
(r−1)
tg1 = Ÿ

∗(r)
tg1 −

(
λ

(r)
t W ∗12,gY

∗
tg2 +X1gβ

(r)
t1 + (W ∗11,gX1g +W ∗12,gX2g)β

(r)
t2 + lg1α

(r−1)
tg

)
and ε

(r−1)
tg2 =

(
Img−mg1

− λ(r)
t W ∗22,g

)
Y ∗tg2 − X2gβ

(r)
t1 − (W ∗21,gX1g + W ∗22,gX2g)β

(r)
t2 −

lg2α
(r−1)
tg . Denote ε

(r−1)
tg =

(
ε
(r−1)′

tg1 , ε
(r−1)′

tg2

)′
. Also calculate ε

(r−1)
cg =

(
Img
− λ(r)

c W ∗g

)
Y ∗cg−

Xgβ
(r)
c1 −W ∗gXgβ

(r)
c2 − lgα

(r−1)
cg .
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(c) With the acceptance probability equal to

α(σ̃|σ(r−1))

= min


G∏
g=1

 P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g |φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , β

(r)
t , σ̃,Υ(r−1)

)
P
(
Ÿ
∗(r)
tg1 , Y ∗tg, Y

∗
cg,W

∗
g |φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , β

(r)
t , σ(r−1),Υ(r−1)

)
 ·

N3(σ̃|σ0,Σ0)

N3(σ(r−1)|σ0,Σ0)
· I(σ̃ ∈ T )

I(σ(r−1) ∈ T )
, 1

}

= min


G∏
g=1

 f
(
ε
(r−1)
tg − σ̃εtc(σ̃2

εc)−1ε
(r−1)
cg ; σ̃

)
f
(
ε
(r−1)
tg − σ(r−1)

εtc (σ
2(r−1)
εc )−1ε

(r−1)
cg ;σ(r−1)

) · f
(
ε
(r−1)
cg ; σ̃

)
f
(
ε
(r−1)
cg ;σ(r−1)

)
 ·

N3(σ̃|σ0,Σ0)

N3(σ(r−1)|σ0,Σ0)
· I(σ̃ ∈ T )

I(σ(r−1) ∈ T )
, 1

}
,

set σ(r) with σ̃. Otherwise, set σ(r) = σ(r−1).

Step VIII. For g = 1, · · · , G, simulate α
(r)
cg from

P (αcg|Ÿ ∗(r)1g , Y ∗tg, Y
∗
cg,W

∗
g , φ

(r), λ
(r)
t , λ

(r)
c , β

(r)
c , β

(r)
t , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r−1)
tg ) by the double M-

H algorithm.

(a) propose α̃cg from a random walk proposal density q(αcg|α(r−1)
cg )

(b) Calculate ε̃cg =
(
Img
− λ(r)

c W ∗g

)
Y ∗cg −Xgβ

(r)
c1 −W ∗gXgβ

(r)
c2 − lgα̃cg and

ε
(r−1)
cg =

(
Img − λ

(r)
c W ∗g

)
Y ∗cg −Xgβ

(r)
c1 −W ∗gXgβ

(r)
c2 − lgα

(r−1)
cg . Also calculate ε

(r−1)
tg2 =(

Img−mg1
− λ(r)

t W ∗22,g

)
Y ∗tg2 −X2gβ

(r)
1t − (W ∗21,gX1g +W ∗22,gX2g)β

(r)
2t − lg2α

(r−1)
tg and

εtg1 = Ÿ
∗(r)
tg1 −

(
λ

(r)
t W ∗12,gY

∗
tg2 +X1gβ

(r)
1t + (W ∗11,gX1g +W ∗12,gX2g)β

(r)
2t + lg1α

(r−1)
tg

)
. De-

note ε
(r−1)
tg =

(
ε
(r−1)′

tg1 , ε
(r−1)′

tg2

)′
.

(c) Given ε̃cg and ε
(r−1)
tg from (b), simulate an auxiliary network W̃g by m runs of the M-H

algorithm based on

P (Wg|ε̃cg, ε(r−1)
tg , φ(r), λ(r)

c , λ
(r)
t , β(r)

c , σ2(r)
εc , σ2(r)

εt , σ(r)
εtc , α̃cg, α

(r−1)
tg )

=
exp

(
Vg(Wg, ε̃cg, ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α̃cg, α

(r−1)
tg )

)
∑
W exp

(
Vg(W, ε̃cg, ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α̃cg, α

(r−1)
tg )

)
See details in Step I. part (c).
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(d) With the acceptance probability equal to

α(α̃cg|α(r−1)
cg )

= min

 P
(
Ÿ
∗(r)
tg1 , Y ∗cg, Y

∗
tg,W

∗
g

∣∣∣φ(r), λ
(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α̃cg, α

(r−1)
tg

)
P
(
Ÿ
∗(r)
tg1 , Y ∗cg, Y

∗
tg,W

∗
g

∣∣∣φ(r), λ
(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r−1)
cg , α

(r−1)
tg

) ·
P
(
W̃g

∣∣∣ε(r−1)
cg , ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r−1)
cg , α

(r−1)
tg

)
P
(
W̃g

∣∣∣ε̃cg, ε(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α̃cg, α

(r−1)
tg

) ·

N (α̃cg|α0, A0)

N (α
(r−1)
cg |α0, A0)

, 1

}

= min


 f

(
ε
(r−1)
tg − σ(r)

εtc (σ
2(r)
εc )−1ε̃cg

)
f
(
ε
(r−1)
tg − σ(r)

εtc (σ
2(r)
εc )−1ε

(r−1)
cg

) · g (ε̃cg)

g
(
ε
(r−1)
cg

) ·
exp

(
δ(r)c

2 Y ∗
′

cg (W̃g, ε
(r−1)
cg )Y ∗cg(W̃g, ε

(r−1)
cg )

)
exp

(
δ
(r)
c

2 Y ∗′cg (W̃g, ε̃cg)Y ∗cg(W̃g, ε̃cg)
)

 · N (α̃cg|α0, A0)

N (α
(r−1)
cg |α0, A0)

, 1


set α

(r)
cg with α̃cg. Otherwise, set α

(r)
cg = α

(r−1)
cg .

Step IX. For g = 1, · · · , G, simulate α
(r)
tg from

P (αtg|Ÿ ∗(r)1g , Y ∗tg, Y
∗
cg,W

∗
g , φ

(r), λ
(r)
t , λ

(r)
c , β

(r)
c , β

(r)
t , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r)
cg ) by the double M-H

algorithm.

(a) propose α̃tg from a random walk proposal density q(αtg|α(r−1)
tg )

(b) For g = 1, · · · , G, calculate

ε̃tg1 = Ÿ
∗(r)
tg1 −

(
λ

(r)
t W ∗12,gY

∗
tg2 +X1gβ

(r)
t1 + (W ∗11,gX1g +W ∗12,gX2g)β

(r)
t2 + lg1α̃tg

)
and

ε̃tg2 =
(
Img−mg1

− λ(r)
t W ∗22,g

)
Y ∗tg2−X2gβ

(r)
t1 −(W ∗21,gX1g+W ∗22,gX2g)β

(r)
t2 − lg2α̃tg. De-

note ε̃tg =
(
ε̃′tg1, ε̃

′
tg2

)′
. To make a distinction, ε

(r−1)
tg =

(
ε
(r−1)′

tg1 , ε
(r−1)′

tg2

)′
is calculated

based on α
(r−1)
tg . Also calculate ε

(r)
cg =

(
Img
− λ(r)

c W ∗g

)
Y ∗cg−Xgβ

(r)
c1 −W ∗gXgβ

(r)
c2 −lgα

(r)
cg .

(c) Given ε̃tg and ε
(r)
cg from (b), simulate an auxiliary network W̃g by m runs of the M-H

algorithm based on

P (Wg|ε̃tg, ε(r)cg , φ(r), λ(r)
c , λ

(r)
t , β(r)

c , σ2(r)
εc , σ2(r)

εt , σ(r)
εtc , α

(r)
cg , α̃tg)

=
exp

(
Vg(Wg, ε̃cg, ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r)
cg , α̃tg)

)
∑
W exp

(
Vg(W, ε̃cg, ε

(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r)
cg , α̃tg)

)
See details in Step I. part (c).
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(d) With the acceptance probability equal to

α(α̃tg|α(r−1)
tg )

= min

 P
(
Ÿ
∗(r)
tg1 , Y ∗cg, Y

∗
tg,W

∗
g

∣∣∣φ(r), λ
(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r)
cg , α̃tg

)
P
(
Ÿ
∗(r)
tg1 , Y ∗cg, Y

∗
tg,W

∗
g

∣∣∣φ(r), λ
(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r)
cg , α

(r−1)
tg

) ·
P
(
W̃g

∣∣∣ε(r)cg , ε(r−1)
tg , φ(r), λ

(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r)
cg , α

(r−1)
tg

)
P
(
W̃g

∣∣∣ε(r)cg , ε̃tg, φ(r), λ
(r)
c , λ

(r)
t , β

(r)
c , σ

2(r)
εc , σ

2(r)
εt , σ

(r)
εtc , α

(r)
cg , α̃tg

) ·

N (α̃tg|α0, A0)

N (α
(r−1)
tg |α0, A0)

, 1

}

= min


 f

(
ε̃tg − σ(r)

εtc (σ
2(r)
εc )−1ε

(r)
cg

)
f
(
ε
(r−1)
tg − σ(r)

εtc (σ
2(r)
εc )−1ε

(r)
cg

) · exp

(
δ
(r)
t

2 Y ∗
′

tg (W ∗g , ε̃tg)Y
∗
tg(W

∗
g , ε̃tg)

)
exp

(
δ
(r)
t

2 Y ∗
′

tg (W ∗g , ε
(r−1)
tg )Y ∗tg(W

∗
g , ε

(r−1)
tg )

) ·
exp

(
δ
(r)
t

2 Y ∗
′

tg (W̃g, ε
(r−1)
tg )Y ∗tg(W̃g, ε

(r−1)
tg )

)
exp

(
δ
(r)
t

2 Y ∗
′

tg (W̃g, ε̃tg)Y ∗tg(W̃g, ε̃tg)

)
 · N (α̃tg|α0, A0)

N (α
(r−1)
tg |α0, A0)

, 1


set α

(r)
tg with α̃tg. Otherwise, set α

(r)
tg = α

(r−1)
tg .
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APPENDIX D: Computational performances of our MCMC algorithms

We conduct a simulation study to examine computational aspects of the proposed MCMC al-

gorithms. The artificial data is generated by a data generating process (DGP) based on continuous

outcomes of Eq. (3)34 and the aggregated link utility function of Eq. (11). For simplicity, we only

specify one exogenous variable X and do not include WX as another regressor in the outcome

equation. As for the link utility function, we capture the exogenous effect with a dyad-specific

variable C and a matrix of ones for intercept terms. The networks are generated in three mixed

sizes: 20, 30, and 40, and the corresponding number of networks for each size is 10. The exogenous

variable X for outcomes are generated from a normal distribution with a zero mean and a variance

equal to 25. The group effect α’s are generated from a normal distribution with a mean equal to

the group average of X times 0.3 and a variance equal to 135. The disturbance term ε’s are gener-

ated from a normal distribution with a zero mean and a variance equal to σ2
ε as will be specified

below. The elements of the dyad-specific variable C for the exogenous effect are generated by first

drawing two vectors of random variables from U(0, 1), U1 and U2. If the ith element of U1 and the

jth element of U2 are both larger than 0.7 or less than 0.3, we set Cij equal to one. Otherwise, we

set it to zero.

By assigning the following parameters

• Network: γ31 = −3.2; γ32 = 0.4; η1 = 0.4; η2 = 0.2; η3 = −0.03; η4 = 0.03; η5 = 0.30;

η6 = −0.20; δ = 0.20,

• Outcome: λ = 0.05; β = 0.50; σ2
ε = 0.50,

into these two equations and use the exponential distribution of Eq. (7), we can then simulate the

networks and the activity outcomes: using the designed parameters and those generated exogenous

components, each artificial network W is simulated starting from an empty network. Each entry

of W except the ones on the diagonal is updated using the Gibbs sampling with the conditional

probability of wij in Eq. (13). Outcome variables are simulated along with the network. The

Gibbs sampling runs through the whole network for total 10,000 iterations and realizations of the

network and outcomes from the last iteration are used for the data. Those generated networks

34The same simulation study has been done for the case of simultaneous Tobit outcomes based on Eq. (4)) and

we obtain similar results. For the purpose of illustration without unnecessary repeats, we only choose to report the

results based on continuous outcomes here.
35We follows Mundlak (1978)’s specification to generate the dependence between group effects and exogenous

regressors.
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have the average density equal to 0.083, the average outdegree equal to 2.498, and the average

clustering coefficient equal to 0.125.

We estimate the true model using the algorithm provided in Appendix C-3. The idea is see

whether the proposed algorithm can return the correct estimates of parameters. To check how

well and how fast the posterior draws will converge to the target distribution, three sets of initial

values are assigned to the sampling process, φ = (γ′, η′, δ′) =

• (-2.00, 0.20, 0.20, 0.10, -0.01, 0.01, 0.20, -0.10, 0.10);

• (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.10);

• (-5.00, 1.00, 1.00, 1.00, -0.05, -0.50, 0.50, -0.50, 0.50),

and initial values for all other parameters are set to 0. The hyperparameters used in prior distri-

butions are specified as follows: φ0 = 0; Φ0 = 10I9; β0 = 0; B0 = 10; σ0 = 0.0; Σ0 = 1.0; α0 = 0;

A0 = 100. These parameters are designed to allow relative flat prior densities over the range of

the parameter spaces. The total 100,000 draws of (γ, η, δ, λ) based on these three initial values are

plotted separately in Figure 3 to Figure 5.

From Figure 3 one can observe, when starting with initial values which are close to the true

parameters, the convergence of the Markov chain achieves in a timely fashion. In this case it costs

about the first 10,000 draws to achieve convergence. Once the Markov chain converges and is

stable at a certain level, the following draws show a nice variation which represents the variance

of the target posterior distribution. In the following Figure 4 and 5, bad initial values cause the

Markov chain to take longer for the convergence. Since the draws approach the true parameters

gradually and hence, exhibit certain degree of dependence. In these two cases, more draws would

be needed to make sure that the posterior distributions of parameters are characterized properly.

From this simulation, it shows that the double M-H algorithm can handle the estimation of our

model without any problem.
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Figure 1: A friendship network from the GPA sample

Note: White: GPA less than 2. Green: GPA between 2 and 3. Blue: GPA between 3 and 4.

Red: GPA equal to 4. Nodes with a larger size means they have higher indegrees.

Figure 2: A friendship network from the Smoking sample

Note: White: Do not smoke. Green: Smoke once. Blue: Smoke 3 to 5 times. Red: Smoke

Every day. Nodes with a larger size means they have higher indegrees.
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Table 1: Summary Statistics

GPA Smoking

variable min max mean s.d. mean s.d.

GPA 1 4 2.910 0.734 - -

Smoking 0(57.86%) 7 - - 1.257 2.511

Age 10 19 16.004 1.285 15.997 1.269

Male 0 1 0.493 0.500 0.482 0.499

Female 0 1 0.507 0.500 0.517 0.499

White 0 1 0.611 0.487 0.629 0.483

Black 0 1 0.246 0.430 0.230 0.421

Asian 0 1 0.016 0.125 0.016 0.123

Hispanic 0 1 0.068 0.251 0.067 0.250

Other race 0 1 0.059 0.236 0.058 0.233

Both parents 0 1 0.725 0.447 0.733 0.442

Less HS 0 1 0.114 0.318 0.109 0.312

HS 0 1 0.340 0.473 0.341 0.474

More HS 0 1 0.398 0.490 0.402 0.490

Edu missing 0 1 0.068 0.252 0.067 0.250

Professional 0 1 0.248 0.432 0.249 0.432

Staying home 0 1 0.220 0.414 0.228 0.419

Other Jobs 0 1 0.366 0.481 0.356 0.479

Job missing 0 1 0.076 0.265 0.077 0.266

Welfare 0 1 0.011 0.103 0.010 0.100

Num. of students at home 0 6 0.580 0.818 0.568 0.793

Network size 25.043 13.146 33.546 16.551

Network density 0.142 0.100 0.108 0.076

Outdegree 2.564 2.294 2.866 2.406

Indegree 2.564 2.418 2.866 2.596

Clustering Coef. 0.327 0.120 0.332 0.086

Sample size 1,177 1,476

Num. of networks 47 44

Both parents means living with both parents. Less HS means mother’s education is less than high school.

Edu missing means mother’s education level is missing.

Professional means mother’s job is either scientist, teacher, executive, director and the like.

Other jobs means mother’s occupation is not among “professional” or “staying home”.

Welfare means mother participates in social welfare programs.

Number of students at home means how many other students of grade 7 to 12 living in the same household with you.

The variables in italics are omitted categories in the estimation.
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Figure 3: plot of MCMC draws from the continuous case – 1st set of initial values
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Figure 4: plot of MCMC draws from the continuous case – 2nd set of initial values
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Figure 5: plot of MCMC draws from the continuous case – 3rd set of initial values
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