A study of Optical Enhancement Cavity with short laser pulses for laser-electron beam Interaction

Yan YOU

Joint PhD student of Tsinghua University and Paris Sud 11 University

Seminar at LBNL 2014-05-05

Contents

X-ray applications requires high quality source

- Life science : X-ray Tomographic Microscopy, X-ray crystallography of biological structure & function at the molecular level, ...
- Material science : X-ray crystallography of ceramics, powders, agglomerates, ...
- Medical diagnosis : Imagery, therapy, ...

X-ray source examples

Facilities	Properties
Synchrotron Radiation	High brightness, high energy electron storage ring GeV, large device, high cost
Free Electron Laser	Far exceed brightness, intensity, but high energy electron Linac, large device, high cost,
Thomson scattering	Compact, relative low cost

Tsinghua Thomson Scattering platform

• Existing setup: 10TW laser system and 45MeV LINAC

Electron beam		Laser beam	
Energy	45MeV	Wavelength	800nm
Bunch length	1~4ps	Pulse duration	~50fs
Charge	~0.7nC	Pulse energy	~500mJ
Beam size	30(H)x25(V)um	Beam size	~30um

- Main features: High peak power Low average power Short pulse duration Huge pulse energy Low repetition rate
- :TW-PW
- : several W
- : tens of fs
- : hundreds of mJ
- : tens of Hz

Thomson scattering: achieved X-ray photon Flux 3.4x10⁷ph/s

Paper: <u>Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray</u> <u>Source</u>

Laser plasma wakefield accelerator: obtained 10~40MeV high quality monoenergetic electron beams

Paper:Generating 10~40MeV high quality monoenergetic electron beams using a 5TW 60fs laser at Tsinghua University

Laser-Electron Thomson Scattering principle

 $N_e: electron number \\ N_I: laser photon number \\ \sigma_T: Thomson scattering cross-section \\ F_{rep}: colliding repetition rate$

 σ_{electron} : electron beam size r.m.s σ_{laser} : laser beam size r.m.s • The **cross-section** for this process is **very low** :

 $\sigma_{\rm T}$ = 6.65 x 10⁻³³ cm²

5

OEC based X-ray machine

First OEC based X-ray machine concept drawing

• OEC

\rightarrow recycle laser

- ightarrow accumulate the laser power
- Enhancement factors on the laser power: 10³~10⁴

Main features:

High average laser power: kW-MW High colliding rate: ~ tens of MHz High X-rays flux : 10¹¹-10¹³ ph/s

OEC based X-ray machine status

7

Facility	Lyncean Tech/SLAC In operation	KEK:LUCX In operation	LAL: ThomX Under construction	Ukraine: KIPT Proposal
Electron energy [MeV]	20–45	30	50	40-225
X-ray Energy [keV]	Expected :7-35 Present: 10-20	Present :10	50-90	6-900
Flux [ph/s]	Expected :10 ¹³ Present: 10 ¹²	Present :10 ⁵	10 ¹¹ -10 ¹³	10 ¹³
Size	12 m length	~10m LINAC	10m x7m total size	

Application	Detail	Institute
Thomson scattering	γ-rays source	KEK, LAL, SLAC, KIPT
Laser wire	Low emittance electron beam size monitor	КЕК
Polarimeter	electron beam polarity diagnostic	DESY
HHG	soft X-ray source, XUV light	JILA, MPI
Frequency stabilization	Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers	JILA

The OEC system can be divided into **7 sub-systems** :

Laser, OEC, Optical setup, Electro-optical setup, Locking(Feedback), Mechanics, Diagnostic tools.

Block diagram of the OEC sub-systems

Contents

Mode-locked fiber laser construction

Envelope

λd:

۵X:

30.0nm/div

Cuttvi: 20.0dB

1040.45nm

袖柄

1040.0nm

19.5nm

20nm

1 Uruhum

in Vac

Picture of the laser

Setup layout of the mode-locked Yb-doped fiber laser based on Nonlinear polarization rotation

• Self-starting mode-locking

- •Pulse duration ~300fs
- Output pulse power 65mW to 170mW

Y. You et al, IPAC13

Laser type @ hundreds of MHz: solid-state -10W; Yb-doped fiber laser-420W, high power Fiber laser low cost compared to the solid-state laser

-> best candidate for laser source of OEC

Mode-locking method

- Nonlinear polarization rotation(NLPR)

A power-dependent polarization change is converted into a power-dependent transmission through a polarizing optical element.

Advantages:

Easy to implement, no need saturable absorbers, applicable to high power output

Disadvantages:

optimum polarization settings can drift with temperature and fiber bends, suffers from polarization changes

Cavity configuration:

- All-normal dispersion setup

- Simple setup, only consists of elements with normal GVD, no need to have dispersion compensation elements
- Wave breaking free pulse, pulse energy up to about 50 nJ, output power several hundreds mW

H. Carstens, et al, Optics Letters., 39, 2595-2598 (2014)

A. Hideur, et al. Appl. Phys. Lett. 79, 3389 (2001)

controller

A. Chong et al, Opt.Express 14, 10095 (2006)

Polarizatrion

controller

Contents

Criteria : stable geometry + small waist size + easy to install and control

	2-mirror	4-mirror	6-mirror , 8-mirror
2D	simpler design but concentric geometry is mechanically unstable when small laser waists are foreseen	 compared to 2M, mechanically more stable and provides better flexibilities to adjust the cavity round trip frequency and the cavity waist size. 2D compared to 3D, more compact and more easy to install 2D crossed cavity needs less space for integration to electron storage ring than the 2D bow-tie cavity 	compared to 4M cavity, more unstable elements and more variable parameters : control more difficult to achieve.
3D	Not applicable	compared to 2D, same mechanical stability, more difficult to install.	

4M – 2D crossed cavity

best geometry for stable, small waist, easy to install

and control

Pusled laser-OEC stacking

Enhancement : the cavity enhances the laser power by stacking each pulse. The enhancement factor, G, is determined by cavity finesse \mathcal{F} : $G = \mathcal{F}/\pi$ $\mathcal{F} = \frac{\pi \sqrt{R_{eff}}}{1 - R_{off}}$

Laser pulse stacking

pulsed laser beam: *Time domain representation*

pulsed laser beam: Frequency domain representation

• The laser beam **repetition rate** f_{rep} must match the Free Spectral Range (FSR) of the cavity.

M2

Comb <u>spacing</u> matching

Intra-cavity pulses

accumulatio

^Lcav

f_{rep}= FSR

 $FSR = \frac{c}{2l}$

- The laser beam pulses are injected with a **pulse-to-pulse phase** $\Delta \varphi_{ce}$ (laser-design dependent)
 - The intra-cavity beam pulses acquire a **phase** $\Delta \varphi_0$ in one cavity round-trip (*mirror dispersion*)

Comb <u>position</u> matching $\Delta \varphi_{ce} = \Delta \varphi_0$

laser cavitv

Cavity waist size measurement based on Gouy phase 16

Traditi	New method		
Pinhole PD	CCD	Based on Gouy phase	
Scan the cavity transmitted beam	Catch the beam profile of the cavity transmitted light	Cavity waist size is derived directly from the Gouy phase	
Use linear fitting of the transmitted light beam size to evaluate the		Simple, accurate	
cavity waist size, accuracy is correlated with the fitting Scan the beam. Precision is affected by the CCD		Gouy phase can be directly and precisely measured through the Airy	
time consuming	trigger time function		
Reflected-light Airy F	Function TEM00 ← FSR Go	TEM00 TEM00	
Transmitted-light	1 st -order 1 st -orde 2 nd -order⊙ ⊙ 2 nd -order⊙	er↓ 1 st -order	

Cavity waist size measurement based on Gouy phase

Demonstrated the effectiveness of this new method, based on the gouy phase measurement for planar n-mirror cavity

Y. YOU et al. Nuclear Instruments and Methods in Physics Study A, 694, 6-10 (2012)

17

Contents

Locking

Locking

How to achieve locking?

- Feedback is scheme to achieve locking.
- By feeding back the laser frep/fce using its PZT/ AOM, the stacking conditions: frep = FSR, and

 $\Delta \varphi_{ce} = \Delta \varphi_0$ are maintained, thus the cavity is kept on resonance.

Locking stabilization precision:
$$\frac{\Delta f_{rep}}{frep} = 10^{-13}$$
 cavity finesse 30 k,
relative length control 0.1 pm for a 1 m cavity

Sensor (PD) **Error signal technique** Analog/Digital Regulator (PI, PI²) Actuators (PZT/AOM/EOM/Pump Current)

PDH and TL introduction

PDH technique

- Commonly used, mature technique
- Complex setup: error signal is got by electronic modulation the injected beam and demodulation of reflected beam

Tilt Locking (TL) technique

- First used to stabilize the CW laser interferometer for gravitational wave detection
- Simple setup: error signal is the interference difference of TEM00 mode and TEM10 mode on the two halves of a Split-Photodiode (SPD)
- Propose to use TL for pulsed laser injected optical cavity locking

TL error signal derivation

22

TL error signal simulation

Symmetrical error signal : θ and SPD size

Tilt angle θ vs error signal

At the waist position, z=0

SPD size vs error signal

Tilt angle and SPD size only affect the amplitude of error signal, symmetrical error size at z=0

TL error signal simulation

TL Error signal deformation compensation

Experimental setup @ LAL, France

Experimental setup @ LAL, Orsay

Locking function diagram of PLIC

PDH and TL in one setup PZT for frep control, and FS for fce control

PZT and FS selections are independant

TL Experimental Results

TL and PDH error signal comparison

Housing & air-conditioner off

TL, PDH error signals and the transmitted signal.

Y. You et al, Rev. Sci. Instrum. 85, 033102 (2014)

TL Experimental Results

- TL and PDH locking comparison
- Both TL and PDH: high sensitivity , stable locking the cavity more than 1h, and high coupling

 TL is sensitive to beam pointing, environment noises. Low noise environment is needed

Examples of (a) TL locking, average coupling ~80%; (b) PDH locking average coupling ~73%.

TL shows the same locking ability as PDH, high coupling rate, stable locking in a quiet environment.

- Demonstrated that TL is applicable in the far field case
- TL can be used to lock a pulsed laser to a high finesse cavity

Y. You et al, Rev. Sci. Instrum. 85, 033102 (2014)

TL / PDH Comparison

	PDH	TL	Comments
Technique	Requires electro-modulation and demodulation.	Use the interference between TEM00 and TEM01 modes	TL has more simple setup
Components/C ost	EOM, EOM Driver, two waveform generator, Mixer, filter	One SPD, Diff. board	TL is cheaper
Stability	Very good.	Depend on error signal drift	Housing can be a solution
Error signal amplitude	Depends on EOM modulation depth.	Depends on the TEM01 mode amplitude.	
Locking	Very stable and long time, only depends on laser PZT dynamic.	Without drift, seems stable.	TL needs more systematic study
Coupling rate	~80%	~80%	Difficult to compare, it depends on feedback configuration
Sensitivity	high	high	The same order of sensitivity
Full spectrum locking	Easy, grating in reflected beam path.	Difficult to achieve right alignment, See my thesis Chapter 4	Thesis solution not convenient.

Contents

HTTX Machine

H. Xu, Y. You et al, IPAC13

HTTX OEC System Design Flow

HTTX-OEC Prototype Literature

Studies optical enhancement cavity system:

laser source, cavity properties, and locking

designed and tested a operational mode-locked fiber laser

found a new method to measure beam waist size for planar n-mirror cavity

used the TL technique for a pulsed-laser optical cavity locking successfully

Thank you