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ABSTRACT 

Finding singular configurations (singularities) of manipulators is obviously important, because these configurations 

are the ones where the instantaneous kinematics becomes indeterminate. In this paper, singularities of a three 

degree-of-freedom (DOF) fully parallel planar manipulator are analyzed with the aid of two Jacobian matrices which 

are expressed through instantaneous centers of rotation and it will be shown that how these centers are located in 

each type of singularities. 
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1.    INTRODUCTION 

Parallel Manipulators consist of multiple branches acting on a common payload platform. These manipulators have 

various advantages over serial robots, such as high payload to weight ratio, high accuracy, and high rigidity. 

However, near singular configurations, all the manipulators experience poor performances and parallel manipulators 

do not exempt from this rule, so these configurations must be found and avoid during design and operation steps. 

A parallel manipulator finds itself at a singularity when the manipulator either loses or gains one or more degrees of 

freedom. In contrast to serial mechanism, achieving the singular configurations in parallel mechanisms is so difficult 

and several authors address these problems with different approach [1-17]. Most of the approaches in singularity 

analysis used analytical techniques in linear algebra [1-4]. Gosselin and Angeles [1] formulated the instantaneous 

kinematics using two Jacobian matrices; in this way, they defined three types of singularities according to the rank 

deficiency of each matrix. Daniali et al. [2] presented a generalized approach to determine the singular 

configurations of three-DOF planar parallel manipulators that have arbitrary chains and equal number of inputs and 

outputs. They used a velocity equation including the velocities of active and passive joints in order to determine 

singular configurations. 

Some scholars have also studied singularities by the use of the force transformation matrix; see for instance [5]. 

These methods allow determining mathematically the singular loci and have found applications in optimization 

problems. 

Another way to deal with the problem of singularity is by using geometrical methods [6-10]. Merlet has obtained 

singular configurations of parallel mechanisms using Grassmann geometry [6,7]. Bonev et al. [10] found singular 

configurations of planar parallel manipulators based on the concept of Screw Theory.  

Singularity of planar mechanisms can be also studied by exploiting the properties of instantaneous center of rotation 

(or instant center, in short). The use of instant centers is especially appealing for the analysis of single-DOF 

mechanisms [11-14], because in these mechanisms their locations depend only on the mechanism configuration 

[15]. Nevertheless, some papers [16,17] addressed the singularity analysis of multi-DOF planar mechanisms by 

using the instant centers’ properties. Raffaele Di Gregorio [13,17] systematically analyses the singularities occurring 

in planar mechanisms based on the input–output instantaneous relationships; In particular, by classifying the 

mechanisms based on rotational or translational type of inputs and outputs and by exploiting the properties of the 

instant centers.  

In the present study, singularities of a 3-DOF fully parallel planar manipulator are reviewed using the instantaneous 

center of rotations between links. This classification is based on the singularities of two Jacobian matrices that relate 

the input rates to the Cartesian speeds. 

 

2.    INSTANTANEOUS CENTER OF ROTATION 

The instantaneous center of rotation (ICR) (or instant center, in short) is defined as the instantaneous location of a 

pair of coincident points of two rigid bodies for which the absolute velocities of the two points are equal. In the 

other words, one rigid body can rotate about ICR relative to another one. The ICR is defined between any two rigid 

bodies which have a relative planar motion. Therefore, there are three instantaneous centers of rotation between 

three rigid bodies in a relative motion. They are related by the following well known theorem. 

mailto:s.zarkandi@aihe.ac.ir


IJRRAS 12 (3) ● September 2012 Zarkandi ● Singularities of 3-Dof Fully Parallel Planar Manipulators 

 

 
 

408 

 

 

2.1. The Aronhold-Kennedy Theorem:  

 

Three relative instant centers of the three moving rigid bodies lie on the same line. 

 

There are three types of planar motion between two rigid bodies, namely, translation, rotation and general motion. In 

translation, the relative velocity of all points are parallel, thus, the ICR lie on a line perpendicular to the velocity 

vector at infinity. In rotation, the ICR is trivial, while, any generally relative motion can be regarded as a pure 

rotation about ICR. 
 

3.    JACOBIAN MATRICES 

In planar parallel mechanisms, the relationship between actuator coordinates, grouped in the 3-dimensional vector , 

and Cartesian coordinates, grouped in the 3- dimensional vector X, can be written in general as [2]: 

s 

0Xθ ),(f           (1) 

 

where f is a 3-dimensional function of θ  and X, and 0 is the 3-dimensional zero vector. The underlying differential 

kinematics relations, in turn, take on the form 

 

0KtθJ            (2) 

 

where J and K are 33 Jacobian Matrices. Moreover, t is the 3-dimensional twist or Cartesian-velocity vector, and 

θ  is the 3-dimensional joint-velocity vector, defined below as: 
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Furthermore,   is the scalar angular velocity and C  is the 2-dimensional velocity vector of a point of the end-

effector (EE), respectively. Below we derive expressions of J and K for a novel 3-RRP planar parallel manipulator 

where R, P and R denote the revolute joint, prismatic joint and the revolute actuated joint, respectively. 

The proposed manipulator and its evident instantaneous centers of rotation are shown in Fig. 1a and Fig. 1b, 

respectively. Three motors M1, M2 and M3 are fixed to the base. 

The velocity of a point "C" of the end-effector can be written for the i-th leg, as shown in Fig. 1a, as  

 

)( AiAi vCvC            (4) 

 

where vAi and C  are the velocity of joint Ai and the point "C", respectively. The velocity of instant center Cmn, 

considered as a point of link q and evaluated in a reference system fixed to link r, will be denoted as 
qmn

r v . 

We can prove that: 

 

)( qrmnqrqmn

r
CCEv           (5) 

 

while ωqr is the relative angular velocity between links q and r; E is a 22 orthogonal matrix rotating vectors in a 

plane through an angle of 90 counterclockwise, i.e., 
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Figure 1. (a) a 3-DOF 3-RRP planar parallel manipulator, (b) the evident instantaneous center of rotations of the 

manipulator 
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Considering Eq. (5) together with Fig. 1b, we can write each term of Eq. (4) as 

)( 1iijiAi CCEv            (7a) 

iiijAi bCCEvC    )()( , 6,4,2i  and 1 ij     (7b) 

with i  denoting the rate of the prismatic joint and unit vector bi represents the direction of this joint. Substitution 

of the values of vAi and )( AivC  from relations above into Eq. (4) yields: 

0CCCEbCCE   )()( 1 ijiiiiji  , 6,4,2i  and 1 ij   (8) 

Since i  is associated with an unactuated joint, it should be eliminated, which can be done by multiplication of the 

above equation by Eb
T

i . Doing this multiplication for 6,4,2i  leads to: 

0CEbCCbCCb   T

iij

T

iiij

T

ii )()( 1  , 6,4,2i  and 1 ij   (9) 

Upon writing Eq. (9) for i = 2,4,6, we obtain the following relation. 

0KtθJ            (10) 

in which  
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4.    SINGULARITY ANALYSIS 
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In this section, singularities of the proposed manipulator are analyzed using the method presented by Daniali et al 

[2]. In parallel manipulators, singularities occur whenever J, K or both become singular. Thus, for these 

manipulators, a distinction can be made between three types of singularities, which have different kinematics 

interpretations, namely, 

 

4.1. Inverse kinematic singularities 

This type of singularities consists of the set of points where different branches of the inverse kinematics problem 

meet. This type of singularity occurs when J becomes singular but K is invertible, i.e., when 

det(J) = 0 and det(K) 0  

Considering matrix J presented above and putting its determinant equal to zero yields: 

0)( 1  iij

T

i CCb , 2i  or 4 or 6 and 1 ij      (12) 

So the first type of singularities occurs when vectors bi and )( 1iij CC   are perpendicular to each other i.e. when at 

least the first link of one leg is perpendicular to the direction of the correspondent prismatic joint. In this case, one 

actuator does not produce any motion of the EE. Thus, the EE cannot move in the direction of the first link of the leg 

and the manipulator loses at least one degree of freedom.  
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Figure 2. An example of the first type of singularities of the 3-RRP manipulator in which one leg is at the singular 

pose and actuators of the other legs are locked. 

 

In this case, if we lock all actuators but the one correspondent to the leg which is at the singular pose then, according 

to the Aronhold-Kennedy theorem, Ci8 coincides with C1i in which i indicates the first link of the mentioned leg. 

This is a criterion that can be used to find configurations corresponding to this type of singularities. Fig. 2 shows the 

manipulator at this type of singularity in which one leg is at the singular pose and actuators of the other legs are 

locked. 

 

4.2. Direct kinematic singularities 

This type of singularities, occurring only in closed kinematics chains, arises when K becomes singular but J is 

invertible, i.e., when 

det(J) 0  and det(K) = 0 

This type of singularities consist of a point or a set of points whereby different branches of the direct kinematics 

problem meet, the latter being understood here as the computation of the values of the Cartesian variables from 

given values of the driving-joint variables. Since the nullity of K is not zero, we can find a set of nonzero Cartesian 

velocity vectors for which the actuator velocity vector θ  is zero. Then, mechanism gains one or more degrees of 

freedom or, equivalently, cannot resist forces or moments in one or more directions, even if all the actuators are 

locked. 
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This type of configuration can be inferred from Eq. (11b) by imposing the linear dependence of the columns or the 

rows of K. By inspection of Eq. (11b), two different cases for which we have this type of singularity can be 

identified. 

The first case in which K is singular occurs when rows of K are linearly dependent. i.e. when we can write the each 

row of K as a linear combination of two other rows. This case of singularity occurs when the three vectors ti through 

point Cij and perpendicular to bi intersect at a common point. Let us call the intersection point as D, as shown in Fig. 

3. 
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Figure 3. Intersection of three vectors ti at a point in the second type of singularity. 
 

Since the three vectors bi (i=2,4,6) are coplanar, we can express b6 as a linear combination of the first two, namely, 

42216 bbb            (13) 

The inner product of Eq.(13) by vector d leads to 

dbdbdb
TTT

42216           (14) 

where CDd . But we have: 

0i

T

i tb , 6,4,2i          (15) 

So, Eq. (14) can be written as: 

)()()( 44222166 tdbtdbtdb 
TTT

       (16) 

Moreover, we have 

)()( iji CCtd  , 6,4,2i  and 1 ij       (17) 

Substituting the values of )( itd , for i = 2,4,6, from the foregoing equation into Eq. (16), yields 

)()()( 45422321676 CCbCCbCCb 
TTT

      (18) 

From Eqs. (13) and (18), it is obvious that we can write the third row of K as a linear combination of the first two 

rows, hence proof is demonstrated. 

Then, the null space of K represents the set of pure rotations of end-effector about the common intersection point. 

According to the Aronhold-Kennedy theorem, in this case end effector can rotate about C18 while all actuators are 

locked. Likewise, a moment applied to end-effector cannot be balanced by the actuators. Thus, the manipulator 

gains one rotational degree of freedom. Fig. 4 shows the manipulator at this type of singularity while all actuators 

are locked. 

The second case in which K is singular occurs when the three vectors bi are parallel. Therefore, the second and third 

columns of K are linearly dependent then nullspace of K represents the set of pure translations of EE along a 

direction parallel to bi. In other words, according to the Aronhold-Kennedy theorem, in this case, C18 situates at 
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infinity and the EE can rotates about that point relative to the base while all actuators are locked. However, for the 

manipulator under study this type of singularity does not occur, because of its architecture. 

 

 

 

C15 

 

C17 

 

 

2 

 

4 

 5 

 

7 

 

6 

 

C13 
3 

 

8 

 

Locked 

 

Locked 

 

Locked 

 

C18 

 

C58 

 
C78 

 

C38 

 

 

 

 

 

Figure 4. An example of the second type of singularities in which end-effector can rotate freely about 18C  while all 

actuators are locked. 

 

 

4.3. Combined singularities 

The third type of singularities occurs when both J and K are simultaneously singular, while none of the rows of K 

vanishes. At these configurations the motion of at least one actuator does not produce any motion of the EE. 

Therefore, the manipulator loses one or more DOF. As well, the EE can move freely in one or more directions even 

if all the actuators are locked and some forces or torque applied to it cannot be balanced by the actuators. Thus, the 

manipulator gains one or more uncontrollable DOFs. Fig. 5 shows such a configuration of the manipulator while all 

actuators are locked. 
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Figure 5. An example of the third type of singularities in which one leg is at a singular pose and simultaneously end-

effector can rotate freely about C18 while all actuators are locked. 
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5.    CONCLUSIONS 

The Jacobian matrices of a 3-DOF fully parallel planar manipulator, ruling on the kinematic behavior of the 

manipulator, are obtained on the basis of instantaneous centers of rotation. The three types of singularities, which 

have different kinematics interpretations were identified for the manipulator and investigated through the instant 

centers. The simplicity and the robustness of the method make it possible to implement it for all planar parallel 

manipulators. 
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