
A study of user data integrity during acquisition of Android
devices

Namheun Son a, Yunho Lee a, Dohyun Kim a, Joshua I. James b, Sangjin Lee a,
Kyungho Lee a,*

aCenter for Information Security Technologies (CIST), Korea University, Anam-Dong, Seongbuk-Gu, Seoul 135-713, Republic of Korea
bUCD Digital Forensic Investigation Research Group (DigitalFIRE), University College Dublin, Belfield, Dublin 4, Ireland

Keywords:
Digital forensic investigation
Android forensics
Data acquisition
Data integrity
Android Recovery Mode
JTAG

a b s t r a c t

At the time of this writing, Android devices are widely used, and many studies considering
methods of forensic acquisition of data from Android devices have been conducted.
Similarly, a diverse collection of smartphone forensic tools has also been introduced.
However, studies conducted thus far do not normally guarantee data integrity required for
digital forensic investigations. Therefore, this work uses a previously proposed method of
Android device acquisition utilizing ‘Recovery Mode’. This work evaluates Android Re-
covery Mode variables that potentially compromise data integrity at the time of data
acquisition. Based on the conducted analysis, an Android data acquisition tool that ensures
the integrity of acquired data is developed, which is demonstrated in a case study to test
tool’s ability to preserve data integrity.
ª 2013 Namheun Son, Yunho Lee, Dohyun Kim, Joshua I. James, Sangjin Lee and Kyungho

Lee. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The number of Android device users in the third quarter
of 2012 is reported to be 181 million (Android Market
Share, 2012). This figure represents approximately 75% of
smartphone users. As the number of Android device users
increases, so too does the number of available applications.
There are currently over 600,000 applications in the Play
Store, which is the Android market where users can
download Android applications.

Dottech (Android App Store, 2012) states that approxi-
mately fifty applications are installed on one Android de-
vice. As the number of installed application increases, more
user data is stored in the device. Such user data is poten-
tially relevant to an investigation when an Android device
is examined during a criminal or civil investigation.

During an investigation involving Android devices, a
number of smartphone forensic tools may be used.

The methods of acquiring data from smartphone forensic
tools are largely divided into either physical acquisition or
logical acquisition methods. However, such methods of
data acquisition do not normally verify the alteration to
user data. If integrity of the collected user data is not pro-
tected, evidential data used in the investigation could be
compromised.

This study will evaluate the Android Recovery Mode
acquisition method proposed by Vidas et al. (2011) to
determine whether user data integrity is maintained at the
time of acquisition. This work will study the various
Android Recovery Mode variables, and each variable’s ef-
fect on the integrity of user data during acquisition of an
Android device.

2. Related work

This section examines prior work regarding methods of
data acquisition from Android devices.

Data acquisition from an Android device can be largely
divided into logical acquisition and physical acquisition

* Corresponding author. Tel.: þ82 10 5002 5099; fax: þ82 2 928 9109.
E-mail addresses: kevinlee@korea.ac.kr, klee@secubase.com (K. Lee).

Contents lists available at SciVerse ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

1742-2876/$ – see front matterª 2013 Namheun Son, Yunho Lee, Dohyun Kim, Joshua I. James, Sangjin Lee and Kyungho Lee. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.diin.2013.06.001

Digital Investigation 10 (2013) S3–S11

methods. The types of logical acquisition are partition im-
aging, copying files/folders, content provider (Hoong,
2011), and Recovery Mode (Vidas et al., 2011), the last of
which is the focus of this study.

For data partition imaging that includes user data or for
file/folder copying, the device must first be “rooted”, that is,
administrative privilege must be gained. For such data
acquisition, the device must be booted normally. However,
when a device is booted normally, integrity of user and
unallocated data areas may not be ensured.

Similarly, using a content provider to acquire data also
requires the device to be booted normally, and an appli-
cation should be installed for acquisition to take place.
Because of the need to install software on the device, this
method could potentially be more destructive than rooting
the device while on.

When Android Recovery Mode is used, administrator
privileges can be granted while the device is in a state
where the alteration to user data can be minimized.

During a physical acquisition, JTAG (Kim et al., 2008;
Breeuwsma, 2006) is commonly used, as well as a method
that uses chip-off (Jovanovic, 2012). Acquisition using JTAG
is only possible when a JTAG debug port is identified on the
embeddeddevice. For thismethod, the battery, case and any
connected cables should be removed, then the JTAG debug
port and cable should be connected for communication
(fundamentally soldering). This method appears to result in
a full acquisition of device data; however, this method may
take a long time to acquire selected data.

To the author’s knowledge, other studies to determine
whether or not the JTAG method guarantees data integrity
has not been conducted. This work will use the JTAG
method to verify the integrity of the Recovery Mode ac-
quired data. By using both methods this work will attempt
to determine whether or not integrity is guaranteed at the
time of data acquisition by using JTAG through comparison
with Recovery Mode-acquired data.

The chip-off method directly separates memory that is
attached to the board of an embedded device, and once it is
separated the embedded device, the device is very unlikely
to be repaired. Also, memory could get damaged in the
process of separating it.

Additionally, there is a method of acquisition using Live
SD (Chen and Yang, 2011). The study of a Live SD acquisition
applied the existing Live CD/USB concept to an SD card.
Recovery Mode was also used in this method. In order to
use this method the device should support memory
expansion through an SD device, but not every Android
device supports this.

The UFED tool by Cellebrite (2012) is a smart forensic
tool that consists of an acquisition terminal and software
analyzer. It acquires data by connecting a smartphone to
the acquisition terminal. In order to acquire data, the device
must be rooted. This is normally achieved by executing an
exploit that has been independently developed. UFED
supports file and folder acquisition or a whole partition
unit. Since UFED is unable to target a specific partition for
acquisition, it could take longer than acquiring only the
user data partition.

The XRY tool from Micro Systemation (Micro
Systemation XRY, 2012) also acquires data by connecting

the device to a terminal. XRY supports acquisition of several
devices at the same time using this terminal. However, for
an Android device, data acquisition is possible only when
rooted.

These tools have integrity check functions like file hash
calculation after acquisition. But these functions can’t
ensure the integrity of user data partition before acquisition.

3. Background

NAND flash memory is used in order to save data in an
Android device. NAND flash memory consists of three ele-
ments: block, page, and spare. Page is constructed with
actual data and spare, and several pages build one block. In
the spare area, it either savesmetadata of the file system on
NAND flash or information required when the hardware
controller combines pages. Since the lifespan of Read/Write
is determined for NAND flash, the controller controls writes
to memory so that the entire NAND flash can be used as
uniformly as possible. Such role is called ‘Wear Leveling’
(Han, 2000).

When data is divided into several pieces and saved
equally in NAND Flash and the relevant data is accessed, it
is necessary to recombine the data. At that time, the
controller combines pieces of data into one continuous
group of data based on metadata that is in spare.

NAND Flash uses two methods for handling data access:
Memory Technology Device (MTD) and Flash Translation
Layout (FTL).

MTD is a device driver that is used to directly access
NAND Flash storage.

Yet Another Flash File System 2 (YAFFS2), which was
used as the default in Android, is a file system for NAND
Flash. In order to construct the file system, metadata of file
system is recorded in the spare area of NAND Flash. There-
fore, in case of YAFFS2, if the file system is not changed, the
spare area does not change. Since the file system that uses
MTD acquires a page area, but not the spare area. Because of
this, methods that use MTD cannot interpret the file system
when raw data is acquired. In order to acquire a file system
that uses MTD, nanddump should be used, which enables
imaging including the spare area.

FTL is a class that supports the file system for the
existing block device so that NAND flash could be used as a
block device (FTL (Flash Translation Layer), 1998). The
Extended File System X (ExtX) and the Robust File System
(RFS) are file systems for block devices that handle NAND
flash using FTL. When handling NAND flash using FTL, the
spare area cannot be reached, but since data used in the
actual file system is not saved in the spare area, file system
data can be acquired through an acquisition of the raw data.

Android uses file systems such as Ext2/3/4, YAFFS2, and
RFS. Among them, Ext3/4 and YAFFS2 are journaling file
systems. Journaling supports restoration when a system
crash occurs. When a system runs normally without
crashing, it executes commit, and records data in the area
that is used for data storage (Journal File Systems, 2002).

Ext3/4 manages the Journal as a file, and YAFFS2 does
not have an additional file.

The versions after Android 2.3 (Gingerbread) use Ext4
(Android 2.3 Gingerbread, 2012), and 83.2% of Android

N. Son et al. / Digital Investigation 10 (2013) S3–S11S4

devices use Gingerbread or above as of Oct. 2012 (Android
2.3 over reaches 83 percent market share, 2012). This rate is
likely to continue to increase as new Android devices are
launched. This indicates that 83.2% of Android device users
use Ext4 file system. Among the rest of Android devices,
most of them use YAFFS2 or Ext3, and of these, only a few
Samsung products use RFS. In other words, most Android
devices use Ext3/4 for their journaling file system.

Ext3/4 has a journaling function, and this is managed as
one file. The journaling function operates from the moment
that partitions aremounted, andmetadata is changedduring
this process. Due to journaling, the data of both the unallo-
cated area and journal area can be altered. If the data that
remained in the unallocated and journal areas was potential
evidence in an investigation, the potentially relevant data
could be altered (Kim et al., 2012). Table 1 is a part of the
superblock structure of ExtX, which saves information such
as free inodes count, free block count, write time, mount
time, andmount count. Especially, for the free inodes count,
free block count, etc, values change if the journaling function
is activated, andunallocated space is altered according to the
changed value (Carrier, 2005). The bytes 224–227 in super-
block represent inode number where the journal is located.

However, when a partition is mounted as read-only, the
metadata of the file system is not altered (Lee et al., 2005).

At the time of acquisition of an Android device, the user
data partition is mounted in several situations. Therefore,
the following work examines the method of either pre-
venting or avoiding unwanted metadata modification of
the file system. Also, an Android device must be turned off
in order to confirm data integrity, so this work assumes that
data acquisition began in a state where the targeted device
was turned off.

4. Acquisition processes

This section examines the procedure and method of
acquiring user data from an Android device while pro-
tecting data integrity, and then returning the device to the
former state after completing data acquisition. This proce-
dure is designed to minimize the time and additional work
required to forensically acquire a suspect Android device.

The process is pictured in Fig. 1 with each step being
explained below.

4.1. Prepare the custom recovery mode image

The first step is checking the model name of the target
device. If the custom recovery mode image (CRMI) that can

be used for the checked model is already made, move on to
the next step, and if not, produce the CRMI that is suitable
for the targeted model. The process of producing the CRMI
and the relevant notes are as so:

� When booting Android, the boot media is explored, boot
media is copied into RAM, the copied contents are
interpreted, and then Android is booted (Hoong, 2011).
In other words, the boot media (the CRMI in this study)
is dependent on certain firmware. This implies that only
one CRMI is required for each device’s model.

� In order to approach user data by accessing through
AndroidDebugBridge (ADB). ADBallows a developer and
forensic analyst to communicate and control an Android
device over USB. ADB can be used as a method for data
acquisition. A data acquisition method using ADB on an
Android device is very common. The ADB service can be
enabled through which root authority can be obtained
(modify init.rc, replace ADB file.) (Vidas et al., 2011).

� After booting using CRMI, the rootfs partition that is in
the area used as the root folder should be mounted in
read/write mode (rootfs). This is because CRMI should
be able to copy files to the rootfs partition. If rootfs is
mounted in read-only mode, the mount mode can be
changed after remounting, but when it remounts, the
user data partition is automatically mounted. Some
Android devices apply this method. Fig. 2 shows the file
attribute (init.rc) of the basic recovery partition image of
Galaxy Note (SHV-E160S), which often includes a com-
mand that mounts the rootfs partition as the read-only
mode at the time of booting.

� A bootable image of an Android Device consists of a boot
header, kernel, ramdisk and second stage. Recovery
Mode Images are bootable. To make the CRMI, the
ramdisk area is normally edited, but in some cases the
kernel area is modified. Some kernel in Recovery Mode
images include a function tomount the data partition. In
this case the kernel area should be recompiled.

� The partition of the Android device is divided according
to the role, and the size of each partition is calculated
(Android Partitions, 2011). Mostly, the sizes of the re-
covery and boot partitions of an Android device are the
same, but the size of the recovery partition is bigger
because it includes a binary for using the device in re-
covery mode. However, since the actual CRMI should be
used for the boot partition, the CRMI should be created
according to the size of the boot partition. Table 2 shows
the sizes of the boot and recovery partitions of an
Android device that were confirmed.

The binary needed for data acquisition is included in the
CRMI. It includes nanddump for imaging thefile system that
uses MTD like YAFFS2 and the busybox binary that includes
two commands in order to send a file using netcat (Hoong,
2011). There is a method that extracts data with ADB push
by saving the acquired image file in SD card, but it can take a
long time for data acquisition. And since it is hard to apply to
every type of Android device, it uses netcat at the time of
data acquisition. However, the previous step indicates that
the CRMI should be produced according to the size of the

Table 1
Data structure for the ExtX superblock.

Byte range Description

12–15 Number of unallocated blocks
16–19 Number of unallocated inodes
24–27 Block Size
44–47 Last mount time
48–51 Last written time
52–53 Current mount count
88–89 Size of each inode structure
208–223 Journal ID
224–227 Journal inode

N. Son et al. / Digital Investigation 10 (2013) S3–S11 S5

boot partition, and if the necessary binary is added at this
step, the size could potentially exceed capacity. For such a
case, the CRMI is produced without adding the binary, and
the necessary binary could be added by using ADB push.

4.2. Boot the device for flashing

When the CRMI that can be applied to the targeted
device is ready, the device can be booted in flash mode to
flash the CRMI. The method for entering flash mode varies
for each model (Vidas et al., 2011).

If an Android device supports bootloader lock/unlock
state, bootloader has to be unlocked before flashing the
CRMI. That is because it is infeasible to flash custom images
such as CRMI. The method to unlock bootloader varies
depending on Android devices.

Moreover, there is an encrypted bootloader. Some
Android devices take encrypted bootloader in order to
prevent from unlocking like LG OPTIMUS VU product. In
case of encrypted one, it is almost impossible to decrypt
bootloader without the key.

4.3. Flash the CRMI to boot partition of the device

For this step, the CRMI was produced according to the
size of the boot partition. When flashing the CRMI to the
recovery partition the device should enter into the

Fig. 1. Processes of acquisition and return to former state.

Fig. 2. Read only option for rootfs (SHV-E160S).

N. Son et al. / Digital Investigation 10 (2013) S3–S11S6

Recovery Mode right after flashing is completed. However,
the device must be manually entered into Recovery Mode,
and if such booting in Recovery Mode fails, the device will
proceed to boot normally. If that happens, the user data
partition will be used, thus potentially damaging data
integrity. On the other hand, if the CRMI is flashed to the
boot partition, then the device could enter into the recov-
ery mode right away without the need for manual control.

There are two methods of flashing the CRMI to the boot
partition. The first method requires an investigator to check
the file that is used as the boot partition in the firmware
that each manufacturer provides. An investigator can
change the CRMI file name to the file name that is used as
boot partition before flashing. The second method allows
flashing the device regardless of the CRMI file name by
using a tool that is supported by the vendor. Table 3 shows
the file names that are used as boot partitions in flash
mode, and the firmware for each manufacturer.

Devices that use fastboot mode can be booted into Re-
covery Mode by directly using the CRMI at the time of
booting without flashing it to the boot partition (fastboot
boot kernel_filename), or it can be booted into Recovery
Mode by flashing the CRMI to the boot partition (fastboot
flash:raw boot kernel_filename).

4.4. User data acquisition

After successfully conducting CRMI flashing and
rebooting the device, the device will automatically enter
into Recovery Mode. With root authority in this mode an
investigator can access the device by using the ADB com-
mand. Fromhere, an investigator can acquire all the desired
data.

First, the method of acquisition should be decided.
There are essentially two acquisition methods: imaging a
data partition and copying files. Since it is not necessary to
mount the partition for the acquisition of the partition unit,
the user data partition can be selected and copied remotely
using netcat (Hoong, 2011). The user data partition’s path
on each device can be different. Some devices have a folder
that has partition information, for example, the partition
names and block names that were managed by the
device, such as: /dev/block/platform/dw_mmc/by-name,
/dev/block/platform/omap/omap_hsmmc.0/by-name.

If there is no folder that has partition information, the
size of each partition should be checked (cat /proc/parti-
tions). After that, part of the partition can be images and
checked if it is a user data partition.When the file system in
use is YAFFS2, which usesMTD, the partition can be imaged
with nanddump. When the file system uses FTL, an inves-
tigator can acquire the partition using dd or cat.

For the acquisition of the file unit, the user data partition
should be mounted, and, as previously mentioned, the
partition should be mounted in read only mode in order to
guarantee data integrity.When the partition is mounted, an
investigator can acquire data by using ADB pull and netcat.

4.5. Return to former state

If the device is not booted right away using CRMI, the
device can be returned to the former state after completing
data acquisition. To continue acquiring data, this step can
be skipped and acquisition can be completed as described
later.

Since the modified data before the previous step is in
the boot partition area, this area should be changed to the
original boot partition. If a file for the boot partition exists, a
check should be conducted to determine if it is the correct
original boot partition. When checking if it is correct orig-
inal boot partition, the firmware version that is used in the
targeted device is important to note.

When the boot partition of the firmware has a different
version, the Android kernel version or settings file might
not be appropriate. In this case, the device might not boot
normally.

The following command may be used in order to
confirm the firmware information that is used in the gen-
eral Android device: adb shell getprop ro.build.fingerprint.
This command shows information about the Android de-
vice, but if the CRMI is in use, then it shows the information
on the firmware that was used when making the CRMI.

In order to confirm accurate firmware information, the
/system/build.prop file must be analyzed. This file is
generated when flashing the firmware that was used pre-
viously. Fig. 3 shows what has been confirmed by using the
prior command in recovery mode after flashing the CRMI of
FD21 in a Galaxy Note (SHV-E160S) that uses the firmware
version UH24. When the getprop command is used, the
result shows that the current firmware version is FD21.
Fig. 4 shows opening the /system.build.prop file, which
stores the firmware information of the accurate UH24
version.

After confirming the appropriate original boot partition,
an investigator may copy the boot partition to the device by

Table 2
Partition size of Android devices.

Device Size(Kb)

Boot partition Recovery partition

Droid
(A855)

3584 4608

Galaxy S2
(SHW-M250S)

8192 8192

Galaxy Nexus
(SHW-M420K)

8192 12,224

Galaxy Note
(SHV-E160S)

10,240 10,240

Galaxy S3
(SHV-E210S)

8192 8192

Galaxy Note 2
(SHV-E250S)

8192 8192

Vega LTE
(IM-A800S)

10,240 10,240

Table 3
File name of boot partition in firmware.

Vendor Flash mode File name in firmware

Motorola Bootloader CG35.smg
HTC Fastboot –

Samsung Odin Boot.img
Samsung Omap

(Galaxy Nexus)
–

Pantech Fastboot –

N. Son et al. / Digital Investigation 10 (2013) S3–S11 S7

using ADB push, overwriting the original boot partition
with the boot partition that uses the copied file in the
targeted device. Table 4 includes the block names of the
boot partition that were confirmed for each device.

Another method is flashing the original boot partition
that is acquired by rebooting in the flash mode. However,
this method takes additional time because it requires
rebooting in the flash mode. Also, since the file format
required for the flash mode for each manufacturer is
different, this method requires converting the boot parti-
tion data into specific file formats that are supported by the
vendor. Because this method is more difficult and time
consuming, this work prefers the prior methods for
reverting a device to its original state.

4.6. Restoring a device to its original state

When the targeted device is completely returned to its
former state, then power should be removed until the de-
vice is used again in order to prevent data modification. If
the device is an all-in-one type with the battery, then cut
off the power by using the power button, and if the battery
can be removed, then remove it.

� In case of turning the device off by using the power
button, then an investigator should not use the menu
functions of the recovery mode. The menu can be
different for each vendor, device, or firmware version,
but the ‘reboot system now’ is usually included in the
menu of the recovery mode. If this menu is selected and
performed, then it mounts the user data partition in
order to log the details of performance in the recovery
mode.

� Before removing the battery, the USB cable must be
separated first. Certain devices (ex: Galaxy S2) mount
the user data partition by using the power provided by
the USB cable if the battery is separated when the USB
cable is still connected.

5. Android Extractor

Based on the procedure aforementioned in Section 4,
Fig. 5 illustrates a simple GUI tool, Android Extractor,

written by Cþþ. Design of Android Extractor was improved
through forensic experts and non-experts’ feedback. The
enhanced tool through feedback is easy to use even for the
non-specialist, although. Before a user use the tool, the
correct driver on the device must be first installed for adb
command. This section presents seven steps to extract user
data stored in an Android device, maintaining integrity.

5.1. Select an Android device

The first step is to select an Android device for investi-
gation. There are seven Android devices which support
CRMI as followings: Galaxy S2, Galaxy S3, Galaxy Note,
Galaxy Note 2, Galaxy Nexus, Droid, and Vega LTE.

5.2. Turn off the Device & enter the flash mode

After entering the flash mode in order to flash CRMI,
USB cable from an Android device needs to be connected to
the system running Android Extractor.

5.3. Flash CRMI & wait recovery mode

Next, CRMI is flashed into the boot partition using tools
which device vendors provide with. Once successfully
finished CRMI flashing, the Android device is then reboo-
ted. It leads to enter into the recovery mode with root
privilege. Then the dialog window pops up to choose file
path to store user data.

5.4. Select extraction type

There are two different extraction types: App Data and
Data Partition. App Data extraction type helps to extract
user data selectively on the provided list. This list consists
of application names and their file paths. Data Partition
extraction type helps to dump entire data partition of the
target device.

5.5. Extract user data

This step allows the selected user data extraction. In
case of App Data type, Android Extract displays the prog-
ress bar based on the number of data and elapsed time.

Fig. 3. Wrong results by getprop (Original Firmware Version: UH24; CRMI
Version: FD21).

Fig. 4. Right information in /system/build.prop (Original Firmware Version:
UH24; CRMI Version: FD21).

Table 4
Boot block name of Android devices.

Device Boot block name

Droid
(A855)

/dev/block/mtdblock5

Galaxy S2
(SHW-M250S)

/dev/block/mmcblk0p5

Galaxy Nexus
(SHW-M420K)

/dev/block/mmcblk0p7

Galaxy Note
(SHV-E160S)

/dev/block/mmcblk0p8

Galaxy S3
(SHV-E210S)

/dev/block/mmcblk0p5

Galaxy Note 2
(SHV-E250S)

/dev/block/mmcblk0p8

Vega LTE
(IM-A800S)

/dev/block/mmcblk0p8

N. Son et al. / Digital Investigation 10 (2013) S3–S11S8

In case of the other type, Data Partition, it shows the
progress bar based on the image size and elapsed time.
User data will be stored in a designated path in Section 5.3.

5.6. Check if original boot image is available

This step simply informs the original firmware infor-
mation including vendor, product name, kernel and firm-
ware version, and whether there is the original boot image
or not. If the original boot image is not found, it is necessary
to obtain the original boot image from elsewhere to restore
to the formal state.

5.7. Overwrite original boot image

Lastly, this step involves overwriting the original boot
image to the boot partition of the device. Once it is done,
USB cable and battery are removed from the target device.

6. Experiment using Android Extractor

Using Android Extractor, this study tested whether user
data integrity was maintained during the acquisition pro-
cess. Seven different models were used in test: Galaxy S2,
Galaxy S3, Galaxy Note, Galaxy Note 2, Galaxy Nexus, Droid,
and Vega LTE. First five devices were included in the top 10
Android devices used globally in November, 2012 (Android
device market share, 2012), and extra two ones.

6.1. Experiment method

Whether or not data integrity is guaranteed can be
judged by simply repeating the process of the entire data

acquisition in this study multiple times (Section 4).
However, before conducting the described process, data
was obtained using JTAG from the devices that support
JTAG. This data will be used for comparison after
acquisition.

If the integrity of the user data partition is guaranteed,
then the integrity of each file is also guaranteed. This study
did not conduct data extraction experiments to evaluate
the data in the file unit, but evaluated only data acquisition
from the partition. The experimentation processes is
shown in Fig. 6.

First, we confirmwhether or not the targeted device can
obtain data by using JTAG. If it is possible, then we obtain
data with JTAG and by using the CRMI method. If it is not
possible, then obtain data by only using the CRMI method.
For accurate experiment results, this study was repeated
five times in total and compared the hash values of all the
user data partition that were acquired after repeating five
times.

In the experiment, the devices fromwhich data could be
acquired through JTAG were Galaxy S2 (SHW-M250S) and
Galaxy Note (SHV-E160S).

6.2. Experimentation results

The experiments using seven Android devices were
completed according to the conditions described in this
study. This study confirmed that the hash value of the user
data partition that was extracted from each device was the
same in all observations. Because of this, we feel that the
data acquisition method suggested in this study preserves
the integrity of the data. In addition, it indicates that
acquiring data through JTAG also preserved integrity.

Fig. 5. Android Extractor.

N. Son et al. / Digital Investigation 10 (2013) S3–S11 S9

7. Conclusions

To the author’s knowledge, prior works have not
considered the integrity of data acquired from an Android
device. However, if the integrity of user data is not guar-
anteed, data potentially relevant to an investigation, such
as data in unallocated or journal areas, can be altered.

This study explained a method of preserving integrity at
the time of acquisition of user data by using the previously
studied Recovery Mode, fromwhich a tool to automate this
process was developed. By using the produced tool, ex-
periments were conducted, targeting various devices to
determine if data can be acquired from an Android device
while also preserving the integrity of such a device. The
results of such tests show that the integrity of the user data
area was preserved using Recovery Mode acquisition
methods.

Further, the results of the experiment also confirmed
that acquiring data acquired using JTAG also preserved the
integrity of the user data area.

For accurate experiment results, this study attempted to
conduct tests regarding all the file systems that have been
used in Android devices, but since we could not get access
to all the targeted Android devices, we were only able to
test YAFFS2 and Ext4.

Also, in order to return to the former state after flashing
the CRMI and acquiring data, an investigator must get the

original copy of the boot partition from the previous
firmware version. But when the original firmware is hard to
obtain, it is difficult to apply this method. As for the device
whose original firmware is hard to obtain, this study rec-
ommends flashing the CRMI to the recovery partition
instead of flashing it to the boot partition.

As mentioned, there are several limitations, but the
CRMI method is more efficient compared to other existing
methods of forensically sound data acquisition from
Android devices.

8. Future research

Although this study attempted to conduct tests target-
ing a diverse array of Android devices, the tests were
mostly conducted targeting the Samsung family of prod-
ucts. Additional tests targeting other products such as Sony
and HTC are necessary. Also, since the method of producing
the CRMI varies for each vendor, this process should be
verified for each vendor.

This study focused on the method of data acquisition.
Future work will expand to methods of acquisition and
analysis at the same time.

Acknowledgments

This work was supported by the IT R&D program of
MOTIE/KEIT. [10035157, Development of Digital Forensic
Technologies for Real-Time Analysis]

References

ADB (Android Debug Bridge), http://developer.android.com/tools/help/
adb.html.

Android 2.3 Gingerbread uses ext4 file system. http://blog.gsmarena.com/
android-2-3-gingerbread-uses-ext4-file-system-promises-better-
dual-core-performance/; 2012.

Android 2.3 over reaches 83 percent market share. http://www.zdnet.
com/android-4-1-jelly-bean-reaches-1-8-percent-market-share-
7000005096/; 2012.

Android App Store. http://dottech.org/73218/android-now-has-over-
600000-apps-installed-20-billion-times/; 2012.

Android boot image format, http://www.xinotes.org/notes/note/1048/.
Android device market share, http://blog.w3i.com/2012/12/17/android-

device-marketshare-percentages/.
Android Market Share. http://techcrunch.com/2012/11/02/idc-android-

market-share-reached-75-worldwide-in-q3-2012/; 2012.
Android Partitions, http://www.enfeuman.com/2011/06/10/android-

partitions-explained/.
Breeuwsma MF. Forensic imaging of embedded systems using JTAG

(boundary-scan). Digital Investigation 2006;3(1):32–42.
Carrier B. File system forensic analysis. Addison-Wesley; 2005.
Cellebrite UFED. http://www.cellebrite.com/mobile-forensic-products/

ufed-touch-ultimate.html; 2012.
Chen S, Yang C. Design and implementation of live SD acquisition tool in

Android smart phone. In: Fifth international conference on genetic
and evolutionary computing 2011. p. 157–62.

FTL(Flash Translation Layer). Understanding the Flash Translation Layer
(FTL) specification. Intel; 1998.

Han S-W. Flash memory wear leveling system and method Issued 2000.
US patent 6,016,275.

Hoong A. Android forensics: investigation, analysis and mobile security
for google Android. Syngress; 2011.

Journal File Systems. http://www.linux-mag.com/id/1180/; 2002.
Jovanovic Z. Android forensics techniques. International Academy of

Design and Technology; 2012.
Kim K, Hong D, Ryu J. Forensic data acquisition from cell phones using

JTAG interface. Information Security Research Division 2008:410–4.

Fig. 6. Experimentation processes.

N. Son et al. / Digital Investigation 10 (2013) S3–S11S10

Kim D, Park J, Lee K, Lee S. Forensic analysis of Android phone using Ext4
file system journal log. Future information technology. Application
and Service 2012;164:435–46.

Lee S, Kim H, Lee S, Lim J. Digital evidence collection process in integrity
and memory information gathering. Systematic Approaches to Digital
Forensic Engineering 2005:236–47.

Micro Systemation XRY. http://www.msab.com/; 2012.
MTD (Memory technology devices), http://www.linux-mtd.infradead.org/

faq/nand.html.
rootfs, https://www.kernel.org/doc/Documentation/filesystems/ramfs-ro-

otfs-initramfs.txt.
Vidas T, Zhang C, Christin N. Toward a general collection methodology for

Android devices. Digital Investigation 2011;8:S14–24.
YAFFS2 (Yet Another Flash File System), http://www.yaffs.net/yaffs-2-

specification.

Namheun Son received his Master’s degree in Information Security, Korea
University. He is now studying doctor course in Graduate School of In-
formation Security, Korea University. He is currently working for Digital
Forensic Research Center in Korea University. He has performed projects
related to Windows Memory Forensics, Relational Database Management
System (RDBMS) Forensics, and Smartphone Forensics. His research in-
terests are Smartphone Forensics, Windows Memory Forensics and User
Behavior Analysis Forensics.

Yunho Lee received his B.S. degree in Computer Science from Pukyong
National University. He is now studying master course in Graduate School
of Information Security, Korea University. He is currently working for
Digital Forensic Research Center in Korea University. He has performed
projects related to Cloud Forensics and Android Forensics. His research
interests are digital forensics, cloud forensics and smartphone forensics.

Dohyun Kim received his B.S. degree in Computer Science from Seoul
National University of Science and Technology, He is now studying master
course in Graduate School of Information Security, Korea University. He is
currently working for Digital Forensic Research Center in Korea University.

He has performed projects related to Android Forensics, Analysis of Ext4
File System and Reference Data Set (RDS). His research interests are
Smartphone Forensics, File System and Digital Forensics.

Joshua I. James is a researcher with the University College Dublin Digital
Forensic Investigation Research Group and an adjunct researcher with the
Korean National Police University International Cybercrime Research
Center. He works closely with Law Enforcement, and lectures on Live Data
Forensics and Digital Forensic Practice. Coming from a background in
Network Security and Administration, his focus is now on automatic
digital evidence identification and correlation. He is specifically
working in the area of rigorous automated investigation and analysis
techniques for digital investigations with an emphasis on ease of use. To
this end, he contributes to a number of open source projects for automatic
evidence acquisition and analysis, such as project ATOM [Cybercrime-
Tech.com], Goldfish memory analysis, and the FIREBrick write blocker
[digitalfire.ucd.ie].

Sangjin Lee received his Ph.D. degree from Korea University. He is now a
Professor in Graduate School of Information Security at Korea University
and the head of Digital Forensic Research Center in Korea University since
2008. He has published many research papers in international journals
and conferences. He has been serving as chairs, program committee
members, or organizing committee chair for many domestic conferences
and workshops. His research interests include digital forensic, steganog-
raphy, cryptography and cryptanalysis.

Kyung-ho Lee received his Ph.D. degree from Korea University. He is now
a Professor in Graduate School of Information Security at Korea University,
and leading the Risk management Laboratory in Korea University since
2012. He has a high level of theoretical principles as well as on-site
experience. He was a former CISO in NHN corporation, and now he
takes as the CEO of SecuBase corporation. His research interests include
information security management system (ISMS), risk management, in-
formation security consulting, privacy policy, and privacy impact assess-
ment (PIA).

N. Son et al. / Digital Investigation 10 (2013) S3–S11 S11

	A study of user data integrity during acquisition of Android devices
	1 Introduction
	2 Related work
	3 Background
	4 Acquisition processes
	4.1 Prepare the custom recovery mode image
	4.2 Boot the device for flashing
	4.3 Flash the CRMI to boot partition of the device
	4.4 User data acquisition
	4.5 Return to former state
	4.6 Restoring a device to its original state

	5 Android Extractor
	5.1 Select an Android device
	5.2 Turn off the Device & enter the flash mode
	5.3 Flash CRMI & wait recovery mode
	5.4 Select extraction type
	5.5 Extract user data
	5.6 Check if original boot image is available
	5.7 Overwrite original boot image

	6 Experiment using Android Extractor
	6.1 Experiment method
	6.2 Experimentation results

	7 Conclusions
	8 Future research
	Acknowledgments
	References

