
FORENSIC SCIENCE
JOURNAL SINCE 2002

Forensic Science Journal
2017;16(1):1-12

fsjournal.cpu.edu.tw
DOI:10.6593/FSJ.2017.1601.01

A Study on Common Android Emulators and Anti-
Forensic Message-Hiding Applications

Szu-Yuan Teng 1*, M.S. ; Che-Yen Wen 2, Ph.D.

1 Taipei City Field Office, Investigation Bureau, Ministry of Justice
2 Department of Forensic Science, Central Police University

Received: December 23, 2016; Accepted: May 22, 2017.

Abstract

Currently, mobile devices are widely used in various walks of life. The Android operating system has the highest market
share of the mobile devices operating system market. Android can be installed in physical mobile devices; however, Android
mobile operating system emulators are also available. Users can install applications (APPs) in an emulator for convenient use
without physical mobile devices. There are several message hiding APPs (e.g., Wickr) that provide end-to-end encryption and
message self-destruction mechanisms. Criminals can use these message hiding APPs, with their anti-forensic features, to send
secret messages. These message-hiding APPs, installed in an Android emulator to evade criminal investigation, make digital
forensics very challenging. Investigators need to know how criminals install and use such emulators in physical devices, how
criminals install and use message-hiding APPs in the emulator, and how messages can be. This study explores applications of
digital forensic tools and forensic procedures to identify and analyze four message hiding APPs installed in emulators: Wickr,
Surespot, Cyber Dust, and ChatSecure. The emulators used in the study are AMIDuOS, Andy, BlueStacks App Player, Droid4X,
Genymotion, KOPLAYER, Memu, Nox App Player, Windroy, Xamarin Android Player, and YouWave Android. Their forensic
signatures and application characteristic values are sorted and summarized for digital forensics, so that digital forensic personnel
can refer to this digital forensic method when analyzing criminal evidence using an Android emulator.

Keywords: mobile device forensics, Android emulator forensics, anti-forensics, message hiding application, message hiding,
application forensics

*Corresponding author: Szu-Yuan Teng, Taipei City Field Office, Investigation Bureau, Ministry of Justice.
E-mail: mjib.teng@gmail.com

Introduction
Android and iOS are presently the two most

common mobile operating systems. According to the
IDC 2015 Smartphone OS Market Share Report [1],
Android has the largest market share at 81.2%, followed
by iOS at 15.8%. The Android mobile operating system
can be installed in physical mobile devices; however,
Android emulators are available for users to install and
use Android applications.

The main function of an Android emulator is to
simulate the software and hardware environment of an
Android mobile device (e.g., mobile phone or tablet).

Emulators are typically used to enable PC users to
download and use applications (e.g., games) from
the Google Play store. Android emulators include the
complete Android architectures, including the Linux
Kernel, Native Library, Dalvik VM, and Android
application framework.

In recent years, personal information leakage and
other information security incidents have occurred with
increasing frequency. Thus, demand for privacy protection
is rising. In response, several real-time communication
software vendors with the highest popularity and the
largest user quantity have started providing end-to-end
encryption. For example, the WhatsApp application

2 Forensic Science Journal 2017; 16(1)

protects user content (e.g., text messages, photos, videos,
group chats, and video chats) with end-to-end encryption.
Only the sender and the recipient can read the encrypted
messages. The Line instant communications application
has an end-to-end encryption capability called “Letter
Sealing”. It applies by default to all chat, voice and video
calls. Because messages are compiled into messy code
using encryption keys stored in the personal devices
rather than on the server, any message that is intercepted
cannot be decrypted and read. The message-hiding
application Telegram became infamous after Islamic
State (ISIS) terrorists used it to exchange messages about
a terrorist attack in Paris on Friday 13 November 2015.
It has an automatic message destruction function to
reduce the risk of being monitored. Such an application
can be used as an instrument of crime because of its
strong privacy protections. ISIS has developed another
encrypted communication application called "Alrawi,"
which increases the difficulty of spying on their terrorist
activities by anti-terrorism units. The United States
government has warned that criminals and extremists
could use such communication encryption technology to
hide their whereabouts.

Suspects are likely to use Android emulators to
install such message-hiding applications for criminal
message transmission with the purpose of evading
criminal investigation. Digital forensics practice
personnel therefore need an in-depth discussion and
study of how to analyze criminal cases that involve the
use of new virtual mobile devices as instruments of
crime.

Experimental Materials and Methods

Android Emulator Software
In this study, an experiment was conducted on

11 Android emulators. The Lollipop version of the
AMIDuOS emulator was used as the research subject [2].
The Andy emulator can run on the Microsoft Windows
operating system and the Apple OS X operating system.
It has powerful functions, and it supports seamless
synchronization between desktop and mobile devices [3].
The BlueStacks App Player is one of the earliest Android
emulators in the market, and it is one of the most famous
and most widely used emulators [4]. Droid4x, also
known as the hippocampus-playing simulator, enables
ARM applications to run on an x86 architecture, and
it is compatible with more than 99 % of applications

and games in the market [5]. The Genymotion Android
Emulator claims to be the Android emulator software
with the fastest starting speed, and it currently supports
operating systems including Microsoft Windows,
Apple OS X, and Linux, with the features of being
easy to install and use [6]. The KOPLAYER emulator,
developed by Kaopu Network Co., Ltd. in Fuzhou
China, supports Intel and AMD CPUs [7]. The Memu
emulator, developed by Microvirt Software Technology
Co., Ltd. in Shanghai of mainland China, provides a
multiple boot manager function like Droid4X [8]. The
Nox App Player, an emulator developed by MoreTech
Inc. in Beijing, China, emphasizes high performance
and ultimate compatibility [9]. The Windroy emulator
was developed by Beijing Windroy Technology Co.,
Ltd. in mainland China [10]. Xamarin Android Player,
an emulator developed by the company Xamarin, can be
installed on Microsoft Windows and Apple OS X. It is
mainly intended for use by application developers [11].
YouWave Android, a commercial emulator developed
by the company YouWave in California, United States,
supports Android 5.1 Lollipop version [12]. This study
also selected 11 types of common Android emulators in
the market as experiment and analysis objects, including
Andy v46.2.207, AmiDuos v3.1.30, BlueStacks App
Player v2.0, Genymotion v2.6.0, Memu v2.6.5, Droid4X
v0.10.3, KOPLAYER v1.3.14, Nox App Player v3.1,
Windroy v2.9, Xamarin Android Player v0.6.5, and
YouWave Android v5.7. In addition, this study selected
four message-hiding applications for experiments and
analysis, including Wickr v2.6.4.1, Surespot v65, Cyber
Dust v2.6.4, and ChatSecure v14.2.3.

Message-Hiding Applications
In this study, an experiment was performed using

four message-hiding applications: Wickr v2.6.4.1,
Surespot v65, Cyber Dust v2.6.4, and ChatSecure
v14.2.3. Wickr v2.6.4.1 is a free end-to-end message-
hiding application that can be used to send text, video,
picture, and voice messages. It emphasizes security
and anonymity, with no metadata for tracking. Surespot
v65 is an end-to-end message-hiding application that
provides a symmetric key encryption (256 bit AES-
GCM) mechanism, and emphasizes a built-in security
mechanism. It can be used to send any message, but only
the recipient can read the contents. Cyber Dust v2.6.4
is a message-hiding application that can automatically
erase a message without leaving any evidence. All sent
messages are deeply encrypted, cannot be accessed

Android Emulators/Message-Hiding 　3

again, and cannot be read even by the developer.
ChatSecure v14.2.3 is a message-hiding application that
provides a powerful encryption mechanism and end-
to-end authentication. The encryption methods used
include XMPP with TLS for authorization control, OTG
for end-to-end authentication, Tor for bypassing firewall
restrictions, and SQLCipher for encrypting the locally
stored dialogue records.

Description of the Experimental Simulation
Environment

This study used the Microsoft Windows 7 operating
system as the experimental environment. The system
registry, system connection port monitoring, file change
monitoring, AVD DDMS (Android Virtual Device Dalvik
Debug Monitor Server), and integrated forensics and
analysis were used to observe and record changes in files

after the Android emulators in this study were installed
and run.

Experimental Method Design
The X-Ways Forensics comprehensively analyzed

and recorded changes to the local file system and the
virtual file system of the emulator. Regshot, Currports,
FolderChangesView, and Disk Pulse also recorded and
analyzed the local system registry, system connection
ports , folders , and f i les . The experimental and
observation results of the Android emulator file system
and the message-hiding applications were recorded and
analyzed by AVD DDMS and WireShark Android Logcat
to find out the names and paths of files that needed to be
preserved for forensics. Fig. 1 shows the forensic process
and research method.The steps for testing an Android
emulator are as follows:

Fig. 1 Digital forensics process for Android emulators.

4 Forensic Science Journal 2017; 16(1)

1. Obtain the emulator to be examined forensically, and
record its version.

2. Start the Regshot app on the Windows device to take
a snapshot of the registry. Then start the Currports,
FolderChangesView, and Disk Pulse apps to enable
their file monitoring functions.

3. Install the executable file of the Android emulator
on the local device and observe the file changes in
FolderChangesView and Disk Pulse.

4. After the installation is complete, disable the
monitoring functions of FolderChangesView and
Disk Pulse, and record the file and folder changes in
a report file.

5. Use the Regshot to take a second snapshot of the
registry, use the comparison function to analyze the
differences in the registry before and after software
installation, and generate a report file.

6. Analyze the report files generated in the previous
two steps to sort and summarize important file
information of the Android emulator, find data items
for forensic signatures, and record them.
The message-hiding APPs installed in the Android

emulator were tested and observed to determine which
files and paths might contain forensic information.
During the installation and test of the wireless file
transmission and message hiding APPs, X-Ways
Forensics was used for comprehensive forensic analysis,
and AVD DDMS was used to record and analyze file
system changes in the Android emulator.

The steps for testing an APP are as follows:
1. Obtain the wireless file transmission and message-

hiding APP to be examined, and record its version.
2. Start the Logcat function of the AVD DDMS on the

local device to monitor changes in the file system.
3. Install the APK (Android application package) of the

wireless file transmission and message-hiding APP on
the local device, observe the file changes using AVD
DDMS Logcat, and record the file and folder changes
in a report file.

4. Download the heap content (HPROF) of the
wireless file transmission and message-hiding APP,
respectively, before, during, and after running this
APP, and analyze the file system and heap content.

Results and Discussions
Analysis of the installation paths and virtual file
systems of Android emulators

Each of the 11 emulators were installed and

analyzed. Eight were installed in the locations C:\
Program Files\ , C:\Program Files (x86)\ , or C:\
ProgramData\ (three of them can alternatively be
installed under a user account). Two were installed under
a user account (C:\Users\{USER ACCOUNT}\). One
was installed in the root directory of the system disk (C:\
KOPLAYER). According to analysis of the virtual file
systems of the emulators, we found that seven of the
emulators stored the virtual file under a user account
(C:\Users\{USER ACCOUNT}\), two of them in the
system installation path, and the remaining two in C:\
ProgramData\Emulator Program Name.

We analyzed the virtual machine technologies,
virtual disk types, and registry keys used by the Android
emulators. The emulators in this study used one of
three virtual machine technologies: VMware, Oracle
VirtualBox, and self-developed LayerCake. They used
one of five file configuration formats (virtual disk file
types): VMware (VMDK), Oracle VirtualBox (VDI &
VMDK), Oracle VirtualBox (VMDK), Oracle VirtualBox
(VDI), and self-developed sparsefs. The emulators had
different keys in the registry key path HKEY_LOCAL_
MACHINE\SOFTWARE\ for forensic personnel to track
and examine.

Analysis of the programs started by emulators,
ports, and whether ADB Shell can be used

When one of the Android emulators is run, it starts
a specific program and port. These allow the emulator
to receive and transmit information from and to the host
system. The program started by each emulator is stored
in the heap while the emulator is running. The test results
show that the program started by each emulator might
use a different port. By observing the running emulators
through the AVD DDMS, we found of the 11 emulators,
only KOPLAYER and YouWave Android did not connect
to ADB Shell through the respective ports. The remaining
nine emulators fetched the dynamically partitioned image
file, RAM, and APP heap through ADB Shell.

Analysis of Digital Evidence
This study analyzed types of digital evidence

generated by Android emulators. From the analysis
results, we found that the file system might contain digital
evidence such as files and folders, registry keys, program
and network port information, and memory and logs.
All of the emulators except KOPLAYER and YouWave

Android Emulators/Message-Hiding 　5

Android fetched the APP heap information. Four of
them, Andy, Genymotion, Nox App Player, and Xamarin
Android Player, could directly fetch and examine the
respective memory locations. The other seven required
an importing program and an ADB connection to
fetch from memory. The test result showed that the
emulators, although using different virtual architectures

and virtual environments, allow investigators to obtain
APP information using digital forensic procedures
and methods. Therefore, digital evidence can still be
effectively fetched from these Android emulators. Major
forensic signatures for the emulators are summarized in
Table 1.

Table 1 Major forensic items for Android emulators.

No.
Emulator

Name
Emulator System Path

Path to the Virtual File
System of the Emulator

Type of
Virtual

Disk File
Registry Key Analysis

Analysis on
Started Programs

and Ports

Whether
ADB Shell

Can Be Used
and Port

1 AMIDuOS
C:\ProgramData\AMI\
DuOS\;C:\Users\
{USER

C:\ProgramData\AMI\
DuOS\imgs

vdi

HKEY_CURRENT_
USER\Software\AMI\
DuOS\DuOS\;HKEY_
LOCAL_MACHINE\
SOFTWARE\
Microsoft\Windows\
CurrentVersion\Installer\
UserData

DuOS.exe:3600;
DuoVMHeadless.
exe:10088

Yes: 21503

2 Andy
C:\Users\{USER
ACCOUNT}\AppData\
Roaming\Andy\

C:\Users\{USER
ACCOUNT}\AppData\
Roaming\Andy\
machines\af48496a-
085f-4698-8d8a-
4d6ce371c7a0(GUID)\
images

vmdk

HKEY_CURRENT_
USER\Software\
Andy\;HKEY_
LOCAL_MACHINE\
SOFTWARE\
Microsoft\Windows\
CurrentVersion\Uninstall\
Andy OS\

AndyConsole.
exe:5905

Yes: 5555

3
BlueStacks
App Player

C:\Program Files (x86)\
BlueStacks

C:\ProgramData\
BlueStacks\Android

sparsefs
HKEY_LOCAL_
MACHINE\
SOFTWARE\BlueStacks\

HD-Frontend.
exe:53306

Yes: 5554

4 Droid4X
C:\Program Files (x86)\
Droid4X

C:\Program Files (x86)\
Droid4X\VirtualBox
VMs\droid4x\;

vmdk

HKEY_LOCAL_
MACHINE\
SOFTWARE\
Wow6432Node\
Microsoft\Windows\
CurrentVersion\Uninstall\
Droid4X\

Droid4X.exe:59955 Yes: 26944

5 Genymotion

C:\Users\{USER
ACCOUNT}\AppData\
Local\Genymobile\
Genymotion

C:\Users\{USER
ACCOUNT}\AppData\
Local\Genymobile\
Genymotion\deployed\
Mobile device name
(ex: Samsung Galaxy
Note 3 - 4.3 - API 18 -
1080x1920)

vdi and
vmdk

HKEY_CURRENT_
USER\Software\
Genymobile\
Genymotion\;KEY_
LOCAL_MACHINE\
SOFTWARE\
Microsoft\Windows\
CurrentVersion\Uninstall\

Multiple ports such
as player.exe:56877

Yes: 5555

6 Forensic Science Journal 2017; 16(1)

No.
Emulator

Name
Emulator System Path

Path to the Virtual File
System of the Emulator

Type of
Virtual

Disk File
Registry Key Analysis

Analysis on
Started Programs

and Ports

Whether
ADB Shell

Can Be Used
and Port

6 KOPLAYER C:\KOPLAYER
C:\KOPLAYER\
deployed\KOPLAYER

vmdk

HKEY_LOCAL_
MACHINE\
SOFTWARE\
Microsoft\Windows\
CurrentVersion\Uninstall\
KOPLAYER_is1\

KOPLAYER.
exe:537377

No

7 Memu
C:\Program Files\
Microvirt

C:\Program Files\
Microvirt\MEmu\
MemuHyperv VMs\
MEmu

vmdk

HKEY_LOCAL_
MACHINE\
SOFTWARE\
Wow6432Node\
Microsoft\Windows\
CurrentVersion\Uninstall\
MEmu\

Multiple ports
such as MEmu.
exe:57385,
57387, 57391 and
MEmuHeadless.
exe:21500

Yes: 21503

8
Nox App

Player

C:\Program Files\
Bignox\BigNoxVM;C:\
Users\{user account}\.
BigNox

C:\Users\{user
account}\AppData\
Roaming\Nox\bin\
BignoxVMS\nox\

vmdk

HKEY_LOCAL_
MACHINE\
SOFTWARE\
Microsoft\Windows\
CurrentVersion\Uninstall
\0147813640F7AF69F56
9581EE672B6BE1E7179
8E\

nox_adb.
exe:5037, 55504;
NoxVMHandle.
exe:58001

Yes: 62001

9 Windroy

C:\Program Files (x86)\
Windroye;C:\Program
Files\WindroyeBox;C:\
Users\{user account}\
AppData\Local\
VirtualStore\Program
Files\WindroyeBox

C:\ProgramData\
Windroye\vdi;C:\
ProgramData\Windroye\
Windroye_4E513D9BC
016A2AADA0CF6F642
6390EB\

vdi

HKEY_LOCAL_
MACHINE\
SOFTWARE\
WindroyeBox\

WindroyeBoxHD.
exe:22555;
Windroye.
exe:55795

Yes: 22515

10
Xamarin
Android
Player

C:\Program Files\
Xamarin Android Player

C:\Users\
{user account}\
AppData\Roaming\
XamarinAndroidPlayer\
VMStorageLibrary\
Nexus 5 (Lollipop)

vdi

HKEY_LOCAL_
MACHINE\
SOFTWARE\
Microsoft\Windows\
CurrentVersion\Installer\
UserData\S-1-5-18\Produ
cts\21C5AD255AE2DB6
4E8CB93588A3DFB32\
InstallProperties\

AndroidPlayer.
exe:49695

Yes: 5555

11
YouWave
Android

C:\Program Files (x86)\
YouWave Android

C:\Users\{user
account}\.Virtualbox\
HardDisks

vdi

HKEY_LOCAL_
MACHINE\
SOFTWARE\
Wow6432Node\
Microsoft\Windows\
CurrentVersion\Uninstall\
YouWave\

YouWave Android.
exe:60500

No

Android Emulators/Message-Hiding 　7

As shown in Table 2, the Android emulators employ
three types of virtual machine software technologies.
Digital evidence retained by emulators in the local device
includes logs, temporary browser files, registry keys,

memory information, files, and folders. Table 2 also
shows whether X-Ways Forensics can fetch directly from
emulator memory, and the path of the memory file.

Table 2 Digital evidence of Android emulators.

No.
Emulator

Name

Virtual Machine
Software and

Technology Employed

Local Digital Trace
Evidence Retained

by Emulator

Can Emulator
Memory Be

Fetched Directly?
Memory Location

1 Andy
VMware
(VMDK)

Logs
Browser temporary

files
Registry keys

Memory
information

Files and folders

Yes

C:\Users\MJIB\AppData\Roaming\
Andy\machines\06ad203a-81da-
46f8-a582-15761de6c68b\images*.
vmm

2
BlueStacks
App Player

Self-developed
LayerCake virtual

technology
No N/A

3 Genymotion
Oracle VirtualBox
(VDI & VMDK)

Logs
Browser temporary

files
Registry keys

Memory
information

Files and folders

Yes

C:\Users\{user account}\AppData\
Local\Genymobile\Genymotion\
deployed\HTC One - 4.4.4 - API 19
- 1080x1920\Snapshots*.vmdk

4 Droid4X

Oracle VirtualBox
(VMDK)

No N/A

5 KOPLAYER No N/A

6 Memu No N/A

7
Nox App

Player
Yes

C:\Users\{user account}\AppData\
Roaming\Nox\bin\BignoxVMS\nox\
Snapshots*.vmdk

8 AMIDuOS

Oracle VirtualBox
(VDI)

No N/A

9 Windroy No N/A

10
Xamarin
Android
Player

Yes

C:\Users\{user account}\AppData\
Roaming\XamarinAndroidPlayer\
VMStorageLibrary\Nexus 5
(Lollipop)\Snapshots*.vmdk

11
YouWave
Android

No N/A

Analysis of the message-hiding APP Wickr
When Wickr is installed, the emulator creates a

folder named com.mywickr.wickr2 in the file system,

containing its internal memory. This folder consists of
five subfolders: app_sfs, databases, files, no_backup,
and shared_prefs. The shared_prefs folder stores XML
files containing some parameter settings of the APP. The

8 Forensic Science Journal 2017; 16(1)

databases folder contains SQLite database files named
wickr_db, and log files with the names starting with
wickr_db-journal. These two types of files are encrypted,
so SQLite database files cannot be opened or browsed
by the SQLite database reader, and log files cannot be
opened or accessed by common text editors. The files
folder stores record files (with the file extension.wic)
related to the chats with different contacts. All chat
record files are encrypted using the SHA-256 algorithm.
For each chat record, two .wic files are generated with
almost identical names, for example, dacec2704dbdbbf
f585cdd778a9cb47bbe24a5d583ee2f0d4705bd9e84f1f
08f.wic and dacec2704dbdbbff585cdd778a9cb47bbe24
a5d583ee2f0d4705bd9e84f1f08f2.wic. The second .wic
file is generated empty, for reasons that are not clear.
Under the files folder, there is also an encrypted file
named keyFile, which is used to store external memory
content of the emulator. Analysis of the APP's network
connection shows that the APP performs account login
and message transmission through the HTTPS (port 443)
service, and exchanges messages through the secex.info
(204.232.166.114) server.

Analysis of the message-hiding APP Surespot

After Surespot is installed, the emulator creates
a folder named com.twofours.surespot in the file
system of the internal memory. This folder consists of
two subfolders: files and shared_prefs. The shared_
prefs folder stores XML files containing some of the
APP’s parameter settings. The account information of
the last user and the last contact can be found in the
surespot_preferences.xml file. The files folder consists
of three subfolders: identities, publicKeys, and state.
The identities folder stores ssi files of a user account
in GZIP format, with the file header 0x1F 8B 08. We
used 7-ZIP to decompress the .ssi files, and attempted
to parse their content, but we found that the file content
was AES encrypted; therefore, we failed to retrieve any
account information. Under the publicKeys folder are
subfolders storing the account information of the users.
The state folder stores the chat records in a file named
messages_user account_contact account.sss and contact
information in a file named friends.sss. All .sss files are
stored in GZIP format. After the files were decompressed,
we found that the file content was in JSON format, with

multiple fields defined, with the following fields and
their corresponding values: id, to, hashed, voicePlayed,
shareable, iv, fromVersion, gcm, data, from, datetime,
mimeType, and toVersion, and with the corresponding
values stored. The iv and data fields were encrypted
with AES-256. The datetime field contains the chat time
stored in UNIX Numeric-Value format. The /data/com.
twofours.surespot and surespot folders store external
memory information of the emulator. Analysis of the
APP's network connection information shows that the
APP performs account login and message transmission
through the HTTPS (port 443) service, and exchanges
related messages through the server.surespot.me and
appspot.l.google.com servers.

Analysis of the message-hiding APP Cyber Dust

When Cyber Dust is installed, the emulator creates
a folder named com.radicalapps.cyberdust in the file
system of the internal memory. This folder consists of
five subfolders: cache, code_cache, databases, files, and
shared_prefs. The shared_prefs folder stores XML files
containing some parameter settings of the APP. Among
these files, the MyPreferences.xml file is of the greatest
importance. It contains user account name, device type,
and token value encrypted by an private algorithm and
encoded in base64. The databases folder stores SQLite
database files named cyberdust.db and log files with the
names starting with cyberdust.db-journal. The cyberdust.
db file permits users to read its content, where the id,
message_id, and date fields may help understand certain
files of encrypted messages. The files folder contains
some useful files for decrypting the messages transmitted
by the APP, such as gaClientId, INSTALLATION, privat
eKey.5715f8afe4b05bbb32a8099f, and publicKey.5715f8
afe4b05bbb32a8099f. privateKey.5715f8afe4b05bbb32a
8099f is the message ID used in this chat. The gaClientId
and INSTALLATION files record UUIDs. No folder
is created to store external memory information of the
emulator. The analysis of the APP's network connection
information shows that it performs account login and
message transmission through the HTTPS (port 443)
service and exchanges messages through the cyberdustl
oadbalancerprod-1918061346.us-east-1.elb.amazonaws.
com server.

Android Emulators/Message-Hiding 　9

Analysis of the message-hiding APP ChatSecure
After ChatSecure is installed, the emulator creates

a folder named info.guardianproject.otr.app.im in the
file system of the internal memory. This folder consists
of four subfolders: app_KeyStore, databases, files,
and shared_prefs. The shared_prefs folder stores XML
files containing some parameter settings of the APP.
Among these files, the account.xml file is of the greatest
importance as it records the user’s account information.
Under the databases folder, there is a database file
imps.db consisting of 21 tables, of which the accounts,
contacts, messages, and chats tables contribute the most
to forensic examination. The accounts table contains
the user's account and plaintext password information.
The contacts table contains contact information. The
messages and chats tables contain any messages that are
not yet deleted. The files folder has an encrypted SQLite
3 database file media.db and an APP debugging track file
trail.properties. The track file records metadata that is
useful for forensic examination, e.g., the APP start time
and database start time. The /data/info.guardianproject.
otr.app.im folder stores external memory information

of the emulator. The analysis of the APP's network
connection information shows that the APP performs
account login and message transmission through the
XMPP service and exchanges related messages through
the jabber.otr.im (port 5222) public server.

As shown in Table 3, the four message-hiding
APPs have three types of digital evidence for forensic
examination: internal memory file system and external
memory of the emulator, network connection analysis
data, and emulator and APP heaps. The analysis of the
internal memory file system for the emulator shows that
Wickr, Cyber Dust, and ChatSecure generate SQLite
database files in the program folder to store relevant
information. According to analysis of the emulator
and APP heap information while each of the APPs are
running, secret messages sent and received by the user,
and even the already deleted messages, are retained. If
the user logs out of an APP account , does not close APP,
most of the hidden messages in the APP heap are lost,
while related messages can still be found in the emulator
memory.

Table 3 Major forensic items for message-hiding APPs.

Process
Name

File System of the
Internal Memory
for the Emulator

Any Folder
Generated for the
External Memory
of the Emulator?

Network Connection
Analysis Data

Emulator and APP Heap
Analysis

Wickr
com.mywickr.wickr2
folder, Wickr.db, all
wic files, and keyFile

No

Account login and message
transmission: secex.
info(204.232.166.114:443)
server; HTTPS service

Secret messages sent and
received by the user and deleted
messages can be found in the
emulator and APP heaps. Most
of the secret messages in the
APP heap are lost if the user
logs out of the APP.

Surespot

com.twofours.
surespot folder, user
account.ssi, 1.spk,
cookie.sss, friends.
sss, and messages_
user account:contact
account.sss

The /data/com.
twofours.surespot
and surespot folders
are generated.

Account login and message
transmission: server.
surespot.me and appspot.
l.google.com(443) servers;
HTTPS service

Secret messages sent and
received by the user and deleted
messages can be found in the
emulator and APP heaps. Most
of the secret messages in the
APP heap are lost if the user
logs out of the APP.

10 Forensic Science Journal 2017; 16(1)

Process
Name

File System of the
Internal Memory
for the Emulator

Any Folder
Generated for the
External Memory
of the Emulator?

Network Connection
Analysis Data

Emulator and APP Heap
Analysis

Cyber Dust

com.radicalapps.
cyberdust folder,
cyberdust.db, Web
Data, privateKey.577
aef46e4b07259ae71c
8e0, and publicKey.5
77aef46e4b07259ae7
1c8e0

No

Account login and message
transmission: cyberdustload
balancerprod-1918061346.
us-east-1.elb.amazonaws.
com(443); HTTPS service

Secret messages sent and
received by the user, and
deleted messages, can be found
in the emulator and APP heaps.
Most of the secret messages in
the APP heap are lost if the user
logs out of the APP.

ChatSecure

info.guardianproject.
otr.app.im folder,
imps.db (if the file
is not encrypted,
plaintext messages
may be found),
media.db, Web Data,
and KeyStore.bks

The /data/info.
guardianproject.
otr.app.im folder is
generated.

Account login and message
transmission: jabber.otr.
im(5222)

Secret messages sent and
received by the user, and
deleted messages, can be found
in the emulator and APP heaps.
Most of the secret messages in
the APP heap are lost if the user
logs out of the APP,

Conclusion

In this study, 11 Android emulators and four
message-hiding APPs were tested to explore digital
evidence retained on local devices. Therefore, this
study applied existing digital forensic procedures
and methods to discover the emulator file structure
and file characteristic items in which digital evidence
may be hidden on local devices. The results show that
investigators can extract digital evidence from these
Android emulators when they are used in crimes. The
study of message-hiding APPs shows that characteristic
items in which digital evidence may be hidden can
be discovered based on the internal file system of the
emulator, external memory of the emulator, network
connection, and emulator and APP heaps. The test results
also show that message-hiding APPs with end-to-end
encryption have anti-forensic capabilities, posing a major
challenge for digital forensic personnel. However, if
forensic personnel recover the content of the emulator’s
internal memory and APPs as soon as possible, they
may be able to obtain secret message records that were

transmitted. Therefore, the comparison of memory
content may help finding favorable forensic items and
characteristic items. Message-hiding APPs that provide
end-to-end message encryption and database encryption
present a major challenge to digital forensic practice.
Further exploration is required to study and develop
forensic decryption technologies and methods for end-to-
end encryption APPs.

References

1. IDC Smartphone OS Market Share 2015, 2014, 2013,
and 2012 Retrieved June 30 2016, from http://www.
idc.com/prodserv/smartphone-os-market-share.jsp

2. Amiduos Home (2016). Run Android on Windows
- Fastest Android Emulator Retrieved May 15 2016,
from http://www.amiduos.com/

3. Andy Home (2016). The Best Android Emulator For
PC & Mac _ Andy Android Emulator Retrieved May
15 2016, from http://www.andyroid.net/

4. BlueStacks App Player (2016). Bluestacks Android

Android Emulators/Message-Hiding 　11

Emulator for PC and Mac Retrieved May 15 2016,
from http://www.bluestacks.com/about-us/app-player.
html

5. Droid4X Home (2016). droid4x simulator-best
mobile experience on desktop Retrieved May 15
2016, from http://www.droid4x.com/

6. Genymotion Home (2016). Genymotion - Fast And
Easy Android Emulation Retrieved May 15 2016,
from https://www.genymotion.com/

7. KOPLAYER Home (2016). The Best Free Android
Emulator for PC - KOPLAYER Retrieved May 15
2016, from http://www.koplayer.com/

8. Memu Home (2016). MEmu - Android emulator for
PC, better than Bluestacks Retrieved May 15 2016,
from http://www.memuplay.com/

9. Nox App Player Download (2016). Nox App Player
Download for Windows PC, Mac, Laptop Retrieved
May 15 2016, from http://noxappplayer.com/

10. Windroy Home (2016). droid4x simulator-best
mobile experience on desktop Retrieved May 15
2016, from http://www.droid4x.com/

11. Introducing Xamarin Android Player (2016).
Simulate Android apps with the Xamarin Android
Player - Xamarin Retrieved May 15 2016, from
https://www.xamarin.com/android-player

12. YouWave Home (2016). YouWave, A world for
Android on PC Retrieved May 15 2016, from https://
youwave.com/

12 Forensic Science Journal 2017; 16(1)

