
UNIVERSITY OF OKLAHOMA

GENERAL EXAM REPORT

A Study on Performance Analysis of Queuing System
with Multiple Heterogeneous Servers

Prepared by

HUSNU SANER NARMAN

husnu@ou.edu

based on the papers

1) F. S. Q. Alves, H. C. Yehia, L. A. C. Pedrosa, F. R. B. Cruz, and L. Kerbache, Upper bounds

on performance measures of heterogeneous M/M/c queues, Mathematical Problems in Engineering, vol.

2011, p. 18, May 2011.

2) C. Misra and P. K. Swain, Performance analysis of finite buffer queueing system with multiple

heterogeneous servers, in 6th international conference on Distributed Computing and Internet Technology,

ser. ICDCIT10, Bhubaneswar, India, Feb 2010, pp. 180 183.

October 8, 2012



Abstract

Most of the real life multi server queuing systems have heterogeneous servers

which means each service rates are different than each other. Analysis of such

queuing system plays important role to improve performance. In this report, I

have summarized analysis of heterogeneous multi server queuing system which

has a finite and an infinite buffer. Average waiting time and average queue length

are formalized for both cases. Blocking probability of the system is also formalized

when the buffer size of the system is finite. The formalized metrics approximation

also tested with implemented simulation by using different allocation methods

when the system has infinite buffer. Such analyzing methods and results can help

us to understand multi heterogeneous queuing system.
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I. INTRODUCTION

Most of the real life multi server queuing systems have heterogeneous servers which means each

service rates are different than each other. For example, each worker in Papa John’s Pizzas has different

service times because of distinct work speed of human beings. There would be many reason to have in

heterogeneous servers. One of common reasons is that any failed or misbehaved component of a multi

server system are replaced by more powerful one that causes system to be heterogeneous [1]. As a

result, heterogeneous queuing system can be seen in every field of life. Heterogeneity of system arises a

question which arrived job should be distributed to which servers, namely allocation policy, to have high

throughputs or increase performance [1]. The question getting complex while different class of jobs has

been considered. For instance, business and economy class customers waiting in the boarding pass queue

are two type of customers and check-in officers can be considered as servers. This kind of system are

called multi class multi server system,(MCMS). Flexibility of each class and server can be added to multi

server system to make it more complex. Like economy class customers of some airline can be controlled

by two check-in officers while one check-in officer controls business class customers or vice verse.

There have been voluminous research about multi heterogeneous servers system in the literature. These

research subjects can be classified under four questions. (1) How many servers are needed? (2) What

should be the allocation policies? (3) What should be flexibility level of each server? (4) What should be

flexibility level of each class? A review of detail related literature can be found in [2].

In this report, I have reviewed performance of single-class heterogeneous multi servers queuing system

which has an infinite and a finite buffer as described in [3] and [4]. The objectives of this report are:

• Analyzing of performance of heterogeneous multi server single queuing system under single class

arrival.

• Reviewing upper bounds approximation for performance measurement of the system which has an

infinite buffer and testing these approximations with different allocation policies.

• Formulating lower bounds approximation for performance measurement of the system which has an

finite buffer.

The rest of the report is organized as follows: Firstly, the detail information about models will be given

in Section II. Then, analysis of model I and II are explained in Sections III and IV, respectively. After

analysis part, results are given in Section III-C and IV-C. Finally, the report is concluded in Section V.

II. DESCRIPTION OF MODELS

Two different models of heterogeneous queuing system have been studied. Model I and Model II are

described in subsections II-A and II-B, respectively.

A. Model I

First model is an M/Mi/c queuing model with an infinite buffer as it is showed on Figure 1. As a

general rule of M/M queues, the jobs arrive to servers according to Poisson distribution with rate λ. It

is assumed that service times of jobs follows exponential distribution with rate µi where i = 1, 2, .... , c
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Fig. 1: Heterogeneous Queuing System

with Infinite Buffer.
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Fig. 2: Heterogeneous Three Queuing Sys-

tem with Finite Buffer.

and c is the number of the servers. Service rates can be different than each other and assume that;

µ1 ≤ µ2 ≤ µ3 ≤ ..... ≤ µc (1)

When a job arrives to server, it can be forwarded to one of idle servers based on allocation policy. Three

more common allocation policies, which are (i) the fastest server first (FSF), allocating a job to the fastest

available server, (ii) randomly chosen server (RCS), allocating a job to randomly chosen server, and (iii)

the slowest server first (SSF), allocating a job to the slowest server are analyzed in the first model. If all

servers are busy by serving some other jobs then the new arrived job is queued. If a server finishes its

job, queued job is served according to FCFS rule which means first arrived job is served first based on

the aforementioned allocation policies.

B. Model II

Second model is an M/Mi/3/N queuing model with buffer size N as it is showed on Figure 2. Similar

to previous model, as a general rule of M/Mi/3/N queues, the jobs arrive to servers according to Poisson

distribution with rate λ. It is assumed that service times of jobs follows exponential distribution with rate

µi where i = 1, 2, and 3. Service rates can be different than each other and assume that;

µ1 ≥ µ2 ≥ µ3 (2)

When a job arrives to server, it can be forwarded to an idle server based on allocation policy. In this

model, we will not consider allocation policy while giving results for the queuing system but we will use

FSF allocation policy to find lower blocking probability bound. If all three servers are busy to serve for

other jobs then the new arrived job is queued. If a server finishes its job, queued job is served according

to FCFS rule. The difference between this model with previous model is that this model has three servers

and has a finite buffer. Therefore; an arrived job can be dropped if the buffer of the system is full.
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III. ANALYSIS OF MODEL I

Average waiting time and average queue length are two main metrics to analyze the performance of

queuing system with infinite queue size. To find average queue length and average waiting time, state

probability, which is the probability of number of jobs in the system, need to be measured. All equations

are mentioned for model I are derived in [3]. To simplify explanation of analysis of first model, the

notations used in analysis are listed below:

λ Job arrival rate.

µi Service rate of ith server.

ρ Utilization of the system.

pi State probability of ith state.

Eu
n Upper bound for average queue length of the system.

Eu
T Upper bound for average waiting time of the system.

µti Total service rates until ith server. Or

µti =
i

∑

j=1

µj 1 ≤ i ≤ c (3)

A. State Probability

It is assumed that queuing system is under heavy traffic flows. If multi jobs arrives, the job which is

served by the slowest server is more likely to stay on system longer. This means that probability of finding

a job on the slowest server is higher than the fastest server. The server rate of the system actually state

dependent. When one job in the system, the server rate is µ1 and when two jobs in the system, the server

rate is µ1+µ2. Server rate of the system is increasing until total number of the servers, c. Then the server

rate of the system is fixed with µtc. Therefore, by using assumption of equation (1), state diagram of the

system is formed as Figure 3. Based on Markov Chain on Figure 3, state probabilities can be formulated.

0

µt1

λ
1

µt2

λ
2

µt3

λ
c-1

µtc

λ
c

µtc

λ
c+1

µtc

λ

µtc-1

λ

Fig. 3: State transition diagram for M/Mi/c model

Indeed, it is SSF allocation policy and worst case scenario. Thus, by using state diagram of Figure 3,

upper bound for two main metrics, Eu
n and Eu

T , are be computed for heterogeneous multi server system.
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For better understanding, state probability equations until c state can be written as follows:

λp0 = µt1p1 ⇐⇒ p1 = p0
λ

µt1

λp1 = µt2p2 ⇐⇒ p2 = p0
λ2

µt1µt2

λp2 = µt3p3 ⇐⇒ p3 = p0
λ3

µt1µt2µt3
(4)

∗

∗

λpc−1 = µtcpc ⇐⇒ pc = p0
λc

µt1µt2µt3 ∗ ∗ ∗ µtc

State probability equations after c state are different because the system has only c servers. Thus; state

probability equations can be written as follows:

λpi−1 = µtcpi ⇐⇒ pi = p0
λi

µt1µt2µt3 ∗ ∗ ∗ µtc−1µtcµ
i−c
tc

where i > c (5)

Or shortly,

pi = p0
λi

(

µi−c
tc

)

c
∏

j=1

µtj

where i > c (6)

and we have
∞
∑

j=0

pj = 1 (7)

In order to find state probabilities, we need to measure p0 by using equation (7).

1 =
∞
∑

j=0

pj =
c

∑

j=0

pj +
∞
∑

j=c+1

pj (8)

p0 can be written as

p−1
0 = 1 +

c
∑

j=1











λj

j
∏

i=1

µti











+
∞
∑

j=c+1









λj

(

c
∏

i=1

µti

)

(

µj−c
tc

)









(9)

Equation (9) can be written as

p−1
0 = 1 +

c−1
∑

j=1











λj

j
∏

i=1

µti











+

∞
∑

j=c









λj

(

c
∏

i=1

µti

)

(

µj−c
tc

)









(10)
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To force the system to be on steady state utilization, ρ < 1. Therefore;

ρ =
λ

c
∑

i=1

µi

=
λ

µtc

< 1 (11)

After substituting equation (11) into equation (10), we will get

p−1
0 = 1 +

c−1
∑

j=1











λj

j
∏

i=1

µti











+









µc
tc

c
∏

i=1

µti









∞
∑

j=c

ρj (12)

From geometric series and ρ < 1,
∞
∑

j=c

ρj =
ρc

1− ρ
(13)

By using equations (12) and (13), we get finally p0 as

p0 =
1

1 +
c−1
∑

j=1





λj

j∏

i=1
µti



+





λc

(1−ρ)
c∏

i=1
µti





(14)

B. Average Queue Length and Waiting Time

Average queue length and average waiting time can be formulated by using state probability. Average

queue length, En for M/M/1 queue can be formulated as

En =
∞
∑

j=1

jpj (15)

However, M/Mi/c queue system has c servers and model uses SSF, Eu
n for M/Mi/c will be

Eu
n =

∞
∑

j=c+1

(j − c)pj (16)

By using equation (6) and (16), we obtain

Eu
n =

∞
∑

j=c+1

p0
(j − c)λj

(

µj−c
tc

)

c
∏

i=1

µti

= p0
µc
tc

(

c
∏

i=1

µti

)

∞
∑

j=c+1

(j − c)ρj where ρ =
λ

µtc

(17)
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After simplification of (17), finally we will have

Eu
n = p0

µc
tc

(

c
∏

i=1

µti

)

ρc+1

(1− ρ)2
(18)

By using Little’s law, average waiting time can be formulate as

Eu
T = p0

µc
tc

(

c
∏

i=1

µti

)

ρc+1

(1− ρ)2
1

λ
(19)

Equation (18) and (19) are upper bound approximations for average queue length En and average waiting

time ET , respectively.

C. Results of Model I

In this section, we will briefly explain results by using figures in [3]. Alves et al simulate a M/Mi/c

model in order to find ET for FSF, RCF, and SSF allocation policies. Then they compare their upper bound

approximation formulas (19) and (18) and traditional homogeneous M/M/c formulas approximation with

simulation results in order to validate that proposed equations (19) and (18) are better approximation

than traditional homogeneous M/M/c approximation for M/Mi/c model. They have only compare ET

because En can easily be obtained from ET by Little’s Law. In order to understand efficiency of proposed

approximation, at least one of the following parameters needs to be changed:

λ : arrival rate

c : number of servers

Gini Index : heterogeneity of servers.

Gini Index, which of values change between zero and one, is a metric to measure level of heterogeneity.

A Gini Index of zero means perfect equality where all server rates are equal and Gini Index of one

means maximal inequality among servers rate. For example, if the system has two servers, and the

server rates are distributed %50-%50 among two server then Gini Index of zero and the server rates

are distributed%98-%2 among two servers then Gini Index of one. The main purpose using Gini Index

is to be able to compare homogenity with heteronegty cases. Figure 4 and 5 show ET in queue by

changing aforementioned parameters. Each figure shows ET for SSF, FSF, and RCF with proposed and

homogeneous approximation by using the number of servers, c = 2, 3, 6 and 12. Figure 4 and 5 represent

heavy loaded, ρ = 0.9 and less loaded, ρ = 0.6, respectively.

• Multi heterogeneous system performance by using FSF can be better than homogeneous system

performance on some cases. These places are showed on Figure 4 as optimal regions. Optimal

regions depends on both heterogeneity of the system and the number of the servers.

• While increasing heterogeneity, system performance decreases for all allocations except some cases

for FSF.
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Fig. 4: Comparison of average waiting time between different allocation policies and approximations while

ρ = 0.9 [3]

Fig. 5: Comparison of average waiting time between different allocation policies and approximations while

ρ = 0.6 [3]
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Fig. 6: Comparison of error of average waiting time between homogeneous and proposed approximation

methods for different allocation policies while ρ = 0.9 [3]

• As it is expected, performance order of the system from greater to less is FSF, RCF, and SSF.

In order to compare the proposed approximation with homogeneous approximation, well known nor-

malized error formula, equation (20) is used.

error =
‖Simulation− Formula‖

Simulation
(20)

Figure 6 and Figure 7 shows normalized errors of proposed and homogeneous approximation for different

allocations while system is under heavy loaded, ρ = 0.9 and less loaded, ρ = 0.6, respectively.

Some observations has been done from Figures 6 and 7 are listed below:

• When number of servers is low, like 2 and 3, homogeneous approximation for FSF and RCS is better

than proposed one for less heterogeneity of the system.

• While increasing heterogeneity, proposed approximation is better than homogeneous approximation

for all allocation policies.

• While increasing number of servers, proposed approximation is better than homogeneous approxi-

mation for all allocation policies except some cases for FSF.

Overall proposed upper bound approximations for multi heterogeneous system are better than traditional

homogeneous system approximations.
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Fig. 7: Comparison of error of average waiting time between homogeneous and proposed approximation

methods for different allocation policies while ρ = 0.6 [3]

IV. ANALYSIS OF MODEL II

In addition to average waiting time and average queue length, drop rate of the system is important metric

to analyze the performance of queuing system which has a finite buffer. To find mentioned metrics, servers

conditions, whether is idle or busy, and state probability, which is the probability of number of jobs in

the system, need to be measured. To simplify explanation of analysis, the notations used in analysis are

listed below.

λ Job arrival rate.

µi Service rate of ith server where i = 1, 2, and 3. It is assumed that µ1 ≥ µ2 ≥ µ3.

µt3 Total service rate. Or µt3 = µ1 + µ2 + µ3

ρ Utilization of the system.

πi,j,k States of three servers. i, j, and k represents first, second and third servers and can be 0 or 1. 0

means server is idle and 1 means server is busy.

πn,3 probability of nth state which means all three servers are busy and there are n customer in the

queue. 0 ≤ n ≤ N

N Size of the buffer.
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A. State Probability

Similar to previous model, it is assumed that queuing system is under heavy traffic flows. If a job arrives,

the job is allocated to the fastest idle server. This means that the system allocation policy is FSF. If multi

jobs arrive, jobs assigned to servers according to µ1, µ2, and µ3 rate and state of servers (Whether servers

are busy or idle). The buffer size of the system is finite. Thus; every jobs will be dropped if the buffer

is full. While we are analyzing the system, we will focus on three main metrics. They are average queue

length, average waiting time, and drop rate because of finite buffer. It is worth to mention that FSF policy

is the best case scenario for heterogeneous multi server system. Hence, three main formalized metrics

will represent lower bound for this model. Although it is easily understandable that the fastest server has

the highest influence on the system, it is important to see how each server affects the performance of

the system. By using aforementioned assumptions, state diagram of the system are formed as Figure 8

and 9 by taking busyness of servers in consideration. Job transition state diagram has only N states

π1,1,0

λµ1 µ1

λµ1 λµ1

µ3

µ3

µ3

µ2µ2

µ2
µ2

λλ

λ

µ3

π1,1,1 = π0,3

π1,0,0

π0,1,0

π0,0,0 π0,0,1

π1,0,1

π0,1,1

λ

Fig. 8: Server state transition diagram for M/Mi/3/N model

π0,3

µt

λ

µt

λ

µt

λ

µt

λ

µt

λ

µt

λ
π1,3

πN,3π2,3
πN-2,3 πN-1,3

Fig. 9: Job state transition diagram for M/Mi/3/N model

because of finite buffer. Based on Markov Chain on Figure 8 and 9, state probabilities are formulated

by [4]. However, an error is recognized in [4] which affect all solutions while formulate state probabilities

because of a forgotten value. Detail information about the error and alternative solutions are explained

next section. By using server state transition diagram on Figure 8, following formulas are obtained in [4]:

λπ0,0,0 = µ1π1,0,0 + µ2π0,1,0 + µ3π0,0,1 (21)
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λπ1,0,0 + µ1π1,0,0 = λπ0,0,0 + µ2π1,1,0 + µ3π1,0,1 (22)

λπ0,1,0 + µ2π0,1,0 = µ1π1,1,0 + µ3π0,1,1 (23)

λπ0,0,1 + µ3π0,0,1 = µ1π1,0,1 + µ2π0,1,1 (24)

λπ1,1,0 + µ1π1,1,0 + µ2π1,1,0 = λπ1,0,0 + λπ0,1,0 + µ3π1,1,1 (25)

λπ0,1,1 + µ2π0,1,1 + µ3π0,1,1 = µ1π1,1,1 (26)

λπ1,0,1 + µ1π1,0,1 + µ3π1,0,1 = µ2π1,1,1 (27)

By using server state transition diagram on Figure 8 and job state transition diagram on Figure 9, following

formula is obtained

λπ0,3 + µ1π0,3 + µ2π0,3 + µ3π0,3 = λπ0,1,1 + λπ1,1,0 + λπ1,0,1 + µ1π1,3 + µ2π1,3 + µ3π1,3 (28)

By using job state transition diagram on Figure 9, following formula is obtained

λπn,3+µ1πn,3+µ2πn,3+µ3πn,3 = λπn−1,3+µ1πn+1,3+µ2πn+1,3+µ3πn+1,3 where 1 ≤ n ≤ N (29)

Or equation (29) can be written as:

λπn,3 = µtπn+1,3 ⇐⇒ πn,3 =
µt

λ
πn+1,3 = ρ−1πn+1,3 where 0 ≤ n ≤ N and ρ =

λ

µt

(30)

µ1πN,3 + µ2πN,3 + µ3πN,3 = λπN−1,3 (31)

From equation (29) and (31),

πN−1,3 = πN,3
µt

λ
⇐⇒ πn,3 = ρn−NπN,3 where 0 ≤ n ≤ N (32)

However, equation (27) should be

λπ1,0,1 + µ1π1,0,1 + µ3π1,0,1 = µ2π1,1,1 + λπ0,0,1 (33)

because as it is showed Figure 10, λπ0,0,1 is ignored (It is also confirmed by the authors of [4]). Therefore,

all solutions which was obtained in [4] using equation (27), are not correct. Therefore, we have ignored all

generated formulas for average queue length, average waiting time, and probability of blocking in [4]. By

following similar method as it was followed in [4] to find state probabilities by using corrected equation

(33) will be very hard. However, in order to analyze the model, state probabilities are needed. Therefore,

We have used similar method which is used in [3] in order to find state probabilities for second model.

State transition diagram has only N +3 possibilities because buffer size is N and the system has three

servers which means c = 3. By using above assumptions, state transition diagram for second model can

be formed as in Figure 11. To simplify explanation of analysis of second model, the notations used in

analysis are listed below:
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π1,1,0

λµ1 λµ1

λµ1 λµ1

µ3

µ3

µ3

µ2µ2

µ2
µ2

λλ

λ

µ3

π1,1,1 = π0,3

π1,0,0

π0,1,0

π0,0,0 π0,0,1

π1,0,1

π0,1,1

Fig. 10: Server state transition diagram for M/Mi/3/N model

0
µt1

λ

µτ2

λ

µt3

λ

µt3

λ

µt3

λ

µt3

λ
1 Ν+33 Ν+1 Ν+2

Fig. 11: State transition diagram for M/Mi/3/N model

λ Job arrival rate.

pi State probability of ith state where 0 ≤ i ≤ N + 3.

µt1 = µ1.

µt2 = µ1 + µ2.

µt3 = µ1 + µ2 + µ3.

El
n Lower bound for average queue length of the system.

El
T Lower bound for average waiting time of the system.

P l
B Lower bound drop rate of the system

γu Upper bound throughput of the system

For better understanding, state probability equations can be written as follows:

λp0 = µt1p1 ⇐⇒ p1 = p0
λ

µt1

λp1 = µt2p2 ⇐⇒ p2 = p0
λ2

µt1µt2
(34)

λpi−1 = µt3pi ⇐⇒ pi = p0
λi

µt1µt2µ
i−2
t3

= p0
µ2
t3ρ

i

µt1µt2
where 3 ≤ i ≤ N + 3 and ρ =

λ

µt3
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In order to find state probabilities, we need to measure p0 by using equation (35).

N+3
∑

j=0

pj = 1 (35)

Substituting equations (34) to equation (35), we get

1 =

N+3
∑

j=0

pj = p0 + p0
λ

µt1
+ p0

λ2

µt1µt2
+

N+3
∑

j=3

p0
µ2
t3ρ

j

µt1µt2
(36)

After simplifying equation (36), we get

p−1
0 = 1 +

λ

µt1

+
λ2

µt1µt2

+
µ2
t3

µt1µt2

N+3
∑

j=3

ρj (37)

or

p0 =
1

1 + λ
µt1

+ λ2

µt1µt2
+

µ2
t3

µt1µt2

N+3
∑

j=3

ρj
(38)

ρ can be any positive real number because the system has finite buffer. If ρ = 1 then

p0 =
1

1 + λ
µt1

+ λ2

µt1µt2
+

µ2
t3

µt1µt2

(N+3)(N+4)−12
2

(39)

If ρ 6= 1, geometric series can be used to simplify equation (40) as

N+3
∑

j=3

ρj =
ρ3 − ρN+4

1− ρ
(40)

Finally p0 is obtained as

p0 =















1

1+ λ
µt1

+ λ2

µt1µt2
+

µ2
t3

µt1µt2

ρ3−ρN+4

1−ρ

ρ 6= 1

1

1+ λ
µt1

+ λ2

µt1µt2
+

µ2
t3

µt1µt2

((N+3)(N+4)−12)
2

ρ = 1
(41)

Drop probability of the second model is actually the final state probability which is pN+3. Therefore;

drop rate and throughput of the second model can be formulated as

P l
B = p0

µ2
t3ρ

N+3

µt1µt2
(42)

γu = λ(1− P l
B) (43)
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B. Average Queue Length and Waiting Time

Average queue length and average waiting time can be formulated by using state probability. Average

queue length, En for M/M/1/N queue is

En =

N
∑

j=1

jpj (44)

However, M/Mi/3/N queue system has three servers and the model uses FSF, lower bound average

queue length, El
n for M/Mi/3/N will be

El
n =

N+3
∑

j=4

(j − 3)pj (45)

If ρ = 1 then

El
n = p0

µ2
t3

µt1µt2

N+3
∑

j=4

(j − 3)ρj

= p0
µ2
t3

µt1µt2
(1 + 2 + ....+N)

= p0
µ2
t3

µt1µt2

N(N + 1)

2

(46)

if ρ 6= 1 then

El
n = p0

µ2
t3

µt1µt2

N+3
∑

j=4

(j − 3)ρj

= p0
µ2
t3

µt1µt2

(

ρ4 + 2ρ5 + .... +NρN+3
)

= p0
µ2
t3

µt1µt2

ρ4
(

1 + 2ρ+ 3ρ2 + .... +NρN−1
)

= p0
µ2
t3

µt1µt2
ρ4

d

dρ

(

ρ+ ρ2 + ρ3 + .... + ρN
)

= p0
µ2
t3

µt1µt2
ρ4

d

dρ

(

ρ− ρN+1

1− ρ

)

= p0
µ2
t3

µt1µt2
ρ4

(

1− (N + 1)ρN +NρN+1

(1− ρ)2

)

(47)

From equation (47) and (46), El
n will be

El
n =







p0
µ2
t3

µt1µt2
ρ4

(

1−(N+1)ρN+NρN+1

(1−ρ)2

)

ρ 6= 1

p0
µ2
t3

µt1µt2

N(N+1)
2

ρ = 1
(48)
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From Little’s law and by using equation (43) and (48), average waiting time can be formulate as

El
T =

El
n

γu
(49)

It is also worth to mention that the used method for second model with three servers to find El
n, El

T , and

P l
B , can be easily be extended to n servers but it would be impossible with the method which is followed

by [4].

C. Results of Model II

In this section, the quality of approximation formulas are tested with a implemented simulation.

Simulation is implemented in Matlab environment based on district time simulation model. Figure 12

and 13 show En and ET in queue obtained from approximation and simulation. The graphs present three

different µ2 values while λ = 32, N = 20, µ3 = 1, and varying µ1 values. There are some small differences

between simulation and approximations. Figure 14 and 15 show blocking probability, PB and throughput,
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Fig. 12: Average queue length comparison

between analytical and simulation.
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Fig. 13: Average waiting time comparison

between analytical and simulation.

γ in queue obtained from simulation and approximation. The same parameters which were used to test

En and ET are used to test PB and γ. Approximations results for PB and γ almost exactly match with

simulation results. The obtained results from both simulation and approximation for En, ET , PB , and γ

verify the correctness of the approximation.

We also would like to see how changing in a parameter like µ1 and N affects queue performance. The

obtained results from these experiments are displayed on Figure 16, 17, 18 and 19. Figure 16 and 17

show En and ET in queue for three different µ2 values while λ = 32, N = 20, m3 = 1, and varying µ1

values. Because of assumptions which made for second model, displayed En and ET values are lower

bound results (Section II). Figure 17 follows similar path with Figure 17 with different rate because ET

depends on En. While µ1 service rate increasing and higher µ2 values, the performance of the system is

better. Figure 19 shows affects of ρ on En. When ρ increases, En is getting exponentially higher.

Figure 18 shows PB in queue while λ = 32, µ1 = 1, µ2 = 5, m3 = 20, and varying N values.

Displayed PB values are lower bound results again because of assumptions which made for second
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analytical and simulation.
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En.
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model. If the system buffer size is higher, PB rates are getting lower but after N = 30, the buffer size

does not significantly affect PB . This result verifies that large buffer size is not needed in order to increase

throughput [5].
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V. CONCLUSION

Multi heterogeneous servers queuing system is encountered in every corner of real life. Therefore; it is

needed to be find better bounds approximation to design efficient system. By designing the worst case ap-

proximation for M/Mi/c, the upper bounds approximations for average queue length and average waiting

time are developed and verified by simulated results and also by designing the best case approximation

for M/Mi/3/N , the lower bounds approximations for average queue length, average waiting time, and

blocking probability are developed and verified by simulation. These analysis helps us to understand and

design more efficient multi server queuing systems.
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