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Intro

Howe’s method is a remarkably flexible syntactic technique to show
the congruence properties of functional programs equalities in the
presence of higher-order functions.

I’m not interested in showing pieces of code equivalent (let alone
with a proof checker), but in the method itself, as it’s a hard
benchmark for HOAS systems.

As of today, only Abella can do it, although the way we have to go
about is harder than it should and looks too much like nominal logic
– and this gotta be bad, right? – meaning it’s mostly done in the
reasoning logic.

Using Abella with predicate quantification (thanks Kaustuv) makes
life better.

With HHω could be even better. Or a bit of Tac, if we’re stuck in
the reasoning logic.



Background

Program equivalence as contextual equivalence is intuitive, but hard
to reason about.

Applicative (bi)similarity: m and n are bisimilar if whenever m
evaluates to a value, so does n, and all the “subprograms” of the
resulting values also bisimilar, and vice versa.

To break the circularity we take the greatest fixed point induced by
that.

Definition (Applicative simulation for the λ-calc with lazy lists)

m 4σ⊃σ′ n iff whenever m ⇓ λ x . p for any p, there exists a q such
that n ⇓ λ y . q and for every r :σ, p[r/x ] 4σ′ q[r/y ];

m 4[σ] n iff m ⇓ nil entails n ⇓ nil or, if m ⇓ (x :: xs) for all x , xs
there are y , ys such that n ⇓ (y :: ys) for which x 4σ y and
xs 4[σ] ys.
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Background II

A (typed) pre-congruence is a transitive relation Rσ that is
compatible, that is it respects the way λ-terms are constructed (we
drop lists for brevity):

(C1) Γ, x :σ ` x Rσ x ;
(C2) Γ, x :σ ` m Rσ′ n entails Γ ` λx . m Rσ⊃σ′ λx . n;
(C3) Γ ` m1 Rσ⊃σ′ n1 and Γ ` m2 Rσ n2 entails

Γ ` (m1 m2) R) (n1 n2σ
′;

C1–C3 entail reflexivity and weakening.

A relation is substitutive (Sub) if Γ, y :σ ` m Rσ′ m′ and
Γ ` n Rσ n′ entails Γ ` m[n/y ] Rσ′ m′[n′/y ].

If Rσ is substitutive and reflexive, then it is also closed under
substitution (Cus): Γ, y :σ ` m Rσ′ m′ and · ` n : σ entails
Γ ` m[n/y ] Rσ′ m′[n/y ].
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What do we want?

To show that similarity is a pre-congruence, but

We have defined it for programs only, while a pre-congruence
concerns open terms. Extend similarity to open terms via
instantiation. For Γ = x1:σ1, . . . , xn:σn,

Γ ` m 4◦σ m′ iff for all i and closed pi :σi ,m[pi/xi ] 4σ m′[pi/xi ]

Since similarity is a pre-order, so is open similarity

By construction (Cus) holds, but to show C3 (cong for app) you
need (Sub) and this is not obvious.

Howe’s method: introduce a candidate relation Γ ` m 4Hσ m′, which
contains (open) similarity and is almost immediately a
pre-congruence;

Then show that it does coincide with (open) similarity.
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The candidate relation

Γ ` 〈〉 4◦> n
ep

Γ ` 〈〉 4H> n

Γ, x :σ ` x 4◦σ n
var

Γ, x :σ ` x 4Hσ n

Γ, x :σ ` m 4Hσ′ m′ Γ ` λx . m′ 4◦σ⊃σ′ n
fun

Γ ` λx . m 4Hσ⊃σ′ n

Γ ` m1 4
H
σ⊃σ′ m′1 Γ ` m2 4

H
σ m′2 Γ ` m′1 m′2 4

◦
σ′ n

app
Γ ` m1 m2 4

H
σ′ n
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Proof outline

1 (4H ◦ 4◦) ⊂4H By case analysis using transitivity of open
similarity.

2 Howe is reflexive. Induction on typing, using reflexivity of open
similarity.

3 4◦⊂4H; from (1) and (2).

4 4H is substitutive. By induction on the first premise.
5 The Howe relation “mimics” the simulation conditions: If
λx . m 4Hσ⊃σ′ n, then n ⇓ λx . m′ and for every q:σ we have
m[q/x ] 4Hσ′ m′[q/x ].

6 (“downward closure”) If p 4Hσ q and p ⇓ v , then v 4Hσ q. Induction
on evaluation, and inversion on Howe and simulation, with an
additional case analysis on v .

7 p 4Hσ q =⇒ p 4σ q. By coinduction, using the obvious invariant,
point (5) and (6).

Theorem

Γ ` p 4Hσ q iff Γ ` p 4◦σ q
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Encoding

We know how to do evaluation/typing, etc. Simulation is slightly
more interesting:
CoDefine sim : tm -> tm -> ty -> prop by

sim M1 M2 (arr S S’) :=

{of M1 (arr S S’)} /\ {of M2 (arr S S’)} /\

(forall M, {eval M1 (abs M)} ->

exists M’ , {eval M2 (abs M’)} /\

(forall x, {of x S} -> sim (M x) (M’ x) S’)); ...

How do we encode Howe?

Γ, x :σ ` m 4Hσ′ m′ Γ ` λx . m′ 4◦σ⊃σ′ n
fun

Γ ` λx . m 4Hσ⊃σ′ n

At the SL?

howe (abs M) N (arr S S’) :-

(pi x\ (pi Q\ howe x Q S :- sim x Q S) =>

sigma M’\ howe (M x) (M’ x) S’, sim (abs M’) N (arr S S’)).



Encoding

We know how to do evaluation/typing, etc. Simulation is slightly
more interesting:
CoDefine sim : tm -> tm -> ty -> prop by

sim M1 M2 (arr S S’) :=

{of M1 (arr S S’)} /\ {of M2 (arr S S’)} /\

(forall M, {eval M1 (abs M)} ->

exists M’ , {eval M2 (abs M’)} /\

(forall x, {of x S} -> sim (M x) (M’ x) S’)); ...

How do we encode Howe?

Γ, x :σ ` m 4Hσ′ m′ Γ ` λx . m′ 4◦σ⊃σ′ n
fun

Γ ` λx . m 4Hσ⊃σ′ n

At the SL?

howe (abs M) N (arr S S’) :-

(pi x\ (pi Q\ howe x Q S :- sim x Q S) =>

sigma M’\ howe (M x) (M’ x) S’, sim (abs M’) N (arr S S’)).



Encoding Howe

Well, no. This is third order and with bad nesting of quantifiers, but
more importantly, sim is coinductive and what calls a ML relation,
must stay in ML (kinda like Vegas)

OK, so Howe at the ML, but how? On programs only?

Define howe : tm -> tm -> tp -> prop by

howe (abs M) N (arr S S’) :=

(forall x\ (forall Q\ sim x Q S -> howe x Q S) ->

exists M’\ howe (M x) (M’ x) S’ /\ sim (abs M’) N (arr S S’));...

Forget about it. It’s not stratified (for lists), and we do not get very
far induction-wise.

Bite the bullet and use explicit (ML) contexts:
Define howe : olist -> tm -> tm -> ty -> prop.
But then, I have to extend similarity to open terms as well.
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Encoding: open simulation and Howe

Define howe : olist -> tm -> tm -> ty -> prop by

howe L ep N top := osim L ep N top;

howe L (app F A) N S’ := exists F’ A’ S,

howe L F F’ (arr S S’) /\ howe L A A’ S /\ osim L (app F’ A’) N S’;

howe L (abs M) N (arr S S’):= exists M’,nabla x,

howe (of x S :: L) (M x) (M’ x) S’ /\ osim L (abs M’) N (arr S S’);

howe L X M S := name X /\ member (of X S) L /\ osim L X M S.

Define osim : olist -> tm -> tm -> ty -> prop by

osim nil M1 M2 S := {of M1 S} /\ {of M2 S} /\ sim M1 M2 S;

nabla x, osim (of x S :: L) (M1 x) (M2 x) S’:=

{L |- of (abs M1) (arr S S’)} /\ {L |- of (abs M2) (arr S S’)} /\

forall N, {of N S} -> osim L (M1 N) (M2 N) S’.

How nominal is that??!!

Note analogy with arbitrary cascading substitutions.



Main development

Theorem howe_of: ctx L -> howe L M1 M2 S -> {L |- of M1 S} /\ {L |- of

M2 S}.

Theorem howe_weaken: howe L1 M N S -> (forall X, member X L1 -> member X L2) -> howe L2 M N S.

Theorem howe_trans: howe L P Q S -> osims L Q R S -> howe L P R S.

Theorem howe_refl: ctx L -> {L |- of M S} -> howe L M M S.

Theorem osim_howe: ctx L -> {L |- of E S} -> osims L E F S -> howe L E F S.

So far so good. The substitution lemma (4) brings in instead an
Abella-specific difficulty. It requires exchange, so it’s not a structural
induction. So we induct on the size of the term with a hole.

Theorem howe_subst: nabla x, mtm (A1 x) -> howe (of x S :: L) (A1 x) (A2 x) S’ ->

{of B2 S} -> howe L B1 B2 S -> howe L (A1 B1) (A2 B2) S’.



Main development

Now it’s easy sailing (well the next proof is hard)

Theorem down_closed: {eval P V} -> howe nil P Q S -> howe nil V Q S.

Theorem howe_sim: howe nil M N S -> sim M N S.

Theorem howe_osim: ctx L -> howe L M N S -> osim L M N S.

It was simple to show that howe is compatible. Now apply the latter
result to show that so is (o)sim



Lessons learned

what did we (re)discover about the paper-and-pencil proof by Andy
Pitts?

it heavily relies on the implicit machinery of typed relations
some minor, minor stuff:

howe trans is not proved by induction but simply by inversion
some typos in the def of the Howe relation

What about Abella?

Abella is a beautifully designed, robust, easy to use, yet very
expressive system which provides features that no other HOAS
system can at the moment match.
This is not to say that all is peachy.



SL vs. ML contexts

SL contexts are your friends, but ML level ones are your foes.

No support for ML-level contexts in ML means that ironically we,
the HOAS people, are back to worry about weakening, exchange,
strengthening (well, we have to worry about that in the SL as well,
but were we to extend subordination. . . ).

Bad interaction with Abella’s structural (co)induction restriction.

Lists are a natural first choice but overly concrete. At the very least,
I don’t want to worry about exchange. So let’s do bags, as we
agreed.

An aside: we may want to think how context predicates relate to
each other, i.e. the issue of context subsumption.



Structural (co)induction

How can you not love Abella’s annotation-based approach to
(co)induction? Especially if you have worked with explicit heights
before (I did).

However, we are not allowed to appeal to a lemma, even one that
does not increase the height of the proof, viz. exchange, weakening,
before applying the induction hypothesis.

Need to find something else to induct on:

Sometimes not too bad (see howe subst)
Sometimes (if you need complete induction) explicit heights will
pollute the whole development

Can we relax the annotation-based system to tolerate the application
of non-height increasing lemmata? Maybe with a trustme

annotation to begin with?



Weakness of the type system

Maybe not a fair criticism, but is is painful to maintain type
invariants such as

m1 4σ m2 =⇒ mi : σ

, which now need to be explicitly asserted (e.g. the def of
simulation), while in Twelf. . .

and simulating induction on individuals relationally is OK
theoretically, but it has unpleasant backward and forward effects:

For example case analysis on types needed for reflexivity of similarity
is done via a is ty judgments and this percolates back to the very
definition of the static semantics of the OL language:
of (abs M) (arr S U) :- is ty S, pi x (of x S => of (M x) U).

it creates several (easy, but boring) proof obligations (around a
dozen time in the proof of the main properties of the Howe).



Brittleness of proof scripts,
a.k.a. the spaghetti script problem

Not just an Abella’s problem (see the Isabelle vs. Isar controversy),
but more compelling here due to the lack of automation.

Adding/removing a hypothesis in a Theorem breaks the whole thing
– you apply to the wrong/non-existent hypotheses:

backchain/apply with unknown help
Kaustuv’s user naming should also help, but I haven’t tried as not in
the forallp branch.

Slippery slope towards a full tactical language.

Still I could use some simple things such as preferring/postponing
goals, maybe defining “macros” for patterns of commands. . .

Not to mention something like Tac’s prove.



∀pAbella

Howe’s account is generic: construct RH from a putative equality
relation R:

Γ, x :σ ` m RHσ′ m′ Γ ` λx . m′ Rσ⊃σ′ n
fun

Γ ` λx . m RHσ⊃σ′ n

Lemma osim howe an instance of the Lemma for which if R is a
preorder, then R ⊂ RH

HOA would lead to HOAS-style relational reasoning-



Speculations: Reflection

Are we really stuck with the “one way only” SL–ML relationships?

Maybe we should really try to be able to encode howe at the SL level



Further speculations

Using delay/force: we could work entirely in the SL. On the other
hand, working with thunks is never problem-free.

Using an infinitary SL (see David’s cyclic proof, Carsten’s infinitary
sequent calculus).



Conclusions

Howe’s method is a good source of inspirations for HOAS systems


