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I. INTRODUCTION 

If I undertake a survey of higher-order boundary-layer theory, at 

the present time it almost goes without saying that I am joing to discuss 

only steady, plane or axisymmetrie, laminar flows, and at most second- 

order theory. Laminar, because my knowledgeable colleagues assure me 

that turbulent boundary layers are not yet well enough understood that a 

sensible person would trouble himself with higher-order refinements. 

Second-order, because for gases on the one hand the Navier-Stokes 

equations are not valid to any higher order, and for liquids on the other 

hand the law of diminishing returns probably sets in after the second 

approximation - which itself extends the utility of Prandtl's theory 

down to Reynolds numbers of the order of ten. And steady and two- 

dimensional, because none of us has yet ventured further. 

When we set out to improve upon boundary-layer theory in a systematic 

way, we naturally ask first what approximations were adopted by Prandtl 

in the classical theory. Consider first the simplest case of plane, 

steady, incompressible flow.  The continuity equation and surface boundary 

conditions are left intact. Streamwise diffusion is neglected compared 

with transverse diffusion in the longitudinal momentum equation, the 

transverse pressure gradient is disregarded, and tne distant boundary 

condition is replaced by the requirement that far out in the boundary 

layer the tangential velocity component approach the inviscid surface 

speed. 
-1/2 

These three approximations introduce errors of relative order R  '", 

where R is a representative Reynolds number. Hence if we count Prandtl's 

theory as the first approximation (some writers call it the "zeroth"!), 
-1/2 

second-order theory will add corrections of order R   , third-order 

theory terms of order R , and so on. 

II.  DISPLACEMENT EFFECT 

The neglect of streamwise diffusion actually causes only a third- 

order error. Likewise, for flat surfaces — plates and wedges - the 



normal pressure gradient exerts only a third-order effect. Hence for 

flat shapes the only second-order effect is tb« change in the ou*er 

tangential speed induced by the boundary layer itself.  This is called 

the displacement effect. 

This effect appears in the first discussion of higher-order boundary- 

layer theory that I know of, due *o Prandtl himself.  In volume three of 

Durand's "Aerodynamic Theory" he wrote, in discussing the flat plate 

* 
The displacement of the stream-lines by the amount  & 

produces e slight alteration in the potential flow which was 

made the basis of the calculations.  Instead of a simple 

parallel flow, the flow around a parabolic cylinder of 'hick- 

ness 2&  should be introduced, which would slightly alter 

the pressure distribution.  The above calculation would have 

to be repeated for this new pressure distribution and if 

necessary the process repeated on the basis of the new 

measure of displacement so obtained.  Such calculations have 

so far not been performed; they would, in any case, make 

little difference in the regions where the calculations are 

usually applied in practice. They would however become 

necessary if the transition to smaller Reynolds number 

u l/v were attempted. 

To this we need only add that — according to thin-airfoil theory — it 

happens that a thin parabola induces no pressure change upon itself.  Thus 

we see that there are no second-ordei corrections at all to the boundary 

layer on a semi-infinite plate. 

For a finite flat plate, however, the displaceme:t thickness is 

parabolic only back to the trailing edge, and then nearly constant in the 

wake.  Consequently there is a small favorable pressure gradient induced 

upon the boundary layer. On this basis Kuo (1953) calculal e-d 'he second- 

order effect, finding that the local, skin friction is slightly increased 

everywhere. However, he made the mistake of integrating to fi:d * }:>■  ' otal 

drag. This is not proper, because the t oundary-la;;er approxirr.a* io: : r'-aks 

down altogether in a small neighborhood of the leading ed.'ej e:d, as 1 



shall discuss later in more detail, this local deviation affects the 

drag to second order. 

III.  ONE-AKD-A-HALF-ORDER THEORY 

The displacement effect is öfter, more difficult \,o ca. ^ia^e than 

any of the other second-order effects, because it alor.e is global in 

nature — the correction at any poir.t depending upon the entire course of 

the boundary layer.  Nevertheless, I have discussed it firs" because it 

is invariably present.  (The only exception might arise if we contrived 

to apply suction to a porous wall, or to cool the wall in a compressible 

fluid, in just such a way that the displacement thickness was everywhere 

zero.) 

Before discussing other second-order effects, I want to express the 

opinion that displacement effects deserve more attention than they have 

received. Indeed, very useful results can be obtained by stopping short 

of second-order boundary-layer theory, at what we might call "one-and-a- 

half -order theory" — that is, the classical boundary layer plus its flow 

due to displacement. 

For example, chemical engineers have in the last few years disputed 

the old problem of viscous entry into a channel.  This problem was first 

treated in 1934 by Schlichting, who applied boundary-layer theory to the 

walls, and assumed in between a uniform core that accelerates downstream. 

Obviously this assumption fails near the entry. Recently Wang and 

Longwell (l96h)  solved the full Navier-Stokes equations numerically for 

a cascade of plates at a Reynolds number of 150, based on channel width 

and upstream conditions. However, at such a large Reynolds number it is 

scarcely necessary to appeal to the full equations, or even to second- 

order boundary-layer theory. One need only calculate properly the flow 

due to dirnlacement thickness. 

Near the entry, the displacement thickness is a parabola for each 

plate, as indicated in Fig. 1.   Hence the flow due to displacement 

thickness is jus* the potential flow past a cascade of parabolas, which 

car. be found by elementary means 'with due attention, to indeterminate 



forms).  Fig. 2 shows how well the result for the velocity profile 

across the entry plane agrees with the numerical solutior. of the full 

equations. 

I have recently calculated also the flow induced by a variety of 

jets and plumes — results that have apparently never appeared in print, 

but are useful in understanding the flow pattern. For example, the well- 

known boundary-layer solution for an axisymmetric laminar jet yields, it. 

cylindrical coordinates, the pattern of streamlines shown in Fig. 3, 

which appears in Prandtl's (1938) article. The flow far outside the jet 

happens, with this choice of coordinate , to be that appropriate to a 

jet issuing from an infinite plane wall.  Suppose, however, that we are 

interested rather in a jet issuing from a long slender nozzle.  Calculat- 

ing the flow due to displacement shows that the outer stream surfaces 

are paraboloids of revolution. The composite solution shown in Fig. it- 

is indistinguishable from the exact solution of the full Navier-Stokes 

equations sketched by Whitham on page 153 of Rosenhead's "Laminar Boundary 

Layers". 

Let me add one last remark on "one-and-a-half-order" theory.  This 

is the province of Kaplun's (195*0 optimal coordinates; and i' seems to 

me imperative that we extend that remarkable Jdea - first to axisymmetric 

flows, and then if possible to three-dimensional and unsteady motions as 

well as to higher approximations. 

IV.  LONGITUDINAL CURVATURE 

If the surface of a body is curved, rather than flat, centrifugal 

forces yield pressure changes across the boundary layer that exert a 

second-order effect. This effect of longitudinal curvature was first 

investigated by Tani in 19;+9- He studied the special case of a plate 

with curvature varying as the inverse square root of distance 1'rom »he 

leading edge, because this admits a self-similar solution. He found a 

reduction of local skin frictio; due to cor.vex curvature (i: fon'ras4 'o 

earlier Japanese work, based on a momet turn integral, 'la* saves* ed &i 

increase). 



The same problem was solved independently by Murphy in 1953, who 

found the same trend but a smaller coefficient. Tani thereupon realized 

that his treatment had been inconsistent, and in 195^ published a revised 

version with yet another value of the coefficient.  Fig. 5 shows the 

subsequent history of this ridiculous comedy of errors, which seems to 

have been resolved only within the last year. 

Of the investigators whose names appear here, Murphy, Cooke, Massey 

and Clayton, and Narasimha and Ojha have calculated the effects of 

longitudinal curvature for a more general class of flows. These are what 

I will call completely self-similar solutions, in the sense that the 

second-order correction is similar not only to itself but also to the 

first-order solution — which is a member of the Falkner-Skan family. 

With equal ease I have calculated several cases of what I may call 

separately self-similar solutions: the first- and second-order solutions 

are similar to themselves, but not to each other. These have the 

advantage that the curvature may be taken to be everywhere finite. It 

might be worthwhile to calculate a few more of these; whereas I believe 

the subject of completely self-similar flows is closed with the appearance 

of the definitive papers of Cooke and Narasimha and Ojha. (That of 

Murphy is invalidated by certain inconsistencies that have been pointed 

out by Massey and Clayton (i960), and the work of the latter if also 

open to some objection.) 

Let me now make a possibly controversial comment on the range of 

applicability of these results. Murphy, Massey and Clayton, and Schultz- 

Grunow and Breuer assume — either e: ; citly or tacitly — that their 

solutions remain valid even when i c wall curvature is so great that the 

radius is of the order of the boundary-layer thickness. I am sure that 

this is not true, and that - as I will discuss later - quite a different 

approximation must be adopted in that range. They therefore spend an 

unnecessary amount of labor in solving equations that are not spli ■„ into 

first- and second-order components, and in presenting results for a range 

of curvature parameter. As Narasimha and Ojha point out, there is no 

Justification for attaching any significance to the departure of their 

curves from the initial tangents. 



V. TPAKSVERSE CURVATURE 

A second curvature effect arises when we extend our considerations 

to bodies of revolution. In the classical theory the boundary layer is 

negligibly thin compared with the local radius of the body; and this 

permits it to be related to an equivalent plane boundary layer by the 

Mangier transformation. However, on a very long slender bodv - a needle - 

the boundary layer may grow much thicker than the body even at high 

Reynolds number. We exclude this situation — which requires a fresh 

approach initiated by Glauert and Lighthill (1955) and Stewartson (1955) - 

and consider the effects of transverse curvature over a short body or 

the forward portions of a long one. 

Transverse curvature appears in its most nearly pure form in the 

boundary layer on a circular pipe. The internal flow was studied by 

Atkinson and Goldstein (cf. Goldstein 1938, p. 30'+), and the external 

flow by Seban and Bond (1959); with important corrections by Kelly (195'* )• 

The latter find the local skin friction to be increased over the flat- 

plate value by the factor 

1 +2.10 ,/T J*    .O.Mfri 
yUa Va      Ua a 

where a is the radius of the pipe. In this form we recognize the seco;d 

term as a second-order boundary-layer effect — proportional to the inverse 

square root of the Reynolds number — and the third term as a third-order 

effect. Whereas convex longitudinal curvature usually reduces the skin 

friction, convex transverse curvature appears always to increase it, as 

in this case. 

Although longitudinal curvature is absent in this problem, the second- 

order displacement effect does not vanish for a tube as it does for a pla*e. 

Hence a correction for displacement must be added to the above resul'. 

We think of bodies that grow more slowly than a paraboloid.  The situatio: 
is reversed for those that grow more rapidly, such as a core, for which 
the ratio of boundary-layer thickness to body radius decreases downstream. 



For the internal flow, Atkinson and Goldstein adopted Schlichting's idea 

of a uniform accelerated core; and this alters the coefficient of the 

second term. I intend to calculate properly the flow due to displacement 

thickness, in order to assess the error in these theories. 

VI.  EXTERNAL VORTICITY 

The next second-order effect I want to mention was first recognized 

in supersonic problems, but can occur also in incompressible flows. 

Ferri and Libby (195*0 pointed out that the boundary layer must be 

affected to some extent by the external vcrticity generated by a curved 

bow shock wave. Li (1955) then proposed a simple incompressible model 

of this phenomenon that displays its essential features — a semi-infinite 

flat plate in a uniform shear flow. He at first omitted the pressure 

gradient that is induced by interaction of the external shear flow with 

the displacement thickness of the boundary layer, but corrected himself 

the following year (Li 195°)■ However, that correction was challenged 

by dauert (1957) and others; and a lively and extended controversy arose. 

Finally, however, thanks to the careful analysis of Murray (1961) and 

the diplomatic intercession of Toomre and Rott (1964), the dispute has 

been resolved in a consensus of nearly all the participants. 

VII. THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 

We see that even in the simplest case of steady, plane, laminar, 

incompressible flow the development of higher-order boundary-layer theory 

has been marred by an unfortunate series of errors, misunderstandings, 

and controversies. The reason is simply that the insight of even a 

Prandtl begins to fail at about the second approximation. What one then 

wants is a rote procedure that can be applied automatically, without undue 

mental effort. 

The required technique is the method of matched asymptotic (or "inner 

and outer") expansions. This useful method is in fact an outgrowth of 



Praiidtl's boundary-layer idea, as developed by Friedrichs (1953), Kaplui. 

and Lagerstrom (1957)* and others. I believe that this method cai. no 

longer be dismissed as an esoteric special technique, but should be part 

of the working equipment of every applied mathematician and theoretical 

engineer. 

In the present subject, it is fair to assert that all the many 

errors and disputes have arisen from relying upon physical insight; and 

that not a single false step has been made by any of us who trusted 

lather to systematic application of the method of matched asymptotic 

expansions. 

VIII.  COMPRESSIBLE FLOW 

Even though the emphasis of this meeting is on compressible flow, I 

have spoken so far only of incompressible motion, because it is simpler 

end exemplifies most of the essential features. Just as ir. the classical 

theory, dramatic compressibility effects are limited to the outer ir.viscid 

flew, and the boundary layer itself suffers changes only of detail, eve;. 

into the hypersonic range. This point of view has recently been challenged 

by Weinbaum and Garvine (1966); but I think it would be charitable to say 

that they have misunderstood the asymptotic nature of boundary-layer 

theory, confusing it with the so-called "strong-interaction" 1 teory, 

which is based upon quite a different double limit process. 

The four second-order effects that I have discussed so far — displace- 

ment, longitudinal curvature, transverse curvature, and external vorticily - 

persist for compressible motion. In my ovi work, I found it convenient 

to subdivide the effect of external vorticity into that of entropy gradien1 

and of stagnation enthalpy gradient, the latter being absent for the usual 

isoenergetic flows of aerodynamics.  To these are added two new phenomena 

associated with the boundary conditions at the surface: Jhe effects of 

slip and of temperature jump. It should be emphasized, however, as poi: 'cd 

out by Rott and Lei ard (I962), that this classificatio: is no- unique, and 

a considerable part of the controversy in this subject has arise:, only 

because of different ways of dividing among displacement, curva*. ure, and 

external vorticity. 

8 



In contrast to the incompressible t...ory, the more complicated 

compressible second-order boundary-layer theory has been developed with 

a minimum of error.  In particular, the comprehensive analyses of myself 

(Van Dyke 196l), Maslen (1962), ar.d Lenard (1962) - developed independently 

in about the same year — seem to have withstood the test of time. 

IX.  APPLICATIONS IN COMPRESSIBLF FLOW 

The first applications of the theory for compressible flow were 

again to stagnation points and leadirc; edges, for which self-similar 

solutions exist (Van Dyke I96I, Maslen I962, Fannel'dp and Flügge-Lotz I965, 

Davis and Flügge-Lotz (L96la). Later, numerical integration of the first- and 

second-order equations was undertaken (Devan 196^), the most comprehen- 

sive results - until this meeting - being those of Fannel'dp and Flügge- 

Lotz (1966) for plane flow past a circular cylinder and a plate with 

semi-circular leading edge, and of Davis and Flügge-Lotz (l96Jib) for 

axisymmetric flow past a paraboloid, sphere, and hyperboloid. 

The most troublesome component of these calculations is th-* flow iue 

to displacement thickness. In principle, we should perturb the basic 

inviscid blunt-body solution. However, we have all resorted to the 

strategem of approximating the body plus the displacement thickness by 

a magnified and shifted replica of itself; and this does not seem to have 

introduced serious errors. 

These results show that the various second-order contributions may 

vary widely ir. sign end magnitude, depending upon body shape, surface 

temperature, and other parameters in the problem. The same is true of 

the resultant, which is öfter, smaller than any of its components. Conse- 

quently it is important to calculate all second-order effects if any 

significance is to be attached to the result. 

Experimental confirmation is perhaps still not conclusive.  A few 

years ago the situation seemed to be thet experiments carried out ir. 

New York agreed with the rather large effects predicted by several partial 

theories developed ir. the same s4ate, ar.d experiments in California tended 

to agree with the smaller effee-s predicted by theories developed there. 



I am not sure how much this situation has bee:, clarified; Lut I hope to 

learn more about it at this meeting. 

X.  SEPARATION 

One point of special interest at this meeting is the light that 

second-order theory car. shed on laminar separat ion. Until recently, mos- 

of us believed that the classical boundary-layer theory breaks down 

shortly before the skin friction vanishes — as in Howarth's (1938) solutio: 

for a linearly decreasing surface speed. As usual in perturbation theories. 

we might expect this failure of the first approximation to be confirmed 

by compounded singularities in higher approximations. 

Two bits of evidence suggest that this does happen. In their com- 

pletely self-similar solutions for incompressible flow, Narasimha and 

Ojha have observed that the second-order coefficient of skin friction due 

to longitudinal curvature seems to be rising rapidly as the critical value 

of the Falkner-Skan parameter is approached. Again, in their full second- 

order solution for a sphere at Mach number 10, Davis and Fl'ugge-Lotz (196-b) 

found the effects of longitudinal curvature becoming large as the ski: 

friction fell. 

Our ideas on separation have, however, been overturned by the recent 

discovery of Catherall and Mangier (l9'~>'^)  that the classical boundary- 

layer solution will proceed smoothly through zero skin friction if it is 

permitted the slightest freedom to choose the local pressure distribution 

so as to avoid catastrophe. It would be interesting to re-examine the 

second-order theory in the light of this remarkable turn of events. 

XI.  CORPJERS AND EDGES 

I have already expressed the opinion that higher-order ioundary- 

layer theory will break down long before the surface ourvo4;.re becomes so 

great that the radius of curvature is comparable with the boundary-layer 

thickness —and this would be true of transverse as veil es lo.ngitudii.al 

10 



curve'ure. I believe that the proper way of treating such problems 

has been poieied out by Brailovskaya (1965) and Neilai.d and Sychev (i960). 

They consider plane flow past a corner that is slightly rounded, with a 

radius of the order of the local boundary-layer thickness.  Classical 

boundary-layer theory holds as a first approximation ahead of the corner. 
* 

and again behind it.  In the immediate neighborhood of the corner, however, 

the small viscous forces are insignificant compared with the pressure and 

inertial forces, so the flow is governed locally by the Euler equations 

of rotational inviscid flow.  This local solution matches the boundary 

layers upstream and downstream in the sense of the method of matched 

asymptotic expansions. Finally, because the local inviscid solution 

violates the no-slip condition, a thin sub-boundary layer must be added 

close to the wall. 

Neiland and Sychev consider only rounded corners in order to avoid 

having to deal with the full Navier-Stckes equations.  For if the corner 

is sharp, a local solution of the full equations is evidently required. 

However, it will have a certain simple and universal character, and may 

therefore be worth working out numerically. 

One case that seems to be well in hand is incompressible flow near 

a cusped leading edge. The local problem is the standard one of viscous 

flaw past a semi-infinite flat plate. Ten years ago Imai (1957) showed, 

by ingenious use of global momentum balance, that although the Prandtl- 

Blasius boundiry-layer solution breaks down near th- leading edge, it 

can be used to find the second term in the Internated skin friction 

(which from the crude point of view of the boundary-layer approximation 

appears as a concentrated force at the leading edge). More recently, 

Davis (I967) has solved the problem in detail using the semi-numerical 

method of series truncation; and h's solution agrees so well with both 

the global result of Imai and a much-neglected analysis of Dean (l95-'0 

that we can accept it with confidence. This local correction can be 

applied to Kuo's solution for the finite flat plate, to the cascade of 

flate plates, to the solutions of Atkinson and Goldstein and Seban and 

Bond for the circular pipe, ar.d so on.  In supersonic ar.d hypersonic flow 

the problem is more difficult, and has not yet beer, satisfactorily solved. 

11 



Pernaps the simplest case of flow over a sharp corner is a cusped 

trailing edge in an incompressible stream, because there is no question 

of separation. If we consider, for example, the standard problem of t he 

finite flate plate, we see that the Prandtl-Blasius solution applies 

over most of the surface, and the wake solution of Goldstein (1930) and 

Tollmien (1931) almost ev-'-ywhere behind it.  The boundary-layer solution 

fails in a circular neighborhood of the leading edge whose re.dius is of 

the order of R   timer the üength of the plate, R being the Reynolds 

number based on length; and here we can use the results of Imai, Dean, 

and Davis. At the trailing edge the thickness of the boundary layer is 
-1/2 

of order R   , and the theory of Neiland and Sychev would suggest that 

a local Euler solution is required in a neighborhood of that size. How- 

ever, in this simple case that correction vanishes. I have convinced 

myself that a correction is then -equired only in a smaller neighborhood 
-3/-. 

of the trailing edge, whose radius is of the order of R     times the 

length of the plate.  (This corresponds to Neiland and Sychev's sub- 

boundary layer.) The full Navier-Stokes equations must be solved there; 

and we hope to carry this out by series truncation. 

Without making the detailed calculations, we can see that this 

trailing-edge correction will contribute to the integrated skin friction 
-5Ä 

a term of order R   . Thus for cusp-ended shapes we must reconsider 

our numbering scheme. What wa have heretofore called second-order theory 
-I/2 

adds a correction of relative order R   ,  and third-order theory a 

term of order R ; but now we see that the trailing-edge correction 
.3/4 

.supplies a "two-and-one-half-order" term in R '   ,  and so or. (whatever 

that may mean!). 

The situation is different again when we encounter large or infinite 

transverse curvature.  The simplest example is perhaps the incompressible 

flow along a corner, which has been re-examined recently by Rubin (196") 

fron the point of view of matched asymptotic expansions.  In this case 

the crucial problem to be solved in the immediate vicinity of the corner 

involves equations simpler than the full Navier-Stokes equations, but 

more complicated than the conventional boundary-layer equatio:.s.  The only 

attempt at solving this problem numerically was made by Pearsor. (I9i>7) 

ten years ago in his unpublished Cambridge University thesis.  If this 

12 



correction is applied to the flow inside a rectangular channel, we see 
-I/2 

that it contributes a term of relative order R    to the drag — and is 

therefore to he included with the second-order displacement effect 

discussed earlier 

The flow netu' the outside corner on such a channel is more complicated, 

as is indicated by Stewartson's (l96l) study of the quarter-infinite plate. 

And again the corresponding supersonic problems are still more difficult. 

HI.  SINGULAR OUTER FLOWS 

Finally, I want to discuss an intriguing new field of application 

for higher-order boundary-layer theory. This is motion in which the basic 

inviscid flow is singular at the surface of the body. This situation has 

arisen recently in various branches of high-speed aerodynamics, of which 

I will mention four: 

1. Perhaps the simplest case to understant is the inviscid 

stagnation region of a blunt body in hypersonic flight through 

a completely transparent radiating gas. A particle of fluid 

on the stagnation streamline requires an iruinite time to reach 

the stagnation point, and so — because there is no re-absorp- 

tion — radiates away all its energy. Hence the inviscid 

surface streamline is at absolute zero temperature. In a model 

of this phenomenon studied by Burggraf (i960) the velocity and 

enthalpy both vanish as regative fractional powers of the 

logarithm of the distance from the wall. 

2. Similarly, for an inviscid stagnation point in a chemically-reacting 

gas, the temperature and degree of dissociation (as well as the 

other thermodynamic properties) approach some equilibrium 

values at the stagnation point; and the normal gradients are 

zero for sufficiently fast reactions, finite for a particular 

intermediate rate, and infinite for slower reactions ( Fig. 6). 

This behavior has been discussed by Conti and myself (i960). 

13 



3.  Ha^es (19Ö<0 has studied the rotatioi.al inviscid flow near 

a three-dimensional stagnation point. He finds that in all 

but very special cases the solution is r.on-analytic and the 

vorticity infinite at the wall, the ^stagnation streamline 

being tangent to the surface. 

k.      In hypersonic small-distuxbance theory the self-similar 

solutions associated with strong power-law bow shock waves are 

singular at the surface of the body.  This case is the subject 

of a paper to be presented at this meeting by Lee and Cheng, 

entitled "Higher-order approximation in the theory of hypersonic 

boundary layers on slender bodies". 

If we now consider applying boundary-layer theory to any of these 

problems, questions arise that force us to re-examine the basis of 

Prandtl's classical theory. Should we still use the inviscid surface 

speed as the tangential velocity at the outer edge of the boundary layer, 

even though the gradient ib infinite? Is th*- boundary-layer thickness 
-l/? still of order R   ? Do higher approximations proceed in the usual 

way? Is a single boundary layer sufficient, or are intermediate transi- 

tion layers required? 

Conti and I have concluded that — at least in the first two cases, 

of stagnation points in radiating or reacting flows — the situation is in 

general as follows: Classical boundary-layer theory remains valid even 

though the inviscid surface gradients are infinite.  That is, the boundary- 
-I/2 

layer thickness is still of order R   , and the inviscid surface speed 

is approached at the outer edge. However, important differences appear 

in higher approximations. Rather than being smaller by a full inverse 

half power of Reynolds number, the second-order correcti01 follows close 

on the heels of the classical solution.  In the case of slow chemical 

reactions, it may differ by only a very small negative power of Reynolds 

number, so that several or even a great many higher-order terms ir/ervene 

before the conventional tsecond-order correction. And in the case of 

radiation, successive terms differ from one another only by fractional 

powers of the logarithm of the Reynolds numter, so 'hat en ir.fini'e 

number of terms intervene. 



These conclusions differ somewhat from those of Burggraf. The 

reason is that he considers only the degenerate case of vanishing surface 

temperature.  Then the surface boundary conditions on both velocity and 

temperature are satisfied by the inviscid solution, so that no conven- 

tional boundary layer is required. The first correction is what would 

ordinarily be the second-order term; and it is a consequence of the hon- 

linearity of the governing equations that the boundary layer then has a 

thickness that is slightly greater +han usual, by an amount smaller than 

any power of the Reynolds number. 

Our conclusions appear also to differ from those reached by Lee and 

Cheng in their study of power-law bodies in hypersonic flow, for they 

invoke a third region that serves to join the inviscid flow to the 

boundary layer. From my point of view, this meeting will be a success 

if we can clarify our thoughts on this fascinating new branch of the 

subject. 
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BOUNDARY LAYERS ON CASCADE 

FIGURE 1. 
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BOUNDARY-LAYER   SOLUTION   FOR   AXISYMMETRIC 
LAMINAR   JET   IN   CYLINDRICAL   COORDINATES 

FIGURE 3. 
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