AFOSR Scientific Report

AFOSR-67-2241
o
% 3 M:LTON VAN Dyke
8 A SURVEY OF ichER-ORDER

88~ BOUNDARY-LAYER THEORY

C

jisrau u LB
C \\( N
SEPTEMBER Prepared for the Air Force Office of Scientific Researth SUDAAR
L Under Contract No. AF 43(638)-1274 55
s 1967 Project No. 9781-01 NO. 3

(R Distribution of this document Is unfimiied.

o




NOTICES

Qualified requesters may obtair additional coplies from the Defense
Documentation Center.

Research sponsored by Air Force Office of Scientif.c Research, Office
of Aerospace Research, United States Air Force. nHesearch monitored
under the technical supervision of Donald L. Calvert, Major, AFOQSR.

Conditions of Reproducticn

Reproduction, translation, publication, use and disposal in whole cr
in part by or for the United States Governrent is permitted.

ot
e

PETSIE Je R ‘
¥ TR
40 TLnaN

G et

0

i

-
[




=T

AFOSR No. 67-2201

Department of Aeronautics and Astronautics
Stenford University
Stanford, California

A SURVEY OF HIGHER-ORDER BOUNDARY-LAYFR THEORY
by

Milton Van Dyke

SUDAAR No. 326
September 197

Distribution of this document is unlimited.

Presented at AGAnRD Seminar on Numerical Methods for Viscous Flows
National Prysical Laboratory
18-21 September 1967

Preparea for the Air Force Office of Scientific Reseearch
Under Contract No. AFL9(638)-1274
Project No. 9781-01




f~{
H

iv.

[&]

TABLE OF CONTENTS
Fare

ILTRODUCTION o v v v v v v s e e e e e e e e e e e . 1
DISFLACEIZNT EFTECT v v v v v v v e e e e e e e e e o, 1

"ONE-AID-A-HALF-ORDER" THEORY . .+ + « v & v 2 v 0 v v o v v .
LONGITUDINAL CURVATURE v v 4 v v v v w e e e e e e e v
TRAESVERSE CURVATURE . 7o v o v v v u v v 0 00T 0 . L
EXTEREAL VORTICITY  + v v v v v e v v e e e e e e e e e et
THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS . . o .+ o . . . .
COMPRESZIBLE FLOW v v v v v v v o v e v e e e e e e e e e
/PPLICATIOLS IF COMPRESSIBLE FLOW + . « o v 0 o 4 0 v v v oo O
SEPARATION v v v v v v v et e e e e e e e e e e e e e 10
CORIERS AID EDGES v v v v v v v v v o v e e m e e e e e e e w10

SINGULAR OUTER FLOWS v v v v v v v v v v v e e e v e v o 1

-]

ETERERCES 1

+

LIST OF ILLUSTRATIONS

Fa~

Bourdary Layers on €ascade « v v v v v v w e w e e e e 20
Entry Profile o v 0 v v 0 e s e e e e e e e e e e e e 1

Fourdary-Layer Solition for Axisymmetric Laminar Jei ir
Cylirdrical Coordinates . . . v v v v v v 4 v v v v w v o . e
Beoundary Layer Flus Displacement Flow for Axisymmetiric

Laminar Jou I70n NOZ2Ie o v v v v v v e e e e e e e e

Coviticiviy o Second-Order Skin Friction Due to (onvac.os .
i 1ot ie Outer Flow Near Stagnation Poird v v v v v v W . -,

T e e rm vy e opmw e v~
s el H £ 28 R id e B bui*’ i




I. TIANTRODUCTION

If T undertaeke a survey of higher-order boundary-layer theory, at
the present time it almost goes without saying that I am coing to discuss
only steady, plane or axisymmetric, leminar flows, and at most second-
order theory. Laminar, because my knowledgeable colleagues assure me
that turbulent boundary layers are not yet well enough understood that a
sensible person would trouble himself with higher-order refinements.
Second~-order, because for gases on the one hand the Navier-Stokes
equations are not valid to any highrer order, and for liquids on the other
hand the lew of diminishing returns probably sets in after the second
approximation — which itself extends the utility of Prandtl's theory
down to Reynolds numbers of the order of ten. And steady and two-
dimensional, because none of us has yet ventured further.

When we set out to improve upon boundary-layer theory in a systematic
way, we naturally ask first what approximations were sdopted by Prandtl
in the classical theory. Consider first the simplest case of plane,
steady, ircompresesible flow. The continuity equation and surface boundary
conditions are left intact. Streamwise diffusion is neglected compared

with transverse diffusion in the longitudinal momerntum equation, the

transverse pressure gradient is disregarded, and tne distant boundary
condition is replaced by the requirement that far out in the boundary
layer the tangential velocity component approach the inviscid surface
speed.

1/2

These three spproximations introduce errors of relative order R/7,

where R 1s & representative Reynolds number. Hence if we count Prandtl's
theory as the first approximation (scme writers call it the "zeroth"!),

gsecond=-order theory will add corrections of order R-l/2, third-order

theory terms of order R-l, and so on.

;
ﬁ
:

II1. DISPLACEMENT EFFECT

The neglect of streamwise diffusion actually causes only a tkird-

oo o

order error. Likewise, for fla£ surfaces = plates ard wedges — the




normal pressure gradient exerts orly a third-order effect. He:ce [or
flat shapes the only second-order effect is th~ change in the ou’er
tangential speed induced by the boundary layer itself. This is called
the displacement eilfect.

This effect appears irn the first discussion of higler-order btoundary-
layer theory that I know of, due *o Prandtl himself. 1In volume il.ree of

Durand's "Aerodynemic Theory" he wrote, in discussing the flat plate

The displacement of the siream-lines by the amournt 6*
produces & slight alteratior ir the potential flow which was
made the basis of the calculations. Instead of a simple
paraelilel flow, the flow around a parebolic cylinder of thick-
ness 26* should bc introduced, which would slightly alier
the prescure distribution. The above calculation would have
to be repeated for this new pressure distribution ard if
necessery the process repeated on the basis of the rew
measure of displacement so obtained. Such calculatiors have
so far not been performed; they would, in any case, make
little difference in the regions where the calculations are
usually applied in prectice. They would however become
necessary if the transition to smeller Reynolds number

uol/v vere attempted.

To this we need only add that — according to thin-airfoil theory - it
happens that a thin parabola induces no pressure chesnge upor. itself. Thus
we see that there are no second-ordexr corrections at all to the boundary
layer on a semi-infinite plate.

for a finite flat plate, however, the displaceme:t thickress is
parabolic only back to the trailing edge, and then rearly corstant in tle
wake. Consequently there is a small favorable pressure gradie't induced
upon the boundary layer. On this basis Kuo (1953) calculated ‘Le seco:d-
order effect, finding tiat the local skir frictior is sligltly i:creased
everywhere. However, he made the mistuke of irtegra‘i:ig to #i:d *hre ‘otlal
drag. This is not proper, because the touw.dary-la er approxima‘io: :reaks

down altogether in a small neighbortood of tle leadi: . edie; erd, as 1



shall discuss later in more de-ail, this local deviation ar:ects thre

drag to seco:d order.

III. 'ONE-ilND-A-HALF-ORDER" THEORY

The displacement effect is ofter more difficult .o ca. .Jate tha:.
any of the other second-order effects. because it alore is global ir
rature - the correction at any point depending upor the e:tire course of
the bourdary layer. Nevertlieless, I have discussed it first because it
is invariably present. (The orly exceptior might arise if we contrived
to apply suction to a porous wall, or to cool the wall in a compressitle
fluid, in just such a way that the displacement thickness was everywrere
zero. )

Before discussing other second-order effects, I want to express the
oplnion that displacement effecis deserve more attention than they have
received. 1Indeed, very useful results can be obtained by stopping short
of second-order boundary-layer ‘heory, at what we might call "one-and-a-
half-order theory" — that is, the classical boundary layer plus its flow
due to displacement.

For example, chemical engineers have in the last few years disputed
the old problem of viscous entry into a chamnnel. This problem was first
treated in 1934 by Schlichting, who applied boundary-layer theory to the
walls, and assumed in between a uniform core that accelerates downstream.
Obviously this assumption fails near the entry. Recently Wang and
Longwell (1954) solved the full Navier-Stokes equatioi.s numerically for
a cascade of plates at a Reynolds number of 150, based on channel width
and upstream conditions. However, at such a large Reynolds number it is
scarcely necessary to appeal to the full equations, or even to second-
order boundary-leyer theory. One reed oniy calculate properly the flow
due to dicvnlacement thickness.

Near the entry, the displaceme:.t thickress is a parabola for each
plate, as irdicated in Fig. 1. Herce the flow due to displaceme:.t

thickress is jus* the potential flow past a cascade of paratolas, which

car. be tourd by elemertary mears ‘with due attertior to irdeterminate




forms). Fig. 2 shows how well the result for the velocity prorile
across the entry plane agrees with the numerical solutior. of the full
equations.

I have recently calculated slso the flow induced by & variety of
Jets and plumes — results that have apparently never appeared in pri:t,
but are useful in understanding the flow patterr. For example, the well-
known boundary-layer solution for an axisymmetric laminar jei yields, ir
cylindrical coordinates, the pattern of streamlines show: in Fig. 3,
which appears in Prandtl's (1938) article. The flow far outside the Jet
happens, with this choice of coordinate ', to be that appropriate to a
Jet issuing from an infinite plene wall. Suppose, however, tLat we are
interested rather in a Jet issuing from a lorg slender nozzle. Calculat-
ing the flow due to c&isplacement shows that the outer siream surfaces
are paraboloids of revolution. The composite solutior show: in Fig. &
is indistinguishable from the exesct solution of the full Navier-Stokes
equations sketched by Whitham on page 153 of Roserhead's "Laminar Bourdary
Layers".

Iet me add one last remark or. "one-and-a-half-order" theorv. This
is the province of Kaplun's (1954) optimal coordirates; arnd i: seems 10
me imperative that we extend that remarkable jdea — firs® to axisymmetric
flows, and then if possible to three-dimensional and unsteady motions &s

well as to higher approximations.

IV. LONGITUDINAL CURVATURE

If the surface of a body is curved, rather than fiat, ceifrifuzal
forces yield pressure changes acrose the boundary layer tha! exeri a

second-order effect. This effect of lonzgitudinal curvature was i'irst

investigated by Tani in 1949. He studied the special case of a plate
with curvature varying as the inverse square root of distance from ‘le
leading edge, because this admits a self-similar solutior. Hr foura a
reduction of local skir friciior due to corvex curvature (i: co:'ras‘ ‘o
earlier Japanese work, hased or. a mome:tum irtegral, *lLa‘ su--es'cd &

increase).
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The same problem was solved independently by Murphy in 1953, who
found the same trend but a smaller coefficient. Tani thereupcn realized
that his treatment had been inconsistent, and in 1954 published a revised
version with yet another value of the coefficient. TFig. 5 shows the
subsequent history ot this ridiculous comedy of errors, which seems to
have been resolved only within the last year.

Of the investigators whose names asppear here, Murphy, Cooke, Massey
and Clayton, and Nerasimha and Ojha have calculated the etfects of
longitudinal curvature for a more general class of t'lows. These are what

I will call completely self-similar solutions, in the sense that the

second-order correction is similar not only to itself but also to the
first-order solution = which is a member of the Falkner-Skan family.
With equal ease I have calculated several cases of what I may call

separately self-similar solutions: the first- and second-order solutions

are similar to themselves, but not to each other. These have the
advantegge that the curvature may be taken to be everywhere finite., It
might be worthwhile to calculate a few more of these; whereas I believe
the subject of completely self-similar flows is closed with the appearsance
of the definitive papers of Cooke and Narasimha and Ojha. (That of
Murphy is iavaliidated by certain inconsistencies *hat have been pointed
out by Massey and Clayton (1965), and the work of the latter irs also

open to some objection.)

Let me now make & possibly controversial comment on the range of
applicability of these results. Murphy, Massey and Clayton, and Schultz-
Grunow and Breuer assume — elther e:: 'citly or tacitly — that their
solutijons remain valid even when {1 <« wall curvature is so great that the
radius is of the order of the boundary-layer thickness. I am sure that
this is not true, and that — as I will discuss later — quite a different
approximation must be adopted in that range. They therefore sperd an
unnecessary amount of labor in solving equations that are not spli. into
first- and second-order componerts, and in presenting results for e range
of curvature parameter. As Narasimha and Ojha point out, there is ro
justification for attaching any significance to the departure of their

curves from the initial tangents.




V. TPANSVERSE CURVATURE

A second curveture effect arises when we extend our coisiderations
td bodies of revolution. In the classical theory the bourdary layer is
negligibly thin compared with the locsl rsdius of the body; and this
permits it to be related to an equivalert plane boundary lsyer by the
Mangler transformation. However, on a very lorg slender bodv — a needle —
the boundary layer may grow much thicker than the body ever at nigh
Reynolds number. We exclude this situation — which requires a fresh
approach initiated by Glauert and Lighthill (1955) and Stewartson (1955) -
and consider the effects of transverse curvature over a short body or
the forward portions of a long one.*

Transverse curvature appears in its most nearly pure form in the
boundary layer on a circular pipe. The internal flow was studied by
Atkinson and Goldstein (cf. Goldstein 1938, p. 304), and the external
flow by Seban and Bond (1959), with important corrections by Kelly (1954).
The latter find the lecal skin friction to te increased over the flat-
plate value by the factor

1% X Vv X
1+2.10 \’EJE_-O.A8-{}EE+...

where a 1is the radius of the pipe. 1In this form we recognize the seco'd
term as a second-order boundary-layer effect — proportional to the inverse
square root of the Reynolds number — and the third term as a third-order
effect. Whereas convex longitudinal curvature usually reduces the ski..
friction, coenvex transverse curvature appears always to increase it, as
in this case.

Although longitudinal curvature is absent in this protlem, the seco:d-
order displacement effect does not vanish for a tube as it does for a pla:e.

Hence a correction for displacemert must te added to the avbove resul‘.

*
We think of bodies that grow more slowly tha: a paravoloid. The situa‘io:.
is reversed for those that grow more rapidly, such ss a core, for wlict
the ratio of boundary-layer thick:ess to body radius decreases dow:.strean.




For the interral flow, Atkinson and Goldstein adopted Schlichting's idea
of a uniform accelerated core; and this alters the coefficiert of the
second term. I intend to calculate properly the flow due to displacemernt

thickness, in order to assess the error in these theories.

VI. EXTERNAL VORTICITY

The next second-order effect I want tou mention was first recogrized
in supersonic problems, but can occur also in incompressible flows.
Ferri and Libby (1954) pointed out that the boundary layer must be
affected to some extent by the external verticity generated bty a curved
bow shock wave. Li (1955) then proposed a simple incompressible model
of this phenomenon that displays its essential features — a semi-infinite
flat plate in a uniform shear flow. He at first omitted the pressure
gradient that is induced by interaction of the external shear flow with
the displacement thickness of the boundary iayer, but corrected himself
the following year (Li 1955). However, that correc:ion was challenged
by Clauert (1957) and others; and a lively and extended controversy arose.
Finally, however, thanks to the careful analysis of Murray (1961) and
the diplomatic intercession of Toomre and Rott (1964), tle dispute has

been resolved in a corsensus of nearly all the participants.

ViI. TiE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

We see that even in ithe simplest case of steady, plene, laminar,
incompressibi~ flow the development of higher-order boundary-layer theory
has been maired by an unfortunate series of errors. misunderstandings,
and controversies. The reason is simply that the insight of even a
Prandtl begins to fail at about the second approximatior. What one the:.
wants 1s a rote procedure that can be applied automatically, without undue
mental effort.

The required technigue is the method of matched asymptotic (or "irner

and outer") expansiors. This useful method is in fact an outgrowth of




Prandtl's boundary-layer idea, as developed by Friedrichs (1953), Kapli:.
and Lagerstrom (1957), and others. I believe that this method ca: ro
longer be dismissed as an esoteric speciel technique, but should be part
of the working equipmert of every applied mathemeticiern and theoretical
engineer.

In the present subject, it is fair to asser: that all the manry
errors and disputes have arisen from relying upon physical irsight; and
that not a single felse step has been made by eny of us who “rusted
rather to systematic arplicatior of the mcthod of matched asymptotic

expansions.

VIII. COMPRESSIBLE FLOW

Even though the emphasis of this meeting is or compressivle flow, I
have spoken so far orly of incompressible motior., because it is simpler
end exemplifies most of the essential features. Just as ir. the classical
theory, dramatic compressibility effects are limited to the outer irviscid
flcw, and the boundary layer itself suffers changes only of detail, eve:.
into the hypersonic range. This point of view has recently beern challerged
by Weinbaum and Garvine (1966); but I think it would be charitable to say
that they have misunderstood the asymptotic nature of boundary-layer
theory, confusing it with the so-called "strong-irteractior" ‘ieory,
which is based upon quite a different double limit process.

The four second-order effects that I have discussed so far — displace-
ment, longitudinal curvature, transverse curvature, a:d external vorticity =—
persist for compressible motion. In my ox< work, I found it convenient

to subdivide the effect of exterral vorticity into that of ertiropy gradie:.:

and of stagnation e:nthalpy gradient, the latter teirg absert for the usual

isoenergetic flows of aerodynamics. To tlese are added two :lew pherome:a
associated with the boundary corditions at the surface: <‘he effects of

slip and of tempersture jump. It should be emphasized, hLowever, as poi: ed

out by Rott and Lerard (1952), that this classifica’io: is :o0° wuique, a:d
a considerable psrt of the cortroversy ir this sutject lLas arise: o:ly
because of different ways of dividi:g amo:ys displaceme: . curva ire, a:d

external vorticity.




In contrast to the incompressible *...ory, the more complicated
compressible secord-order toundary-lsyer theory has been developed with
a minimum of error. In particular, the comprehensive analyses ot myselt
(Van Dyke 1961), Meslen (1962), ard Lenard (1962) — developed indepc -dently

in about the same year — seem to have withstood the test ot time.

IX. APPLICATIONS IN COMPRESSIBLF FLOW

The first applications of the theory for compressible flow were
again to stagnation points and leadirg =dges, for which seltf-similar
solutions exist (Van Dyke 1961, Maslen 1962, FannelSp and Flilgge-Lotz 1965,
Davis and Fliigge-Lotz (1961a). Later, numericel integration of the first- and
second-order equations was undertaken (Devan 1964), the most comprehen-
sive results — until this meeting — being those of FannelSp and Flligge-
Lotz (1965) for plane flow past a circular cylinder and a plate with
semi-circular leading edge, and of Davis and Flligge-Lotz (1964b) for
axisymmetric flow past a paraboloid, sphere, and hyperboloid.

The most troublesome componert of these calculations is th~ flow Z2ue
to displacement thickness. In principle, we should perturb the basic
inviscid blunt-body solution. However, we have 8ll resorted to the
strategem of approximating the body plus the displacement thickness by
a magnified and shifted replice <l itself; and this does not seem to have
introduced serious errors.

These results show that the various second-order contributions may
vary widely ir sign end msgnitude, depending upon body shape, surface
temperature, and other paremeters in the problem. The same is true of
the resultant, which is often smaller than ary of its componerts. Consc-
quently it is important to calculate all second-order effects if any
sigrnificance is to be amtiacked to the result.

Experimertal confirmation is perhaps still not corclusive. A few
years ago the situation seemed to be that experiments carried out ir.

New York agreed with the rather large effects predicted by several partial
theories developed ir the same state, ard experiments i: Californis te:ded

to agree witlh tre smaller effects predicted by theories developed there.

pNe]




I am not sure how much this situation has bee: clarified; tut I hope ¢

learn more about it at this meeting.

X. SEPARATION

One point of speciml interest at this meeting is the 1lighk*t that
second-order theory can sheld on laminar separatior. Until recently, mos:
of us believed that the classical uvourdary-layer tleory breaks down
shortly before the ckin frictior vanishes — as in Howarth's (1938) solutio:
for a linearly decreasing surface speed. As usual in perturvatior theorics,
we might expect this failure of thre first approximatiorn to be confirmed
by compounded singularities in higher approximatiors.

Two bits of evidence suggest that this does happen. In their com-
pletely self-similar solutions for incompressible flow, Narasimha and
Ojha have observed that the second-order crefficiert of skin friction due
to longitudiral curvature seems to be rising rapidly as the critical value
of the Falkner-Skan parameter is approached. Again, in their full second-
order solution for a sphere at Mach number 10, Davis and Flligge-Lotz (195.-b)
found the effects ot longitudinsl curvature becoming large as the ski:.
friction fell.

Our ideas on separation have, however, been overturned by the recent
discovery of Catherall and Mangler (19-5) that the classical boundary-
layer solution will proceed smoothly through zero skin friction if it is
permitted the slightest freedom to choose the local pressure distributiorn
so as to avoid catastrophe. It would be interesting to re-examine tle

second-order theory in the light of this remarkable turn of events.

XI. CORNERS AND EDGES

I have elready expressed *re opinion that higher-order tourdary-
layer theory will bresk down long before the surface curve:ire bLecomes =0
great that the radius of curvature is comparable witl. tle tou:dary-layer

thickness — and this would be irue of irarsverse ac vell ce 1o:n.itadinsl
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curvature. I belicve that the proper way of treating suclk problems

has been poirted out by Brailovskaya (1965) and Neilard and Sychev (196-).
They consider plane t'low past & corner that is slightiy rounded, with a
radius of the order of the local toundary-layer thickness. C(lassical
boundary-layer theory holds as a first approximation ahead of the corner.
and again behird it. In the immediate neighborhood of the corner, h;wever,
the small viscous forces are inusignificant compared with the pressure and
inertial forces, so the flow is governed locally bty the Euler equations
of rotational inviscid flow. This local solution matches the boundary
layers upstream and downstream in the sense of the method ot matched
asymptotic expansions. Finally, because the local inviscid solution
violates the no-slip condition, & ithin sub-bourdary layer must be added
close to the wall.

Neiland and Sychev consider orly rounded corners in order to avoid
having to deal with the full Navier-Stckes equations. For if the corner
is sharp, a local solution of the full equations is evidently required.
However, it will have a certain simple and universal character, and may
therefore be worth working out numerically.

One case that seems to0 be well in hand is incompressible flow near
a cusped leading edge. The local problem is the standard one of viscous
flow past a semi-infinite flat plate. Ten years ago Imai (1957) showed,
by ingenious use of gloval momentum balance, that although the Prandtl-
Blasius boundary-layer solution breaks down near th: leading edge, it
can be used to find the second term in the inter~ated skin friction
(which from the crude point of view of the boundary-layer approximation
appears as & concentrated force at the leading edge). More recently,
Davis (1967) has solved the problem in detail using the semi-numerical
method of series truncation; ard hL's solutior sgrees so well with both
the global result of Imai end a much-neglected analysis of Dean (1954)
that we can accept it with confiderce. This local correction can be
applied to Kuo's solution for tre finite flat plate, to the cascade of
flate plates, to the solutions of Atkinson aid Goldstein and Seban and
Bond for the circulsr pipe. ard so or. In supersonic ard hypersonic flow

the problem is more difficult, and has not yet bteer satisfactorily solved.

11
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Pernaps the simplest case of flow over a sharp corner is a cusped
treiling edge in an incompressible stream, because there is 1o questior.
of separation. If we consider, for example, the standard problem of *le
finite flate plate, we see that the Prandtl-Blasius solution applies
over most of the surface, and the wake solution of Goldstein (1930) and
Tollmien (1931) almost ev- rywhere behind it. The boundary-layer soiﬁtion
fails in a circular neighborhood o:' the leading edge whose redius is of
the order of R-l time: the Jength of the plate, R Dbeing the Reynolds
number besed on length; and here we can use the results of Imai, Dean,
and Davis. At the trailing edge the thickness of the boundary layer is
of order R-l/a, and the theory of Neiland and Sychev would suggest that
& local Euler solution is required in a neighborhood of that size. How-
ever, 1n this simple case that correction vanishes. I have convinced
myself that a correction is then ~equired only in & smaller neighborhood
of the trailing edg:, whose radius is of the order of R-S/u times the
length of the plate. (Thls corresponds to Neiland and Sychev's sub-
boundary layer.) The full Navier-Stokes equations must be solved there;
and we hope to carry this out by seriles truncation.

Without meking the detailed calculations, we can see that this
trailing-edge correction will contribute to the integrated skin friction
a term of order R-S/h. Thus for cusp-ended shapes we must reconsider
our numbering scheme. What w2 have heretofore called second-order theory
adds a correction of reletive order R-l/a, and third-order theory s
term of order R-l; but now we see that the treiling-edge correction
supplies a "two-and-one-hiif-order" term in R-s’h, and so or. (whatever
that may mean!).

The situetion is different agasin when we encounter large or irnfirite
transverse curvature. The simplest example is perhaps the incompressible
flow along & corner, which has been re-examired recently by Rubir (195)
fron the point of view of matched asymptotic expansions. 1In thlis case
the crucial problem to be solved in the immediate vicinity of' tle correr
involves equations simpler than the full Navier-Stokes equatiors, but
more complicated than the conventional boundery-leyer equatio:s. The ornly

sttempt at solving this problem rumerically was made by Pearsor (1957)
ten vears 8go in his unpubtlished Cambridge Uriversity thesis. If tlis

12



correction is applied to the flow inside a rectangular channel, we see
that it contributes a term of relative order R-l/2 to the drag — and is
therefore to be included with the second-order displacement effect
discussed earlier

The flow neas the outside corner on such a channel is more complicated,
as is indicated by Stewartson's (1961) study of the quarter-infinite plate.

And sgain the corresponding supersonic problems are still more difficult.

XII. SINGULAR OUTER FLOWS

Finelly, I want to discuss an in%riguing new field of application
for higher-order boundary-layer theory. This is motion in which the basic
inviscid flow is singular at the surface of the btody. This situation has
ariseu recently in various branches of high-speed aserodynamics, of which

I will mention four:

aLo Perhaps the simplest case to understant is the inviscid
stagnation region of a blunt body in hypersonic flight through
a completely transparent radiating gas. A particle of fluid
on the stagnation streamline requires an iniinite time to reach
the stagnation point, and so — because there is no re-absorp-
tion = radiates away &ll its energy. Hence the inviscid
surface streamline is at absolute zero temperature. In & model
of this phenomenon studied by Burggraf (1960) the velocity and
enthalpy both vanish as regative fractional powers of the
logarithm of the distence from the wall.

2. Similarly, for an inviscid stagnation point inachemically-reacting
gas, the temperature and degree of dissociation (as well as the
other thermodynamic properties) approach some equilibrium
values at the stagnation point; and the normal gradients are
zero for sufficiently fast reactions, finite for & particular
intermediate rate, and infinite for slower reactions ( Fig. 6).
This behavior has been discussed by Conti and myself (1965).

13




3. Hayes (1964 ) has studied the rotatio:al inviscid flow rear
a three-dimensional stegnation point. He finds tlat in all
but very special cases the solution is ron-analytic and the
vorticity infinite at the wall, the stegnation streamline
hbeing tangent to the surface.

4.  In hypersonic small-disturbance theory the self-similar
solutions associated with strong power-law bow shock waves are
singular at the surface of the body. This case is the subject
of a paper to be presented at this meeting by Lee and Cheng,
entitled "Higher-order approximation in the theory of hypersonic
boundary layers on slender bodies".

If we now consider applying boundary-layer theory to any of these
problems, questions arise that force us to re-examine the basis of
Prandtl's classical theory. Sheuld we still use the inviscid surface
speed as the tangential velocity at the outer edge of the boundary layer,
even though the gradient is infinite? Is the boundary-layer thickness
still of order R-l/e? Do higher approximaticns proceed in the usual
way? Is a single boundary layer sufficiert, or are intermediate transi-
tion layers required?

Conti and I have concluded that - at least in the first two cases,
of stagnation points in radiating or reacting flows — the situation is in
general as follows: Classical boundary-layer theory remairs valid even
though the inviscid surface gredients are infinite. That is, the boundary-
layer thickness is still of order R-l/e, and the inviscid surface speed
is approached at the outer edge. However, important differences appear
in higher approximations. Rather than being smaller by a full inverse
half power of Reynolds number, the second-order correctio: follows close
on the heels of the classical solutior. In the case of slow clhemical
reactions, it may differ by only a very small regative power o! Reyrolds
number, 80 that several or even a great many higler-order terms ir‘ervere
before the conventional second-order correction. Ard in tle case of
radiation, successive terms differ from one another orly by trac’joral

powers of the logarithm of the Reynolds numter, so ‘lLa' an irtiri-«

number of terms intervene.




These conclusions differ somewhat from those of Burggraf. The
reason is that he considers only the degenerate case of vanrishing surface
temperature. Then the surface boundary conditions on both velocity and
temperature are satisfied 1y the inviscid solution, so that no conven-
tional boundary lsyer is required. The first correction is what would
ordinarily be the second-order term; and it is a consequence of the hon-
linearity of the governing equations that the boundary layer then has a
thickness that is slightly greater than usual, by an amount smaller than
any power of the Reynolds number.

Our conclusions appear glso to differ from those reached by Lee and
Cheng in their study of power-law bodies in hypersonic flow, for they
invoke a third region that serves to joln the inviscid flow to the
boundary layer. From my point of view, this meeting will be a success
if we can clarify our thoughts on this fascinating new branch of the

subject.
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BOUNDARY LAYERS ON GASGCADE

FIGURE 1.
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