
A Survey of System Architectures
and Techniques for FPGAVirtualization

Masudul Hassan Quraishi , Erfan Bank Tavakoli , and Fengbo Ren , Senior Member, IEEE

Abstract—FPGA accelerators are gaining increasing attention in both cloud and edge computing because of their hardware flexibility,

high computational throughput, and low power consumption. However, the design flow of FPGAs often requires specific knowledge of

the underlying hardware, which hinders the wide adoption of FPGAs by application developers. Therefore, the virtualization of FPGAs

becomes extremely important to create a useful abstraction of the hardware suitable for application developers. Such abstraction also

enables the sharing of FPGA resources among multiple users and accelerator applications, which is important because, traditionally,

FPGAs have been mostly used in single-user, single-embedded-application scenarios. There are many works in the field of FPGA

virtualization covering different aspects and targeting different application areas. In this article, we review the system architectures

used in the literature for FPGAvirtualization. In addition, we identify the primary objectives of FPGAvirtualization, based on which we

summarize the techniques for realizing FPGAvirtualization. This article helps researchers to efficiently learn about FPGAvirtualization

research by providing a comprehensive review of the existing literature.

Index Terms—FPGA, virtualization, architecture, accelerator, reconfiguration

Ç

1 INTRODUCTION

FIELD programmable gate arrays (FPGAs) are gaining
increasing attention in both cloud and edge computing

because of their hardware flexibility, superior computational
throughput, and low energy consumption [1]. Recently, com-
mercial cloud services, including Amazon [2] and Microsoft
[3], have been employing FPGAs. In contrast with CPUs and
GPUs that are widely deployed in the cloud, FPGAs have
several unique features rendering them synergistic accelera-
tors for both cloud and edge computing. First, unlike CPUs
and GPUs that are optimized for the batch processing of
memory data, FPGAs are inherently efficient for processing
streaming data from inputs/outputs (I/Os) at the network
edge. With abundant register and configurable I/O resour-
ces, a streaming architecture can be implemented on an
FPGA to process data streams directly from I/Os in a pipe-
lined fashion. The pipeline registers allow efficient data
movement among processing elements (PEs) without involv-
ing memory access, resulting in significantly improved
throughput and reduced latency [4], [5]. Second, unlike
CPUs and GPUs that have a fixed architecture, FPGAs can
adapt their architecture to best fit any algorithm characteris-
tics due to their hardware flexibility. Specifically, the hard-
ware resources on an FPGA can be dynamically reconfigured
to compose both spatial and temporal (pipeline) parallelism
at a fine granularity and on a massive scale [1], [6]. As a
result, FPGAs can provide consistently high computational

throughput for accelerating both high-concurrency and
high-dependency algorithms, serving a much broader range
of cloud and edge applications. Third, FPGA devices con-
sume an order of magnitude lower power than CPUs and
GPUs and are up to two orders of magnitude more energy-
efficient, especially for processing streaming data or execut-
ing high-dependency tasks [7], [8], [9]. Such merits lead to
improved thermal stability as well as reduced cooling and
energy costs, which is critically needed for both cloud and
edge computing.

Even though FPGAs offer great benefits over CPUs and
GPUs, these benefits come with design and usability trade-
offs. Conventionally, FPGA application development
requires the use of a hardware description language (HDL)
and knowledge about the low-level details of FPGA hard-
ware. This is a deal-breaker for most software application
developers that are not familiar with HDLs nor hardware
specifics at all. Even though high-level synthesis (HLS) has
enabled the development of FPGA kernels in C-like high-
level languages (e.g., C++/OpenCL)[10], one still needs to
have basic knowledge about FPGA hardware specifics in
order to develop performance-optimized FPGA kernels. As
a result, the FPGA application development based on HLS
remains esoteric. Moreover, the existing flows of FPGA ker-
nel design are highly hardware-specific (each FPGA kernel
binary is specific to one FPGA model only), and the vendor-
provided tools for deploying and managing FPGA kernels
lack the support for sharing FPGA resources across multiple
users and applications. These limitations make FPGAs
insufficient for supporting multi-tenancy cloud and edge
computing. One solution to these limitations is decoupling
the application (i.e., hardware-agnostic) and the kernel
design (i.e., hardware-specific) development regions [11].

FPGA virtualization that aims to address the challenges
mentioned above is the key to enabling the wide adoption of
FPGAs by software application developers in multi-tenancy

� The authors are with the School of Computing, Informatics, and Decision
Systems Engineering, Arizona State University, Tempe, AZ 85281 USA.
E-mail: {mquraish, ebanktav, renfengbo}@asu.edu.

Manuscript received 9 Oct. 2020; revised 18 Feb. 2021; accepted 1 Mar. 2021.
Date of publication 3 Mar. 2021; date of current version 19 Mar. 2021.
(Corresponding author: Masudul Hassan Quraishi.)
Recommended for acceptance by S. He.
Digital Object Identifier no. 10.1109/TPDS.2021.3063670

2216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6939-1669
https://orcid.org/0000-0001-6939-1669
https://orcid.org/0000-0001-6939-1669
https://orcid.org/0000-0001-6939-1669
https://orcid.org/0000-0001-6939-1669
https://orcid.org/0000-0002-3248-9301
https://orcid.org/0000-0002-3248-9301
https://orcid.org/0000-0002-3248-9301
https://orcid.org/0000-0002-3248-9301
https://orcid.org/0000-0002-3248-9301
https://orcid.org/0000-0002-6509-8753
https://orcid.org/0000-0002-6509-8753
https://orcid.org/0000-0002-6509-8753
https://orcid.org/0000-0002-6509-8753
https://orcid.org/0000-0002-6509-8753
mailto:mquraish@asu.edu
mailto:ebanktav@asu.edu
mailto:renfengbo@asu.edu

cloud and edge computing. Specifically, the primary objec-
tives of FPGA virtualization are to: 1) create abstractions of
the physical hardware to hide the hardware specifics from
application developers and the operating system (OS) as
well as provide applications with simple and familiar inter-
faces for accessing the virtual resources; 2) enable the effi-
cient space- and time-sharing of FPGA resources across
multiple users and applications to achieve high resource
utilization; 3) facilitate the transparent provisioning and
management of FPGA resources; and 4) provide strict perfor-
mance and data isolation among different users and applica-
tions to ensure data security and system resilience.

An early survey paper on virtualization of reconfigurable
hardware [12] covers a narrow perspective of FPGA virtual-
ization by discussing three virtualization approaches, i.e.,
temporal partitioning, virtualized execution, and virtual
machine. Recent surveys on FPGA virtualization [13], [14],
[15] mostly discuss FPGA virtualization in the context of
cloud and edge computing. Vaishnav et al. [13] proposed
three categories of FPGA virtualization techniques and
approaches based on the level of abstraction and the scale of
computing resource deployment: resource level, node level,
and multi-node level. The resource-level abstraction refers
to the virtualization of reconfigurable hardware and I/O
resources on an FPGA, while the node-level and multi-
node-level abstractions refer to the virtualization of a com-
puting system with one and multiple FPGAs, respectively.
Such categorization can create ambiguity since many
approaches and techniques used in one abstraction level of
the system can often be applied to other levels as well. For
example, the paper considers scheduling as a node-level vir-
tualization technique. The scheduling of FPGA tasks is, in
fact, a common concept that can also be applied to the
multi-node and resource levels. Furthermore, the survey
lists several FPGA virtualization objectives, but a discussion
on how these objectives are linked to the virtualization tech-
niques in the existing literature is missing.

The survey paper in [14] revisits some of the existing sur-
vey papers to suggest selection criteria of appropriate com-
munication architectures and virtualization techniques for
deploying FPGAs to data centers. It has selected three dif-
ferent areas to review: previously used nomenclature, Net-
work-on-Chip (NoC) evaluation on FPGA, and FPGA
virtualization. Its discussions in the FPGA virtualization
section are similar to [13], and therefore have the same limi-
tations mentioned above.

Skhiri et al. [15] identified drawbacks of using FPGAwith
a local machine and presented a survey of papers that uses
FPGAs in the cloud to solve the identified drawbacks. They
discussed cloud FPGA services in three different groups:
software tools, platforms, and resources. As part of their
discussion on FPGA-resources-as-a-service, the paper revis-
its the classification of virtualization approaches in [13], and
hence, has the same limitations.

Overall, the existing survey papers on FPGA virtualiza-
tion review a limited set of existing work; for example, liter-
ature discussing isolation and security perspectives of
FPGA virtualization are not reviewed. There is an existing
survey on security and trust of general FPGA-based systems
[16], but the perspective of virtualization is not covered in
the work. One of the surveys has overlapped categorization,

which creates ambiguity in the scope of which each virtuali-
zation technique can apply. The existing surveys also fall
short in linking the virtualization techniques to the core
objectives of FPGA virtualization. In addition, the existing
surveys fail to discuss the system architecture perspective
of FPGA virtualization techniques. As FPGAs are reconfig-
urable hardware, FPGA computing systems can be built
with a variety of system architecture choices, and the virtu-
alization techniques can be highly dependant on the archi-
tecture choices. Thus, reviewing the system architectures of
FPGA computing systems is critical to understanding the
corresponding FPGA virtualization techniques.

In this survey paper, we present a comprehensive review
of both the system architectures, covering the hardware,
software, and overlay stacks, and the techniques for FPGA
virtualization, as well as their associations. Such organiza-
tion of the survey sets a clear boundary among different sys-
tem stacks, which helps readers better understand how
different virtualization techniques apply to different system
architectures. Furthermore, our work elaborates the four
key objectives of FPGA virtualization by discussing how
each objective is addressed by different virtualization tech-
niques in the literature. The system architectures used for
FPGA virtualization are summarized in Table 1, and the
key techniques for realizing FPGA virtualization are sum-
marized in Table 2, categorized by the four primary objec-
tives of FPGA virtualization. In addition, this survey paper
also reviews the existing papers on the isolation and secu-
rity issues of multi-tenant FPGAs that are overlooked by the
previous surveys.

This survey paper is organized as follows. Section 2 pro-
vides background on the general concepts of virtualization
and the challenges of FPGA virtualization, clarifies the
important definitions used throughout this paper, and
reviews the available programming models adopted in
FPGA virtualization. Section 3 presents the system architec-
ture design for FPGA virtualization in detail. In Section 4, we
discuss the four objectives of FPGA virtualization and how
they are implemented in different system stacks. Section 5
summarizes the overall survey and draws the conclusion.

2 BACKGROUND

2.1 Virtualization: General Concepts

Virtualization, in general, is creating a virtual abstraction of
computing resources to hide the low-level hardware details
from users. Virtualization is often software-based, i.e., the
virtual abstraction is implemented on the software level to
hide the complexity of the underlying hardware. In virtuali-
zation, the resources are transparently presented to users so
that each user has an illusion of having unlimited and exclu-
sive access. The most common example of virtualization is
running different OSs on a single processor using virtual
machines, where a virtual machine creates the illusion of a
standalone machine with an OS to the users. In this way,
the users get the flexibility to easily switch to a different sys-
tem environment or even a different OS without changing
the computing hardware.

For GPU virtualization, in gVirtuS [17], a split driver
approach is utilized with a frontend component (guest-side
software component) deployed on virtual machine images

QURAISHI ETAL.: SURVEYOF SYSTEM ARCHITECTURES AND TECHNIQUES FOR FPGAVIRTUALIZATION 2217

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

T
A
B
L
E
1

S
u
m
m
a
ry

o
f
th
e
S
y
s
te
m

A
rc
h
it
e
c
tu
re
s,

P
ro
g
ra
m
m
in
g
M
o
d
e
ls
,
A
p
p
lic
a
ti
o
n
s
,
a
n
d
F
P
G
A
P
la
tf
o
rm

s
A
d
o
p
te
d
b
y
th
e
E
x
is
ti
n
g
F
P
G
A
V
ir
tu
a
liz
a
ti
o
n
W
o
rk

W
o
rk

S
y
st
em

A
rc
h
it
ec
tu
re

P
M

A
p
p
li
ca
ti
o
n

P
la
tf
o
rm

H
ar
d
w
ar
e

S
o
ft
w
ar
e

O
v
er
la
y

H
o
st

S
h
el
l

R
o
le

V
ir
tu
al

[1
9]
,[
41

]
N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

F
ir
m
-c
o
re

JI
T
[4
2]

N
/
A

N
/
A

N
/
A

N
/
A

C
G
R
A

H
D
L

M
C
N
C
B
en

ch
m
ar
k

X
il
in
x
S
p
ar
ta
n
-I
IE

C
ra
y
H
P
R
C
[4
3]

L
H

N
o
n
e

P
R
R

N
/
M

N
/
A

H
D
L

Im
ag

e
F
ea
tu
re

E
x
tr
ac
ti
o
n

C
ra
y
X
D
1

O
S
4R

S
[4
0]

O
C

C
o
m
m
u
n
ic
at
io
n
C
o
m
p
o
n
en

t
P
R
R

O
S
4R

S
N
/
A

H
D
L

M
u
lt
im

ed
ia

X
il
in
x
V
ir
te
x
-I
I

N
o
C
[4
4]

L
H

N
/
A

N
/
A

N
/
M

H
R
C
s
w
it
h
N
o
C

N
/
A

3-
D
E
S
C
ry
p
to

A
lg
o
ri
th
m

X
il
in
x
V
ir
te
x
-5

V
ir
tu
al
R
C
[4
5]

L
H

N
/
A

N
/
A

S
o
ft
w
ar
e-

M
id
d
le
w
ar
e

A
P
I

N
/
A

H
L
S
,H

D
L

B
io
in
fo
rm

at
ic
s

G
iD

E
L
,N

al
la
te
ch

,
P
ic
o
C
o
m
p
u
ti
n
g

H
P
R
C
[3
5]

L
H

N
/
A

N
/
A

N
/
M

N
/
A

H
D
L

ID
E
A

C
ip
h
er
/
E
u
le
r
C
F
D

S
o
lv
er

A
lt
er
a
S
tr
at
ix

II
I

p
v
F
P
G
A

[3
2]

L
H

P
C
Ie

C
o
n
tr
o
ll
er
,D

M
A

N
/
A

X
en

V
M
M

N
/
A

H
D
L

F
F
T

X
il
in
x
V
ir
te
x
-6

V
D
I
[3
3]

O
C

M
em

o
ry
/
C
o
n
fi
g
u
ra
ti
o
n
/
N
et
w
o
rk

C
o
n
tr
o
ll
er

P
R
R

N
/
M

N
/
A

N
/
A

M
u
lt
im

ed
ia

X
il
in
x
V
ir
te
x
-I
I

A
C
C
L
[4
6]

L
H

P
C
Ie

C
o
n
tr
o
ll
er
,D

M
A

P
R
R

O
p
en

S
ta
ck

N
/
A

N
/
A

C
ry
p
to
g
ra
p
h
y

X
il
in
x
K
in
te
x
-7

V
F
R
[2
9]

L
H

N
et
F
P
G
A

B
S
P

P
R
R

O
p
en

S
ta
ck
,

S
A
V
I

T
es
tb
ed

N
/
A

H
L
S

L
o
ad

B
al
an

ce
r

X
il
in
x
V
ir
te
x
-5

C
at
ap

u
lt
[3
]

L
H
,R

H
M
em

o
ry

C
o
n
tr
o
ll
er
,H

o
st
C
o
m
m
.,
N
et
w
o
rk

A
cc
es
s

N
/
A

N
/
M

N
/
A

H
D
L

R
an

k
in
g
P
o
rt
io
n
o
f
th
e
B
in
g
W

eb
S
ea
rc
h
E
n
g
in
e

In
te
l
S
tr
at
ix

V

F
F
H
L
S
[4
7]

L
H

N
/
A

N
/
A

O
p
en

C
L

In
te
rm

ed
ia
te

F
ab

ri
cs

H
L
S

C
o
m
p
u
te
r
V
is
io
n
an

d
Im

ag
e

P
ro
ce
ss
in
g

X
il
in
x
V
ir
te
x
-6

H
S
D
C
[4
8]

O
C
,R

H
M
an

ag
em

en
t
L
ay

er
,N

et
w
o
rk

S
er
v
ic
e
L
ay

er
P
R
R

O
p
en

S
ta
ck

N
/
A

H
D
L

N
/
M

X
il
in
x
Z
y
n
q
-7
10
0

V
F
A

C
lo
u
d
[4
9]

L
H

P
C
Ie

C
o
n
tr
o
ll
er
,D

M
A

P
R
R

D
y
R
A
C
T
T
es
t

P
la
tf
o
rm

N
/
A

N
/
A

M
ap

R
ed

u
ce

X
il
in
x
V
ir
te
x
-7

R
C
3E

[3
0]

L
H
,R

H
C
o
m
m
u
n
ic
at
io
n
/
V
ir
tu
al
iz
at
io
n

In
fr
as
tr
u
ct
u
re

P
R
R

N
/
A

N
/
A

H
D
L

B
la
ck
-S
ch

o
le
s
M
o
n
te

C
ar
lo

S
im

u
la
ti
o
n

X
il
in
x
V
ir
te
x
-7

R
R
aa
S
[5
0]

L
H

P
C
Ie

C
o
n
tr
o
ll
er

P
R
R

N
/
A

S
o
ft
P
ro
ce
ss
o
r

H
D
L

Im
ag

e
P
ro
ce
ss
in
g

N
/
M

V
ir
t.
R
u
n
ti
m
e
[3
1]

L
H

P
C
Ie

C
o
n
tr
o
ll
er
,R

u
n
-t
im

e
M
an

ag
er

P
R
R

M
u
lt
i-

T
h
re
ad

ed
O
S

N
/
A

D
S
L
,H

L
S
,

H
D
L

G
ra
p
h
A
lg
o
ri
th
m
s:
P
ag

e
R
an

k
,

T
ri
an

g
le

C
o
u
n
t
an

d
O
u
tl
ie
r

D
et
ec
to
r

X
il
in
x
V
ir
te
x
-7

K
er
-O

N
E
[2
5]

O
C

N
/
A

P
R
R

R
T
O
S

N
/
A

N
/
A

D
S
P

X
il
in
x
Z
ed

B
o
ar
d

R
C
2F

[2
4]

L
H
,R

H
H
y
p
er
v
is
o
r,
I/
O

C
o
m
p
o
n
en

ts
D
P
R
R

N
/
A

N
/
A

H
D
L

N
/
M

X
il
in
x
V
ir
te
x
-7

V
E
R
C
lo
u
d
[5
1]

O
C
,L

H
P
C
Ie

C
o
n
tr
o
ll
er
,R

u
n
-t
im

e
M
an

ag
er

P
R
R

M
u
lt
i-

T
h
re
ad

ed
O
S

N
/
A

D
S
L
,H

L
S
,

H
D
L

G
ra
p
h
A
lg
o
ri
th
m
s:
P
ag

e
R
an

k
,

T
ri
an

g
le

C
o
u
n
t
an

d
O
u
tl
ie
r

D
et
ec
to
r

X
il
in
x
V
ir
te
x
-7

F
en

ik
s
[2
2]

R
H

H
o
st
C
o
m
m
.,
N
et
w
to
rk
/
S
to
ra
g
e
S
ta
ck
,

M
em

o
ry

C
o
n
tr
o
ll
er

P
R
R

N
/
M

N
/
A

H
D
L

D
at
a
C
o
m
p
re
ss
io
n
E
n
g
in
e,

N
et
w
o
rk

F
ir
ew

al
In
te
l
S
tr
at
ix

V

C
o
st
o
f
V
ir
t.
[5
2]

L
H

D
D
R
3/

P
C
Ie

C
o
n
tr
o
ll
er
,E

th
er
n
et

C
o
re

N
/
A

N
/
A

N
o
C
E
m
u
la
ti
o
n

H
D
L

D
S
P

In
te
l
A
rr
ia

10
N
F
V
[3
4]

O
C
,L

H
P
C
Ie

C
o
n
tr
o
ll
er
,D

M
A

P
R
R

N
/
M

M
C
U

o
n
S
o
ft

P
ro
ce
ss
o
r

H
D
L

C
o
n
te
x
t
S
w
it
ch

X
il
in
x
V
ir
te
x
-7

F
P
G
A
s-
C
lo
u
d
[2
8]

L
H

M
em

o
ry

C
o
n
tr
o
ll
er

P
R
R

O
p
en

C
L

N
/
A

H
L
S

N
et
w
o
rk

F
u
n
ct
io
n
s

X
il
in
x
V
ir
te
x
-7

R
A
C
O
S
[5
3]

L
H

P
C
Ie

C
o
n
tr
o
ll
er
,D

M
A
,I
C
A
P

D
P
R
R

U
se
r
A
P
I,

K
er
n
el

d
ri
v
er

N
/
A

H
D
L
,H

L
S

E
d
g
e
an

d
m
o
ti
o
n
d
et
ec
ti
o
n

X
il
in
x
V
ir
te
x
6

A
m
o
rp
h
O
S
[2
6]

L
H

P
C
Ie

C
o
n
tr
o
ll
er
,D

M
A
,M

M
IO

D
P
R
R

li
b
-

A
m
o
rp
h
O
S

N
/
A

H
D
L

C
N
N
,M

em
o
ry

st
re
am

in
g
,B

it
co
in

A
lt
er
a
S
tr
at
ix

V
G
S
,

X
il
in
x
U
lt
ra
S
ca
le
+

E
la
st
ic
[2
3]

O
C

A
X
I

D
P
R
R

O
p
en

C
L

N
/
A

H
L
S

S
ch

ed
u
li
n
g
A
lg
o
ri
th
m

T
E
80

80
B
o
ar
d

F
P
G
A
V
ir
t
[5
4]
,[
55
]

L
H

P
C
Ie

C
o
n
tr
o
ll
er

N
/
A

V
ir
ti
o
-V

so
ck

C
G
R
A

H
D
L

N
o
C
E
m
u
la
ti
o
n

In
te
l
S
tr
at
ix

V
h
C
O
D
E
[5
6]

L
H

P
C
Ie

C
o
n
tr
o
ll
er
,C

lo
ck

g
en

er
at
o
r

P
R
R

N
/
M

N
/
A

H
D
L

S
o
rt
er
,A

E
S
,K

M
ea
n
s

X
il
in
x
V
ir
te
x
-7
/

K
in
te
x
-7

V
iT
A
L
[5
7]

R
H

L
at
en

cy
-i
n
se
n
si
ti
v
e
In
te
rf
ac
e,
A
d
d
re
ss

T
ra
n
sl
at
io
n

D
P
R
R

N
/
A

N
/
A

H
L
S

M
ac
h
in
e
L
ea
rn
in
g

X
il
in
x
U
lt
ra
S
ca
le
+

yN
/A

=
N
ot

A
pp

li
ca
bl
e;
N
/M

=
N
ot

M
en
ti
on
ed
;P

M
=
P
ro
gr
am

m
in
g
M
od
el
;L

H
=
L
oc
al
H
os
t;
R
H

=
R
em

ot
e
H
os
t;
an
d
O
C
=
O
n
C
hi
p.

2218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

T
A
B
L
E
2

S
u
m
m
a
ry

o
f
F
P
G
A
V
ir
tu
a
liz
a
ti
o
n
T
e
c
h
n
iq
u
e
s
fo
r
A
b
s
tr
a
c
ti
o
n
,
M
u
lt
i-
te
n
a
n
c
y,
R
e
s
o
u
rc
e
M
a
n
a
g
e
m
e
n
t,
a
n
d
Is
o
la
ti
o
n

W
o
rk

A
b
st
ra
ct
io
n

M
u
lt
i-
te
n
an

cy
R
es
o
u
rc
e
M
an

ag
em

en
t

Is
o
la
ti
o
n

T
ec
h
n
iq
u
e

IS
U
se
r
m
an

ag
em

en
t

M
T

T
ec
h
n
iq
u
e

IS
T
ec
h
n
iq
u
e

IS

V
ir
tu
al

[1
9]
,[
41

]
N
/
A

N
/
A

N
/
A

N
/
A

P
ar
ti
ti
o
n
in
g
,S

eg
m
en

ta
ti
o
n
,O

v
er
la
y
in
g

S
W

,H
W

N
/
A

N
/
A

F
ir
m
-c
o
re

JI
T
[4
2]

N
/
A

N
/
A

N
/
A

N
/
A

F
ir
m

C
o
re

in
te
rm

ed
ia
te

fa
b
ri
c

O
L

N
/
A

N
/
A

C
ra
y
H
P
R
C
[4
3]

N
/
A

N
/
A

N
/
A

S
M

V
ir
tu
al
iz
at
io
n
M
an

ag
er
,V

ir
tu
al

M
em

o
ry

S
p
ac
e,
M
es
sa
g
e
Q
u
eu

e
S
W

N
/
A

N
/
A

O
S
4R

S
[4
0]

U
n
ifi
ed

co
m
m
u
n
ic
at
io
n

in
te
rf
ac
e
b
et
w
ee
n

H
W

an
d
S
W

S
W

,H
W

N
/
A

S
M
,T

M
v
ir
tu
al

h
ar
d
w
ar
e
in

O
S
an

d
u
n
ifi
ed

co
m
m
u
n
ic
at
io
n
m
ec
h
an

is
m

w
/
H
W

S
W

,H
W

N
/
A

N
/
A

N
o
C
[4
4]

N
/
A

N
/
A

N
/
A

S
M
,T

M
O
S
w
it
h
ru
n
-t
im

e
re
co
n
fi
g
u
ra
ti
o
n
an

d
v
ir
tu
al

F
P
G
A

p
ag

e
ta
b
le

m
an

ag
em

en
t

S
W

N
/
A

N
/
A

F
ab

ri
c[
59

]
V
ir
tu
al

ab
st
ra
ct

ar
ch

it
ec
tu
re

u
si
n
g

in
te
rm

ed
ia
te

fa
b
ri
c

O
L

N
/
A

T
M

N
/
A

N
/
A

N
/
A

N
/
A

V
ir
tu
al
R
C
[4
5]

N
/
A

N
/
A

N
/
A

N
/
A

v
ir
tu
al

F
P
G
A

p
la
tf
o
rm

an
d
so
ft
w
ar
e-
m
id
d
le
w
ar
e
A
P
I

S
W

N
/
A

N
/
A

H
P
R
C
[3
5]

N
/
A

N
/
A

N
/
A

T
M

V
ir
tu
al
iz
at
io
n
M
an

ag
er
,V

ir
tu
al

M
em

o
ry

S
p
ac
e,
M
es
sa
g
e
Q
u
eu

e
S
W

N
/
A

N
/
A

p
v
F
P
G
A
[3
2]

N
/
A

N
/
A

N
/
A

T
M

F
ro
n
te
n
d
an

d
B
ac
k
en

d
D
ri
v
er
,D

ev
ic
e
D
ri
v
er

fo
r
F
P
G
A

ac
ce
le
ra
to
r
w
it
h
X
en

V
M
M

S
W

N
/
A

N
/
A

V
D
I
[3
3]

N
/
A

N
/
A

N
/
A

S
M

H
W

T
as
k
M
an

ag
er
,H

W
C
o
n
tr
o
l
L
ib
ra
ry

S
W

N
/
A

N
/
A

R
ec
o
n
Z
U
M
A
[7
3]

R
ec
o
n
O
S
w
it
h
Z
U
M
A

O
v
er
la
y

S
W

,O
L

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

A
C
C
L
[4
6]

N
/
A

N
/
A

O
p
en

S
ta
ck

co
n
tr
o
ll
er

S
M
,T

M
H
y
p
er
v
is
o
r
la
y
er

in
S
W

an
d
se
rv
ic
e
la
y
er

o
n
F
P
G
A

S
W
,H

W
N
/
A

N
/
A

V
F
R
[2
9]

N
/
A

N
/
A

O
p
en

S
ta
ck

co
n
tr
o
ll
er

S
M
,T

M
P
R
R
s
m
an

ag
ed

b
y
O
p
en

S
ta
ck

S
W
,H

W
N
/
A

N
/
A

H
S
D
C
[4
8]

N
/
A

N
/
A

O
p
en

S
ta
ck

co
n
tr
o
ll
er

S
M

N
et
w
o
rk

M
an

ag
er

an
d
A
cc
el
er
at
o
r
S
er
v
ic
e
E
x
te
n
si
o
n
fo
r
O
p
en

S
ta
ck

S
W
,H

W
N
/
A

N
/
A

V
F
A

C
lo
u
d
[4
9]

N
/
A

N
/
A

S
o
ft
w
ar
e
ru
n
n
in
g
o
n
cl
ie
n
t
m
ac
h
in
e

S
M
,T

M
H
y
p
er
v
is
o
r
o
n
cl
o
u
d
v
ir
tu
al
iz
at
io
n
la
y
er

S
W

N
/
A

N
/
A

R
C
3E

[3
0]

N
/
A

N
/
A

R
ec
o
n
fi
g
.C

o
m
m
o
n
C
lo
u
d
C
o
m
p
u
ti
n
g
E
n
v
ir
o
n
m
en

t
S
M
,T

M
H
y
p
er
v
is
o
r
o
n
cl
o
u
d
fo
r
in
te
g
ra
ti
o
n
an

d
m
an

ag
em

en
t
o
f
v
ir
tu
al

h
ar
d
w
ar
e

S
W
,H

W
N
/
A

N
/
A

R
R
aa
S
[5
0]

N
/
A

N
/
A

A
p
p
li
ca
ti
o
n
fo
r
u
se
r
re
q
u
es
t
m
an

ag
em

en
t

S
M
,T

M
co
n
tr
o
ll
er
/
H
y
p
er
v
is
o
r,
N
o
C
ar
ch

it
ec
tu
re

o
f
re
co
n
fi
g
u
ra
b
le

re
g
io
n
s

S
W
,H

W
N
/
A

N
/
A

V
ir
t.
R
u
n
ti
m
e
[3
1]

N
/
A

N
/
A

U
se
r
th
re
ad

s
an

d
th
re
ad

m
an

ag
er

S
M
,T

M
ru
n
-t
im

e
m
an

ag
er

o
n
o
n
-b
o
ar
d
p
ro
ce
ss
o
r,
F
P
G
A

th
re
ad

s
H
W

N
/
A

N
/
A

K
er
-O

N
E
[2
5]

N
/
A

N
/
A

N
/
A

S
M

H
y
p
er
v
is
o
r
o
n
A
R
M

p
ro
ce
ss
o
r
an

d
P
R
R
M
o
n
it
o
r
o
n
F
P
G
A

S
W

,H
W

F
I
o
f
V
M
s
an

d
D
P
R
s

u
si
n
g
H
y
p
er
v
is
o
r
o
n

A
R
M

p
ro
ce
ss
o
r

S
W

R
C
2F

[2
4]

N
/
A

N
/
A

N
/
M

S
M
,T

M
H
y
p
er
v
is
o
r
o
n
cl
o
u
d
fo
r
in
te
g
ra
ti
o
n
an

d
m
an

ag
em

en
t
o
f
v
ir
tu
al

h
ar
d
w
ar
e

S
W
,H

W
N
/
A

N
/
A

V
E
R
C
lo
u
d
[5
1]

N
/
A

N
/
A

M
u
lt
i-
th
re
ad

in
g
o
n
h
o
st
C
P
U

S
M
,T

M
ru
n
-t
im

e
m
an

ag
er

o
n
so
ft
p
ro
ce
ss
o
r

O
L

N
/
A

N
/
A

F
en

ik
s
[2
2]

Id
en

ti
ca
l
v
ir
tu
al

IO
in
te
rf
ac
e

S
W

,H
W

N
/
M

S
M

O
S
o
n
F
P
G
A
,h

o
st
ag

en
t
co
n
n
ec
te
d
to

ce
n
tr
al
iz
ed

co
n
tr
o
ll
er
s
in

cl
o
u
d

S
W

,H
W

P
I
b
y
se
p
ar
at
io
n
o
f

ap
p
li
ca
ti
o
n
an

d
O
S

H
W

N
F
V
[3
4]

N
/
A

N
/
A

N
et
w
o
rk

re
q
u
es
ts
o
n
h
o
st
O
S

S
M
,T

M
C
o
n
te
x
t
M
an

ag
er

im
p
le
m
en

te
d
as

M
C
U

o
n
so
ft
/
S
o
C
p
ro
ce
ss
o
r

H
W

,M
W

N
/
A

N
/
A

F
P
G
A
s-
C
lo
u
d
[2
8]

N
/
A

N
/
A

V
M

an
d
H
y
p
er
v
is
o
r
o
n
h
o
st

S
M

H
y
p
er
v
is
o
r
in

st
at
ic
re
g
io
n
o
f
F
P
G
A

H
W

N
/
A

N
/
A

V
ir
t.
S
ec
u
ri
ty
[7
4]

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

N
/
A

F
I
u
si
n
g
u
n
iq
u
e
O
v
er
la
y

O
L

C
o
st
o
f
V
ir
t
[5
2]

N
/
A

N
/
A

N
/
A

N
/
A

A
v
al
o
n
in
te
rc
o
n
n
ec
t
fo
r
m
an

ag
in
g
P
R
R
s

H
W

N
/
A

N
/
A

F
P
G
A
V
ir
t
[5
4]
,[
55

]
N
o
C
O
v
er
la
y

ar
ch

it
ec
tu
re

O
L

V
ir
ti
o
V
so
ck

cl
ie
n
t
ru
n
n
in
g
o
n
g
u
es
t
O
S

S
M
,T

M
F
P
G
A

M
an

ag
em

en
t
S
er
v
ic
e,
M
ap

p
in
g
T
ab

le
,N

o
C
O
v
er
la
y

ar
ch

it
ec
tu
re

S
W

,O
L

F
I
u
si
n
g
H
ar
d
w
ar
e

S
an

d
b
o
x

H
W

h
C
O
D
E
[5
6]

N
/
A

N
/
A

S
ch

ed
u
le
r
o
n
h
o
st

S
M

M
u
lt
i-
ch

an
n
el

P
C
Ie

m
o
d
u
le

to
m
an

ag
e
P
R
R
s

H
W

N
/
A

N
/
A

E
la
st
ic
[2
3]

N
/
A

N
/
A

N
/
A

S
M
,T

M
R
u
n
-t
im

e
re
so
u
rc
e
m
an

ag
er

fo
r
v
ir
tu
al
iz
in
g
re
so
u
rc
e
fo
o
tp
ri
n
t

o
f
O
p
en

C
L
k
er
n
el
s

S
W

N
/
A

N
/
A

A
m
o
rp
h
O
S
[2
6]

M
o
rp
h
le
t
w
h
ic
h

en
ca
p
su

la
te
s
u
se
r

F
P
G
A

lo
g
ic

S
W

,H
W

N
/
A

S
M
,T

M
zo

n
e
m
an

ag
er

o
n
h
o
st
C
P
U

S
W

F
I
an

d
P
I
u
si
n
g
re
so
u
rc
e

al
lo
ca
ti
o
n
p
o
li
cy

an
d
h
w

ar
b
it
er

S
W

,H
W

V
iT
A
L
[5
7]

L
ay

er
b
et
w
ee
n
p
h
y
si
ca
l

F
P
G
A
s
an

d
co
m
p
il
at
io
n

la
y
er

S
W

,H
W

N
/
A

S
M
,T

M
H
y
p
er
v
is
o
r
an

d
sy
st
em

co
n
tr
o
ll
er

S
W

F
I
u
si
n
g
ru
n
ti
m
e

m
an

ag
em

en
t
p
o
li
cy

S
W

S
h
ar
ed

M
em

[7
5]

N
/
A

N
/
A

V
M

an
d
H
y
p
er
v
is
o
r
o
n
h
o
st

S
M
,T

M
H
y
p
er
v
is
o
r
an

d
h
ar
d
w
ar
e
m
o
n
it
o
r
fo
r
m
an

ag
in
g
ac
ce
le
ra
to
rs

S
W

,H
W

F
I
b
et
w
ee
n
ac
ce
le
ra
to
rs

u
si
n
g
p
ag

e
ta
b
le

sl
ic
in
g

S
W

,H
W

yN
/A

=
N
ot

A
pp

li
ca
bl
e;
N
/M

=
N
ot

M
en
ti
on
ed
;
IS

=
Im

pl
em

en
ta
ti
on

S
ta
ck
;
M
T
=
M
u
lt
ip
le
xi
n
g
T
ec
hn

iq
u
e;
S
M

=
S
pa
ti
al

M
u
lt
ip
le
xi
n
g;

T
M

=
T
im

e
M
u
lt
ip
le
xi
n
g;

F
I
=
F
u
n
ct
io
n
al

Is
ol
at
io
n
;
an
d
P
I
=
P
er
fo
rm

an
ce

Is
ol
at
io
n
.

QURAISHI ETAL.: SURVEYOF SYSTEM ARCHITECTURES AND TECHNIQUES FOR FPGAVIRTUALIZATION 2219

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

and a backend component that manages device requests
and accesses and multiplexes devices. In [18], rCuda is
proposed to access GPUs on HPC clusters within virtual
machines remotely. The rCuda framework has two compo-
nents: 1) the client middleware consisting of a collection of
wrappers in charge of forwarding the API calls from the
applications requesting acceleration services to the server
middleware and retrieving the results back, and 2) the
server middleware that receives, interprets, and executes
the API calls from the clients and performing GPU
multiplexing.

Similar to the general concept of virtualization, FPGA vir-
tualization is creating a virtual abstraction of FPGA resources
to hide the intricate low-level hardware details from users or
application developers. The definition of FPGA virtualization
has changed significantly over time. The early work on FPGA
virtualization in the 90s [19] introducedOS principles, such as
partitioning, segmentation, and overlaying for FPGAs and
termed these techniques as the virtualization techniques of
FPGAs. Later on, the work in the 00s [20] defined FPGA virtu-
alization as an abstract hardware layer on top of physical
FPGA fabrics. This layer is now commonly known as the over-
lay architecture [21]. In [12], three approaches for FPGA virtu-
alization are presented: temporal partitioning, virtualized
execution, and mapping to an abstract virtual machine. As
FPGA technology has evolved dramatically over the past few
decades, the goal of FPGA virtualization has also changed
over time. Today, from the perspective of cloud and edge
computing, the primary objectives of FPGA virtualization are
to create a useful abstraction of the underlying hardware to
facilitate application developers and users and enable the effi-
cient sharing andmanagement of FPGA resources acrossmul-
tiple users and applications with strict performance and data
isolation.

In a recent survey on FPGA Virtualization [13], the
objectives of FPGA virtualization are listed as: multi-ten-
ancy, resource management, flexibility, isolation, scalability,
performance, security, resilience, and programmer’s productiv-
ity. However, we believe that scalability, performance,
and resilience are the primary considerations of cloud
and edge computing in general but not specific to FPGA
virtualization, even though virtualization may facilitate
improvements on some of those perspectives. Also, flexi-
bility and programmer’s productivity are the primary
objectives of HLS techniques rather than FPGA virtualiza-
tion. Therefore, we define the primary objectives of FPGA
virtualization in the context of cloud and edge computing
as the following:

� Abstraction: Abstraction hides the hardware specifics
from application developers and the OS as well as
provide applications with simple and familiar inter-
faces to access the virtual FPGA resources.

� Multi-tenancy: To enable the efficient sharing of FPGA
resources amongmultiple users and applications.

� Resource Management: To facilitate the transparent
provisioning and management of FPGA resources
for workload balancing and fault tolerance.

� Isolation: To provide strict performance and data iso-
lation among different users and applications to
ensure data security and system resilience.

Our discussion on the FPGA virtualization techniques in
the paper will focus on these four objectives. While the
previous survey paper only listed the objectives of FPGA
virtualization, our discussion in Section 4 elaborates on
how each of the four key objectives is addressed by differ-
ent virtualization techniques in the existing literature as
well as their association with different stacks of the system
architecture.

2.2 Challenges of FPGA Virtualization

It should be noted that virtualization is not hardware-
agnostic. One must know about the hardware specifics of a
computing system in order to properly virtualize it. In the
case of FPGAs, the underlying hardware is reconfigurable,
and thus the hardware architecture can vary according to
the application implemented. Such hardware flexibility
makes the virtualization of FPGA resources much more
challenging than the virtualization of CPUs and GPUs with
a fixed hardware architecture.

Traditionally, FPGAs are used primarily for embedded
applications, where a dedicated application running on an
FPGA is only accessible to a dedicated user. Although
modern commercial FPGAs have the potential to support
multiple applications via partial reconfiguration (PR), the
existing FPGA architectures and design flows are still not
optimized for sharing hardware resources among multiple
users and applications, making the multi-tenancy comput-
ing objective of FPGA virtualization a challenging task to
accomplish.

In addition, FPGAs have limited performance portability.
Since FPGA architectures and design flows are both vendor-
and hardware-specific, it is impossible to apply the same
FPGA kernel (bitfile) to a different FPGA device offered by
the same or a different vendor. Although HDL and HLS
codes are portable across devices and vendors (other than
vendor-provided IP cores and language directives), the re-
compilation needed for mapping the same application
codes onto different FPGA devices can be extremely time-
consuming, creating difficulties for the run-time deploy-
ment and provisioning of FPGA applications in a cloud or
edge computing environment. Due to the tight coupling
between FPGA hardware and vendor-specific design flows,
the development of a generalized framework for FPGA vir-
tualization becomes a challenge. This makes the transparent
FPGA resource management objective of FPGA virtualiza-
tion a challenging task to accomplish.

2.3 Definitions

We found that the use of terminologies for FPGA virtualiza-
tion in the existing literature is not always consistent. Some-
times, different terminologies are used to refer to the same
or similar system architecture components. To avoid confu-
sion and ambiguity, we uniformly define three important
terminologies for FPGA virtualization as follows.

� Shell refers to the static region of FPGA hardware,
which is pre-designed and pre-implemented prior to
application deployment and fixed at run time. Com-
mon glue logic is packaged into a reusable shell
framework to enhance hardware re-usability. No
shell framework is able to fulfill the requirements of

2220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

all applications. Introducing more functionalities
into a shell framework to cover more application
requirements also results in increased resource
usage, higher power consumption, and possibly
lower clock frequency of the static region of FPGA
hardware. In some of the literature, a shell is also
referred to as a hardware OS [22], [23], a static
region/part [24], [25], and hull [26].

� Role refers to the dynamic region of FPGA hardware,
which can be independently reconfigured to map differ-
ent applications at run time. A role is commonly com-
prised of several partially reconfigurable regions (PRRs).
Each of the PRRs can be reconfigured on-the-fly without
interrupting the operation of other PRRs using the tech-
nique known as dynamic partial reconfiguration (DPR)
[27]. In some of the literature, a role is referred to as an
application region [28], a reconfiguration region [29], or
global zone [26].

� vFPGA or virtual FPGA is a virtual abstraction of the
physical FPGA. One or multiple PRRs can be
mapped to a single vFPGA.

� Accelerator refers to a PRR or vFPGA programmed
with an application.

� Hypervisor creates an abstraction layer between soft-
ware applications and the underlying FPGAhardware
and manages the vFPGA resources. In some of the lit-
erature, a hypervisor is referred to as an OS, a resource
management system/framework [30][31], a virtual
machine monitor (VMM) [32], a run-time manager
[31], a hardware task manager [33], a context manage-
ment [34], or a virtualizationmanager [35].

2.4 Programming Model

There are three programming models for application devel-
opment supported by the existing FPGA virtualization
frameworks: domain specific language (DSL) programming,
HDL programming at the register transfer level (RTL), and
HLS programming.

In DSL programming, the applications are written in a
high-level language (e.g., C). Selected portions of codes
(e.g., loops) are separated and then implemented as FPGA
kernels through the conventional RTL or HLS design flows.
For example, in [36], loops are identified, and a data flow
graph is created. The data flow graph is then converted into
an FPGA kernel through the conventional RTL flow.

In HDL programming, FPGA kernels are designed using
an HDL. Common HDLs include Verilog, SystemVerilog,
and VHDL. HDLs are the most commonly used program-
ming languages in FPGA Virtualization, as it is the tradi-
tional programming language for embedded FPGA design.
Writing HDL codes for achieving optimized resource utili-
zation, power consumption, and performance requires sig-
nificant design effort as well as expert knowledge about
hardware design, which makes it difficult for software
application developers to master. From Table 1, we observe
that most of the prior work use HDL programming as the
programming model, which unfortunately is a deal-breaker
for the adoption of FPGAs by software application develop-
ers in cloud and edge computing.

In HLS programming, a high-level programming lan-
guage (e.g., OpenCL[10], Java[37], [38]) is used to develop

FPGA kernels [39]. Then, the high-level language codes are
translated into HDL codes. Different from HDL program-
ming, HLS programming requires less knowledge about the
underlying hardware and provides a significant improve-
ment in design productivity. Some HLS-based design tools
provide not only compilation and simulation utilities but
also run-time utility for FPGA management. Take Intel
FPGA SDK for OpenCL[10] as an example. It provides an
offline compiler for generating FPGA kernel hardware with
interface logic, a software-based emulator for symbolic
debugging and functional verification, and a run-time envi-
ronment including firmware, software, and the device
driver to control and monitor the kernel deployment and
execution, and transfer data between the system memories
of the host and the FPGA computing device.

3 SYSTEM ARCHITECTURE FOR FPGA
VIRTUALIZATION

3.1 Hardware Stack

The hardware stack of FPGA virtualization varies in the
design of three components: 1) the host interface that
defines how an FPGA computing device is connected to a
host CPU; 2) the shell that defines the storage, communica-
tion, and management capability of an FPGA computing
device; and 3) the role that defines the run-time application
mapping capability of an FPGA computing device.

3.1.1 Host Interface

There are three different types of host interfaces available
for the existing FPGA devices (Fig. 1) described as follows.

� On-Chip Host Interface connects the FPGA computing
hardware to a dedicated soft/hard CPU imple-
mented on the same chip (e.g., a Xilinx MicroBlaze
soft processor or an ARM-based hard processor on
Xilinx Zynq FPGAs) (see Fig. 1a) [40]. The on-chip
host interface has the lowest communication latency,
thus has the highest performance among all the
interface types. However, a hard CPU implementa-
tion occupies the FPGA chip area, and a soft CPU
implementation consumes the reconfigurable resour-
ces available on an FPGA device, which reduces the
capacity of application mapping.

� Local Host Interface is the most popular approach,
which connects an FPGA computing device imple-
mented as a daughter-card to a local CPUhost through

Fig. 1. Host interfaces for FPGAs

QURAISHI ETAL.: SURVEYOF SYSTEM ARCHITECTURES AND TECHNIQUES FOR FPGAVIRTUALIZATION 2221

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

a high-speed serial communication (e.g., bus, such as
PCI Express (PCIe) (see Fig. 1b) [26], [56].

� Remote Host Interface connects an FPGA computing
device to a remote CPU host through the network,
which allows the FPGA computing device to com-
municate with the CPU host node remotely (see
Fig. 1c) [22], [58]. A remote host interface has the
highest communication latency among all the inter-
faces. But, a remote host interface decouples an
FPGA from a local host CPU, thus enables the inte-
gration of standalone FPGA computing devices and
greatly improves the scalability of FPGA computing.

3.1.2 Shell

As mentioned in Section 2.3, a shell is the static region of
FPGA hardware that contains the necessary glue logic and
controllers for handling system memory access and the
communications to a CPU host or other network devices.
Thus, a shell should include but not limited to a system mem-
ory controller, a host interface controller, and a network interface
controller.

� System Memory Controller provides a user-friendly
interface to the FPGA kernel for accessing the system
memory of the FPGA computing device (e.g., a DDR
SDRAM or high-bandwidth memory), which can be
implemented either off-chip or on-chip (i.e., SoC
design). In the existing literature, a system memory
controller is also referred to as a DMA Engine [22],
DMA Controller [49], DRAM Controller [29], DRAM
Adapter [49], DDR3 Controller [52], or Memory
Manager [51].

� Host Interface Controller enables the communication
of an FPGA computing device with a CPU host
through either an on-chip, local, or remote host inter-
face. In the existing literature, a host interface con-
troller is also referred to as a PCIe Module [28], PCIe
Controller [34], and DMA Controller [32].

� Network Interface Controller provides a communica-
tion interface to a network (e.g., cloud network),
which facilitates the communication of an FPGA
computing device to other network devices without
the intervention of the host CPU. In the existing liter-
ature, a network interface controller is also referred
to as a Network Stack [55], Network Service Layer
[48], Ethernet Core and [52].

3.1.3 Role

As mentioned in Section 2, a role is the dynamic region of
FPGA hardware reserved for application mapping at run
time. There are two approaches to reconfigure a role,
namely, flat compilation and partial reconfiguration. In flat
compilation, the whole role is reconfigured as a single
region and is exclusive to single-accelerator applications. In
partial reconfiguration, a role can contain multiple DPR
regions (DPRRs), and a single DPRR can be reconfigured
independently, or multiple DPRRs can be combined as one
bigger DPRR and be reconfigured independently from the
test PRRs at run time. The use of multiple DPRRs enables
application deployment with flexible size of FPGA fabrics,

thus can achieve higher resource utilization with improved
overall system performance [23]. Considering DPR, It is of
great importance to reduce the reconfiguration time as
much as possible using techniques such as Intermediate
Fabrics [59] to meet the applications’ timing requirements.

3.2 Software Stack

The software stack refers to an OS, software applications,
and frameworks running on a host CPU for the purpose of
FPGA virtualization. A host CPU can be either on-chip,
local, or remote, depending on the hardware stack. The
abstraction of vFPGA is generally made available to users
in the software stack. The software stack allows users to
develop and deploy applications onto vFPGAs and manage
vFPGA resources easily without specific knowledge of the
underlying hardware. Specifically, the software stack pro-
vides users with software libraries and APIs to perform the
communication between a host and an FPGA computing
device, the provisioning and management of applications
and physical FPGA resources. Table 1 shows a list of the
software stack used in the existing FPGA virtualization
work in three categories: OS, host application, and software
framework.

OS: Since the idea of FPGA virtualization is primarily
adopted from OS, the most common software stack of FPGA
virtualization is an OS (e.g., Windows and Linux), often sup-
portingmultiple processes and threads [31], [51] for theman-
agement of multiple users and FPGA devices. In FPGA
virtualization, both compile- and run-time management of
FPGA resources are important factors to be considered. If the
virtualization system is designed for a cloud or edge comput-
ing environmentwhere real-time streaming data is used, OSs
with real-time processing capability (e.g., real-time operating
system (RTOS) [25]) is preferable. There are specialized OSs
particularly designed for reconfigurable computing and
FPGAs. For example, ReconOS [60] is designed to support
both software and hardware threads, as well as allow inter-
action between the threads in a reconfigurable computing
system. Leap FPGA OS [61]) and Operating System for
Reconfigurable Systems (OS4RS) [40] are FPGA virtualiza-
tion OS for compile-time management of FPGA resources.
RACOS [53] provides a simple and efficient interface for
multiple user applications to access single and multi-
threaded accelerators transparently. AmorphOS’s OS [26],
integrated as a user-mode library on a host CPU, provides
system calls to manageMorphlets (i.e., vFPGAs) and enables
the communication between host processes andMorphlets.

Host Application: Application running on host CPUs are
commonly written in C/C++ or OpenCL. OpenCL provides
the development language for device kernels as well as the
programming API for host applications, which makes it a
good choice for FPGA virtualization [23], [28]. The program-
ming API can be used to deploy, manage, and communicate
with FPGA kernels. Vendors may provide SDKs for
OpenCL (e.g., Intel FPGA SDK for OpenCL [62]) that pro-
vides the API for a host OpenCL application to manage the
execution of FPGA kernels. One important task of the host
application is the management of communication between
the host and the FPGA device. In [45], a software-middle-
ware API, written in C++, is provided to enable the

2222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

portability of application software code (i.e., host code) on
various physical platforms. The software-middleware is a
virtualization layer between the application software and
the platform API. The middleware API translates the virtual
platform communication routines for the virtual compo-
nents into native API calls to the physical platform in [32],
the concept of virtual machine monitor (VMM) [63] used in
OS virtualization is adopted in FPGA virtualization for the
communication between a user and an FPGA device. They
have modified the existing inter-domain (i.e., driver
domain, Dom0, and unprivileged domain, DomU) commu-
nication in Xen VMM using shared memory. In this way,
multiple user processes can simultaneously access a shared
FPGA with reduced overhead.

Software Framework: OpenStack [64] is an open-source
platform for controlling compute, storage, and networking
resources in cloud computing. Some of the FPGA virtualiza-
tion systems developed for cloud and data center utilize the
OpenStack framework [29], [46], [48]). In [46], new modules
are added to OpenStack compute nodes (i.e., a physical
machine composing of CPUs, memory, disks, and network-
ing) in different layers (e.g., hardware, hypervisor, library,
and layers) to support FPGA resource abstraction and shar-
ing. In [48], an accelerator service is introduced in Open-
Stack to support network-attached standalone FPGAs. The
FPGAs have software-defined-network-enabled modules
that can connect to FPGA plugins in the accelerator service.
Byma et al. [29] uses a Smart Application on Virtual Infra-
structure (SAVI) test framework with OpenStack to inte-
grate FPGAs to cloud and manage them like conventional
VMs. In this work, the authors proposed to partition the
FPGA into multiple PRRs and abstract each PRR as a Vir-
tualized FPGA Resource (VFR). An agent application with a
device driver is developed to manage the VFRs. The SAVI
testbed controller in OpenStack provides the APIs for con-
necting the VFR agent with the driver, enabling the remote
management of FPGA resources from a cloud server.
Fahmy et al. [49] extends an existing FPGA test platform
called DyRACT [65] to support multiple independent FPGA
accelerators. A software framework and a hypervisor is
implemented in DyRACT to connect with the communica-
tion interface in the static region of an FPGA. FPGAVirt
[54], [55] leverages a communication framework named Vir-
tio-vsock [66] to develop their software virtualization frame-
work, in which Virtio-vsock provides an I/O virtualization
framework and a client for the communication between
VMs and FPGAs.

3.3 Overlay Architecture

An FPGA overlay, also known as intermediate fabric [59], is
a virtual reconfigurable architecture implemented on top of
a physical FPGA fabric for providing a higher abstraction
level [21] of FPGA resources. An overlay architecture serves
as an intermediate layer between a user application and a
physical FPGA. The physical architecture of an FPGA can
vary significantly across different device families or ven-
dors. Overlay architectures can bridge that gap by provid-
ing a uniform architecture on top of the physical FPGA. The
overlay’s application software is portable on any device
which supports the targeted overlay architecture. This

concept is analogous to Java Virtual Machine [67] that allows
the same byte-code to be executed on any Java-supported
machines. Overlay architectures provide a much higher level
of hardware abstraction for application mapping, which sig-
nificantly reduces the compilation time and provides
improved portability of application codes across different
FPGA device families and vendors. Overlay architectures
also provide application developers with better software
design flexibility as they can target an abstract computing
architectures with a known instruction set. Furthermore, por-
tability in FPGA resourcemanagement can be achieved using
overlay architectures. Resource management techniques can
vary significantly depending on the FPGA architecture and
the implementation stack where the resource manager is
implemented (Section 4.3). If the resource manager is imple-
mented in the overlay stack, the same overlay architecture,
therefore same techniques can be applied to manage PRR of
different FPGA devices. However, these benefits come at the
cost of reduced performance and less efficient utilization of
FPGA resources.

Configuration. An FPGA overlay can be either spatially
configured (SC) or time-multiplexed (TM), depending on its
run-time configurability. If an FPGA overlay has functional
units with fixed assigned tasks, it is referred to as an SC
overlay. If an FPGA overlay can change the operation of its
functional units on a cycle-by-cycle basis, the overlay is
referred to as a TM overlay. The interconnection between
functional units in SC and TM overlays can be fixed or
reconfigurable at run time, which can be structured as a
Network-on-Chip (NoC). A previous survey paper [68] pro-
vides a comprehensive survey of TM overlays.

Granularity. According to the granularity (at which hard-
ware can be programmed) of an overlay architecture, SC
and TM overlays can be further categorized into fine-
grained and coarse-grained overlays [69]. Fine-grained
overlays can operate at the bit-level just like physical FPGAs
but provide programmability and configurability at a
higher level of abstraction than physical FPGAs. Firm-core
virtual FPGA [42] is an early work in the area of fine-
grained overlays, where a synthesizable VHDL model of a
target FPGA fabric is developed. Two types of switch matri-
ces developed using tri-state buffers and multiplexers pro-
vide the programmable interconnect between the custom
CLB interfaces. Even though the overlay has huge hardware
overhead, it can be used in applications where portability is
more important than resource utilization. ZUMA [70] also
provides bitstream portability across FPGAs of different
vendors with a more optimized implementation than Firm-
core virtual FPGA. ZUMA configures LUTRAMs to use
them as the building block for configurable LUTS and rout-
ing multiplexers. A configuration controller is implemented
to reprogram the LUTRAMs connected in a crossbar net-
work. A previous survey paper in [71] presents a compre-
hensive survey about coarse-grained overlays. Coarse-
grained overlays are implemented as coarse-grained recon-
figurable arrays (CGRAs) [72] or processors. In a CGRA,
arrays of PEs are connected via a 2D network. CGRAs can
adopt different interconnect topologies (e.g., island style,
nearest neighbor, and NoC). The 2D mesh structures in the
island style and nearest neighbor typologies have similari-
ties to the interconnect on FPGAs. These interconnects

QURAISHI ETAL.: SURVEYOF SYSTEM ARCHITECTURES AND TECHNIQUES FOR FPGAVIRTUALIZATION 2223

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

support direct communication between adjacent PEs. How-
ever, the communication flexibility comes at the cost of
additional FPGA resource usage. In the NoC topology, the
PEs are connected in a network and communicates via
routers. NoC-based CGRA architectures are becoming pop-
ular in FPGA virtualization due to the flexible communica-
tion between PEs at run time.

Overlay architectures have been discussed in the literature
for a long time, even before the concept of FPGA virtualiza-
tion. The primary purpose of overlay architecture has been to
improve design productivity and reduce the compilation
time of FPGAdesign. FPGAoverlays, especially CGRA-based
overlays, have recently caught a lot of attention for being used
for FPGAvirtualization. In a recentwork [55], authors present
an NoC-based overlay [76] architecture that offers flexible
placement of hardware tasks with high throughput commu-
nication between PEs. The architecture has a torus network
equipped with data packet communication and high-level
C++ library for accessing overlay resources. Adjacent PEs
form a sub-network, in which they communicate directly
with each other, and the inter-subnetwork communication
takes place via routers.

Fig. 2 shows a block diagram of an example FPGA virtu-
alization system, generalized from the system in [55].
Description of different stacks of the system architecture is
shown in Table 3.

4 OBJECTIVES OF FPGA VIRTUALIZATION

As discusses in Section 2, the primary objectives of FPGA
virtualization are abstraction, multi-tenancy, resource man-
agement, and isolation. In this section, we summarize how
these four key objectives are achieved in the literature.

4.1 Abstraction

The first objective of FPGA virtualization aims to make
FPGA more usable by creating abstractions of the physical
hardware to hide the hardware specifics from application
developers and the OS as well as provide applications with
simple and familiar interfaces to access the virtual resour-
ces. Table 2 lists a summary of FPGA virtualization techni-
ques for creating abstraction, which can be categorized into
overlay architecture and OS-based approaches.

As discussed in Section 3.3, overlay architecture provides
a known-instruction-set architecture that can be targeted by
software developers to create and run applications for
FPGAs. The usability benefit comes with a penalty of perfor-
mance drop and less efficient FPGA resource usage. This
issue can be mitigated by using a database of overlay archi-
tectures and selecting the optimized one for each application

[36]. Overlay architecture also benefits usability by signifi-
cantly reducing the compilation time of application codes
and providing homogeneity in abstraction across the FPGA
devices from different vendors. For example, the same over-
lay architecture implemented on Intel and Xilinx FPGAs pro-
vides exactly the same abstraction even though the
underlying hardware architecture is different.

OSs used in FPGA virtualization provide software inter-
faces for easier deployment and access to FPGA applica-
tions. Some examples of work in this area are Feniks OS
[22], ReconOS [60], RACOS [53], OS4RS [40], and Amor-
phOS [26]. Feniks OS extends the shell region of an FPGA to
implement the OS, which provides an abstracted interface
to developers for application management. In OS4RS, the
concept of a device node is proposed where multiple appli-
cations on an FPGA can be accessed using a single node.
RACOS provides users with a simple interface to load/
unload accelerators and presents the I/O transparently to
the users. AmorphOS’s OS interface exposes APIs to load
and deplete Morphlets (i.e., vFPGAs), and read and write
data over the transport layer to the physical FPGAs config-
ured with Morphlets. The abstraction created for FPGA vir-
tualization not only facilitates application development but
also enables better application access. In [46], an accelerator
marketplace concept is presented where users can buy and
use accelerator applications. The marketplace is imple-
mented on top of an FPGA virtualization layer integrated
into OpenStack. The underlying virtualization layer hides
the complexity of hardware to make it extremely easy to
develop, manage and use FPGA applications.

4.2 Multi-Tenancy

The second objective of FPGA virtualization aims to share the
same FPGA resources amongmultiple users and applications.
Since in the FPGA virtualization infrastructure, it is necessary
to supportmultiple applications, we narrow our discussion in
this subsection to multiple users. Therefore, single/multiple

Fig. 2. System architecture for an exemplar FPGAvirtualization system.

TABLE 3
Description of the System Architecture Stacks of the Example

FPGAVirtualization System in Fig. 2

Stack Description

HW The host interface is a local host interface where the CPU
is connected to the FPGA via PCIe.
Shell: Static region that contains the board support
package (BSP).
Role is the reconfigurable region of the FPGA. Here, an
overlay architecture is implemented on the
reconfigurable region.

SW A host OS in the CPU hosting multiple virtual machines
with guest OSs. Users in guest OS can make requests to
use the FPGA.
A resource management software that receives requests
from guest OS and communicates with FPGA to fulfill
the requests. It also keeps track of the available FPGA
resources.
A communication client that manages communication
between guest OS and resource manager.

OL A CGRA based overlay that creates an abstraction of the
reconfigurable region in physical FPGA.

2224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

tenant refers to if an FPGA virtualization system supports
resource sharing acrossmultiple users or not.

For multi-tenancy support, it is required to have either
spatial or temporal multiplexing. In spatial multiplexing, by
utilizing PR techniques, an FPGA device is partitioned into
multiple PRRs such that each PRR can be reconfigured inde-
pendently for application mapping without affecting other
regions. The reconfiguration can be done either statically or
dynamically at run time. In temporal multiplexing, there is
only one PRR, which is reconfigured over time, and differ-
ent applications are allocated in different time intervals.
The reconfiguration time of the PRR should be reduced as
much as possible to maintain efficient resource sharing.

The user management components are generally imple-
mented in the software stack. Table 2 shows a list of user
management techniques used in the literature. The most
common methods in the literature to support multiple users
include utilizing Openstack Control Node [29], [46], [48],
Virtio-vsock client running on a guest OS [54], [55], and
multi-threading on a host CPU [31], [51].

In [29], the OpenStack scheduler selects a resource and
contacts its associated agent, which is a separate process
beside the hypervisor, upon a request for a vFPGA from a
user. When OpenStack requests the PRR from the agent, it
commands the hypervisor to boot a VM with the user-
defined OS image and parameters. In [46], a control node
manages requests from multiple users and launches VMs
on physical machines. Subsequently, different users access
their associated VMs and deploy their applications. In [48],
when a user requests for a vFPGA, the accelerator scheduler
searches in a resource pool to find a PRR matching the user
request. If successful, a user ID and IP address will be con-
figured for the vFPGA. Subsequently, the vFPGA ID, IP
address, and required files to generate a bitstream for the
user application will be returned to the user.

In [54] and [55], utilizing an overlay architecture enables
assigning multiple vFPGAs on a single or several FPGAs.
Each user accesses a guest OS installed on a VM. Upon the
user request, the correspondingVMrequests FPGAresources,
and the hypervisor looks for an available PRR. If available,
memory space is allocated to the vFPGA for storing data.

In [31] and [51], a run-time manager that provides
hardware-assisted memory virtualization and memory
protection allows multiple users to simultaneously exe-
cute their applications on an FPGA device. A user thread
on a host CPU sends the specifications of vFPGAs and
codes to be run on a local processor to the manager
thread, which will be deployed to an FPGA. On the FPGA
side, a run-time manager allocates the resources required
by the FPGA application, creates an FPGA user thread
with the codes for the local processor, instantiates a
vFPGA, and notifies the host when the FPGA application
terminates. The host user thread can then retrieve the out-
put data from the FPGA and either sends new data to be
processed or deallocates the FPGA application.

4.3 Resource Management

The third objective of FPGA virtualization aims to facilitate
the transparent provisioning and management of FPGA
resources for workload balancing and fault tolerance. The

management of FPGA resources refers to the management
of the PRRs. For a virtualization system with a single FPGA,
resource management primarily involves configuring the
PRRs by allocation and deallocation of bitstreams. In a vir-
tualization system where multiple FPGAs are connected via
a network, routing of information among multiple FPGAs,
configuring the PRRs of multiple FPGAs with bitstreams,
and the scheduling of accelerators can be labeled as
resource management tasks. Table 2 lists a summary of
FPGA virtualization techniques for resource management,
which are discussed below according to which stack (soft-
ware, hardware, overlay) in the system architecture they are
implemented in.

4.3.1 Resource Management in the Software Stack

The primary ideas of the resource management approaches
implemented in the software stack are borrowed from OS,
CPU, and memory virtualization. Partitioning methods in
memory systems (e.g., paging and segmentation) are used
to divide and keep track of the FPGA resource utilization.
The OS in [44] used virtual FPGA page tables and a recon-
figuration manager to manage configurations of identical
PRRs connected with NoC-based interconnects. While the
virtual page table keeps track of the resource utilization of
the PRRs, the run-time reconfiguration manager swaps con-
figurations in and out of the PRRs. Other than partitioning
and page tables, the concept of a hypervisor in a virtual
machine has also been widely used in FPGA virtualization
for resource management. A hypervisor is generally part of
the host machine and used for the management of and com-
munication with hardware resources on an FPGA. Fahmy
et al. [49] implements a hypervisor as a part of the server-
side software stack in a cloud-based architecture. The
hypervisor communicates with the PRRs via a communica-
tion interface implemented in the FPGA static region. The
hypervisor is responsible for maintaining a list of PRRs, con-
figuring vFPGAs by selecting optimal PRRs from that list, as
well as allocating vFPGAs to users. In [75], the authors pro-
pose a hypervisor named Optimus for a shared-memory
FPGA platform. The hypervisor provides scheduling of
VMs on a pre-configured FPGA with temporal multiplexing
to share a single accelerator with multiple VMs as well as
spatial multiplexing to share the FPGA among multiple
accelerators. Optimus receives requests from host applica-
tions as interrupts and communicates with accelerators
using a hardware monitor implemented in the shell. Knodel
et al. present a cloud-based hypervisor called RC3E in [30],
which integrates and manages FPGA-based hardware accel-
erators in the cloud. The resource manager, termed as FPGA
device manager in RC3E, configures vFPGA using bitfiles
from a database and monitors the accelerators accessed by
the user virtual machines. The Reconfigurable Common
Computing Framework (RC2F) used in RC3E was extended
by the authors in [24]. In this work, the authors present one
physical FPGA as multiple vFPGAs and manage the
vFPGAs using their custom FPGA hypervisor. The FPGA
hypervisor manages the states of the vFPGAs, as well as
reconfigures them using the internal configuration access
port (ICAP). In SoC-based FPGAs, the hypervisor can run
in an OS running on an on-chip CPU. For example, in [25], a

QURAISHI ETAL.: SURVEYOF SYSTEM ARCHITECTURES AND TECHNIQUES FOR FPGAVIRTUALIZATION 2225

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

hypervisor implemented on an ARM processor detects the
requests from different VMs and programs PRRs dynami-
cally. Some of the prior work utilizes existing software
frameworks such as OpenStack or OpenCL run-time to
manage FPGA resources, which is discussed in Section 3.2.

4.3.2 Resource Management in the Overlay Stack

Similar to the SW stack, the resource managers in the over-
lay stack are also implemented in software. However, they
are implemented inside the FPGA, therefore, are tightly
coupled with the PRRs in FPGA. The resource managers in
the SW stack discussed in Section 4.3.1 are implemented in
the host outside of the FPGA and are loosely coupled with
the PRRs they manage. In [51], a soft-processor-based over-
lay runs a run-time manager or hypervisor for FPGA
resource management in a similar way as to how an OS on
a host machine manages the hardware resources. The run-
time manager can handle service requests as interrupts
from accelerators as well as from the host. The interrupt
from accelerators is received using a custom-designed mes-
sage box module, while the interrupt from the host is
received using PCIe. In [34], the resource manager is imple-
mented as a microcontroller unit (MCU) running on a soft-
processor-based overlay, which acts as a scheduler and con-
text manager of accelerators. Context management within
the same accelerator is handled using job queues, while
multiple accelerators are managed using a job scheduler.
Other than processor-based overlays, some of the CGRA-
based overlays are specifically designed for resource man-
agement. For example, NoC-structured CGRA-based over-
lay [76] architectures are designed for better placement of
applications into PRRs. The overlay abstracts the PRRs as
connected PEs in a 2D Torus topology with high through-
put communication between the PEs using routers. Place-
ment of applications in adjacent PEs can be done directly,
whereas the placement to distant PEs is done using the
routers.

4.3.3 Resource Management in the Hardware Stack

In the hardware stack, a resource manager is generally
implemented as part of the static region. In this case, a
resource manager is in charge of the communication with a
host machine using PCIe and configuration access ports
(e.g., ICAP and PCAP in Xilinx FPGA [77]). In [56], the
authors built a multi-channel shell with multiple indepen-
dent PCIe channels for managing multiple accelerators. A
command-line tool is used to load bitstreams from a reposi-
tory and send over the PCIe channels to program the
vFPGAs. In [25], a virtual device manager on a host soft pro-
cessor sends configuration requests to a separate resource
manager in the static region. The resource manager down-
loads bitstreams using the PCAP interface and programs
the PRRs via interconnects between the resource manager
and PRRs. Similar to the software stack, a hypervisor can be
implemented in the hardware stack. Kidane et al. [50] pro-
pose a hypervisor implemented in the static region of an
FPGA to manage vFPGA resources. The hypervisor is
responsible for the selection of bitstream from a library and
the placement of the bitstream to an appropriate vFPGA
based on the size of the design. In [46], the resource

manager is implemented in the static region that provides a
communication interface with a hypervisor in the software
layer as well as an interface for managing PRRs. The
resource manager fetches requests from the software stack
from a job queue and programs the PRRs. It also uses a
direct memory access (DMA) engine to context-switch and
to manage data to/from accelerators. Tarafder et al. [28]
uses the Xilinx SDAccel platform [78] as a hypervisor imple-
mented on the static region and provides the interfaces to
memory, PCIe, and Ethernet. The hypervisor can program
the PRRs once it receives configuration requests from the
OpenCL API via PCIe. Custom state machines or hardware
controllers can also be used for resource management.
Custom-designed hardware controllers can leverage the
DMA transfer of pre-stored bitstreams in off-chip memory
for faster configuration. In DyRACT [65], resource manage-
ment is done by two custom state machines named the con-
figuration state machine and the ICAP state machine. The
configuration state machine receives configuration requests
from PCIe and writes the bitstream in memory, while the
ICAP state machine reads the bitstream from memory and
programs the FPGA.

FPGA resource management approaches implemented in
the software stack benefit from the convenience of software
development and reuse of existing software frameworks.
However, the communication between a host CPU and an
FPGA can become a bottleneck and hurt the management
performance. As different FPGA vendors have different
techniques for managing PRRs in their FPGA devices, han-
dling the management of PRRs with overlay architectures
has the benefit of allowing the resource management
approaches to be compatible with a variety of FPGA devices
across different vendors. However, such a benefit comes
with penalties on performance and resource utilization effi-
ciency. Differently, implementing resource management
utilities in the hardware stack increases the management
performance but loses the compatibility as well as reduces
the available FPGA resources for application mapping.

4.4 Isolation

The fourth objective of FPGA virtualization aims to provide
strict performance and data isolation among different users
and applications to ensure data security and system resil-
ience. Table 2 summarizes the list of papers that addresses
the isolation objective in FPGA virtualization.

If the FPGA virtualization system supports multi-tenancy,
each tenant in the system will have shared access to the
available hardware resources on the FPGA, e.g., one or
multiple PRRs, a set of I/O resources, and on-chip or off-
chip memory resources. Therefore, it is essential to make
sure each tenant only has strict access to its own resources at
a specific time, and they are not able to access or manipulate
data nor interrupt the execution of accelerators of other
tenants.

From the perspective of the hardware stack, at least three
types of isolation are required for FPGA virtualization sys-
tems: functional isolation, performance isolation, and fault
isolation.

Functional isolation ensures that different vFPGAs can
be reconfigured and managed independently without

2226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

affecting the functionality and operation of the others. The
DPR capability of modern FPGA supports the independent
reconfiguration of a PRR at run time while other PRRs are
active, providing the fundamental support for realizing
functional isolation. Functional isolation also ensures that
each user or application only has access to its assigned hard-
ware resources. In FPGA virtualization systems, memory
and I/O resources are often shared among multiple users
and/or applications in a time-multiplexed fashion. There-
fore, safe memory and I/O access need to be ensured to
guarantee the integrity of functionality and avoid data con-
flicts. Existing locking mechanisms such as mutex and sem-
aphore [51] can be used to ensure safe memory access.
Moreover, when multiple applications share an FPGA, strict
isolation among their I/O channels is vital to ensure the cor-
rect transmission of data. Some FPGA vendors (e.g., Xilinx)
have proposed the isolation design flow [79] to ensure the
independent execution of multiple applications on the same
FPGA device. In [75], the hypervisor designed by the authors
provides memory and I/O isolation using a technique called
page table slicing. In page table slicing, each guest application
and their accelerators use their guest virtual address to inter-
act with the IO address space of the DRAM on the FPGA
device. The hypervisor partitions the IO address space among
accelerators so that each accelerator has a unique memory
and IO address space that guest applications can access. The
hypervisor maintains an offset table for address translation
between the guest virtual address and IO address space. The
FPGA virtualization frameworks proposed in [54], [55] utilize
Hardware Sandbox (HWSB) for the isolation of vFPGAs
based on their overlay architecture [76]. The HWSB adds the
identifier of a target vFPGA to a data packet while communi-
cation over the overlay’s interconnection routers among dif-
ferent vFPGAs belonging to the same VM, which prevents
unauthorized access of data [54]. The work in [74] utilizes vir-
tual architectures (i.e., overlays) to safeguard FPGAs from bit-
stream tampering. In this work, an application-specialized
overlay is created using an overlay generator. Then, for each
vFPGA that deploys the same application as other vFPGAs,
the generated overlay bitfile is modified to create a unique
overlay. This process is called uniquification and improves
bitstream security. In [25], the functional isolation between
VMs and PRRs is ensured by implementing a custom VMM
on an ARM processor. Each VM has its dedicated software
tasks and isolated virtual resourcesmanaged by the VMM.

Performance isolation refers to the capability of limiting the
temporal interference among multiple vFPGAs running on
the same physical FPGA so that the event of a vFPGA will
have little impact on the performance of other vFPGAs. For
example, in cloud-based FPGA virtualization, when different
user requests are handled dynamically by different vFPGAs
at run time, the performance of each vFPGA should stay sta-
ble as long as the peak processing capability of the physical
FPGA is not reached. Feniks OS [22] provides performance
isolation in the role by using PR techniques, as PR disables
interconnections and logic elements on the boundary of PRRs.
Therefore, adjacent PRRs are physically unable to affect each
other. In addition, this work separates the OS from the appli-
cation region by implementing the OS in the shell.

Fault isolation refers to the capability of limiting the neg-
ative impacts of software faults or hardware failures on the

operation of vFPGAs for system resilience. The hardwired
PCIe controllers and DPR capability of modern FPGAs
inherently provide the hardware-level support for fault iso-
lation. In addition, system-level fault recovery and fallback
mechanisms are required to fast-recover vFPGA services to
further improve the system resilience. In [3], the authors
introduced a protocol to ensure fault isolation. The protocol
can reconfigure groups of FPGAs or remap services
robustly, re-maps the FPGAs to recover from failure, and
report a vector of errors to their management software to
diagnose problems.

Integrating FPGAs into a multi-tenant environment
makes them vulnerable to remote software-based power
side-channel attacks [80], [81]. To tackle the issue, an on-
chip power monitor can be programmed on a region
dedicated to an attacker on a shared FPGA using ring
oscillators [82], and the power monitor can observe the
power consumption of other regions on the FPGA. The
observed power consumption could reveal sensitive
information such as bit value in the RSA crypto engine.
Moreover, the malicious application could cause delay
faults for the victim region by disturbing the power net-
work through aggressive consumption of power. Unfor-
tunately, there has not been much work aiming to
address such security issues. To adopt the multi-tenancy
techniques in FPGA virtualization systems discussed in
section 4.2, these security issues need to be addressed
carefully in future research.

Although isolation is an important topic for the practi-
cal application of FPGA virtualization systems, especially
in the context of multi-tenancy cloud and edge comput-
ing, there has not been much work focusing on this topic
in the existing literature. Future research in this area,
especially the fault isolation in FPGA virtualization, is
critically needed.

5 CONCLUSION AND FUTURE TRENDS

This paper provides a survey on the system architectures
and various techniques for FPGA virtualization in the con-
text of cloud and edge computing, which is intended to
facilitate future researchers to efficiently learn about FPGA
virtualization research.

From a careful review of the existing literature, we identi-
fied two research topics in FPGA virtualization that need
extra attention in future research. First, we find that the hard-
ware boundary of a vFPGA is limited to a PRR in a single
FPGA in most of the existing work, which has limited the
scope of FPGA virtualization. Ideally, FPGA virtualization
should completely break the hardware boundary of FPGAs
such that a physical FPGA can be used as multiple vFPGAs,
and multiple physical FPGAs (connected on-package,
on-board, or via network) can also be used as a single
vFPGA. More general FPGA virtualization approaches for
leveragingmulti-FPGA systems or networked FPGA clusters
shall be explored across different system stacks in future
research. Additionally, although the isolation aspect of
FPGA virtualization is of great importance for practical
applications, this topic of research is currently under-
explored. More functional, performance and fault isolation

QURAISHI ETAL.: SURVEYOF SYSTEM ARCHITECTURES AND TECHNIQUES FOR FPGAVIRTUALIZATION 2227

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

approaches for FPGA virtualization shall be explored in
future research to ensure data security and system resilience.

Moreover, there has been a trend in designing specialized
FPGA virtualization frameworks for commonly-used artifi-
cial intelligence and deep learning applications such as deep
neural networks (DNNs) [58]. Most of the existing work only
focus on performance and usability perspectives of the appli-
cations like enabling fast mapping from application codes to
FPGA executable and creating a useful abstraction of FPGAs
to compilers. For example, the solutions in [58], [83], [84]
focus on enabling the acceleration of a large variety of DNN
models using Instruction-Set-Architecture-based methods to
avoid the overhead of traditional full compilation of FPGA
designs. The existing works are either mainly focused on
performance optimization [83], [84] of static DNN workload
execution or they are not scalable since they do not support
multi-FPGA scenarios in cloud environments [57]. More-
over, the issue of isolation while sharing resources are
ignored in the existingwork. Thework in [58] provides phys-
ical and performance isolation of FPGAs and tries to address
functional isolation by assigning separate hardware resource
pools to different users. Future research needs to address the
scalability issue by supporting multi-FPGA virtualization.
Furthermore, in-depth analysis and research are needed to
provide better functional isolationwhile sharing the physical
resources inmulti-tenant FPGAs.

ACKNOWLEDGMENTS

This work was supported by an unrestricted research gift
(CG#1490376) from the Cisco Research Center.

REFERENCES

[1] S. Biookaghazadeh, M. Zhao, and F. Ren, “Are FPGAs suitable for
edge computing?,” in Proc. USENIX Workshop Hot Topics Edge
Comput., 2018.

[2] Amazon.com Inc., “F1 instances: Run custom FPGAs in the AWS
cloud,” 2017. [Online]. Available: https://aws.amazon.com/ec2/
instance-types/f1

[3] A. Putnam et al., “A reconfigurable fabric for accelerating large-
scale datacenter services,” in Proc. ACM/IEEE 41st Int. Symp. Com-
put. Archit., 2014, pp. 13–24.

[4] R. Tessier andW. Burleson, “Reconfigurable computing for digital
signal processing: A survey,” J. VLSI Signal Process. Syst. Signal
Image Video Technol., vol. 28, no. 1–2, pp. 7–27, 2001.

[5] R. Woods, J. McAllister, G. Lightbody, and Y. Yi, FPGA-Based
Implementation of Signal Processing Systems. Hoboken, NJ, USA:
Wiley, 2008.

[6] D. Markovi�c and R. W. Brodersen, DSP Architecture Design Essen-
tials. Berlin, Germany: Springer, 2012.

[7] M. Vestias and H. Neto, “Trends of CPU, GPU and FPGA for
high-performance computing,” in Proc. 24th Int. Conf. Field Pro-
grammable Logic Appl., 2014, pp. 1–6.

[8] E. Bank-Tavakoli, S. A. Ghasemzadeh, M. Kamal, A. Afzali-Kusha,
and M. Pedram, “Polar: A pipelined/overlapped FPGA-based
LSTM accelerator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 28, no. 3, pp. 838–842,Mar. 2020.

[9] R. Dorrance, F. Ren, and D. Markovi�c, “A scalable sparse matrix-
vector multiplication kernel for energy-efficient sparse-blas on
FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays, 2014, pp. 161–170.

[10] A. Munshi, “The opencl specification,” in Proc. IEEE Hot Chips 21
Symp., 2009, pp. 1–314.

[11] M. Riera, E. B. Tavakoli, M. H. Quraishi, and F. Ren, “Halo 1.0: A
hardware-agnostic accelerator orchestration framework for enabling
hardware-agnostic programming with true performance portability
for heterogeneousHPC,” 2020, arXiv: 2011.10896.

[12] C. Plessl andM. Platzner, “Virtualization of hardware - introduction
and survey,” in Proc. Int. Conf. Eng. Reconfigurable Syst. Algorithms,
2004, pp. 63–69.

[13] A. Vaishnav, K. D. Pham, and D. Koch, “A Survey on FPGA
Virtualization,” Proc. 28th Int. Conf. Field Programmable Logic Appl.,
2018, pp. 131–1317.

[14] Q. Ijaz, E.-B. Bourennane, A. K. Bashir, and H. Asghar, “Revisiting
the high-performance reconfigurable computing for future data-
centers,” Future Internet, vol. 12, no. 4, 2020, Art. no. 64.

[15] R. Skhiri, V. Fresse, J. P. Jamont, B. Suffran, and J. Malek, “From
FPGA to support cloud to cloud of FPGA: State-of-the-art,” Int. J.
Reconfigurable Comput., vol. 2019, 2019, pp. 8085461:1–8085461:17.

[16] J. Zhang and G. Qu, “A survey on security and trust of FPGA-
based systems,” in Proc. Int. Conf. Field-Programmable Technol.,
2014, pp. 147–152.

[17] R. Di Lauro, F. Giannone, L. Ambrosio, and R. Montella,
“Virtualizing general purpose GPUs for high performance cloud
computing: An application to a fluid simulator,” in Proc. IEEE
10th Int. Symp. Parallel Distrib. Process. Appl., 2012, pp. 863–864.

[18] J. Duato, A. J. Pena, F. Silla, J. C. Fernandez, R. Mayo, and
E. S. Quintana-Orti, “Enabling CUDA acceleration within
virtual machines using rCUDA,” in Proc. 18th Int. Conf. High
Perform. Comput., 2011, pp. 1–10.

[19] W. Fornaciari and V. Piuri, “Virtual FPGAs: Some steps behind
the physical barriers,” in Parallel and Distributed Processing,
J. Rolim, Ed. Berlin, Germany: Springer, 1998, pp. 7–12.

[20] L. Lagadec, D. Lavenier, E. Fabiani, and B. Pottier, “Placing, rout-
ing, and editing virtual FPGAs,” in Field-Programmable Logic and
Applications, G. Brebner and R. Woods, Eds. Berlin, Germany:
Springer, 2001, pp. 357–366.

[21] H. K.-H. So and C. Liu, “FPGA Overlays,” in FPGAs for Software
Programmers, D. Koch, F. Hannig, and D. Ziener, Eds. Cham:
Springer, 2016, pp. 285–305.

[22] J. Zhang et al., “The feniks FPGA operating system for cloud
computing,” in Proc. 8th Asia-Pacific Workshop Syst., 2017, pp. 1–7.

[23] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside, “Resource elas-
tic virtualization for FPGAs using openCL,” in Proc. 28th Int. Conf.
Field Programmable Logic Appl., 2018, pp. 111–1117.

[24] O. Knodel, P. Genssler, and R. Spallek, “Virtualizing reconfigura-
ble hardware to provide scalability in cloud architectures,”
in Proc. 10th Int. Conf. Advances Circuits Electron. Micro-Electronics,
2017.

[25] T. Xia, J.-C. Pr�evotet, and F. Nouvel, “Hypervisor mechanisms to
manage FPGA reconfigurable accelerators,” in Proc. Int. Conf.
Field-Programmable Technol., 2016, pp. 44–52.

[26] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and
C. J. Rossbach, “Sharing, protection, and compatibility for recon-
figurable fabric with amorphos,” in Proc. 13th USENIX Symp.
Operating Syst. Des. Implementation, 2018, pp. 107–127.

[27] W. Lie and W. Feng-Yan, “Dynamic partial reconfiguration in
FPGAs,” in Proc. 3rd Int. Symp. Intell. Inf. Technol. Appl., 2009,
pp. 445–448.

[28] N. Tarafdar, N. Eskandari, T. Lin, and P. Chow, “Designing for
FPGAs in the cloud,” IEEEDes. Test, vol. 35, no. 1, pp. 23–29, Feb. 2018.

[29] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the cloud: Booting virtualized hardware acceleratorswith
openstack,” in Proc. IEEE 22nd Annu. Int. Symp. Field-Programmable
CustomComput.Machines, 2014, pp. 109–116.

[30] O. Knodel, P. Lehmann, and R. G. Spallek, “RC3E: Reconfigur-
able accelerators in data centres and their provision by
adapted service models,” in Proc. IEEE 9th Int. Conf. Cloud
Comput., 2016, pp. 19–26.

[31] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne,
“Designing a virtual runtime for FPGA accelerators in the cloud,”
in Proc. 26th Int. Conf. Field Programmable Logic Appl., 2016, pp. 1–2.

[32] W. Wang, M. Bolic, and J. Parri, “pvFPGA: Accessing an
FPGA-based hardware accelerator in a paravirtualized envi-
ronment,” in Proc. Int. Conf. Hardware/Softw. Codesign Syst. Syn-
thesis, 2013, pp. 1–9.

[33] C.-H. Huang and P.-A. Hsiung, “Virtualizable hardware/soft-
ware design infrastructure for dynamically partially reconfigura-
ble systems,” ACM Trans. Reconfigurable Technol. Syst., vol. 6, no. 2,
pp. 1–18, 2013.

[34] M. Paolino, S. Pinneterre, and D. Raho, “FPGA virtualization
with accelerators overcommitment for network function
virtualization,” in Proc. Int. Conf. ReConFigurable Comput.
FPGAs, 2017, pp. 1–6.

2228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/ec2/instance-types/f1
https://aws.amazon.com/ec2/instance-types/f1

[35] I. Gonzalez, S. Lopez-Buedo, G. Sutter, D. Sanchez-Roman,
F. J. Gomez-Arribas, and J. Aracil, “Virtualization of Reconfigura-
ble Coprocessors in HPRC Systems with Multicore Architecture,”
J. Syst. Archit., vol. 58, no. 6–7, pp. 247–256, Jun. 2012. [Online].
Available: http://dx.doi.org/10.1016/j.sysarc.2012.03.002

[36] C. Liu, H.-C. Ng, and H. K.-H. So, “Quickdough: A rapid FPGA
loop accelerator design framework using soft CGRA overlay,” in
Proc. Int. Conf. Field Programmable Technol., 2015, pp. 56–63.

[37] O. Pell, O. Mencer, K. H. Tsoi, and W. Luk, “Maximum perfor-
mance computing with dataflow engines,” in High-Performance
Computing Using FPGAs. Berlin, Germany: Springer, 2013,
pp. 747–774.

[38] O. Pell and V. Averbukh, “Maximum performance computing
with dataflow engines,” Comput. Sci. Eng., vol. 14, no. 4, pp. 98–
103, 2012.

[39] Y. Li, Z. Liu, K. Xu, H. Yu, and F. Ren, “A GPU-outperforming
FPGA accelerator architecture for binary convolutional neural
networks,” ACM J. Emerg. Technol. Comput. Syst., vol. 14, no. 2,
2018, Art. no. 18.

[40] C.-H. Huang and P.-A. Hsiung, “Hardware resource virtualiza-
tion for dynamically partially reconfigurable systems,” IEEE
Embedded Syst. Lett., vol. 1, no. 1, pp. 19–23, May 2009.

[41] W. Fornaciari and V. Piuri, “General methodologies to virtualize
FPGAs in hw/sw systems,” in Proc. Midwest Symp. Circuits Syst.,
1998, pp. 90–93.

[42] R. L. Lysecky, K. Miller, F. Vahid, and K. A. Vissers, “Firm-core
virtual FPGA for just-in-time FPGA compilation,” in Proc. ACM/
SIGDA 13th Int. Symp. Field-Programmable Gate Array, 2005,
Art. no. 271.

[43] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Virtualizing and
sharing reconfigurable resources in high-performance reconfigur-
able computing systems,” in Proc. 2nd Int. Workshop High-Perform.
Reconfigurable Comput. Technol. Appl., 2008, pp. 1–8.

[44] J. Yang, L. Yan, L. Ju, Y. Wen, S. Zhang, and T. Chen,
“Homogeneous NoC-based FPGA: The foundation for virtual
FPGA,” in Proc. 10th IEEE Int. Conf. Comput. Inf. Technol., 2010,
pp. 62–67.

[45] R. Kirchgessner, G. Stitt, A. George, and H. Lam, “VirtualRC: A
virtual FPGA platform for applications and tools portability,” in
Proc. ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, 2012,
pp. 205–208. [Online]. Available: http://doi.acm.org/10.1145/
2145694.2145728

[46] F. Chen et al., “Enabling FPGAs in the cloud,” in Proc. 11th ACM
Conf. Comput. Frontiers, 2014, pp. 3:1–3:10. [Online]. Available:
http://doi.acm.org/10.1145/2597917.2597929

[47] J. Coole and G. Stitt, “Fast, flexible high-level synthesis from
openCL using reconfiguration contexts,” IEEE Micro, vol. 34,
no. 1, pp. 42–53, Jan./Feb. 2014.

[48] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf,
“Enabling FPGAs in hyperscale data centers,” in Proc. IEEE 12th
Int. Conf. Ubiquitous Intell. Comput., IEEE 12th Int. Conf. Autonomic
Trusted Comput., IEEE 15th Int. Conf. Scalable Comput. Commun.
Associated Workshops, 2015, pp. 1078–1086.

[49] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA accel-
erators for efficient cloud computing,” in Proc. IEEE 7th Int. Conf.
Cloud Comput. Technol. Sci., 2015, pp. 430–435.

[50] H. L. Kidane, E.-B. Bourennane, and G. Ochoa-Ruiz, “NoC based
virtualized accelerators for cloud computing,” in Proc. IEEE 10th
Int. Symp. Embedded Multicore/Many-Core Syst.-on-Chip, 2016,
pp. 133–137.

[51] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne,
“Virtualized execution runtime for FPGA accelerators in the
cloud,” IEEE Access, vol. 5, pp. 1900–1910, 2017.

[52] S. Yazdanshenas and V. Betz, “Quantifying and mitigating the
costs of FPGA virtualization,” in Proc. 27th Int. Conf. Field Program-
mable Logic Appl., 2017, pp. 1–7.

[53] C. Vatsolakis and D. Pnevmatikatos, “RACOS: Transparent access
and virtualization of reconfigurable hardware accelerators,” in
Proc. Int. Conf. Embedded Comput. Syst.: Architectures Model. Simul.,
2017, pp. 11–19.

[54] J. M. Mbongue, F. Hategekimana, D. T. Kwadjo, and C. Bobda,
“FPGA virtualization in cloud-based infrastructures over virtio,”
in Proc. IEEE 36th Int. Conf. Comput. Des., 2018, pp. 242–245.

[55] J. Mbongue, F. Hategekimana, D. T. Kwadjo, D. Andrews, and
C. Bobda, “FPGAVirt: A novel virtualization framework for
FPGAs in the cloud,” in Proc. IEEE 11th Int. Conf. Cloud Comput.,
2018, pp. 862–865.

[56] Q. Zhao, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi,
“Enabling FPGA-as-a-service in the cloud with hCODE platform,”
IEICE Trans. Inf. Syst., vol. E101.D, no. 2, pp. 335–343, 2018.

[57] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in Proc. 25th Int.
Conf. Archit. Support Program. Languages Operating Syst., 2020, pp.
845–858.

[58] S. Zeng et al., “Enabling efficient and flexible FPGA virtualization
for deep learning in the cloud,” in Proc. IEEE 28th Annu. Int. Symp.
Field-Programmable Custom Comput. Machines, 2020, pp. 102–110.

[59] J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures
for circuit portability and fast placement and routing,” in Proc. 8th
IEEE/ACM/IFIP Int. Conf. Hardware/Softw. Codesign Syst. Synthesis,
2010, pp. 13–22.

[60] A. Agne et al., “ReconOS: An operating system approach for
reconfigurable computing,” IEEE Micro, vol. 34, no. 1, pp. 60–71,
Jan./Feb. 2014.

[61] K. Fleming and M. Adler, “The leap FPGA operating system,” in
FPGAs for Software Programmers. Berlin, Germany: Springer, 2016,
pp. 245–258.

[62] Intel Corporation, “Intel� SDK for OpenCLTM applications,” 2020.
[Online]. Available: https://software.intel.com/en-us/opencl-sdk

[63] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS
Operating Syst. Rev., vol. 37, no. 5, pp. 164–177, 2003.

[64] OpenStack, “OpenStack - Open source software for building pri-
vate and public clouds,” 2020. [Online]. Available: http://www.
openstack.org/

[65] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration
enabled accelerator and test platform,” in Proc. 24th Int. Conf. Field
Programmable Logic aAppl., 2014, pp. 1–7.

[66] S. Hajnoczi, “Virtio-vsock: Zero-configuration host/guest comm-
unication,” 2015. [Online]. Available: https://www.linuxkvm.
org/page/KVM Forum 2015

[67] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual
Machine Specification, 1st ed. Reading, MA, USA: Addison-Wesley,
2014.

[68] X. Li and D. L. Maskell, “Time-multiplexed FPGA overlay archi-
tectures: A survey,” ACM Trans. Des. Autom. Electron. Syst., vol.
24, no. 5, pp. 1–19, 2019.

[69] R. Ferreira, J. G. Vendramini, L. Mucida, M. M. Pereira, and
L. Carro, “An FPGA-based heterogeneous coarse-grained dynam-
ically reconfigurable architecture,” in Proc. 14th Int. Conf. Com-
pilers Architectures Synthesis Embedded Syst., 2011, pp. 195–204.

[70] A. Brant and G. Lemieux, “ZUMA: An open FPGA overlay
architecture,” in Proc. IEEE 20th Int. Symp. Field-Programmable Cus-
tom Comput. Mach., 2012, pp. 93–96.

[71] A. K. Jain, “Architecture centric coarse-grained FPGA overlays,”
Ph.D. dissertation, School Comput. Sci. Eng., Nanyang Technolog-
ical Univ., Singapore, 2017.

[72] R. Hartenstein, “Coarse grain reconfigurable architecture (Embed-
ded Tutorial),” in Proc. Asia South Pacific Des. Autom. Conf., 2001,
pp. 564–570.

[73] T. Wiersema, A. Bockhorn, and M. Platzner, “Embedding
FPGA overlays into configurable systems-on-chip: Reconos
meets zuma,” in Proc. Int. Conf. ReConFigurable Comput. FPGAs,
2014, pp. 1–6.

[74] G. Stitt, R. Karam, K. Yang, and S. Bhunia, “A uniquified virtuali-
zation approach to hardware security,” IEEE Embedded Syst. Lett.,
vol. 9, no. 3, pp. 53–56, Sep. 2017.

[75] J. Ma et al., “A hypervisor for shared-memory FPGA platforms,”
in Proc. 25th Int. Conf. Archit. Support Program. Languages Operating
Syst., 2020, pp. 827–844.

[76] J. Mandebi Mbongue, D. Tchuinkou Kwadjo, and C. Bobda,
“FLexiTASK: A Flexible FPGA overlay for efficient multitasking,”
in Proc. Great Lakes Symp. VLSI, 2018, pp. 483–486.

[77] Xilinx Inc, “Vivado design suite partial reconfiguration user guide.”
Accessed: Apr. 5, 2017. [Online]. Available: https://www.xilinx.com/
support/documentation/sw_manuals/ xilinx2018_1/ ug909-vivado-
partial-reconfiguration.pdf

[78] Xilinx Inc., “SDAccel development environment,” 2016.
[Online]. Available: https://www.xilinx.com/products/design-
tools/software-zone.html

[79] Xilinx Inc., “Xilinx isolation design flow,” 2019. [Online]. Available:
https://www.xilinx.com/applications/isolation-design-flow.html

[80] J. Krautter, D. R.Gnad, F. Schellenberg,A.Moradi, andM. B. Tahoori,
“Active fences against voltage-based side channels in multi-
tenant FPGAs,” IACR Cryptol. ePrint Arch., vol. 2019, 2019,
Art. no. 1152.

QURAISHI ETAL.: SURVEYOF SYSTEM ARCHITECTURES AND TECHNIQUES FOR FPGAVIRTUALIZATION 2229

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1016/j.sysarc.2012.03.002
http://doi.acm.org/10.1145/2145694.2145728
http://doi.acm.org/10.1145/2145694.2145728
http://doi.acm.org/10.1145/2597917.2597929
https://software.intel.com/en-us/opencl-sdk
http://www.openstack.org/
http://www.openstack.org/
https://www.linuxkvm.org/page/KVM Forum 2015
https://www.linuxkvm.org/page/KVM Forum 2015
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2018_1/ ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2018_1/ ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ xilinx2018_1/ ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/products/design-tools/software-zone.html
https://www.xilinx.com/products/design-tools/software-zone.html
https://www.xilinx.com/applications/isolation-design-flow.html

[81] S. Yazdanshenas and V. Betz, “The costs of confidentiality in vir-
tualized FPGAs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 27, no. 10, pp. 2272–2283, Oct. 2019.

[82] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in Proc. IEEE Symp. Security aPrivacy, 2018, pp. 229–244.

[83] Xilinx Inc., “Accelerating DNNs with Xilinx alveo accelerator
cards.” Accessed: Oct. 14, 2018. [Online]. Available: https://www.
xilinx.com/support/documentation/ white_papers/wp504-accel-
dnns.pdf

[84] J. Fowers et al., “A configurable cloud-scale dnn processor for real-
time AI,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit.,
2018, pp. 1–14.

Masudul Hassan Quraishi received the
BSc degree in electrical engineering from the
Bangladesh University of Engineering and Tech-
nology, Bangladesh, in 2013, and the MS degree
in computer engineering from Arizona State Uni-
versity, in 2020. He is currently working toward
the PhD degree in computer engineering at Ari-
zona State University, USA. His current research
interests include involves virtualization of FPGA
for high performance computing.

Erfan Bank Tavakoli received the BSc degree in
electrical engineering from the Iran University of
Science and Technology, Tehran, Iran, in 2017,
and the MSc degree in electrical engineering
from the University of Tehran, Tehran, Iran, in
2019. He is currently working toward the PhD
degree in computer engineering at Arizona State
University, AZ. His current research interests
include hardware acceleration and deep learning.

Fengbo Ren (Senior Member, IEEE) received
the BEng degree in electrical engineering from
Zhejiang University, Hangzhou, China, in 2008,
and the MS and PhD degrees in electrical engi-
neering from the University of California, Los
Angeles, in 2010 and 2014, respectively. In 2015,
he joined the Faculty of the School of Computing,
Informatics, and Decision Systems Engineering
at Arizona State University (ASU). His PhD
research involved designing energy-efficient
VLSI systems, accelerating compressive sensing

signal reconstruction, and developing emerging memory technology. His
current research interests include focused on algorithm, hardware, and
system innovations for data analytics and information processing, with
emphasis on bringing energy efficiency and data intelligence into a broad
spectrum of today’s computing infrastructures, from data center server
systems to wearable and Internet-of-Things devices. He is a member of
the Digital Signal Processing Technical Committee and VLSI Systems &
Applications Technical Committee of the IEEE Circuits and Systems
Society. He received the Broadcom Fellowship, in 2012, the prestigious
National Science Foundation (NSF) Faculty Early Career Development
(CAREER) Award, in 2017, the Google Faculty Research Award, in
2018. He also received the Top 5 percent best teacher awards from the
Fulton Schools of Engineering at ASU in 2017, 2018, and 2019.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: ASU Library. Downloaded on March 31,2021 at 09:37:48 UTC from IEEE Xplore. Restrictions apply.

https://www.xilinx.com/support/documentation/ white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/ white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/ white_papers/wp504-accel-dnns.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

