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General purpose computation using Graphic Processing Units (GPUs) is a well-
established research area focusing on high-performance computing solutions for
massively parallelizable and time-consuming problems. Classical methodologies
in machine learning and data mining cannot handle processing of massive and
high-speed volumes of information in the context of the big data era. GPUs have
successfully improved the scalability of data mining algorithms to address signif-
icantly larger dataset sizes in many application areas. The popularization of dis-
tributed computing frameworks for big data mining opens up new opportunities
for transformative solutions combining GPUs and distributed frameworks. This
survey analyzes current trends in the use of GPU computing for large-scale data
mining, discusses GPU architecture advantages for handling volume and velocity
of data, identifies limitation factors hampering the scalability of the problems,
and discusses open issues and future directions. © 2017 Wiley Periodicals, Inc.

How to cite this article:
WIREs Data Mining Knowl Discov 2017, €1232. doi: 10.1002/widm.1232

INTRODUCTION

he surge of large volumes of information to be

processed by machine learning and data mining
algorithms in the context of the big data era demand
new transformative parallel and distributed comput-
ing solutions capable to scale computation effectively
and efficiently."* Graphic processing units (GPUs)
have become widespread tools for speeding up gen-
eral purpose computation in the last decade.”> They
offer massive parallelism to extend algorithms to
large-scale data for a fraction of the cost of a tradi-
tional high-performance CPU cluster.* The program-
ming model provides data-level parallelism for the
efficient processing of millions of threads which
allows algorithms to scale to large-scale datasets not
computable through traditional parallel approaches.
Proof of the growing interest of GPUs for machine
learning and data mining is the increasing number of
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research works in this area.””® However, one cannot
ignore the intrinsic high complexity of coding for
GPUs and the careful design required to maximize
the efficiency and occupancy considering the underly-
ing architecture. Moreover, the relatively limited size
of a single-GPU memory prevents its application to
resolve big data problems comprising gigabytes or
terabytes of data. Therefore, multi-GPU and
distributed-GPU solutions are required to scale to
even bigger datasets, which in turn introduces addi-
tional efficiency, latency, and synchronization
challenges.”

Volume is seen as the most commonly discussed
big data characteristic, as memory requirements and
the computational complexity of algorithms depend-
ing on the data size are critical performance limita-
tors. However, one cannot forget the importance of
velocity, the speed at which data is being generated,
demanding for real-time processing. Velocity
becomes a predominant characteristic in many real-
world data mining problems, as new instances are
being continuously generated, forcing algorithms to
provide very fast processing and adapt on-the-fly
under real-time constraints. This has led to the
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notion of data streams,® high-speed continuous data
flows demanding very fast decision models. Not only
GPUs allow for the processing of large-scale volumes,
but they also offer fast model decisions by exploiting
the asynchronous model of concurrent execution and
data transferring. This is a clear advantage of GPUs
for real-time systems where a timely prediction is crit-
ical, such as image processing for autonomous driv-
ing” or high-frequency trading and analytics.'®

In recent years, newly distributed frameworks
have emerged to address the scalability of algorithms
to big data analysis using the MapReduce program-
ming model,!" being Apache Hadoop'* and Spark'?
the two most popular implementations. The main
advantages of these distributed systems are their elas-
ticity, reliability, and transparent scalability in a user-
friendly way. They are intended to provide users with
easy and automatic fault-tolerant workload distribu-
tion without the inconveniences of taking into
account the specific details of the underlying hard-
ware architecture of a cluster. However, their sim-
plicity and higher level of abstraction comes at the
cost of less efficient implementations and no explicit
control of scheduling in distributed environments.
Importantly, these popular distributed computing
frameworks and GPUs are not mutually exclusive
technologies, as they can complement each other and
target complementary computing scopes. Indeed,
recent studies focus on hybrid solutions combining
both technologies in order to take advantage of the
automatic and dynamic workload distribution along
with the exploitation of the GPUs horsepower to effi-
ciently compute local data subsets."*'® This way,
these systems benefit from the joint advantages and
alleviate the individual limitations, especially in terms
of memory spatial locality and capacity, and perfor-
mance throughput.

There are two surveys on the use of GPU com-
puting for general-purpose computation and data-
parallel problems.>'” These surveys are focused on
the architecture of the GPU and its programming
model, the implementation of parallel computing
models, strategies for designing efficient algorithms
and operations (e.g., map, reduce, sort, filter, scatter,
gather, search, segmentation), strategies for efficient
data access patterns and structures, and general-
purpose applications in data-parallel intensive simu-
lations. Furthermore, there are two other surveys on
the use of GPU computing for data mining.’*® These
surveys are focused on the implementation of a
reduced number of classical data mining algorithms
(K-means, KNN, Apriori, FP-Growth) on a GPU.
However, these latest works limit their scope to the
implementation of the particular algorithms in a
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single-GPU, which are no longer state-of-the-art
methods in data mining, especially when considering
their scalability to big data, which is a crucial issue
today. Nevertheless, all these works are very useful
to illustrate the architecture of a GPU, the program-
ming model, and the implementation of efficient
data-parallel strategies.

This survey provides an overview and insight
on the use of GPU computing for large-scale data
mining, focusing on the advantages and limitations
of GPUs for big data on state-of-the-art data mining
algorithms, complementing and updating previous
surveys on the status of this research area. First, it
discusses how the GPU architecture is organized and
its evolution, the programming model, and the
advantages to match the computational requirements
of large-scale data mining algorithms. Second, it ana-
lyzes current trends and research works on the imple-
mentation of different popular families of data
mining techniques using GPUs, discussing specific
optimizations and noteworthy results. Third, it
reviews particular application areas where GPUs
have significantly assisted to speedup real-world
problems requiring fast processing of large data vol-
umes in data mining. Fourth, it discusses novel
research works on the integration of GPU computing
with popular MapReduce frameworks for distributed
computing from two perspectives: (1) implementa-
tions of the MapReduce programming model within
a GPU and (2) exploitation of GPUs for computing
the jobs in the nodes of a distributed cluster using
existing MapReduce frameworks. Finally, it summa-
rizes current GPU limitations, future architectures
advantages, open challenges, and future directions to
pursue in order to keep increasing the scalability of
parallel data mining algorithms to the ever-increasing
size of data.

GPU ARCHITECTURE FOR DATA
MINING

This section presents the fundamentals of the NVI-
DIA GPU architecture and programming model, and
discusses the potential advantages for speeding up
big data mining algorithms.

GPU Architecture and Programming Model
GPUs are many-core architectures highly suitable
for massively data parallel general-purpose computa-
tion. They consist of a number of multiprocessors,
each of which contains a set of cores operating in a
single instruction multiple data (SIMD) fashion,
i.e., capable of synchronously processing an
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TABLE 1 | NVIDIA graphic processing unit (GPU) and Intel CPU Architectures and Performance Evolution

Year GPU Name Cores  GFLOPS Memory Bandwidth CPU Name Cores  GFLOPS Bandwidth

2006  Tesla G80 128 346 768 MB 86 GB/second  Core 6 60 8 GB/second
2008  Tesla GT200 240 708 1024 MB 159 GB/second  Nehalem 8 90 10 GB/second
2010  Fermi 512 1581 1536 MB 192 GB/second ~ Westmere 10 112 24 GB/second
2012 Kepler 2304 3976 3072 MB 288 GB/second  Sandy Bridge 12 480 50 GB/second
2014 Maxwell 3072 6144 12,288 MB 336 GB/second Ivy Bridge 15 510 58 GB/second
2016 Pascal 3584 11,366 16,384 MB 547 GB/second Broadwell 24 1340 64 GB/second
2018  Volta 5120 15,154 16,384 MB 900 GB/second  Coffee Lake 32 2010 96 GB/second

instruction on multiple data. Today’s GPUs comprise
thousands of relatively simple cores for parallel com-
puting of very fast arithmetic and logical control, in
contrast to the small number of complex cores of a
high-end multicore CPU, which are optimized for fast
sequential serial processing, out of order execution,
and branch prediction.

The NVIDIA Volta GPU architecture comprises
64 cores per multiprocessor and sums 80 multiproces-
sors, adding a total of up to 5120 cores, 6144 KB of
L2 cache, and up to 16 GB HBM2 high-bandwidth
memory. One of the new capabilities in Volta is the
ability to process 16-bit precision instructions and
data, providing twice the throughput and capacity of
32-bit precision then achieving up to 30 TFLOPS
FP16 performances. Moreover, it incorporates
640 Tensor cores designed specifically for deep learn-
ing, which deliver up to 120 TFLOPS. These numbers
illustrate the impressive progress in the performance
of GPU architectures since the introduction of the
Tesla architecture in 2006, which only counted with
128 cores, 768 MB memory, and 346 GFLOPS FP32
performance. Table 1 compares the performance evo-
lution of NVIDIA GPU and Intel CPU architectures in
recent years. Not only has the number of cores in a
GPU increased but also the memory bandwidth has
significantly experienced great improvements, which
allows to speedup data-intensive applications. On the
other hand, CPUs have slowly progressed in perfor-
mance numbers, particularly in memory bandwidth.

GPUs comprise less FP64 compute units than
FP32 because they focus on single-precision perfor-
mance, ratios depend on the particular architecture,
e.g., 1:2 in Volta. Unlike other technical computing
applications such as numeric simulations that require
high-precision floating-point computation, data min-
ing seldom requires FP64. For instance, deep neural
networks have a natural resilience to errors due to
the backpropagation algorithm used in training. Sim-
pler precision also favors better generalization, avoid-
ing the overfitting of a network to the data. Storing
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half-precision FP16 data compared to higher preci-
sion FP32 or FP64 reduces memory usage of the neu-
ral network and thus allows training and deploying
larger networks. Using FP16 computation doubles
performance compared to FP32.

GPUs’ architecture is shown in Figure 1 and it
comprises a global memory accessible by all threads,
a small low-latency shared memory accessible by all
threads in a block, and local memory per core in the
form of registers for a given thread. Global memory
is a high-bandwidth large device memory that per-
mits high-efficient memory access patterns by using
data coalescing. Coalesced memory reflects the opti-
mal scenario where consecutive threads access to
consecutive data memory positions, minimizing the
number of memory transactions. On the other hand,
irregular access patterns will penalize the memory
performance with crossed relations between data and
threads. Coalescing data access patterns and mini-
mizing threads divergence are the most influential
optimizations to maximize performance. Shared
memory (multiprocessor level) allows for synchroni-
zation and combination of intermediate data, fitting
iterative algorithms where contribution of individual
threads is reintroduced into the model. However,
shared memory is limited to 96 KB per multiproces-
sor in Volta. Finally, each thread has access to
255 32-bit registers to store local variables.

There are two main computing platforms for
GPUs: Open Computing Language (OpenCL) devel-
oped by Khronos, and compute unified device archi-
tecture (CUDA) developed by NVIDIA. OpenCL
provides compatibility across heterogeneous hard-
ware from any vendor, whereas CUDA is specifically
designed for NVIDIA GPUs. CUDA is more fre-
quently used than OpenCL in the data mining
research community. It provides a programming
interface for C, C++, and Fortran in which the GPU
code is defined in kernel functions, while the CPU
functions and logic is managed by the host. CUDA
offers a number of GPU-accelerated libraries for
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FIGURE 1 | Graphic processing unit (GPU) architecture, multi-GPU, and distributed-GPU scalability.

highly-optimized algorithms such as cuDNN for deep
neural networks, nvGRAPH for graph analytics,
NVBIO for high-throughput sequence analysis, and
many other for numeric simulation.

The CUDA programming model provides a flex-
ible hierarchical organization of threads and memory.
Threads are grouped into user-defined three-
dimensional (3D) thread blocks of up to 1024 threads.
Thread blocks are also grouped into a 3D grid of
thread blocks. This configuration allows the user to
define the parallel computation of multidimensional
problems with millions or billions of threads. Threads
are mapped into the GPU multiprocessors through
warps which comprise a group of 32 threads (warp
size). The GPU scheduler maximizes the occupancy
and performance by switching idle warps waiting for
data accesses or function results with other warps
ready for computation. Figure 2 illustrates the threads
and blocks hierarchy of the multidimensional space of
computation in CUDA.

Figure 3 shows an example in CUDA of the
computation of the pairwise Euclidean distances in
an 7 X m matrix, a common task in data mining for
measuring similarity.?° Threads are organized into
16 x 16 two-dimensional blocks, and the blocks are
organized into an #/16 X n/16 two-dimensional grid.
Threads load submatrices in shared memory for low
latency access, compute partial distance, and syn-
chronize results. Once all partial results have been
computed, the square root of the squared sum of the
differences is calculated.

GPU’s Suitability for Data Mining

The flexible architecture and programming model
of a GPU facilitates the adaptability of massively

parallel data mining algorithms. Granularity in the
form of data-level parallelism schedules a thread to
compute a single data instance, speeding up any
data mining problem where the computational com-
plexity lies on the data size. For instance, many
algorithms involve distances computation among
data instances to measure similarity metrics such as
in K-means clustering and nearest neighbor classi-
fiers. This approach provides excellent scalability to
ever-increasing volumes in large-scale data mining,
addressing data sizes not computable using tradi-
tional CPU-parallel programming. However, limita-
tions surge for massive big data processing.
NVIDIA Volta GPUs comprise a maximum of
16 GB memory per device, preventing them from
handling terabyte scale data. Once the data size is
bigger than the capacity of the GPU memory, the
performance decreases significantly as the data
transfers to the device become the primary bottle-
neck, limited by the bandwidth and latency of the
PCle bus.

The Volta architecture has introduced mixed-
precision Tensor cores purpose-built for deep learn-
ing matrix arithmetic providing up to 6x higher peak
TFLOPS compared to the previous Pascal architec-
ture. Tensor cores help to speedup Matrix—Matrix
multiplication operations, which are essential in neu-
ral network training, and are used to multiply large
matrices of input data and weights in the connected
layers of the network. Tensor cores operate on FP16
input data with FP32 accumulation, multiplying and
adding 4 x 4 x 4 matrices. Not only does deep learn-
ing benefit from these ad-hoc Tensor cores, but also
many other data mining techniques employing simi-
lar computation strategies will take advantage of the
dedicated hardware.
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FIGURE 2 | Compute unified device architecture (CUDA) threads and blocks multidimensional programming model.

Researchers have proposed a number of general
frameworks for implementing data mining algo-
rithms on GPUs. Fang et al.*! introduced GPUminer,
a parallel data mining system that implemented clus-
tering (K-means) and pattern mining (Apriori) algo-
rithms. Ma and Agrawal®* analyzed the common
code structures in data mining algorithms using pro-
gram analysis and code generation to extract pro-
gramming patterns to facilitate the mapping of
algorithms to GPUs, they compared CPU and GPU
implementations of K-means and EM clustering,
achieving a speedup of up to 50x as compared with
the sequential single-threaded CPU implementation.
Gainaru and Slusanschi®® presented a framework
offering a general methodology for parallelizing all
types of data mining applications on hybrid architec-
tures, improving the results of GPUMiner. They
focused on K-means, KNN, Apriori, FP-Growth
algorithms measuring speedups, latency, and
utilization.

Other studies focused on proposing extensions
of existing popular data mining software such as
Weka and RapidMiner to GPUs.*** Specifically,
Engel et al.** profiled the Weka code to identify sets
of time-consuming operations that could be easily
adapted to the GPU, while Kovacs integrated a GPU
plugin into RapidMiner through JCUDA and JNI,
implementing a nearest neighbor classifier in a GPU,
achieving a speedup as high as 171x as compared to
a quad-core CPU. However, general frameworks
have not succeeded because it is very difficult to have
a unique general-purpose adaptation of every data
mining algorithm to GPUs, but in practice, ad-hoc
implementations are required per algorithm to opti-
mize code to the architecture. Coding of the
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individual algorithms is a time-consuming task and
GPU programming implies a relatively difficult learn-
ing curve, but allows for the implementation of spe-
cific algorithm’s optimizations to the GPU
architecture that will maximize the occupancy of the
hardware and improve the algorithm’s speedup.

DATA MINING TASKS AND
TECHNIQUES

This section presents a literature review of the most
relevant works on the implementation of data mining
algorithms on GPUs. It is structured according to the
data mining tasks and techniques. Due to the vast
number of research works in this area, we will focus
on the most significant, recent, and highly influential
contributions of GPUs to large-scale data mining.

Clustering

Clustering groups data into several clusters attempt-
ing to aggregate together instances with similar char-
acteristics.”® They are based on similarity joins, a
basic operation which computes similarities of fea-
ture vectors using a similarity (distance) function.
Similarity join is a function for data examples com-
parisons widely used in instance-based learners, eas-
ily parallelizable in a GPU as it was illustrated in
Figure 3. The problem of computing pairwise dis-
tances among data instances is O(n?) complex.
Therefore, it is not compute in reasonable time on a
CPU, whereas GPUs may speedup this problem by
calculating in parallel the distances among every pair
of instances. Figure 4 illustrates the pairwise distance
computation among every data instance and the
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// in: matrix size nxm, out: distances array

__global__ void distance(float *out, float *in, int n, int m)

__shared__ float Ys[16][16]; // shared memory submatrix
__shared__ float Xs[16][16]; // shared memory submatrix

// y block index

int yBegin = blockIdx.y * 16 * m;
= // x block index

int xBegin blockIdx.x * 16 * m;
int yEnd, y, x, k, 0;
float tmp, s = 0;

for(yEnd = yBegin+m-1, y=yBegin, x=xBegin; y<=yEnd; y+=16, x+=16) { - - - Ys

// load submatrices (Xs transpose)

Ys[threadIdx.y][threadIdx.x] = in[y + threadIdx.y*m + threadIdx.x];
Xs[threadIdx.x][threadIdx.y] = in[x + threadIdx.y*m + threadIdx.x];

__syncthreads(); // wait threads data load

for(k=0;k<16; k++){
tmp = Ys[threadIdx.y][K]
s += tmp*tmp;

- Xs[k]l[threadIdx.x];

wires.wiley.com/dmkd
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__syncthreads(); // wait threads partial distance computation

0 = blockIdx.y*16*n + threadIdx.y*n + blockIdx.x*16 + threadIldx.x;

out[o] = sqrtf(s); // store final result in given index

FIGURE 3 | Compute unified device architecture (CUDA) example for pairwise Euclidean distances computation on graphic processing units.

subsequent distance calculation to the data clusters
centroids (three clusters).

Density-based clustering creates clusters using
areas of high density separated by other areas of
lower density.?” For instance, Andrade et al.”® pre-
sented a GPU implementation of DBSCAN, a
density-based algorithm which innovates on the use
of an efficient data indexing using graphs, achieving
speedups over 100 times than its sequential CPU ver-
sion. K-means clustering partitions data into a prede-
fined number of k clusters. There are a number of
GPU implementations for K-means. Huang et al.*’
transformed the operation of weighting K-means to
the combination of multiplication, addition, and
element-wise operations among vectors and matrices.
Serapiao et al.>® evaluated in parallel each individual
of a swarm-based extension of K-means to avoid

local optima, achieving a speedup of up to 46x when
comparing a NVIDIA 460 GTX with an Intel i7
CPU. Li et al.>' proposed different compute strategies
depending on the dimensionality of the data. Specifi-
cally, for low-dimensional data, they exploit on-chip
registers to decrease data latency, whereas for high-
dimensional data not fitting in registers, they conduct
matrix multiplications on shared memory to improve
the compute-to-memory-access ratio. Experimental
results show their approach is up to eight times faster
than other K-means implementations on GPUs. Al-
Ayyoub et al.’* extended the GPU implementation to
fuzzy C-means, achieving speedups 30 times faster
than the serial implementation. Takizawa and
Kobayashi®® presented a divide-and-conquer hierar-
chical parallel clustering combining GPUs in multiple
machines with message passing interface. However,
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FIGURE 4 | Parallel pairwise distance computation and centroid-based clustering.
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this approach requires explicit control on distribution
and synchronization which in turn increases the diffi-
culty of the code.

Pattern Mining

Pattern mining focuses on finding frequent itemsets
and relationships in collections of data. There is a
large number of implementations concerning the
popular Apriori and FP-growth algorithms on GPUs.
Teodoro et al.>* proposed a multilevel tree projection
frequent itemset mining algorithm on GPUs and sev-
eral strategies to mitigate concurrent race conditions.
Results indicate an impressive speedup up to 173x
when using an NVIDIA GTX 470 compared with the
multithread implementation in a quad-core proces-
sor. Analysis of the scalability reported better perfor-
mance as the number of transactions in the database
increased. Li et al.*® presented a new multilayer verti-
cal data structure and algorithm for mining frequent
itemsets on GPUs. They use a unfixed-length bit vec-
tors representation that allows to obtain high
speedups, especially on large-scale sparse data.

Wang and Yuan®® introduced an efficient meth-
odology to build FP-Growth on GPUs without candi-
date generation. Rather than following the inherently
sequential process of building a traditional FP-Tree,
they propose to build an equivalent parallel binary
radix tree as illustrated in Figure 5 (1). Similarly,
counting the support (number of occurrences) of the
itemsets (set of items that occur together) would be
O(n) complex using a sequential approach, whereas
the parallel reduction approach on GPUs provide
O(log n) complexity as in shown Figure 5 (2). The
problem is the increasing number of idle threads in
each reduction step.

Zhou et al.>” innovated by introducing a com-
pact data structure to store the entire dataset in the
limited size of a GPU memory. Indeed, efficient data
structure for pattern mining is a recurrent research
area.’® Zhang et al.>’ proposed GPApriori, which
utilizes trie-based candidate set, vertical data layout,
and bit set representation of vertical transaction lists.
Moreover, Apriori is easily extensible to multiple
GPUs to overcome memory and performance limita-
tions.*® Association rules are popular representations
of the findings of pattern mining algorithms.*' Cano
et al.** presented a generalized methodology for
speeding up association rules evaluation on multiple
GPUs. Djenouri et al.** proposed a bee swarm opti-
mization for association rules on GPUs, obtaining
speedups 100 times faster using a Tesla C2075 GPU
than the sequential mono-core CPU implementation.
However, they point out the highly cost of the data
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communications between the CPU and GPU, and the
significant performance impact of branch divergence
of threads within the warp.

Nearest Neighbor Classifiers

The k nearest neighbor (KNN) classifier is one of the
most popular data mining techniques** and has been
implemented in many GPU works.***¢ Most of the
GPU implementations of the KNN comprise two
main components. First, compute the similarity (dis-
tance matrix) containing the distances between test
and train data. Second, sort the distance matrix. The
computational and memory complexity to calculate
and store all pairwise distances is O(n?*). Therefore,
GPU memory capacity imposes limitations on the size
of data, decreasing the performance of the KNN
implementations when data is constantly transferred
from the system’s memory to the GPU’s memory.
Given the 16 GB memory of the Volta architecture,
it is not possible to allocate at once all pairwise dis-
tances for datasets having more than 100 k instances.
Thus, preventing KNN methods to scale to big data.

Researchers have proposed solutions to over-
come the memory limitations of KNN on GPUs. Are-
fin et al.*” proposed to reduce the usage of memory
by dividing the computations in square-shaped por-
tions, but the required data structures also limit the
performance. Gutierrez et al.** introduced an incre-
mental neighborhood computation scheme that elimi-
nates the dependencies between dataset size and
memory. It takes advantage of asynchronous mem-
ory transfers, making the data structures fit into the
available memory while delivering high run-time per-
formance independently of the data size. Figure 6
illustrates the behavior of the local and incremental
neighborhood selection for finding the & closest
neighbors. The methodology consists of an iterative
process where train data (very large) is split into mul-
tiple subsets. All test data (small size) is copied to the
device in the beginning. The iterative process copies
several train data subsets into the GPU memory
(as many as they fit). Then, the algorithm runs the
local neighborhood search to find the k closest neigh-
bors from the test data to the train data subsets. A
tentative candidate pool of k neighbors is identified
as potential solutions. The process continues merging
existing candidates with new train data subsets.
Finally, the true k global closest neighbors remain as
the correct solution.

Other alternatives have emerged to reduce the
memory complexity. Rocha et al.*” proposed a com-
pact data structure to represent sparse datasets for
efficient GPU KNN data representation and distances
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computation. Masek et al.’° presented a multi-GPU
implementation scalable to four devices which splits
train data uniformly into the many devices. The main
advantage is that no intercommunication among
GPUs is required and therefore using multiple GPUs
does not introduce any additional overhead, which is
a clear advantage. This is true as long as the runtime
per device is constant by distributing uniform work-
loads among homogeneous GPUs, or by efficiently
balancing the jobs on heterogenous devices.”! GPU
implementations of KNN do not only take advantage
of computing distances per instance in parallel, but
also may also parallelize the distance calculation for
a single instance, which is especially interesting in
high dimensional spaces with very large number of
attributes.>> These advances on efficient KNN paral-
lel implementations also improve velocity of the
response, a significant aspect for big data processing,
allowing to provide fast decision for high-speed data
streams.
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Classification Rules

Classification rules are popular data mining tech-
niques because they provide interpretability of the
prediction model, which is vital in many decision
support systems where reasons and motivation for
the prediction must be given. Evolutionary algo-
rithms, and specifically genetic programming, are
nature-inspired heuristics commonly employed in lit-
erature for learning classification rules.’*™¢ The
main drawback of evolutionary algorithms in data
mining is the computational complexity and runtime
because they evolve a population of solutions for a
number of generations.’” In every iteration, the tenta-
tive solutions must be evaluated according to a fit-
ness function and the train data. Thus, their
computational complexity is O(nx P x G) where P is
the population size and G is the number of iterations,
which makes sequential approaches unsuitable for
large-scale data. The main advantage is that the fit-
ness function is massively parallelizable. On one
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hand, the evaluation of every individual in the popu-
lation is an independent task, i.e., the fitness of the
individuals can be computed in parallel. On the other
hand, the evaluation of a given individual on each
data instance is also an independent parallel opera-
tion, i.e., it scales as for the data size. Therefore,
many research works propose both individual and
data level parallelism because it perfectly matches the
programming model of GPUs, maximizing the
speedups of these algorithms for learning classifica-
tion rules on large-scale data.

Franco and Barcardit’® employed GPU com-
puting to speedup the fitness computation of evolu-
tionary algorithms for large-scale data mining using
different coarse-grained and fine-grained strategies,
but their approach is limited to a single device.
Langdon®” focused on the implementation of the
genetic programming interpreter on a GPU. The
interpreter is the function which executes the genetic
programming tree representing the classification
rule. The problem is that the postfix notation com-
monly employed for representing the rules requires
push and pop operations on a stack, which is not
the most efficient approach for a GPU. This was the
motivation for Chitty®° to conduct interpreter opti-
mizations through exploitation of on-chip memory.
Cano et al.®"®3 proposed a number of implementa-
tions of evolutionary rule-based classifiers on GPUs.
In Ref 64 they presented an implementation using
Ant Programming. In Ref 65, they proposed an
implementation for Pittsburgh classifiers, which
increase the computational complexity by represent-
ing an individual as a full classifier (set of rules)
rather than individual rules. Extensions of these
rule-based classifiers were proposed for multi-
instance learning.®® The main advantages of these
proposals are their transparent scalability to multi-
ple GPUs, since populations subsets may be assigned
easily to different devices without any kind of addi-
tional overhead.

A survey on GPU computing for large-scale data mining

Once resolved both the parallelization of multi-
ple rules on multiple data, a significant contribution
was proposed by Cano and Ventura®” on the intrar-
ule parallelization of a rule evaluation. Figure 7 illus-
trates the idea that the evaluation of branches can
also be computed in parallel in a bottom-up fashion.
This way, the computational complexity of evaluat-
ing a rule is reduced from O(n) where n is the num-
ber of nodes to O(d) where d is the depth of the tree.
However, performance increase depends on how well
balanced is the tree. This way, in the case of a perfect
full binary tree the computational complexity
becomes O(log n). On the other hand, the worst-case
scenario happens when evaluating an unbalanced
tree because there are no possible parallelization
opportunities and all operations must be conducted
sequentially, i.e., O(n) complex. Another significant
advantage is that it does not require a stack to main-
tain temporal results for the internal operators, since
the intermediate results for a depth level are immedi-
ately used in the next iteration higher level.

Decision Trees

Decision trees build classification models in the form
of a tree structure containing decision nodes and leaf
nodes. They are intrinsically related with classifica-
tion rules, as they can be converted into each other,
and both provide interpretability to the inferred
models. Thus, similar GPU approaches can be
applied for parallelizing decision trees on GPUs. Chiu
et al.®® presented a decision tree model in which the
key is finding the split points for the attributes in par-
allel, following a top-down fashion. Nasridinov
et al.®? proposed a ubiquitous parallel approach for
decision tree construction on two levels. They apply
parallelism at the outer level of building the tree
node-by-node, and at the inner level of sorting data
records within a single node. Decision trees are also
commonly employed in Random Forest ensemble
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FIGURE 7 | Intrarule parallelization in genetic programming.
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learning. They operate by constructing a multitude
of decision trees and outputting a prediction by
combining the outputs of the individual trees. Grahn
et al.”® introduced one of the first implementations
of Random Forest on GPU. Results showed to out-
perform 30x faster than the Weka CPU sequential
implementation. Janssone et al.”! presented two
GPU implementations of the ensemble learning
methods Random Forests and Extremely Random-
ized Trees. They also address multi-GPU scalability
to add both memory throughput and additional
cores for increased computational power. Marron
et al.”? adapted the GPU implementation of Ran-
dom Forest for mining evolving high-speed streams,
where having a timely prediction is critical. Experi-
mental results showed to be able to provide class
prediction in less than 1 second, achieving a
speedup of up to 25x as compared with the tradi-
tional single-thread implementation in the MOA
software. They employ a breadth-first traversal to
encode the binary tree in a single array, level by
level, as illustrated in Figure 8. This representation
is again best for perfect full binary trees, whereas
unbalanced trees will waste memory within the
array. Each node is encoded through 32-bit
unsigned integers containing the node ID and a flag.
Using this layout, it is easy to obtain the child offset
of the child nodes of any given node. Given a node
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at offset i, its left child will be at offset 2i + 1 and
its right child will be at offset 2 + 2.

Support Vector Machines

Support vector machines (SVMs) construct hyper-
planes that represent the best separation between
data classes. Lu et al.”? and Drozda et al.”* published
the most recent surveys on the use of GPUs for accel-
erating SVMs. SVMs benefit from parallel GPU com-
puting since their computational complexity lies on
the necessity of calculating a large number of matrix
by vector multiplications” as illustrated in Figure 9.
Therefore, they will also take advantage of the
increased performance provided by Volta Tensor
cores. GPU-LIBSVM’® is a modification of the popu-
lar LIBSVM library that exploits GPU processing
while producing identical results. Rgtsvm”” is a SVM
package for GPU architecture based on the GTSVM
software, which takes full advantage of the GPU
architecture and efficiently handles sparse datasets
through clustering techniques. The larger the number
of support vectors, the better speedup it can be
obtained as compared with the sequential CPU
implementations. Catanzaro et al.”® presented the
first implementation of a SVM in a GPU based on
the Sequential Minimal Optimization algorithm,
achieving speedups up to 35 times faster than

Minimize ~llwll?
w 2
subjectto y;((w,x;)+ b)=1
Y- (Xw+ b)=1

V1 X141 X12 X1d [| W1
Vo Xo1  Xoo Xod || W2
e : ] . . |+b)=1"
Yn Xn1  Xn2 Xnd || Wd

FIGURE 9 | Support vector machine (SVM) formulation and matrix vector multiplication.
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FIGURE 10 | Neural network architecture, activation function, and neuron weight updates.

LIBSVM. Herrero et al.”” implemented a multiclass
SVM by conducting one versus all decomposition
and integrated GPUs into a MapReduce cluster. The
main advantage was the ability to run all decom-
posed classification models at the same time, which
in turn, increments the parallelization granularity
and speedup. Yan et al.®? accelerated both the ker-
nel matrix calculation and cross validation on the
GPU, but speedups were limited especially in small
datasets for which it is not worthy to transfer com-
putation to GPUs. Benatia et al.®! proposed a sparse
matrix format for multiclass SVM. The sparse repre-
sentation allows to increase the dimensionality of
the large-scale data to compute. This is a recent
trend in GPU SVM implementations which focus on
the use of sparse matrix formats that allow for pro-
cessing large-scale sets overcoming the limitations of
memory size.

Neural Networks

Neural networks are interconnected large groups of
nodes (neurons) organized in multiple layers as illus-
trated in Figure 10. The parallel structure and behav-
ior of a neural network can be easily modeled in a
GPU. Weights and inputs are computed in the form
of parallel matrix multiplications. Sierra et al.’?
introduced an implementation of the back-
propagation algorithm on a GPU using the CUDA
Basic Linear Algebra Subroutines (cuBLAS) library.
Brito et al.** improved the back-propagation imple-
mentation by parallelizing all the weights updates.
Each thread is responsible for a single operation
between an input and weight. Li et al.** focused on
the scalability to large-scale data on recurrent neural
networks with a fine-grained two-stage pipeline
architecture. Strigl et al.*> implemented the convolu-
tional neural networks on a GPU. The convolution
operation can be efficiently addressed in the

© 2017 Wiley Periodicals, Inc.

architecture of a GPU, especially in big matrix sizes
where speedup is maximized. Juang et al.®® extended
the GPU implementation to a fuzzy neural network.
They map large sets of input data into thread blocks,
and divide the datasets into smaller chunks trans-
ferred to the multiprocessor shared memory, mini-
mizing memory latency. Their model scales better on
a large number of input features. However, limita-
tions of shared memory size impose a performance
bottleneck. Li et al.®” presented two scheduling light-
memory-cost algorithms to improve the running
speed and use a larger convolutional model overcom-
ing the shortage of GPU memory. Experimental
results provide speedup of 7x compared with the
NVIDIA cuDNN GPU software.

Deep Learning

Deep learning algorithms are becoming a focus of
attention for many research studies and industrial
applications due to their superior performance. The
complexity of training deep learning models is related
to handling large size models and large datasets.
Hence, the programming patterns used on GPUs for
computing deep learning are basically two: (1) divide
the dataset and train the same model on different
data (data parallelism) and (2) divide the model and
run different sections of the network in different
devices using a pipeline-like approach (model paral-
lelism). Figure 11 illustrates and compares these two
approaches. Chen et al.*® implemented a deep belief
network on a GPU using the cuBLAS library. How-
ever, the training procedures of deep belief networks
are highly serial and dependent, which makes it diffi-
cult to convert into parallel form. Chen et al.*” devel-
oped a pipelining system for image deep learning on
a GPU cluster to leverage the heavy workload of
training procedure. They organized the training of
multiple deep learning models in parallel, where each
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FIGURE 11 | Model and data parallelism in deep learning.

stage of the pipeline is managed by a particular GPU
with a partition of the train data. First, this is an
effective approach to scale to bigger data by splitting
partitions into multiple devices. Second, it is more
efficient since rather than migrating data, their pro-
posal moves partially trained models to reduce band-
width consumption. Krizhevsky”® developed a deep
convolutional neural network to classify high-
resolution images in the ImageNet contest by imple-
menting the convolution operation in the GPU. Fon-
seca and Cabral®® presented a prototyping system
and tutorial for deep neural networks in big data
analytics, demonstrating the advantages of the GPU
as compared with the sequential versions.

Cui et al.”? introduced GeePs, a scalable deep
learning system across distributed GPUs to overcome
the still slow performance of single-GPU solutions on
large-scale data. GeePS manages the synchronization
and communication associated with sharing the
model learned. GeePS comprises a number of optimi-
zations, including prebuilt indexes for gathering the
parameter being updated, along with GPU-friendly
caching, data staging, and memory management.
Experimental results show good scalability using
eight distributed machines and GPUs. Del Monte and
Prodan”® presented a scalable framework for training
deep neural networks using heterogeneous comput-
ing resources in a grid or cloud infrastructure imple-
mented via Apache Flink, an open-source stream
processing  framework for  distributed high-
performing data streaming applications. However,
sublinear speedups are sometimes achieved due to
overhead of the underlying synchronization and the
shared access to the PCl-e bus. Dong and Kaeli”
developed DNNMark, a GPU benchmark suite that
consists of a collection of deep neural network primi-
tives. Moreover, there are a number of popular

frameworks such as Deeplearning4j, PaddlePaddle,
MXNet, Torch, and Google’s TensorFlow available
as open source software libraries implementing deep
learning primitives accelerated on GPUs.

Ensemble Learning

Ensemble learning combines the prediction of multi-
ple base classifiers or regressors in order to reduce
the model prediction error.”” However, it comes at
the cost of even longer runtimes required to build
many base models. The computational complexity is
incremented even further in ensembles for multiview
learning where models are inferred from complemen-
tary data in multiple views.”® van Heeswijk et al.””
presented an approach to train the learners in an
extreme learning machine ensemble for large-scale
regression on a GPU. Experimental results reported
runtimes 20x faster than in a single CPU. Tran and
Cambria”® also focused on GPU implementations of
extreme learning machine ensembles for sentiment
analysis, achieving improvements of up to 42x for
feature extraction compared to CPU-based counter-
parts. Arnaldo et al.”® presented a genetic program-
ming ensemble system specifically designed for
scaling to large datasets, focusing on individual-
parallel and data-parallel approaches. Riemenschnei-
der et al.'% introduced a GPU implementation of the
multilabel ensemble of classifier chains, achieving a
speed of up to 70x when comparing a K20c GPU
with a quad-core Intel Xeon. The software through-
put is capable of classifying more than 25 k instances
per second. Moreover, ensembles of decision trees
are very popular due to their very fast building and
decision time, and several approaches were refer-
enced in the decision trees section before. However,
there are not many more research works on ensemble
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models for GPUs. This is motivated because the GPU
architecture and programming model is more oriented
toward speeding up specific low-level algorithm imple-
mentations, while ensembles (meta classifiers) focus on
high-level combinations of classifier predictions.
Therefore, the GPU approach would be similar than
the one illustrated in Figure 11 for deep learning,
where model and data parallelism may be applied and
combined to simultaneously improve the accuracy
results and speedup learning by splitting train data.

APPLICATIONS

A growing number of researchers and industry part-
ners are using GPUs to speedup time-consuming
algorithms for real-world applications in large-scale
data mining. This section presents some of the most
relevant application cases of the GPU-based data
mining techniques considering their importance with
regards of the data volume or processing velocity.

Image Analysis

Image annotation and recognition is one of the main
GPU application areas due to the intrisic parallel
nature of image processing algorithms and the large
number of real-world uses. Specifically, there is an
increasing number of works on image analysis in
health care summarized in Pratx’s review.'®' Fast
image reconstruction of PET, CT, and MR scans
allow clinicians real-time analysis, then optimizing
explorations. GPUs implement fast FFT, non-
Cartesian k-space sampling, and sensitive-encoded
parallel imaging to speedup image rendering. Bou-
bela et al.'®* presented software tools for the applica-
tion of Apache Spark and GPUs to neuroimaging
datasets. The computation times for reading the
fMRI data, computing the connectivity graph, and
writing the thresholded connectivity matrix to RData
files involves more than 2 h per subject in a single
GPU. In order to scale to the full dataset with more
than 500 subjects, they propose a four-way multi-
GPU approach combined with Spark to distribute the
computation into nodes and decrease the total run-
time from 36 days down to 9 days. Cuomo et al.'®?
developed a GPU distributed implementation of a
denoising algorithm for magnetic resonance images.
Denoising requires to compute the neighborhood of
each voxel of the 3D image (similarity window),
which make its runtime too expensive in large high-
definition images. However, when using GPUs they
propose to compute each voxel using an independent
thread, thus achieving a speedup of up to 112x
in largest datasets. Kim et al.'® proposed a

© 2017 Wiley Periodicals, Inc.
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programmable medical ultrasound imaging system
using GPUs to reduce image processing time. Their
objective was to develop a real-time system whose
processing time was lower than the ultrasound acqui-
sition time (20 ms). Thanks to an efficient implemen-
tation using concurrent copy and kernel execution,
multiple frames are copied and processed at the same
time. Adeshina and Hasim'® offered a GPU-
accelerated advanced encryption standard (AES)
implementation for securing radiology-diagnostic
images in health networks. However, performance
results were not impressive, only about 2x faster on a
GPU, due to the native implementation of AES
encryption instruction sets in CPUs, i.e., the CPU is
already really efficient encrypting/decrypting AES.

Another important application area for GPU
image analysis is autonomous car navigation because
these systems handle large volumes of images and
require real-time processing.'®® Lim et al.” and Cire-
san et al.'’” proposed real-time traffic sign recognition
based on SVM and deep-learning in GPUs. The real-
time objective is critical to prevent life-threatening sit-
uations in driving. By using a NVIDIA Titan X GPU,
they are able to process full HD images in less than
5.9 ms, whereas the CPU single-threaded takes
487 ms, which means the GPU’s speedup is 82x and
achieves the aim of real-time processing. However,
power consumption of a Titan X is not realistic to be
implemented in a car and studies should be focusing
on low-power NVIDIA Jetson devices.'”® Analyzing
surrounding cars’ direction in very complex environ-
ment has a significant role for autonomous driving.
You and Kwon'?? presented a convolution neural net-
work for classifying the orientation of a vehicle. They
compare different convolution neural network archi-
tectures to achieve a trade-off between accuracy
(higher than 95%) and runtime (less than 100 ms).
Vasquez et al.''® proposed an open framework for
human-like autonomous driving using GPU-based
implementations of inverse reinforcement learning
algorithms. However, no results are reported for spe-
cific experiments. Wang and Yeung''! analyzed the
problem of tracking the trajectory of a moving object
in a video with possibly very complex background
using deep learning and particle filters implemented
on GPUs. The tracker is capable to achieve an average
frame rate of 15 FPS, which is sufficient for real-time
tracking applications.''?

Classification and Decision Support Systems
in Medicine

Analysis of health records and classification systems
to support medical diagnosis is a hot topic for GPU
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computing due to the large volume of historic infor-
mation gathered from patients in hospitals. Li
et al.'"® presented a disease classification system
based on a SVM implementation on multi-GPU clus-
ter MapReduce platform. Large datasets having more
than 100 k patient records are split into chunks and
distributed across all nodes in the cluster. Experi-
ments were run in a four-node cluster each compris-
ing two NVIDIA 680 GPUs. Compared to other
GPU MapReduce systems, they achieve a speedup of
up to 13x while keeping an accuracy higher than
85%. Martinez-Angeles et al.!'* introduced a rela-
tional learning system for accelerating the rule cover-
age on GPUs for mining rules on health record data.
Relational learning is devoted to model relationships
among data items or attributes of datasets. There-
fore, GPU kernels include relational algebra opera-
tions such as selection, join, and projection of the
data. Results report a speedup of up to 8x when
comparing the GPU Titan to the multithreaded CPU
implementation on datasets comprising more than
5 M records, managing tables larger than the total
amount of GPU memory. Li et al.** proposed a
multi-GPU implementation of the Apriori algorithm
for mining association rules in medical data. Distri-
bution of the data into multiple devices allows for
both increasing the dataset dimensionality and com-
bine horsepower to compute faster the support of the
itemsets. Experiments on two NVIDIA 660 GPUs
showed 109x as compared with the sequential imple-
mentation on an Intel i5 processor, handling datasets
with more than 4 M records. Speedup increased as
the datasets became bigger. Scalability from one to
two devices proved to double the speedup effectively
(1.98x). Galvao et al.''® presented a parallel simula-
tion of epidemiological models based on individuals,
which are of great value in epidemiology to help
understand the dynamics of the various infectious
disease. The individual-parallel approach allowed to
increase the number of individuals evaluated to more
than 8 k while reducing runtime and achieving a
speedup of up to 20x. Shamonin et al.''® developed
a fast parallel image registration on GPU for diagnos-
tic classification of Alzheimer’s disease. Based on
OpenCL computation to combine CPU and GPU
resources, they achieve a speedup up to 60x in image
resampling while keeping the relative error lower
than 107°. GPUs have also been employed to support
physicians on the dose calculation and treatment
plan optimization for radiation therapy. de Greef
et al.'!” accelerated the dose calculation in intensity-
modulated radiation therapy to reduce the clinical
workload and the risk of damaging the organs. Algo-
rithms implemented ray tracing on the GPU shows to
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perform 10x faster than the multithreaded CPU ver-
sions, a major reduction in the workload of radio-
therapy treatment planning.

Biometrics Authentication

Biometric authentication systems comprise a number
of techniques to identify individuals based on physi-
cal characterization, including fingerprint, palm
veins, face recognition, iris and retina recognition,
and so on. Specifically, there are a number of
research works employing GPU computing for speed-
ing up fingerprint biometrics. The scalability of fin-
gerprint matching algorithms is determined not only
by the number of fingerprints but also by the number
of minutiae per fingerprint. Therefore, obtaining a
fast fingerprint matching system requires processing
millions of minutiae per second. Gutierrez et al.''®
introduced a GPU implementation of the minutia
cylinder-code algorithm, the best performing algo-
rithm in terms of accuracy, but achieving a through-
put of only 55,700 fingerprints per second on a
single GPU. Nevertheless, the speedup obtained was
up to 100x faster than the single-thread CPU imple-
mentation. Lastra et al.''” presented a multi-GPU
implementation increasing the processing throughput
to up to 1.5 million fingerprints per second when
using four GPUs. Speedups achieved 15x faster than
the multithread version when using one GPU, and up
to 54x when using four GPUs. The main advantage
is the linear scalability to any number of devices
without introducing any data dependencies. Le
et al."?*'?! proposed a minuta cylinder-code 3D rep-
resentation to provide both good accuracy and
speedup, increasing the performance to 1.8 million
matches per second on a single GPU. Cappelli
et al.'*? implemented a multi-GPU automated finger-
print identification system scaling the throughput to
up to 35 million matches per second while keeping
similar accuracy as compared with related state-of-
the-art systems. They achieve a speedup of up to
207x over a CPU implementation with SIMD
instruction optimization. However, the best through-
put is achieved by Peralta et al.'?*'** when decom-
posing algorithms to adapt the implementation to
any minutae-based method in Spark, increasing the
performance to up to 55 million minuate per second.

Business Intelligence

Business intelligence for financial and stock market
analysis is a challenging application demanding the
efficient processing of large volumes of data in real
time. Zhang'*® presented a genetic deep neural
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network on GPUs for analyzing Dow Jones industrial
market index. He proposed using genetic algorithms
to optimize the parameters and select the best func-
tion combination for the neural network. Increasing
the number of activation functions reduced the pre-
diction error but increased the computational com-
plexity. Therefore, the GPU evaluates the behavior of
the network regarding to the simultaneous evaluation
of the different activation functions. Zhang et al.'?®
compared performance of GPU and Xeon Phi on
accelerating option pricing algorithms. In order to
exploit the compute power of the combination of
multicore CPUs, GPUs, and Xeon Phi, they proposed
a hybrid computing model which consists of two
types of data parallelism: worker level and device
level. The worker level data parallelism uses a distrib-
uted computing infrastructure for task distribution,
while the device level data parallelism uses both the
multicore CPUs and many-core accelerators for fast
option pricing calculation. They obtain a speedup of
up to 9x when comparing the single-GPU configura-
tion to the multithreaded CPU code. Singh et al.'*’
presented a research study on accelerating the open
source critical line algorithm for portfolio optimiza-
tion by using GPUs. Increasing speedups were
reported when increasing the number of assets evalu-
ated, up to 8x faster than the sequential version. Ha
and Moon'?® developed genetic programming on a
GPU for financial data time series to predict the stock
market evolution. Similar to the results obtained in
other genetic programming studies for data mining
on GPUs, they obtain impressive speedups up to 56x
faster than the sequential CPU implementation when
using a single GPU, and up to 277x when scaling to
eight NVIDIA GTX 690 GPUs.

Data Streams Processing

All these applications and many more take advantage
of the GPU to speedup algorithms in order to scale to
bigger data and to provide faster outcome, especially
in the context of real-time systems. In recent years,
research studies have focused on the online imple-
mentations of algorithms for data stream processing,
in which velocity and processing time is critical.'*’
Krawczyk'*® presented an online version of extreme
learning machine for high-speed data streams on
GPUs to provide very fast learning and decision.
Extreme learning machines are stochastic single-layer
feedforward neural networks randomly trained in
order to downsize their computational complexity.
GPU speeds up computationally costly operations
such as matrix calculations and the Moore-Penrose
pseudoinverse. Speedups achieved up to 10x faster
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than sequential CPU version, reducing the update
times per data chunk to less than 2 seconds. Hewa-
Nadungodage et al."*' proposed GStreamMiner, a
general-purpose GPU-accelerated data stream mining
framework. They presented a case study demonstrat-
ing its application using outlier detection and on-the-
fly collaborative filtering over continuous streaming
data.'®* Efficient implementation using concurrent
kernel execution and data transfer allowed to com-
pute the data for a current data chunk while the next
chunk is being transferred to the device memory,
then increasing the speedup to up to 12x as com-
pared with the multithreaded CPU implementation.
Chen et al."*® developed G-Storm, a GPU system
which harnesses the massively parallel computing
power of GPUs for high-throughput online stream
data processing. Implementation on the GPU showed
to perform 7x faster than the single-thread CPU. All
these works illustrate the potential of GPUs for high-
speed streams because they provide very fast
response with minimum latency.

Figure 12 summarizes the speedups collected
from relevant referenced works for data mining tech-
niques and applications on single-GPU and multi-
GPU computing. Speedups depend on a number of
factors including the power of the GPU and CPU
architectures being compared, the parallelizability of
the computational task, the computational and mem-
ory workflow and dependencies, the size of the data
problem, and so on. Generally speaking there is trend
in all research works on the improvement of the
speedup as the data dimensionality increases.

GPU COMPUTING AND MAPREDUCE

GPUs and MapReduce distributed computing frame-
works aim at different scaling purposes. Scalability
approaches include vertical and horizontal scaling.
Vertical scaling focuses on increasing the processing
power, memory, and resources of a single node in a
system, whereas horizontal scaling adds nodes to a
system and distributes the workload across them.
High-performance computing mainframes and GPUs
are vertical scaling systems, while Hadoop and Spark
MapReduce frameworks are horizontal systems.
True big data problems address terabytes and peta-
bytes of information, which is way too much for a
vertical scaling system. This is why horizontal scaling
is preferred for big data. Moreover, horizontal scal-
ing offers easier and more economic expansion of the
nodes in the system. However, it requires a fault-
tolerant distributed file system, such as the Hadoop
distributed file system (HDFS).
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FIGURE 12 | Summary performance chart for techniques and applications.

One of the main drawbacks of MapReduce is
that is not well suited for iterative algorithms due
to performance impact of the launch overhead.
The creation of the jobs, data transfers, and nodes
synchronization through the network impose an
overhead which makes distributed frameworks
unsuitable for learning tasks where very fast
response is required in real-time processing. More-
over, jobs run in isolation which increases the diffi-
culty of implementing shared communication
between intermediate processes. On the contrary,
one of the advantages of GPU computing is the very
small kernel launch overhead, which permits execut-
ing parallel tasks with no delay and obtain almost
instant results. Nevertheless, the main drawback of
GPUs, as stated in many of the research works
reviewed, is the limited amount of memory which
prevents to store complete big datasets. Therefore,
one can observe that GPUs and MapReduce actually
complement each other and hybrid solutions could
benefit from the advantages of both technologies
while minimizing their independent drawbacks.'?*
There are two approaches, the former implements
the map and reduce functions within the GPU, the
latter exploits GPUs for computation in the nodes of
the MapReduce cluster.
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Implementation of MapReduce on GPUs
There is a number of research studies focusing on the
implementation of MapReduce within the GPU.
Figure 13 illustrates the architecture of the MapRe-
duce in a multi-GPU system. Fang et al.'*® intro-
duced Mars, a MapReduce runtime system extended
to both multicores and GPUs. They also integrated
Mars into Hadoop to enable GPU-acceleration for
individual machines in a distributed environment.
Stuart and Owens'?® presented GPMR, a stand-alone
MapReduce library that leverages the power of GPU
clusters for large-scale computing. They modify
MapReduce by combining large amounts of map and
reduce items into chunks and using partial reductions
and accumulation. Experiments evaluated scalability
to one and four GPUs, achieving a speedup of up to
162x and 559x, respectively.

One of their main contributions toward achiev-
ing maximum performance is the use of persistent
map and reduce tasks, which minimizes the overhead
of task creation, especially in iterative algorithms. Use
of persistent functions avoids the overhead of reinstan-
cing the map and reduce functions everytime they are
called to compute a subset of data. Basaran and
Kang'?” proposed Grex, a MapReduce framework for
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FIGURE 13 | MapReduce architecture in a multi-graphic processing unit (GPU) system.

GPUs which innovates by supporting a parallel split
method to tokenize input data of variable sizes and
evenly distributes data to map/reduce tasks to avoid
data partitioning skews. Grex also support load balan-
cing, lazy emit, and GPU caching, then obtaining a
speedup of up to 12x as compared with Mars. Jiang
et al."* focused on overcoming memory limitations of
previous MapReduce implementations by scaling to
multiple devices and by extending a pipelined version
for big data."® They effectively handle data transfers
between GPU and disk allowing programmers to write
straightforward MapReduce code for big data. How-
ever, this comes at the cost of having slow long-
latency data transfers between the disk and the GPU
memory, which significantly impacts the performance.
Qiao et al.'*® introduced MR-Graph, a customizable
and unified framework for GPU-based MapReduce,
which aims to improve the flexibility, scalability, and
performance of MapReduce. MR-Graph efficiently
explores the memory hierarchy in GPUs to reduce the
data transfer overhead between execution stages and
accommodate big data.

However, the implementation of the MapRe-
duce programming model on GPUs faces important
challenges. It is necessary to have a careful design of
the parallel access to the critical sections by a very
large number of threads and employ the appropriate
mechanisms for synchronization. GPUs provide
atomic operations, which are convenient to write the
code faster but they are usually expensive in time.
Thus, it is often preferred to write detailed code to
control explicitly the parallel code and synchroniza-
tion. GPUs provide synchronization barriers both at
the thread-block and device levels. Moreover, it is

© 2017 Wiley Periodicals, Inc.

difficult to ensure uniformly distributed workload
allocation across threads to maximize GPU’s
occupancy.

Integration of GPUs in MapReduce
Frameworks

The alternative is taking advantage of the computa-
tional power of GPUs to speedup the computation of
the nodes in a MapReduce cluster. Herrero-Lopez””
presented one of the first integrations of GPUs into
MapReduce-based clusters creating a unified hetero-
geneous architecture that enables executing map and
reduces operators on thousands of threads across
multiple GPU devices and nodes, while maintaining
the built-in reliability of the baseline system. Speedup
of up to 163x was achieved when using four GPUs.
Zhu et al."*? integrated Hadoop MapReduce with
GPUs, where Hadoop scheduled the map and reduce
functions across multiple nodes, while the actual
implementation of the functions in the remote nodes
was accelerated on GPUs. This requires providing the
function’s interface to Hadoop in Java while the code
is written in CUDA. Communication between the
languages is done via the Java Native Interface. Niu
et al."*® combined Hadoop with GPUs to process
large microarray data quality assessment and prepro-
cessing. Their hybrid implementations allowed them
to scale to data not previously computable due to
high memory usage, having a speedup of 9x when
scaling out to 40 nodes. Tiwary et al.'"*' offloaded to
the GPU the computationally intensive operations of
mapping function while keeping the advantages of
the HDFS, including the fault-tolerant automatic
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recovery. Experiments implementing the Apriori
method showed 18x speedup. Shirahata et al.'® pro-
posed a MapReduce-based out-of-core GPU memory
management technique for processing large-scale
graph applications on heterogeneous GPU supercom-
puters, comparing the performance balance between
the scale-up and scale-out approaches. Kim et al.'”
modified the Apache Mahout library to accelerate K-
means computation using GPUs and OpenCL. The
GPU is successfully capable of speeding up the algo-
rithm but the data input/output becomes a bottleneck
impacting negatively in the overall performance, lim-
iting the speedup to up to 36x. Heldens et al.'® pre-
sented HyGraph, a hybrid platform which delivers
performance by using both CPUs and GPUs. The
advantage is the dynamic scheduling of jobs into any of
the compute units, providing automatic load balancing
and minimizing interprocess communication overhead.
Li et al.'"® introduced gcMR, a multi-GPU cluster
MapReduce system for general purpose classification,
providing internode and intranode parallelization.

OPEN CHALLENGES AND FUTURE
DIRECTIONS

The GPU memory capacity remains as the main limi-
tation of data mining algorithms for large-scale data
despite the efforts on building pipelined models mini-
mizing data transfer overheads. In order to scale
GPU computing to terabyte-size big data, it is neces-
sary to scale-out to multiple nodes in a cluster, map-
ping memory accesses to a distributed memory and
file system. However, the problem is the limited
bandwidth of the PCl-express bus to transfer the
information to the GPU memory, and the high
latency for data access time in disks and network,
even using solid-state drives. Therefore, algorithms
should be designed to minimize communication and
make an efficient use of the memory hierarchy. Intel
recently presented the Optane technology, which pre-
cisely aims at providing high-capacity storage similar
to solid-state drives but at the same time offering
high-throughput and low-latency as fast as main
memory. The evolution of the GPU architecture in
the next years promises to increase the number of
cores, memory capacity, and memory bandwidth.
However, data is growing at a faster pace than hard-
ware. Multi-GPU solutions have helped to combine
the computational resources and memory capacity,
yet it is still insufficient to address terabyte-scale
datasets. Pure distributed GPU solutions are most
efficient to scale-out. However, they require to
explicitly implement the workload distribution,
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balancing, fault-tolerance, and synchronization. On
the other hand, distributed computing frameworks
such as Hadoop and Spark are designed for proces-
sing big data volumes and provide automatic built-in
mechanisms to distribute processing in a transparent
and friendly way to the user. The main drawback is
their high overhead, especially in iterative jobs, which
prevents their application in real-time systems where
very fast inferring is required. Integration of the
MapReduce frameworks with GPU computing has
become the trend in recent years to solve these prob-
lems. Researchers focused on specific algorithms and
applications where ad-hoc optimizations considering
the underlying hardware were applicable, but much
work is yet to be done to facilitate an easy, efficient,
and scalable general-purpose model for data mining.

NVIDIA recently presented the DGX-1 system,
which shows the company’s plan for future advances
on GPU computing. It provides plug-and-play setup
and it is engineered with groundbreaking technologies
that deliver the fastest solutions for data scientists and
machine learning researchers. The memory of the
DGX-1 system (128 GB) is a significant step forward
for increasing the data dimensionality, but the current
pricing of $149 k is prohibitive for many research
groups and small industry partners. The major advan-
tage is the integration of eight Volta GPUs in a single
system communicated via high-speed NVLINK inter-
connect. NVIDIA NVLink is a high-bandwidth inter-
connect for ultra-fast communication between the CPU
and GPU, and between GPUs, with a transfer rate
5-12x larger than PCle. While multi-GPU communica-
tions via PCle is limited by the bisection bandwidth
and high latency, on an NVLINK system, however, the
communication can occur in parallel because there are
dedicated links between all pairs of GPUs. Therefore, it
is expected to significantly increase the performance on
problems where heavy data transfers among GPUs
occur. The NVIDIA Volta architecture comprises
16 GB of HBM2 memory and 900 GB/second peak
bandwidth, which is three times higher than the Tesla
M40. The Volta architecture’s computational prowess
is more than just brute force: it increases performance
not only by adding more SMs than previous GPUs, but
by making them more efficient. Moreover, Volta Ten-
sor cores will provide fast computation of multidimen-
sional matrix multiplications, speeding up support
vector machines, neural networks, and deep learning
algorithms. Integration of application-specific integrated
circuits (ASIC) is a trend for hardware aimed at partic-
ular machine learning and data mining problems. Proof
of this trend, is the development of Tensor Processing
Units (TPUs) by Google to speedup their TensorFlow
software for machine learning.
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In summary, the lessons learned from the over-

view on the use of GPU computing for large-scale
data mining are the following:

e GPUs provide massive parallelism for large-

scale data mining problems, allowing to scale
algorithms to data volumes not computable by
traditional approaches.

GPUs are effective solutions for real-world real-
time systems requiring very fast decision and
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