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Abstract---Subspace clustering is an extension to traditional clustering that seeks to find clusters in different subspaces
within a dataset. Subspace clustering finds sets of objects that are homogeneous in subspaces of high-dimensional datasets,
and has been successfully applied in many domains. Often in high dimensional data, many dimensions may be irrelevant
and can mask real clusters. Subspace clustering algorithms localize the search process for relevant dimensions allowing
them to find clusters that exist in various subspaces. Subspace clustering can be categorized into hard subspace clustering
(HSC) and soft subspace clustering (SSC). HSC algorithms assume that each dimension in the data set has equal
importance in the process of clustering, while SSC algorithms deal with feature weighing based on its contribution. Based
on the direction of exploration of subspace clusters, HSC algorithms could be classified into two main categories: Top-
down and Bottom-up. Top-down algorithms find an initial clustering in the full set of dimensions and evaluate the
subspaces of each cluster, iteratively improving the results. Bottom-up approaches find dense regions in low dimensional
spaces and combine them to form clusters. This paper surveys various hard subspace clustering algorithms and their
efficacies, insufficiencies and recent developments. The readers would be provided with clear outline about the existing
algorithms and nurture further developments and significant research in the area.

Index Terms---Subspace Clustering, Hard Subspace Clustering, Top-down approach, Bottom-up approach.

. INTRODUCTION

One of the primary data mining task is Clustering. Most real-world datasets are characterized by a high-dimensional sparse
data space where meaningful clusters may not be detected in traditional clustering algorithms [11]. However, the datasets often
contain attractive clusters which are concealed in various subspaces of the original feature space. Many applications such as
molecular biology, geography, finance and marketing produce enormous amounts of data which cannot be managed no longer
without the help of efficient and effective data mining methods. Subspace Clustering finds sets of objects that are homogeneous in
subspaces of high-dimensional datasets and has been successfully applied in many applications.

Many clustering algorithms face the problem of curse of dimensionality when high-dimensional data is used. The distance
measures become insignificant gradually, as the number of dimensions increases in a dataset. Additional dimensions spread out
the points until, in very high dimensions; they are almost equidistant from each other.

Some of the techniques which deal with the problem of curse of dimensionality are both feature transformation and feature
selection techniques [11]. Feature transformation techniques attempt to summarize a dataset in fewer dimensions by creating
combinations of the original attributes. However, since they preserve the relative distances between objects, they are less effective
when there are large numbers of irrelevant attributes that hide the clusters in sea of noise. Also, the new features are combinations
of the originals and may be very difficult to interpret the new features in the context of the domain. Feature selection methods
select only the most relevant of the dimensions from a dataset to reveal groups of objects that are similar on only a subset of their
attributes. While quite successful on many datasets, feature selection algorithms have difficulty when clusters are found in
different subspaces [11].

Subspace clustering is an extension of feature selection which tries to identify clusters in different subspaces of the same
dataset. Like feature selection, subspace clustering needs a search method and an evaluation criteria. In addition, subspace
clustering must somehow restrict the scope of the evaluation criteria so as to consider different subspaces for each different
cluster [15].

The problem of subspace clustering is often divided into two sub problems. They are determining the subspaces and the
clustering data. Based on how these problems are addressed there are two main categories of subspace clustering methods. They
are Hard Subspace Clustering (HSC) and Soft Subspace Clustering (SSC). SSC algorithms perform clustering in high-
dimensional spaces by assigning a weight to each dimension to measure the contribution of individual dimensions to the
formation of a particular cluster [15]. In Hard Subspace Clustering a feature in a subspace contributes equally in the clustering
process.

1. CLASSIFICATION OF HARD SUBSPACE CLUSTERING ALGORITHMS

Based on the approaches of how these subspace clusters are discovered the hard subspace clustering algorithms are divided
into two main categories. They are Bottom-up and Top-Down approaches.

In Bottom-up approach the subspace clusters are discovered from lower dimensional space to higher dimensional space. The
bottom-up search method makes use of the downward closure property of density to reduce the search space, using an APRIORI
property. Algorithms first create a histogram for each dimension and select those bins with densities above a given threshold. The
downward closure property of density meant that if there are dense units in k dimensions, there are dense units in all (k -1)
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dimensional projections [13]. Candidate subspaces in two dimensions can then be formed using only those dimensions which
contained dense units, dramatically reducing the search space.

Bottom-up Algorithms:

e CLIQUE

e OPTIGRID

o MAFIA

e SUBCLU

e FIRES

e« DENCOS

The top-down subspace clustering approach begins by finding an initial approximation of the clusters in the full dimensional
space with uniform weighted dimensions. Next each dimension is assigned a weight for each cluster. The updated weights are
made used in the next iteration to regenerate the clusters. This approach needs many iterations of clustering algorithms in the full
set of dimensions. Many of the implementations of this strategy make use of sampling technique to improve performance. Top-
down algorithms create clusters that are partitions of the dataset, meaning each instance is assigned to only one cluster [13]. Many
algorithms also allow for an additional group of outliers. Parameter tuning is necessary in order to get meaningful results.

Top-Down Algorithms:

e PROCLUS

e ORCLUS

e FIND-IT

¢ 3-CLUSTERS
e COSA

I11. BOTTOM-UP ALGORITHMS

CLustering In QUEst (CLIQUE )

CLIQUE deals with the problems ensured in clustering high dimensional data. By taking grid size and a density threshold
values as a user input, the algorithm CLIQUE find clusters of arbitrary shape in large dimensional data. The process starts by
finding clusters at a single dimension and then proceeds towards high dimensions.

The algorithm CLIQUE is a bottom-up subspace clustering algorithm that constructs static grids. To reduce the search space
the clustering algorithm uses apriori approach. CLIQUE is both grid- based and density based subspace clustering algorithm [12].
To find out the clusters, density threshold and number of grids are taken as input parameters. CLIQUE operates on
multidimensional data. It does not operate all the dimensions at once but by processing a single dimension at first step and then
grows upward to the higher-one. According to-given the grid size, the clustering process in CLIQUE involves first dividing the
number of dimensions into non- overlapping rectangular units called grids and find out the dense region according to a given
threshold value. A unit is dense if the data points in this are exceeding the threshold value. By using the apriori approach the
clusters are generated from all dense subspaces. Finally CLIQUE algorithm generates minimal description for the clusters
obtained by first determines the maximal dense regions in the subspaces and then minimal cover for each cluster from that
maximal region. It repeats the same procedure until all the dimensions are covered.

OPTImal GRID clustering (OPTIGRID )

OptiGrid is a clustering technique which is based on constructing an optimal grid-partitioning of the data. The optimal grid-
partitioning is determined by calculating the best partitioning hyper planes for each dimension (if such a partitioning exists) using
certain projections of the data. The algorithm works recursively. In-each step, it partitions the actual data set into a number of
subsets if possible. The subsets which contain at least one cluster are treated recursively [1]. The partitioning is done using a
multidimensional grid defined by at most q cutting planes. Each cutting plane is orthogonal to at least one projection. The point
density at cutting planes is bound by the density of the orthogonal projection of the cutting plane in the projected space. The q
cutting planes are chosen to have a minimal point density. The recursion stops for a subset if no good cutting plane can be found
any more. There are two desirable properties for good cutting planes: First, cutting planes should partition the data set in a region
of low density (the density should be at least low relative to the surrounding region) and second, a cutting plane should
discriminate clusters as much as possible. The first constraint guarantees that a cutting plane does not split a cluster, and the
second constraint makes sure that the cutting plane contributed to finding the clusters. Without the second constraint, cutting
planes are best placed at the borders of the data space because of the minimal density there, but it is obvious that in that way
clusters cannot be detected.

Merging of Adaptive Finite Intervals (MAFIA)

MAFIA introduces the use of adaptive grids for efficient and scalable computation of clusters in subspaces of large data sets
and large number of dimensions. To compute the dense units in all dimensions of bottom-up algorithm for subspace clustering
and combines these to generate the dense units in higher dimensions [5].

An adaptive interval size is proposed to partition the dimension based on the distribution of data in the dimension. The
minimum number of bins for a dimension has been determined, by one pass of the data initially using the construction of
histogram. Contiguous bins with similar histogram values are combined to form larger bins. To reduce the computation, the bins
and cells which have low density of data will be pruned limiting the eligible candidate dense units. As in the uniform bins case,

IJSDR1608040 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 322


http://www.ijsdr.org/

ISSN: 2455-2631 © August 2016 IJSDR | Volume 1, Issue 8

the bin boundaries will also not be rigid and the cluster boundaries will be able to delineate in each dimension. The clustering
result quality will be improved. To reflect the window value, the maximum value of the histogram will be set firstly, in a
dimension within a small window. Adjacent windows are merged to form larger windows within a certain threshold [5].

Density-connected SUBspace CLUstering (SUBCLU)

SUBCLU is an efficient and effective approach to the subspace clustering problem. The concept of density-connectivity is
used which underlies the DBSCAN algorithm. The number of objects that lie around an object within a certain radius is called the
neighborhood of that object. If the number of objects in the neighborhood exceeds minpts a minimum number of points that
object is called core object. An object p is directly density-reachable from q if p is in the neighborhood of g and q is a core object.
An object p isdensity-reachable from q if there exists a series of points x1....... xn such that x1=q and xn=p and xi+1is directly-
density reachable from xi for all i=1to n. An object p is density-connected to q if there exists an object o such that both p and q are
density-reachable from o. SUBCLU searches for objects which are density-connected. Firstly, it generates all the subspace
clusters in the lower-dimensions. Then it keeps on pruning the subspaces based on apriori property [9]. This process continues all
the subspace clusters in higher-dimensions are discovered. In contrast to existing grid-based approaches, SUBCLU is able to
detect arbitrarily shaped and positioned clusters in subspaces. In the process of generating all clusters in a bottom-up way, the
monotonicity of density-connectivity is used efficiently to prune subspaces [9]. While not examining any unnecessary subspaces,
SUBCLU delivers for each subspace the same clusters DBSCAN would have found, when applied to this subspace separately.

Fliter REfinement Subspace clustering (FIRES)

Filter Refinement Subspace clustering (FIRES) is a general framework for efficient subspace clustering. It is generic in such a
way that it works with all kinds of clustering notions. It starts with 1D clusters that can be constructed with a clustering method of
choice and merges these 1D clusters to generate approximations of subspace clusters. An optional refinement step can compute
the true subspace clusters, again using any clustering notion of choice and a variable cluster criterion [6]. FIRES consists of the
following three steps:

Firstly, in Pre-clustering step all 1D clusters called base clusters are computed. This is similar to existing subspace clustering
approaches and can be done using any clustering algorithm of choice. For pre-clustering, the filter step which drops irrelevant
base-clusters, that do not contain any vital subspace cluster information. Small base-clusters do not likely include significant
subspace clusters, because they usually indicate a sparse area in the higher dimensional space.

Secondly, in generation of subspace cluster approximations step, the base-clusters are merged to find maximal-dimensional
subspace cluster approximations. Approximations of maximal-dimensional subspace clusters are determined by suitably merging
the base-clusters derived from the preprocessing step. Out of all merge possibilities, whose number is exponential in the number
of base-clusters, the most promising merge candidates are to be found by searching for all base-clusters which contain nearly the
same objects.

Consequently, a good indication for the existence of a subspace cluster is if the intersection between base-clusters is large. The
base-clusters are similar if they share a sufficiently high number of objects [6]. More generally, each base-cluster which includes
more than one overlapping subspace cluster should be split into multiple base-clusters in such a way, that each of them contains at
most one of the subspace clusters.

Thirdly, in post processing of subspace clusters step, significant subspace clusters should achieve a good trade-off between
dimensionality and cluster size. Therefore, post-processing steps like pruning and refinement are required in order to achieve
good results. Pruning improves the quality of the merge able-cluster-set by identifying and removing “meaningless” base-clusters.
Refinement removes noise and completes the subspace clusters. There may be clusters in the subspace cluster approximations
which do not contain relevant information of the corresponding subspace cluster. Two building methods can be distinguished, the
union and the intersection. Obviously, both variants do not yield the true subspace cluster. Due to the fact that the base-clusters
contain a lot of noise in a higher dimensional subspace, the intersection variant seems to produce more accurate approximations
than the union variant. However the intersection merge has significant draw-backs because the detected subspace cluster would be
too strict, thus many promising candidates would be lost. Furthermore, parts of the true subspace cluster can be outside of the
approximation which would lead to incomplete results. We achieve better subspace cluster results when applying an additional
refinement step. Firstly, the union of all base-clusters is computed in order to avoid that potential cluster. Then, the merged set of
objects in the corresponding subspace is clustered again. Thereby, any clustering algorithm can be applied, e.g. DBSCAN.

Density Conscious Subspace Clustering (DENCOS):

In many density- based approaches clusters in a subspace are regarded as regions of high- density and that are separated by
lower- density regions. These approaches ignore the fact that the cluster densities vary in different subspace cardinalities. This
problem of “density divergence” is dealt in this technique. The density thresholds for clusters vary due to the requirement of
different dimensions, it is challenging in subspace clustering to simultaneously achieve high precision and recall for clusters in
different subspace cardinalities [14]. To extract clusters with different density thresholds in different cardinalities is useful but is
quite challenging. To efficiently discover dense units, a practicable way would be to store the complete information of the dense
units in all subspace cardinalities into a compact structure such that the mining process can be directly performed in memory
without repeated database scans. The idea is motivated to construct a compact structure which is extended from the FP-tree to
store the crucial information of the data set. The base idea is by transforming the problem of identifying "dense units" in subspace
clustering into a similar problem of discovering "frequent itemsets" in association rule mining. Thus the compact structure is
constructed by storing the complete information of the dense units and the different thresholds in different subspace cardinalities
is satisfied by the dense units and the dense units can be discovered from this structure efficiently.
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1V. TOP-DOWN ALGORITHMS

PROjected CLUstering (PROCLUS)

In high dimensional spaces not all dimensions may be relevant to a given cluster. One way of handling this is to pick the
closely correlated dimensions and find clusters in the corresponding subspace. Therefore by generalizing the clustering problem,
referred to as the projected clustering problem, in which the subsets of dimensions selected are specific to the clusters themselves.
The problem of finding projected clusters is two-fold: the cluster centers must be located and the appropriate set of dimensions is
to be determined in which each cluster exists. A well known general approach is the so-called K Medoids method, which uses
points in the original data set to serve as surrogate centers for clusters during their creation. Such points are referred to as
medoids. One method which uses the K-Medoids approach, called CLARANS, for clustering in full dimensional space [2].

The algorithm proceeds in three phases: an initialization phase, an iterative phase, and a cluster refinement phase. The general
approach is to find the best set of medoids by a hill climbing process similar to the one used in CLARANS, but generalized to
deal with projected clustering. “Hill climbing” is the process of successively improving a set of medoids, which serve as the
anchor points for the different clusters [3]. The purpose of the initialization phase is to reduce the set of points on which the hill
climbing is performed, while at the same time trying to select representative points from each cluster in this set. The second phase
represents the hill climbing process that is used in order to find a good set of medoids. A set of dimensions are also computed
corresponding to each medoid so that the points assigned to the medoid best form a cluster in the subspace determined by those
dimensions. The assignment of points to medoids is based on Manhattan segmental distances relative to these sets of dimensions.
Thus, the search is performed not just in the space of possible medoids but also in the space of possible dimensions associated
with each medoid. Finally, a cluster refinement phase is performed in which one pass over the data is used in order to improve the
quality of the clustering.

arbitrarily ORiented projected CLUSter generation (ORCLUS)

High dimensional data has always been a challenge for clustering algorithms because of the inherent sparsity of the points.
The subspaces are specific to the clusters themselves. This definition is substantially more general and realistic than currently
available techniques which limit the method to only projections from the original set of attributes [4]. The generalized projected
clustering technique may also be viewed as a way of trying to redefine clustering for high dimensional applications by searching
for hidden subspaces with clusters which are created by inter-attribute correlations. In order to make the algorithm scalable for
very large databases an extended cluster feature vectors is used.

A Fast and Intelligent Subspace Clustering Algorithm using Dimension Voting (FIND-IT):

In subspace clustering, selecting correct dimensions is very important because the distance between points is easily changed
according to the selected dimensions. However, to select dimensions correctly is difficult, because data grouping and dimension
selecting should be performed simultaneously. FINDIT determines the correlated dimensions for each cluster based on two key
ideas: dimension-oriented distance measure which fully utilizes dimensional difference information, and dimension voting policy
which determines important dimensions in a probabilistic way based on V nearest neighbors’ information [10].

A Fast and Intelligent Subspace Clustering Algorithm using Dimension Voting, FINDIT is similar in structure to PROCLUS
and the other top-down methods, but uses a unique distance measure called the Dimension Oriented Distance (DOD). The idea is
compared to voting whereby the algorithm tallies the number of dimensions on which two instances are within a threshold
distance, ¢ of each other. The concept is based on the assumption that in higher dimensions it is more meaningful for two
instances to be close in several dimensions rather than in a few. The algorithm typically consists of three phases, namely
sampling phase, cluster forming phase and data assignment phase. The algorithms starts by selecting two small sets generated
through random sampling of the data. The sets are used to determine initial representative medoids of the clusters. In the cluster
forming phase the correlated dimensions are found using the DOD measure for each medoid. FINDIT then increments the value
of € and repeats this step until the cluster quality stabilizes. In the final phase, all of the instances are assigned to medoids based
on the subspaces found.

FINDIT requires two input parameters, the minimum number of instances in a cluster, and the minimum distance between two
clusters. It is able to find clusters in subspaces of varying size. The DOD measure is dependent on the threshold which is
determined by the algorithm in an iterative manner [10]. The iterative phase that determines the best threshold adds significantly
to the running time of the algorithm. Because of this, FINDIT employs sampling techniques like the other top-down algorithms.
Sampling helps to improve performance, especially with very large datasets.

o- CLUSTERS:

The existing cluster models may not always be adequate in capturing coherence exhibited among objects. Strong coherence
may still exist among a set of objects even if they take quite different values on each attribute and the attribute values are not fully
specified. This is very common in many applications including bio-informatics analysis as well as collaborative filtering analysis,
where the data may be incomplete and subject to biases. A general model, referred as the cluster model is proposed to capture
coherence exhibited by a subset of objects on a subset of attributes, while allowing absent attribute values. [7].

A d-cluster essentially corresponds to a sub matrix that exhibits some coherent tendency. Formally, each §-cluster can be
uniquely identified by the set of relevant objects and attributes. A 3-cluster is similar to a subspace cluster in this respect, with the
exception that the d-cluster also allows missing values. Even though allowing missing values brings great flexibility to the 5-
cluster model, the amount of missing entries in a d-cluster should be limited to some extent to avoid trivial cases. The rule of the
thumb is that, despite the missing values, there should still be sufficient evidence to demonstrate the coherency.
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Clustering On Subsets of Attributes (COSA)

Clustering On Subsets of Attributes (COSA) is an iterative algorithm that assigns weights to each dimension for each instance,
not each cluster. Starting with equally weighted dimensions, the algorithm examines the k nearest neighbors (knn) of each
instance. These neighborhoods are used to calculate the respective dimension weights for each instance. Higher weights are
assigned to those dimensions that have a smaller dispersion within the knn group. These weights are used to calculate dimension
weights for pairs of instances which are in turn used to update the distances used in the knn calculation. The process is then
repeated using the new distances until the weights stabilize. The neighborhoods for each instance become increasingly enriched
with instances belonging to its own cluster. The dimension weights are refined as the dimensions relevant to a cluster receive
larger weights [8]. The output is a distance matrix based on weighted inverse exponential distance and is suitable as input to any
distance-based clustering method. After clustering, the weights of each dimension of cluster members are compared and an
overall importance value for each dimension for each cluster is calculated. The number of dimensions in clusters need not be
specified directly, but instead is controlled by a parameter, A, that controls the strength of incentive for clustering on more
dimensions. Each cluster may exist in different subspaces of different sizes, but they do tend to be of similar dimensionality. It
also allows for the adjustment of the k used in the knn calculations. Friedman claims that the results are stable over a wide range
of k values. The dimension weights are calculated for each instance and pair of instances, not for each cluster. After clustering the
relevant dimensions must be calculated based on the dimension weights assigned to cluster members.

V. ANALYSIS

High dimensional data is increasingly common in many fields. The problem of curse of dimensionality has been studied
extensively and there are various solutions, each appropriate for different types of high dimensional data and data mining
procedures. Subspace clustering attempts to integrate feature evaluation and clustering in order to find clusters in different
subspaces. Top-down algorithms simulate this integration by using multiple iterations of evaluation, selection, and clustering.
This process selects a group of instances first and then evaluates the attributes in the context of that cluster of instances. This
relatively slow approach combined with the fact that many are forced to use sampling techniques makes top-down algorithms
more suitable for datasets with large clusters in relatively large subspaces. The clusters uncovered by top-down methods are often
hyper-spherical in nature due to the use of cluster centers to represent groups of similar instances. The clusters form non-
overlapping partitions of the dataset. Some algorithms allow for an additional group of outliers that contains instances not related
to any cluster. Also, many require that the number of clusters and the size of the subspaces be input as parameters. The user must
make use of domain knowledge to select and tune the input parameter settings. Bottom-up algorithms integrate the clustering and
subspace selection by first selecting a subspace, then evaluating the instances in that context. This allows these algorithms to scale
much more easily with both the number of instances in the dataset and the number of attributes. However, performance drops
quickly with the size of the subspaces in which the clusters are found. The main parameter required by these algorithms is the
density threshold. This can be difficult to set, especially across all dimensions of the dataset. Fortunately, even if some
dimensions are mistakenly ignored due to improper thresholds, the algorithms may still find the clusters in a smaller subspace.
Adaptive grid approaches help to alleviate this problem by allowing the number of bins in a dimension to change based on the
characteristics of the data in that dimension. Often, bottom-up algorithms are able to find clusters of various shapes and sizes
since the clusters are formed from various cells in a grid. This means that the clusters can overlap each other with one instance
having the potential to be in more than one cluster. It is also possible for an instance to be considered an outlier and does not
belong to any cluster. Clustering is-a powerful data exploration tool capable of uncovering previously unknown patterns in data.
Often, users have little knowledge of the data prior to clustering analysis and are seeking to find some interesting relationships to
explore further. Unfortunately, all clustering algorithms require that the user set some parameters and make some assumptions
about the clusters to be discovered.

VI. CONCLUSION

Subspace clustering algorithms allow users to break the assumption that all of the clusters in a dataset are found in the same
set of dimensions. There are many potential applications with high dimensional data where subspace clustering approaches could
help to uncover patterns missed by current clustering approaches. Applications in bioinformatics and text mining are particularly
relevant and present unique challenges to subspace clustering. As with any clustering techniques, finding meaningful and useful
results depends on the selection of the appropriate technique and proper tuning of the algorithm via the input parameters. Top-
down algorithms simulate the integration by using multiple iterations of evaluation, selection, and clustering. This process selects
a group of instances first and then evaluates the attributes in the context of that cluster of instances. Bottom-up algorithms
integrate the clustering and subspace selection by first selecting a subspace, then evaluating the instances in the that context.
However, each algorithm tries to mine efficient clustering results in its own style, but there is a high need for effective algorithms
when dealing with high dimensional data.
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