

A Tale of Three Brothers:
Three Android Privacy Bugs

(CVE-2018-9489 / CVE-2018-9581 / CVE-2018-15835)

@nightwatchcyber
November 9th, 2018

https://twitter.com/nightwatchcyber

Table of Contents

● Introduction
● Overview of Some Android Features

● Intents and Broadcasts
● Application Permissions

● What’s the Root Cause?
● Bug #1 – Battery Info - CVE-2018-15835
● Bug #2 – RSSI levels - CVE-2018-9581
● Bug #3 - MAC ID / WiFi Info - CVE-2018-9489
● Summary / Q&A

About Me

● I was a software developer most of my career and
security bug bounty hunter on the side

● Currently work in application security full time but I’m
here personally, not on behalf of my employer

● Have presented before at BSides Philly / DE / DC
● Was involved in some early anti-spam work:

● Co-chaired IRTF’s Anti Spam Research Group (ASRG)
● Involved in IETF pre-standards work for SPF/DKIM
● Created protocol for exchanging spam reports

(MARF / RFC 5965)
● Helping with the “security.txt” proposal
● Also did some non-security standards work:

● RFCs 4180 (CSV files) and 6922 (SQL MIME type)
● Participated in W3C’s CSV for the Web group

Some of my past CVEs

Assigned in 2018

CVE-2018-6019 – Samsung Display Solutions app

CVE-2018-0237 – Cisco AMP for Endpoints (MacOS)

Assigned in 2017

CVE-2017-16905 – DuoLingo’s TinyCards Android app

CVE-2017-15882 – Private Internet Access Android app

CVE-2017-15397 – Google’s Chrome OS

CVE-2017-14582 – Zoho 24x7 Poller for Android

CVE-2017-13243 – Google’s Android OS

CVE-2017-11706 – Boozt Android app

CVE-2017-9977 – AVG AntiVirus for MacOS

CVE-2017-9245 – Google’s News/Weather Android app

CVE-2017-9045 – Google’s I/O 2017 Android app

CVE-2017-8878 – ASUS Routers

 CVE-2017-8877 – ASUS Routers

CVE-2017-8769 – Facebook’s WhatsApp app

CVE-2017-5892 – ASUS Routers

CVE-2017-5891 – ASUS Routers

CVE-2017-5082 – Google’s Chrome for Android

Assigned in 2016

CVE-2016-6936 – Adobe’s AIR SDK and Compiler

CVE-2016-6723 – Google’s Android OS

CVE-2016-5672 – Intel’s Crosswalk toolkit

CVE-2016-5348 – Google’s Android OS

CVE-2016-5341 – Google’s Android OS

Don’t do anything without
talking to a (good) lawyer first!

DISCLAIMER!!!

Overview of Some Android Features:

Intents and Broadcasts

Application Permissions

Intents and Broadcasts

● Applications on Android are sandboxed
● The OS does provide a means for events to be sent
between app components, or between apps

● This is done by using “Intents”
● An “Intent” is a message that gets sent to other
apps; can open screens or just carry data

● Can be restricted to specific receivers but
developers often fail to do that

● If private data is included, other apps can sniff it
● Since Android 5.0, Local Broadcast Manager is
included for Intent usage within the same app – it
emulate broadcasts; apps often won’t use it :)

Intents and Broadcasts - Example

Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);
sendIntent.setType("text/plain");

(Code/photo from Android’s official documentation)

https://developer.android.com/guide/components/intents-filters

Application Permissions

● A permissions structure exists for apps in Android
● The purpose is to protect privacy – required before

either before sensitive data or system features are
accessed by an app

● Permissions are requested via a manifest, which is an
XML file (“AndroidManifest.xml”) inside the APK

● Permissions are handled differently depending on OS
version, permission type, etc.

● Some are requested during install, some when the app
runs for the first time, and some every time

● Some sensitive data or features can only be accessed
by the OS or system apps (like Gplay)

● Manifest permissions don’t affect intents!!!

Application Permissions - Examples

<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.snazzyapp">

 <uses-permission
android:name="android.permission.SEND_SMS"/>

 <application ...>
 ...
 </application>
</manifest>

(Code from Android’s official documentation)

https://developer.android.com/guide/components/intents-filters

Application Permissions - Examples

(Images from Android’s official documentation)

https://developer.android.com/guide/components/intents-filters

What is the Root Cause
for These Three Bugs?

(Public disclosure begins here)

Remember Intents?

Intent sendIntent = new Intent();
sendIntent.setAction(Intent.ACTION_SEND);
sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);
sendIntent.setType("text/plain");

(Code/photo from Android’s official documentation)

https://developer.android.com/guide/components/intents-filters

Root Cause

● Just like apps can broadcast Intents, so can the
operating system itself

● Some of these are very useful – like letting apps
know when the screen turns on, when the phone
disconnects / reconnects to the Internet, when the
phone goes to sleep, etc.

● Same security issues apply – by default, every app
on the device can listen to Intents

● If sensitive data is carried in them, apps can sniff it
● Even if specific Android APIs require permissions,
they don’t apply to Intents

Root Cause

● The root cause of these three bugs is that
Android OS is broadcasting sensitive data
inside Intents, system-wide, on a regular
basis

● For each of these, the data would or should
normally be restricted by permissions

● These features date back years, some
perhaps to Android 1.0

● It is trivial for apps to see and capture this
data, no special permissions needed

● All of these are privacy-related

Exploiting via an app

● There are several apps available that can show
Intents on a device, “Internal Broadcasts Monitor”
by Vilius Kraujutis is one of them

● Install Link and Source Code

● Just install, tap “Start” and watch the Intents fly by

● You may be able to see some of this data in the
device logs via ADB

● This is how we discovered these – we were playing
around with Intent monitoring during a pentest of
an app and saw the OS generated Intents

https://play.google.com/store/apps/details?id=lt.andro.broadcastlogger
https://github.com/ViliusKraujutis/AndroidBroadcastsMonitor

Exploiting via an app - Examples

Exploiting via code

public class MainActivity extends Activity {
@Override
public void onCreate(Bundle state) {
 IntentFilter filter = new IntentFilter();

 filter.addAction(
android.net.wifi.WifiManager.NETWORK_STATE_CHANGED_ACTION);

 filter.addAction(
android.net.wifi.WifiP2pManager.WIFI_P2P_THIS_DEVICE_CHANGED_ACTION);

 registerReceiver(receiver, filter);
}

BroadcastReceiver receiver = new BroadcastReceiver() {
@Override
public void onReceive(Context context, Intent intent) {
 Log.d(intent.toString());
 ….
}
};

Bug #1 - Battery Info

CVE-2018-15835

Not disclosed before

W3C Battery API Privacy

● Around 2014-2015, major browsers added a
Battery Status API based on a W3C proposal

● The intention was to allow websites to
switch to an energy saving mode as needed

● Some researchers (Lukasz Olejnik, and
others) found privacy issues that can be
exploited to track users, and were in fact
exploited by websites in the wild

● Surprise!
● The API was changed or removed by most
browsers

https://w3c.github.io/battery/

W3C Battery API Privacy

● The original paper describes privacy issues
based on a single value (battery level) that
is derived from a bunch of Linux UPower
variables (voltage, battery capacity, etc).

● Issue with high-precision battery levels
● Can be used to fingerprint and track users
across sites, and re-spawning within a short
interval based on frequency of discharge
and capacity

● Same research team looked at other sensors

W3C Battery API Privacy - References

● “The Leaking Battery” (2015); by Łukasz Olejnik,
Gunes Acar, Claude Castelluccia, and Claudia Diaz;

● “Online tracking: A 1-million-site measurement and
analysis” (2016); by Steven Englehardt and Arvind
Narayanan

● “Battery Status Not Included: Assessing Privacy in
Web Standards” (2017); Łukasz Olejnik, Steven
Englehardt, Arvind Narayanan; see also this blog post

● Additional academic research exists as well

https://lukaszolejnik.com/battery.pdf
https://webtransparency.cs.princeton.edu/webcensus/
https://petsymposium.org/2017/papers/hotpets/batterystatus-not-included.pdf
https://blog.lukaszolejnik.com/battery-status-not-included-assessing-privacy-in-w3c-web-standards/

The bug

● Android exposes battery information via Intents (“BATTERY_CHANGED”)
and APIs (BatteryManager)

● No special permissions are required (but perhaps should be?)
● Information includes the following (from official docs):

https://source.android.com/devices/tech/power/device

The bug

● More information is exposed via this API
than what the web battery API did - same
privacy issues apply here

● In our limited testing, we were to re-
identify devices within a short time based
on their charging information

● Affects Android 5.0 or later, including
forks

● More research is needed

Android Battery API Example

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle state) {
 IntentFilter filter = new
IntentFilter();
filter.addAction(Intent.ACTION_BATTERY_CHANGED)
;

 registerReceiver(receiver, filter);
 }

 BroadcastReceiver receiver = new
BroadcastReceiver() {
 @Override
 public void onReceive(Context context,
Intent intent) {
 Log.d(intent.toString());
 ….
 }
 };

Vendor Response

● The bug was responsibly disclosed to the
vendor in March 2018

● Vendor assessed the bug and set the
severity as “NSBC” = “Not Security Bulletin-
Class”

● “It was rated as not being a security
vulnerability that would meet the severity
bar for inclusion in an Android security
bulletin.”

● No fix is planned or known at this time
● CVE-2018-15835 was assigned for tracking

Summary and Implications

● Any Android application can capture/monitor detailed
battery information via Intents or the API without extra
permissions (but perhaps should require
permissions?)

● Affects versions of Android 5.0 and later including forks
such as Kindle’s FireOS

● Tracked under CVE-2018-15835, disclosed publicly here
for the first time

● This can be used to fingerprint a particular device and
track users across apps (untested)

● Can potentially be used to re-spawn sessions within a
short time (confirmed via limited testing)

● No fix or workaround is available right now
● We don’t know if this is being used “in the wild”

Bug #2 – RSSI Levels

CVE-2018-9581

Not disclosed before

What is RSSI in regards to WiFi?

● RSSI or “Received Signal Strength Indicator”
is a measure of how powerful a signal is on
the client in relation to the access point

● As per IEEE standards, this is not a direct
measurement like dbM, but a translated one

● RSSI can be on a scale from 0 to 255 but
each chipset does it’s own thing

● Also used in Bluetooth and cellular
connections, but differently

RSSI and GeoLocation

● RSSI can be used for indoor geolocation
based on the access point since signal
strength varies depending on the rooms and
walls, but isn’t always accurate

● Also called indoor positioning, limited to
small areas, not global like GPS

● 802.11mc (WiFi RTT) can also do this in
Android 9

● BUT, accessing the RTT API in Android
9, OR the normal Android WiFi API
versions requires special permissions

https://developer.android.com/guide/topics/connectivity/wifi-scan

What Can You Do with Indoor
Positioning? - Probably

(xkcd)

https://xkcd.com/652/

What Can You Do with Indoor
Positioning? - More Likely

(xkcd)

https://xkcd.com/309/

What Can You Do with Indoor
Positioning? - But Maybe this?

(Text/Images from “Adversarial WiFi Sensing”; Yanzi Zhu, et al;
arXiv:1810.10109; used with author permission)

The conclusion in this paper (emphasis added):

… our work brings up an inconvenient truth about
wireless transmissions. While greatly improving our
everyday life, they also unknowingly reveal information
about ourselves and our actions. By designing a simple
and powerful attack, we show that bad actors outside
of a building can secretly track user presence and
movement inside the building by just passively listening
to ambient WiFi transmissions (even if they are
encrypted) ...

https://arxiv.org/abs/1810.10109

What Can You Do with Indoor
Positioning?

● You can (in theory) kill people -
Caleb Thompson gave several talks about his
experience building such WiFi positioning system

● HOWEVER – what’s more likely…
…. is that indoor positioning can be used by places
like malls to track shoppers

● We can imagine a retailer bundling such
functionality in their apps and having that trigger
when you walk into their store

● Recent research shows that you can track people
moving indoors with greater accuracy than
possible before

https://www.calebthompson.io/
https://www.calebthompson.io/talks/dont-get-distracted/
https://www.youtube.com/watch?v=cz7r_gZhYyA
https://arxiv.org/abs/1810.10109

The bug

● Android exposes RSSI information via Intents
(“STATE_CHANGE” and “RSSI_CHANGED”)

● STATE_CHANGE no longer exposes this in Android 9
● RSSI_CHANGED is still present in all versions of

Android
● No special permissions are required
● To access the same information via the normal APIs

(WiFi Manager) apps require special permissions
● Our testing confirmed that indoor positioning is

possible (on a room level in a single building). Testing
included multiple phones and OS versions, including
forks

● RSSI numbers may not be consistent across phones

RSSI Examples

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle state) {
 IntentFilter filter = new
IntentFilter();

filter.addAction(android.net.wifi.WifiManager.N
ETWORK_STATE_CHANGED_ACTION);
filter.addAction(android.net.wifi.WifiManager.R
SSI_CHANGED_ACTION);

 registerReceiver(receiver, filter);
 }

 BroadcastReceiver receiver = new
BroadcastReceiver() {
 @Override
 public void onReceive(Context context,
Intent intent) {
 Log.d(intent.toString());
 ….
 }
 };

Testing information

Vendor Response

● The bug was responsibly disclosed to the vendor
March of 2018 as part of CVE-2018-9489; was split
into a separate report in July 2018

● Vendor is still assessing the bug
● However, 90 days have passed since the separate

report and we are disclosing it publicly
● No fix information is available, HOWEVER, one of the

Intents (“STATE_CHANGED”) was fixed in Android 9 as
part of CVE-2018-9489; still available in all lower
versions; the other Intent (“RSSI_CHANGED”) is still
present even in Android 9

● The vendor assigned CVE-2018-9581

Summary and Implications

● Any Android application can capture WiFi RSSI
information without special permissions

● Affects all versions of Android
● CVE-2018-9581 assigned by the vendor, disclosed
here for the first time

● Can be used for indoor positioning, confirmed via
testing

● Partial fix exists as part of CVE-2018-9489; no
additional fix information yet available

● We don’t know if this is being used “in the wild”

Bug #3 – MAC ID / WiFi Info

CVE-2018-9489

Disclosed originally in August 2018

WiFi APIs in Android

● Android has several APIs that can be used to
retrieve information about the WiFi
connection including the local IP address,
WiFi network name, BSSID, signal band, etc.

● BUT, accessing the WiFi API requires
special permissions

● Android doesn’t recommend using hardware
identifiers such as Android ID or IMEI

● Since Android 6.0, the MAC IDs of the device
cannot be accessed via APIs – they always
return “02:00:00:00:00:00”

https://developer.android.com/guide/topics/connectivity/wifi-scan
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids

MAC IDs, Network Names and BSSIDs

● MAC IDs are Ethernet identifiers assigned to hardware.
Under normal circumstances they cannot be changed.

● In theory, they can be used to unmask the identity of the
device owner via the supply chain; in practice it’s probably
hard (Melissa virus story that didn’t happen).

● Most likely use is to uniquely identify devices
● Work has been done on randomizing MAC IDs during WiFi

scans, but that doesn’t impact on-device use
● BSSIDs are hardware-derived identifiers for WiFi access

points
● Can be used for rough geolocation, public and private

databases (SkyHook) exist that map BSSIDs and network
names to specific GPS coordinates

The bug

● Android exposes WiFi connection information including the
MAC ID of the device, and BSSID of the router via Intents

● No special permissions are required
● On Android versions 6.0 and later, the correct MAC ID can

be captured bypassing the privacy change in APIs
● However, on some Android versions one of the Intents

hides the MAC ID, maybe related to the privacy change
● Can be used to uniquely identify and track devices
● BSSID information can be used for global geolocation
● There is other information including local IP address,

gateway, signal band, DNS servers, etc.
● Testing confirms the issue across multiple phone models,

Android versions and forks; all versions are believed to be
affected

RSSI Examples

public class MainActivity extends
Activity {
 @Override
 public void onCreate(Bundle state)
{
 IntentFilter filter = new
IntentFilter();

filter.addAction(android.net.wifi.Wifi
Manager.NETWORK_STATE_CHANGED_ACTION);
filter.addAction(android.net.wifi.Wifi
Manager.RSSI_CHANGED_ACTION);

 registerReceiver(receiver,
filter);
 }

 BroadcastReceiver receiver = new
BroadcastReceiver() {
 @Override
 public void onReceive(Context
context, Intent intent) {

Log.d(intent.toString());
 ….
 }
 };

Vendor Response

● The bug was responsibly disclosed to the
vendor in May 2018

● A fix was released as part of Android 9 in
August 2018

● Public disclosure and our advisory was done
in August 2018

● No fix is planned for lower versions of
Android due to “breaking API changes”

● Tracked under CVE-2018-9489
● Unknown if being exploited “in the wild”

Summary / Q&A

● We discovered three privacy related bugs in Android OS,
due to the use of Intents with sensitive data

● These allow exposure of information to on-device apps
such as battery levels, WiFi signal strength (RSSI), device
MAC ID, router BSSID, etc.

● Allow apps to fingerprint devices, track users, and
geolocate devices (both locally and globally)

● These bugs bypass existing Android OS permissions and
privacy changes

● Some have been fixed in Android 9, lower versions still
affected

● Affects most if not all Android versions and devices are
affected, including forks

● One bug has already been disclosed, we plan to publish
advisories for the rest next week

Questions? Comments?

Email: research@nightwatchcybersecurity.com

