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Abstract
Dynamic graph visualization focuses on the challenge of representing the evolution of relationships between entities in readable,
scalable and effective diagrams. This work surveys the growing number of approaches in this discipline. We derive a hierarchical
taxonomy of techniques by systematically categorizing and tagging publications. While static graph visualizations are often
divided into node-link and matrix representations, we identify the representation of time as the major distinguishing feature
for dynamic graph visualizations: either graphs are represented as animated diagrams or as static charts based on a timeline.
Evaluations of animated approaches focus on dynamic stability for preserving the viewer’s mental map or, in general, compare
animated diagrams to timeline-based ones. A bibliographic analysis provides insights into the organization and development
of the field and its community. Finally, we identify and discuss challenges for future research. We also provide feedback from
experts, collected with a questionnaire, which gives a broad perspective of these challenges and the current state of the field.
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1. Introduction

The world is constantly evolving, there is nothing static or stable
in it. But sometimes we pretend there is—just for simplification. In
particular when analysing data, this constraint is often applied: either
we choose a single point in time or we aggregate longer spans of
time. And indeed, the simplification is very helpful as it reduces the
amount of data, makes computations faster and simplifies reasoning
as well as communication. However, this approach has its clear
limitations: we learn nothing about the dynamics. As a consequence,
we neither understand how and why certain stages are reached nor
can foresee future changes.

Many aspects of the analogue and digital world can be consid-
ered as objects being related to each other, for instance, people
forming a social network, proteins interacting with each other or
components of a software system communicating through calls. We
usually model relational data as graphs and a very active research
community has formed around visualizing these structures: many
visualization techniques have been introduced [vLKS*11], criteria
for readable graph visualization have been studied [BRSG07]. And,
in fact, in most cases, the above simplification has been applied,

visualizing static graphs only. However, over the years, researchers
started to question this constraint and began thinking about the visu-
alization of dynamic graphs—relations between objects that change
over time, as it is natural in the real world.

Starting in the 1990s with the problem of editing a static graph
and visualizing the changes [ELMS91, MELS95], the field was first
understood as a subproblem of graph drawing: node-link diagrams
need to be animated without destroying the user’s mental image
of the diagram, the so-called mental map, which is related to the
concept of cognitive maps in other disciplines [Kit94]. After the
millennium, with the availability of more and more time-varying
datasets, dynamic graph diagrams were discovered as an infor-
mation visualization technique. Approaches became specialized to
various application scenarios such as social network analysis or
software engineering. Alternatives to animated node-link diagrams
were introduced that plot the graph onto timelines. By 2010, the
visualization of dynamic graphs was established as a standard vi-
sualization discipline. In consequence, the number of publications
more than doubled from not more than five publications per year
before 2006 to about 20 yearly publications since 2012 (Figure 1):
evaluations were conducted comparing different techniques and

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

133



134 F. Beck et al. / A Taxonomy and Survey of Dynamic Graph Visualization

Figure 1: Yearly number of publications on dynamic graph visual-
ization according to our literature database; light grey bars indicate
the total number of publications and coloured bars distinguish the
publications by type.

exploring the role of the mental map, application areas were studied
in greater detail and still many new techniques and novel combina-
tions of existing techniques were suggested. Visualizing dynamic
graphs, hence, has become itself a very active and diverse research
discipline involving several communities. What is missing so far,
however, is a comprehensive survey of the area, structuring and
discussing the variety of approaches and insights.

This paper is intended to fill this gap as it reports the state of the
art in visualizing dynamic graphs. We give a brief introduction to the
field (Section 2) and provide central definitions (Section 3). Based
on a systematic literature search and categorization (Section 4), we
build a hierarchical taxonomy of dynamic graph visualization and
classify existing techniques into the taxonomy (Section 5); an illus-
trating representation of the taxonomy is provided in Figure 2. We
also discuss evaluation results (Section 6) and applications for dy-
namic graph visualization approaches (Section 7). A bibliographic
analysis of the collected publications reveals key topics and emerg-
ing trends (Section 8). This systematic review finally allows us
to identify challenges for future research (Section 9). We provide
feedback from the research community, based on questionnaires
of experts in the field (Section 10). Note that this is an extended
version of a EuroVis 2014 State-of-the-Art Report [BBDW14].
This version adds an updated literature database and taxonomy,
a bibliographic analysis (Section 8) and a discussion of the chal-
lenges and the current state of the field based on expert feedback
(Section 10).

2. Background

Graphs in general form one of the most important data models
in computer science because many problems and domains can
be modelled as graph structures. Just to name a few, there are
automata in theoretical computer science, flow networks such as
pipes and roads, digital and non-digital social networks, computer
networks such as the Internet, networks of companies and financial
transactions, chemical reaction chains and molecular interactions,
epidemic spreads of diseases in communities, or correlations of
controlled variables in experiments. In most of those applications,
temporal development can be observed and needs to be considered
to fully understand the respective problem. Visualization is a
particular means for exploratively comprehending and analysing
this data.

A graph consists of objects or entities, usually referred to as
vertices, and relationships between them, called edges. Represent-
ing graphs as node-link diagrams, where vertices are drawn as vi-
sual nodes that are connected by graphical links representing the
edges, has a long tradition. While the drawing first served illus-
tration purposes only, gradually, layout algorithms were developed
that allow one to automatically generate readable graph diagrams,
for instance, force-directed layouts, which simulate physical forces
between nodes, orthogonal layouts, where edges are plotted only
along horizontal and vertical axes, or hierarchical layouts, which
divide the graph into layers (Figure 3). As an independent field,
graph drawing arose in the 1990s with the Symposium on Graph
Drawing, which was held in its 22nd edition in 2014. With an in-
creasing interest in information visualization, also alternative visual
representations of graphs have been introduced such as adjacency
matrices (Figure 3). In such a matrix visualization, vertices are de-
picted as rows and columns of the matrix; coloured cells of the
matrix indicate whether two vertices are connected by an edge.

The characteristic difference of a dynamic graph to a static graph
is that the structure of the vertices and edges can change over time.
Figure 4 shows an illustrating example of a dynamic graph and its
visualization: a directed graph consisting of five nodes is visualized
over three time steps as juxtaposed node-link diagrams. The position
of the nodes is the same for all diagrams, which makes it easier
to track the nodes over time. For instance, we see an edge from
node a to node e in the first time step (t1), which disappears in the
second (t2) but reappears in the third (t3). This small example should
just give a first impression of a straightforward visualization of a
dynamic graph—there exist much more sophisticated approaches
as discussed in this survey.

Other publications have already partly reviewed the field of vi-
sualizing dynamic graphs. In 2001, Branke [Bra01] summarized
the first animated node-link approaches ‘in a very early stage’ of
‘dynamic and interactive graph drawing’. In 2007, still focusing
on animated node-link diagrams, Shannon and Quigley [SQ07]
survey the field and conclude that ‘the issues unique to dynamic
graphs are beginning to be uncovered in more depth’. Since then,
various user studies have considered the importance of preserv-
ing the mental map (i.e. the internal representation the user forms
while watching animated node-link diagrams), or the difference
between animated views and representations based on timeline
views, such as those by Archambault and Purchase [AP13a, AP14].
Further, Windhager et al. [WZF11] discuss dynamic graph visual-
ization from the application-specific perspective of organizational
change in business networks. A brief review of dynamic graph
visualization is also part of surveys of larger fields such as visu-
alizing large graphs [vLKS*11], force-directed layouts of node-
link diagrams [Kob13], space-time cube visualizations [BDA*14]
and group structures in graphs [VBW15]. Recently, Archambault
et al. [AAK*14] have given an overview of temporal multivariate
graphs concentrating on node-link diagrams and surveying applica-
tions in software engineering in closer detail. Also, Zaidi [ZMS14]
summarize parts of the state of the art concerning node-link dia-
grams. Kerracher et al. [KKC14] systematically describe the design
space of dynamic graph visualizations. Hadlak et al. [HSS15] unify
taxonomies for multi-faceted graph visualization, where time can
be one of multiple facets, introducing an overarching framework to
classify graph visualization techniques.
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Figure 2: Illustrated hierarchical taxonomy of dynamic graph visualization techniques; the number of published techniques per taxonomic
category is encoded in the brightness of the background (for details, see Tables 4 and 5).
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Figure 3: Different visual representations of static graphs as node-
link or matrix diagrams all showing the same dataset.
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Figure 4: Illustrating example of juxtaposed node-link diagrams
on a timeline with constant node positions visualizing a directed
graph with five vertices over three time steps.

3. Dynamic Graph Data

Before starting to survey existing approaches, we need to clarify
what data should be analysed, what characteristics this data typically
have and what tasks are of interest for it.

3.1. Data model

To define a dynamic graph, we first introduce a (static) graph G :=
(V,E), which models a set of objects V , called vertices, and their
relationships E ⊆ V × V , called edges. Then, a dynamic graph is
defined as a sequence

� := (G1, G2, . . . ,Gn),

where Gi := (Vi, Ei) are static graphs and indices refer to a se-
quence of time steps τ := (t1, t2, . . . , tn).

This basic definition can be interpreted and extended in differ-
ent ways (Table 1 gives an overview): For instance, in a directed
graph, e1 = (v,w) and e2 = (w, v) represent different relationships,
whereas they are interpreted as the same relationship in an undi-
rected graph. A weighted graph assigns a numeric attribute, called

Table 1: Examples of types of graphs that can be used for extending the
basic definition of dynamic graphs.

Graph Gi :=

(un)directed (Vi, Ei ) where Ei ⊆ Vi × Vi is either interpreted as
directed or undirected

weighted (Vi, Ei ) : Ei ⊆ Vi × R
+ × Vi

compound (Vi, Ei, E
T
i ) : ET

i hierarchy edges forming a tree
multivariate (Vi, Ei , ρ) : Ei = (Ei,1, . . . , Ei,k) list of sets of

weighted edges and function ρ retrieves a
multi-dimensional attribute vector for each v ∈ Vi

weight, to each edge. In graph theory, a network is a directed
weighted graph, but overall, the term network is not used con-
sistently in the literature; for instance, a social network not always
refers to a directed weighted graph. Further, a compound graph adds
a hierarchical structure to the vertices, often used for interactively
simplifying the graph by collapsing hierarchy vertices. The hierar-
chy can be considered as static over time as well as it might change
together with the graph structure. Other forms of node aggrega-
tion exist, for instance, overlapping sets, which is further discussed
by Vehlow et al. [VBW15]. In a multivariate dynamic graph, we
have several attributes of edges or vertices that change over time.
Moreover, application-specific extensions are possible but cannot
be listed all. Of course, different extensions might be combined, for
example, creating a dynamic weighted directed compound graph.
A general survey of such extensions, called facets, and their visual
representation is provided by Hadlak et al. [HSS15].

Note that, similar to most of the approaches referenced in this
survey, the above data model considers time as being discrete, but
ordinal and continuous time scales [AMST11] can be represented
indirectly: ordinal values could be mapped to virtual points on a
discrete time scale; continuous processes that might form the ba-
sis of a dynamic graph need to be sampled to be represented in
our data model. We also do not discern between instants and inter-
vals [AMST11]: whether Gi is a snapshot at instant ti or aggregates
an interval around ti . Often, it is not specified by the visualization
technique which of the two models apply and rather depends on
application domain and context. Archambault et al. [AAK*14] dis-
cuss the modelling and representation of time for dynamic graphs
in greater detail.
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3.2. Graph characteristics

The goal of analysing graph data is to retrieve characteristic prop-
erties of its structure and attributes. These can be, for instance,
topological properties that apply to the graph as a whole, such as
that the graph is planar (i.e. can be drawn as a 2D node-link dia-
gram without any edge crossings), is sparse or dense (i.e. has few or
many edges in relation to the possible number of edges), is acyclic
(i.e. there is no cyclic path in a directed graph), is bipartite (i.e.
the vertices fall into two sets, edges connecting only vertices from
two different sets), etc. Also, individual properties of vertices and
edges can be investigated such as retrieving all neighbours of a ver-
tex, finding the shortest path between two vertices or identifying
clusters of vertices connected by many edges. These characteristics,
however, only describe properties of static graphs. They are appli-
cable to each graph individually in the sequence of graphs, but there
exist additional dynamic properties [BBD13]. A particularly impor-
tant one is dynamic variance, which quantifies how much the graph
structure changes from one time step to the next. Other properties
are, for instance, whether the graph is only growing or shrinking,
whether there are any trends in the evolution of vertex degrees or
edge weights, or whether clusters or paths are preserved over time.
Which of the properties are of interest, however, highly depends on
the application the graph structure is used for. Typical graph anal-
ysis tasks are described elsewhere, for static graphs [LPP*06] and
specialized for dynamic graphs [APS13, AP13a, BPF14a, KKC15].

4. Scope and Methodology

In order to retrieve a complete and structured list of references that
forms the basis of this survey, we followed a systematic approach:
we precisely defined the scope of the survey and retrieved relevant
publications within that scope by manually searching through the
relevant journals and conference proceedings as well as by following
references of already retrieved publications. Through tagging, we
then structured the retrieved literature.

4.1. Scope

The specific scope of this survey is visualizing dynamic graph struc-
tures as defined in Section 3.1. Some other visualization problems
are specializations of the dynamic graph visualization problem or
can be modelled such as, for instance, the visualization of static
graphs, the comparison of two graphs, the visualization or com-
parison of hierarchies, or the visualization of time series. Although
dynamic graph visualization techniques can be used to display such
data, there are more specialized (usually, much more suitable) visu-
alization techniques for these problems. Hence, we consider these
specializations of the problem as out of scope for this survey. We
also do not take into account approaches that first aggregate the
dynamic graph (e.g. by using statistics or clustering) and then only
visualize the simplified result, because the dynamic graph cannot be
retrieved anymore from the displayed information. Moreover, there
are theories and methods related to either dynamic graphs or visu-
alization, which we cannot include into this survey: graph theory,
graph algorithms, visualization theory, interaction theory, percep-
tion, etc. We focus only on those aspects of those related fields that
were directly applied to dynamic graph visualization.

4.2. Data collection

Collecting the relevant publications for this survey, we started with
a selection of papers that we knew from own previous research.
We further manually scanned through all issues and proceedings of
the main information visualization and graph drawing journals and
conferences:

� Journals
– Computer Graphics Forum
– IEEE Transactions on Visualization and Computer Graph-

ics
– Information Visualization
– Journal of Graph Algorithms and Applications

� Conferences
– IEEE Pacific Visualization Symposium (PacificVis) [2001–

2004: InVis.au; 2005–2007: APVIS]
– IEEE Symposium on Information Visualization (InfoVis)

[since 2006 a special issue of IEEE Transactions on Visu-
alization and Computer Graphics]

– International Conference on Information Visualisation (IV)
– Joint Eurographics–IEEE VGTC Symposium on Visualiza-

tion (EuroVis) [1999–2004: VisSym; since 2008 a special
issue of Computer Graphics Forum]

– Symposium on Graph Drawing (GD)

We followed citations in both directions: we checked the list of
references in the paper to find older works and investigated cita-
tions of the paper using Google Scholar. Moreover, we checked all
papers suggested by the experts who participated in our e-mail sur-
vey (Section 10). Among those papers in scope of this survey, we
only inserted by default peer-reviewed full papers published in jour-
nals and conferences written in English. If other criteria indicated
certain impact and quality (e.g. high number of citations, remark-
able contribution), we occasionally added papers not fulfilling all
conditions.

4.3. Data analysis

We applied tagging as the main instrument to structure the literature
for this survey. Using tags instead of categorical dimensions pro-
vides the advantage that the publications can be assigned to multiple
tags rather than just to one category per dimension. Categorical di-
mensions, however, better group the characteristics of an approach,
while tags are usually unstructured. Hence, we additionally defined
tag categories (i.e. groups of tags belonging to the same dimension)
for parts of the tags to also integrate this advantage into our tagging
approach. In particular, we assigned a list of tags to each collected
publication. We discussed the tags among the authors and defined
the meaning of each tag in a short description. We further grouped
important tags describing characteristics of similar kind into named
categories. To systematically derive the list of tags and assign these
to the publication, we used a process with three stages:

1. Explorative tagging: We selected a small, arbitrary part of the
collected publications and freely assigned reasonable tags. After
analysing some publications, we started to consolidate the tags
by merging similar ones. Moreover, we built categories from tags
describing the same dimension of characteristics. We continued
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Figure 5: Tag cloud of manually assigned tags grouped by category summarizing all publications of our database; subscript numbers and
font sizes refer to the usage frequency of the tags.

with this tagging phase until we reached a stable list of central
tags and categories.

2. Category tagging: We then systematically classified all pub-
lications with respect to the tag categories. Each publication
was assigned to at least one tag per category. Also, some un-
categorized or new tags were occasionally assigned during this
process.

3. Supplementary tagging: The final stage of the tagging was to
analyse and compare groups of similar publications in detail.
To systematically derive those groups sharing similar important
characteristics, we restricted the bibliography by category tags
assigned in the previous stage and combinations thereof. Group-
specific supplementary tags were also identified.

For this version of our survey, we updated our literature review,
repeating the collection and analysis process to identify additional
papers published since the conference version; 33 new references
were added to the literature collection.

4.4. Literature dataset

The dataset we retrieved following the described methodology con-
sists of 162 publications from 1992 to 2015. Five categories of
tags have been identified in the tagging process: the general type
of the publication, the visual representation of time, the visualiza-
tion paradigm used for depicting the graph structure, the kind of
evaluation performed and the application addressed. We assigned
at least one tag per category and usually a number of other tags
to each publication. Figure 5 summarizes the result of the tagging
process as a tag cloud, where the frequency of each tag is indicated
by a subscript number and encoded in the font size. Additional to
this quantified list of tags, Table 2 provides the descriptions of cate-
gories and included tags. In particular, the category tags formed the
basis to derive a taxonomy of graph visualization techniques and to
structure this survey. The complete dataset including all details and

tags for each of the publication is available through an interactive
Web tool1.

The type of the publication forms one of the main features to
discriminate the collected publications. Technique papers describ-
ing novel visualization approaches form the set of most important
publications for this survey. All publications classified as such are
described individually in this survey and classified into the taxon-
omy of visualization techniques (Section 5). We also systematically
discuss all publications describing an evaluation of dynamic graph
visualization techniques (Section 6). We further give an overview of
applications of dynamic graph visualizations, however, not claim-
ing completeness in this area (Section 7). Finally, the tagging allows
us to conduct a bibliographic analysis of the collected set of publi-
cations (Section 8).

5. Taxonomy and Classification of Dynamic Graph
Visualization Techniques

Many different visualization techniques have been introduced for
dynamic graph structures. In particular, we collected and classi-
fied 69 publications as technique papers. To provide a systematic
overview of these techniques, we categorize the approaches accord-
ing to a taxonomy. The taxonomy we developed for this purpose
is structured hierarchically and consists of three layers: the first
referenced with Roman numbers, the second with small letters in
alphabetic order and the third with Arabic numbers. While a first
illustration of the taxonomy has already been presented in Figure 2,
Tables 4 and 5 provide a detailed description of its categories,
their hierarchical structure and the classification of techniques. This
section describes all techniques and thereby follows as well the
hierarchical structure of the taxonomy and employs the taxonomic
categories as headlines. Additional to conceptional sketches of some

1http://go.visus.uni-stuttgart.de/dynamicgraphs
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Table 2: Categories and contained tags with descriptions.

Tag (category) Description

type type of the paper
application applying dynamic graph visualization to a specific

application scenario
evaluation empirical, algorithmic or theoretical evaluation of

visualization approaches
technique novel visualization technique or system
time visual representation of time
animation mapping time to time in an animation
timeline mapping time to space onto a timeline
generic being applicable to all representations of time
paradigm graph visualization paradigm
list representing the graph as a visual adjacency list
node-link representing the graph as nodes connected by links
matrix representing the graph as a visual adjacency matrix
generic being applicable to all graph representations
evaluation kind of evaluation
algorithmic testing the presented approach algorithmically or

using metrics
case_study discussing a small number of application examples
expert assessing the approach through external domain or

visualization experts
none no specific evaluation provided
survey specially broad survey of related work
theoretical theoretical considerations such as proof or runtime

complexity
user_study conducting a study involving other users
application area of application
biology bioinformatics data such as protein interactions or

metabolic pathways
business business- or economy-related data such as financial

transactions, stock market, business processes
document document collections, bibliometrics and information

retrieved from texts
eye_tracking data recorded during eye-tracking experiments
geo geographic data with spatial context
infrastructure infrastructure networks such as computer,

communication, power or road networks
media data related to movies, TV, music, news and the like
social social networks, social media and other data from

social life
software_engineering information related to software such as components,

source code, developers, documentation, etc.
sports sports-related data such as performance data or

results
generic no specific application suggested

of the presented approaches, small icons are used to illustrate and
symbolize the categories of the taxonomy.

Note that the taxonomy is pragmatically structuring existing tech-
niques rather than exploring all possible concepts. Hence, combina-
tions of concepts are not reflected if we have not found any example
in the literature. This, however, only reflects the current state of the
art and does not imply that a specific compound would be impos-
sible or useless—the taxonomy might need to be extended through
additional categories in the future. In fact, for this extended version

of the original publication [BBDW14], we already extended the tax-
onomy by two categories: I.c. Animated Matrix and II.c. List-Based
Approaches. The specific mapping between tags and taxonomy cat-
egories can be retrieved from Table 3. The criteria to substructure
the taxonomy are chosen from diverse categories of tags consider-
ing that a visualization technique cannot only be described through
the employed visual mapping but as well through the requirements
on data and algorithms. Each category inherits the properties of the
parent category (cf. Table 3). Hybrid categories are inserted when-
ever a technique combines multiple basic categories—the position
of the hybrid category is determined by the first common ancestor
of the basic categories within the hierarchical taxonomy. Hence, a
hybrid category always unites characteristic from at least two sib-
ling taxonomy categories. All combinations of tags can be explored
through the provided literature database.

Two basic ways of visualizing a graph structure are node-link
diagrams and adjacency matrices. As already illustrated in Fig-
ure 3, node-link diagrams represent vertices as graphical nodes that
are connected by links; in a matrix, vertices are mapped to rows
and columns of the matrix and a coloured cell at an intersection
of a row and column encodes an edge. While this would be one
of the most important criteria to discern static graph visualizations,
the time dimension adds another central aspect to the visualiza-
tion when considering dynamic graphs. As Beck et al. [BBD09,
BBD13] already discussed in this context, the time dimension can
be mapped in an animation to a simulated time (time-to-time map-
ping) or to a space dimension of the generated visualization repre-
senting a timeline (time-to-space mapping). Other mappings would
be possible—for instance, a mapping of time to colour—but are
rarely applied as an independent visualization approach. What can
be found, however, are hybrid techniques that combine animation
with timeline representations. Hence, the first level of the taxon-
omy divides the approaches into animation, timeline and hybrid
techniques.

After introducing our taxonomy, we compare it to a related tax-
onomy of the design space of dynamic graph visualizations by
Kerracher et al. [KKC14], which was published concurrently with
the previous version of this paper.

5.1. I. Animation (time-to-time mapping)

A mapping of the timestamps assigned to
the sequence of graphs to visualization time
results in an animated representation. Com-

bining this straightforward mapping with node-link diagrams creates
a quite intuitive dynamic graph visualization: animated node-link
diagrams. This taxonomy category originally referred only to node-
link approaches, but we also consider matrix approaches in this
extended version. In nearly all approaches, the mental map is dis-
cussed. The term refers to the abstract structural information a user
forms by looking at the layout of a graph. In the context of dy-
namic graph drawing, changes to this map should be minimal, in
other words, algorithms to draw sequences of graphs should pre-
serve the mental map. To this end, the position of nodes is tried
to be kept stable, which is called dynamic stability or drawing sta-
bility. This section is subdivided into general-purpose layouts and
special-purpose layouts because having a specialized graph type,
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Table 3: Mapping between tags and taxonomy categories (� required; � optional).

I. I.a. I.a.1. I.a.2. I.a.3. I.b. I.b.1. I.b.2. I.c. II. II.a. II.a.1. II.a.2 II.a.3. II.a.4. II.b. II.b.1. II.b.2. II.c. III.

time
animation � � � � � � � � � · · · · · · · · · · �
timeline · · · · · · · · · � � � � � � � � � � �
paradigm
node-link � � � � � � � � · � � � � � � · · · · �
matrix � · · · · · · · � � · · · · · � � � · �
list · · · · · · · · · � · · · · · · · · � �
other
compound_graph � � � � � � � · � � � � � � � � � � � �
general-purpose_layout � � � � � · · · � � � � � � � � � � � �
integrated_node-link · · · · · · · · · � � · · � � · · · · �
intra-cell_timelines · · · · · · · · · � · · · · · � � · · �
juxtaposed_node-link · · · · · · · · · � � � · · � · · · · �
layered_matrices · · · · · · · · · � · · · · · � · � · �
offline_problem � � · � � � � � � · · · · · · · · · · �
online_problem � � � · � � � � � · · · · · · · · · · �
special-purpose_layout � · · · · � � � · · · · · · · · · · · �
superimposed_node-link · · · · · · · · · � � · � · � · · · · �
transition_problem � � · · � � � � � · · · · · · · · · · �

such as a compound graph, changes the layout problem of node-
link diagrams reasonably. Actually, specialized layouts such as for
planar or acyclic graphs had been discussed before techniques for
the drawing of general dynamic graphs were introduced.

5.1.1. I.a. General-purpose layout

General-purpose layouts do not impose any
requirements on the type of graph (cf.
Table 1). They can be discerned, however,

by whether they compute the individual node-link layouts of the
animation only by considering past time steps (online) or both, past
and future time steps (offline). In general, online approaches are
more flexible as they are also applicable to scenarios where the
complete evolution of the graph is not yet known when starting
the animation (e.g. for interactively changed graphs or real-time
monitoring). On the other hand, offline approaches allow for better
optimizing the layout and maintaining the mental map because next
changes are known. Other approaches are quite independent from
the online–offline problem, but look in closer detail at the animated
transition period between two consecutive layouts.

?
I.a.1. Online problem: The online layout
problem first came up when interacting with
static graphs: in particular, when showing

only a subset of nodes and links or editing a graph, interactions
lead to changes in the graph structure that should be displayed—
hence, a sequence of graphs is visualized without knowing the full
sequence from the beginning. Misue et al. [MELS95] introduce the
first layout adaption approach for general graphs, which addresses
the problem of graph editing and node overlap: in order to preserve
the mental map, their force-directed approach maintains the original
horizontal and vertical ordering of nodes while reducing overlap;

the initial layout, however, is not computed by the approach. Bran-
des and Wagner [BW97] discuss an abstract framework based on
Bayesian decision theory that describes the problem as a two-fold
model: a readability model of the individual graphs and a stabil-
ity model considering distances between the individual layouts and
their predecessors. Basically, by multiplying quality factors from
both models and optimizing the resulting functions, they derive a
dynamic graph layout, which is implemented for a force-directed
and an orthogonal approach. Lee et al. [LLY06] describe online
layout as an optimization problem with customizable weights for
different layout criteria; they apply simulated annealing for deriving
a layout solution. Gorochowski et al. [GdBG12] suggest to use the
concept of node age to preserve specifically the layout of old and
stable graph structures. By introducing an efficient force-directed
online layout algorithm and implementing it on the GPU, Frishman
and Tal [FT08b] present a particularly fast layout approach. Also
addressing efficiency, Hayashi et al. [HMHU13] investigate the ef-
fects of initial node placement on the responsiveness of a layout
algorithm. Grabowicz et al. [GAM14] present an approach to filter
streams of changes in large graphs to a manageable size.

I.a.2. Offline problem: When a graph
structure does not change through inter-
active editing or navigation, but through

changes in the underlying domain, the full evolution is usually
known at visualization time (an exception are monitoring systems).
In this case, not only past but also future layouts can be considered
for laying out the graphs of the time steps. This simplifies the layout
problem and makes easier solutions applicable, the most straight-
forward one being to aggregate the full sequence of graphs and to
lay out only this so-called super-graph (Figure 6)—individual lay-
outs of the time steps are derived as a subset of the super-graph
layout. However, adapting the layout gradually might be a better
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Table 4: Hierarchical taxonomy of dynamic graph visualization techniques (part 1 of 2).

Taxonomic category Illustration # Techniques

I. Animation (Time-to-Time
Mapping)

35

I.a. General-Purpose Layout 22

?
I.a.1. Online Problem 7 layout adjustment to avoid overlap [MELS95]; framework based on

Bayesian decision theory [BW97]; simulated annealing with customizable
weights for optimization criteria [LLY06]; efficient algorithm and GPU
implementation [FT08b]; consider age of nodes to stabilize the
layout [GdBG12]; more efficient initial positions of nodes [HMHU13];
filtering of large streamed graphs [GAM14]

I.a.2. Offline Problem 7 Foresighted Layout (with Tolerance) [DGK01, DG02, GBPD05];
GraphAEL: force-directed layout with virtual forces between time
steps [EHK*04b, FKN*05]; Visone: force-directed layout with additional
energy factors between time steps [BS08]; user-selected multiple
foci [FWSL12]

I.a.3. Transition Problem 8 stepwise animation for navigation based on a spring algorithm [HEW98];
Marey: stepwise animation moving (parts of) the graph together [FE01,
FE02, FH02, NF02]; VisuGraph: using super-graph as intermediate
step [LD08]; transitions of bundled edges [HEF*13]; GraphDiaries:
highlight changes in staged transitions [BPF14a]

I.b. Special-Purpose Layout 12

I.b.1. Compound Graphs 8 force-directed approach preserving the position of clusters [FT04]; nested
bubbles in 3D [KG06]; XLDN: extending Foresighted Layout with
Tolerance to dynamic compound graphs [PB08]; focused animation
collapsing constant parts of the hierarchy [RPD09]; ContexTour: smooth
contours of coloured clusters [LSCL10]; Space-filling maps of colored
clusters [MKH12, HKV12]; degree-of-interest functions for abstracting
and focusing large graphs [AHSS13]

I.b.2. Other 4 online drawing of planar graphs [CDBT*92, CDBTT95]; DynaDAG:
acyclic graphs based on hierarchical layout [Nor96]; stable layout of small
world graphs [BFP06]

I.c. Animated Matrix 1 AniMatrix: staged animated transitions between matrices [RM14]
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Figure 6: Constructing a super-graph from a dynamic graph with
three time steps; edges occurring in multiple time steps are aggre-
gated by higher edge weights (line thickness).

trade-off between preserving the mental map and individually read-
able layouts. Diehl et al. [DGK01] introduce Foresighted Layout, a

generic framework that optimizes the straightforward super-graph
approach: nodes are grouped if they are not active together and
a super-graph is constructed from these grouped nodes applying
an arbitrary static graph layout—due to grouping, node positions
are reused if possible. Diehl and Görg [DG02] further extend this
approach to Foresighted Layout with Tolerance adjusting the indi-
vidual layouts derived from the super-graph within a certain level
of deviation from the super-graph. The optimization of individual
layouts can be realized with a force-directed algorithm [DG02],
but as well with adapted algorithms for orthogonal and hierarchi-
cal layouts [GBPD05]. In GraphAEL [EHK*04b, FKN*05], the
sequence of graphs is also aggregated but not into a super-graph:
equivalent nodes are not merged but just connected through virtual
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Table 5: Hierarchical taxonomy of dynamic graph visualization techniques (part 2 of 2).

Taxonomic category Illustration # Techniques

II. Timeline (time-to-space mapping) 28

+II.a. Node-Link 19

II.a.1. Juxtaposed 7 TimeArcTrees: linearized nodes on vertical axes [GBD09]; Parallel Edge
Splatting: artificially bipartite, linearized node layout [BVB*11, BBW12];
nested circles: partial links in TimeSpiderTrees [BFBD10]; ego-centered
graphs [FHQ11]; overlaid Sankey diagram to show cluster
evolution [VBAW14]; linked storylines [AB14]

II.a.2. Superimposed 5 3D stack with fixed positions [BC03, DE02]; 3D stack with relaxed
positions [EKLN04, GW06]; abstracting nodes and links to
tubes [GHW09]

II.a.3. Integrated 5 edges as timelines for ego networks [Rei10] and general graphs [SBW15];
ego network with ego node as timeline [SWW*15]; Extended Massive
Sequence Views: event-based timeline with parallel edges [vdEHBvW13];
parallel edges with attached pixel-based timeline [BMW15]

II.a.4. Hybrid (Juxt., Super., Int.) 2 juxtaposition as well as 2D and 3D superimposition [FAM*11, ITK10]

+
II.b. Matrix 8

II.b.1. Intra-Cell Timelines 4 time series as sparkline bar charts [BSW13, YEL10]; Gestaltlines
encoding three metrics in angles and line lengths [BN11]; pixel-based
folded timelines [SWS10]

II.b.2. Layered Matrices 4 (Layered) TimeRadarTrees: radially layered lists with radial matrix
thumbnails [BD08, BHW11]; radially bended and layered
matrices [VBSW13]; Cubix: stacked matrices to a 3D cube and sliced
small multiples thereof [BPF14b]

+
II.c. List 1 horizontally or vertically stacked link representations on a horizontal

timeline [HBW14]

III. Hybrid (Animation, Timeline) 6 in situ integration of small visualizations [HSS11]; cluster evolution on a
timeline for navigating animated node-link diagrams [SMM12]; moving
timeline and flip-book approach based on different graph
approaches [BBV*12, BW15]; DiffAni: combinations of small multiples,
difference representations, and animation [RM13]; Small MultiPiles:
juxtaposed piles of matrices that can be flipped through [BHRD*15]

# total (together with Table 4) 69

edges. Considering theses edges and ignoring repulsive forces of
nodes from different time steps, a single run of a force-directed
algorithm determines the layout of all individual graphs. This tech-
nique can be applied to 2D and 3D animations [EHK*04b] or to
hyperbolic and spherical spaces [FKN*05]. A similar approach was
implemented for Visone [BS08] by introducing additional energy
factors that increase with the position distance of equivalent nodes in
adjacent time steps and need to be minimized. Feng et al. [FWSL12]

combine user-selected multiple foci with an offline approach: the
focused nodes and their neighbourhoods are enlarged.

I.a.3. Transition problem: Animating a
node-link diagram does not only require to
determine a sequence of layouts, but also

the transitions between consecutive layouts need to be modelled—
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for the straightforward solution of just morphing one layout into the
other, too many changes may happen at the same time to be traceable
by the viewer. Huang et al. [HEW98] adapt a force-directed method
for stepwise transitions when navigating a dynamic graph: when fo-
cusing a node, it is moved first to the centre (with other nodes moving
relative to it), then superfluous nodes disappear and new nodes ap-
pear, before finally the new layout is optimized. In Marey [FE01,
FE02], the transition period consists of four phases: first, nodes and
edges are removed if necessary; then, the graph is translated towards
the new layout as if it is a single object; afterwards, the individual
nodes are moved independently to their new positions; and finally,
the new nodes and edges are shown. This approach is further ex-
tended by detecting clusters of nodes that share similar motions
and moving theses together [FH02]; Nesbitt and Friedrich [NF02]
suggest to use Gestalt laws to detect and structure the motion. In
VisuGraph [LD08], a super-graph layout is computed with nodes
in the same time step attracted to a specific position; for the tran-
sition between two time steps, the graph is first morphed to the
super-graph to recalibrate the mental map, before the super-graph is
further transformed into the layout of the next time step. For graph
layouts with fixed node positions, Hurter et al. [HEF*13] suggest
an approach for transforming edge bundling smoothly between time
steps. Bach et al. [BPF14a] use staged transitions similar to Marey,
but specifically highlight removed and added elements; moreover,
they use thumbnail images as previews for adjacent time steps.

5.1.2. I.b. Special-purpose layout

Specific characteristics of the graph may re-
quire, or at least profit from, other layout
approaches than the ones presented for gen-

eral dynamic graphs. All different graph characteristics discussed
in Section 3.2 could be considered in this context. Among these,
dynamic compound graphs were addressed by many works, while
other characteristics have been investigated only occasionally yet.
The current taxonomy category also includes online and offline ap-
proaches as well as techniques for transition between time steps; the
special characteristics of the graph structure, however, discriminate
the approaches more clearly.

I.b.1. Compound graph: The additional
hierarchy of a compound graph, which
structures the set of nodes, can also be used

to structure the visualization. In particular, for larger graphs, it might
help to abstract from single nodes to groups of nodes and can make
the visualization more scalable. If approaches use clustering algo-
rithms for creating a hierarchy or clusters, not only layout stability
but also cluster stability needs to be optimized and clusters need to
be tracked across time. Frishman and Tal [FT04] introduce an on-
line approach for clustered graphs (i.e. compound graphs with only
one level of clusters) based on a force-directed algorithm: boxes are
drawn around the nodes of a cluster and the positions of clusters
are tried to be preserved. Kumar and Garland [KG06] draw nested
bubbles around nodes for a 3D graph layout to indicate the com-
pound structure based on a force-directed offline approach. Pohl and
Birke [PB08] extend Foresighted Layout with Tolerance [DG02] to
compound graphs representing the hierarchy with nested boxes.
Reitz et al. [RPD09] use the hierarchy to focus the animation and

collapsing those hierarchies that stay unchanged with respect to the
current time step. ContexTour [LSCL10] uses smooth contours with
different colours to distinguish clusters, which creates a map-like
image. Taking the map metaphor further, Mashima et al. [MKH12]
and Hu et al. [HKV12] generate more space-filling drawings with
directly bordering ‘countries’. Abello et al. [AHSS13] discuss ap-
plying degree-of-interest functions to large graphs to highly aggre-
gate parts of the graph while analysing other parts in detail.

I.b.2. Other: Dynamic graphs might have
diverse characteristics that can be specifi-
cally considered for the layout. Actually, the

publication that we regard as the first dynamic graph visualization
according to the definitions and scope provided in Sections 3.1 and
4.1 is specialized for variants of planar graphs: Cohen et al. pub-
lished it as a technical report in 1992 [CDBT*92] and extended it as
journal article in 1995 [CDBTT95]. They present a framework for
drawing the graphs that warrants the planarity of the visual embed-
ding. For acyclic graphs, DynaDAG [Nor96] extends the Sugiyama
layout [STT81] for hierarchical drawings trying to preserve the
mental map. Brandes et al. [BFP06] focus on drawing small-world
graphs (i.e. graphs with short minimal distances between arbitrary
nodes) and introduce a stable layout algorithm.

5.1.3. I.c. Animated matrix

While possible in theory, until recently there
were no animation-based adjacency ma-
trix approaches for visualizing the dynamic

changes of a graph. Rufiange and Melançon [RM14], however, now
demonstrate with their approach AniMatrix that animated matrices
can be leveraged in practice, for instance, for analysing evolving
designs of software systems. They use a staged animation, similar
to those already discussed for node-link diagrams, to guide through
the changes step by step: first, vertices and edges are removed, then
existing ones are changed and finally, new ones are introduced.

5.2. II. Timeline (time-to-space mapping)

Instead of using animation, the graph can be
drawn onto a timeline in a time-to-space mapping. Timeline-based
approaches promise to provide a better overview of time as they
show the complete sequence of graphs in a static image [TMB02].
At least for small datasets, arbitrary points in time might be com-
pared without interaction and characteristics of the graph could
become traceable along the full evolution of the graph. However,
only little space is available for drawing each of the graphs, which
might decrease the readability of the diagram. This visual scalability
problem is one of the main challenges for the techniques classified
into this category. A main distinguishing feature of the approaches
is whether they are based on node-link diagrams, adjacency matrix
representations or adjacency list representations.

5.2.1. II.a. Node-link-based approaches

+ Placing node-link diagrams on a timeline is
simple: as the introductory example in Fig-

ure 4 shows, node-link diagrams just need to be positioned next
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Figure 7: Juxtaposed node-link approaches on a timeline.

to each other, preferably applying a fixed layout of the nodes. In
addition to this form of juxtaposition, other approaches can be used
to lay out the diagrams: for instance, diagrams can be stacked on
top of each other, which we call superimposition; or the sequence
of graphs can be merged into an integrated diagram. These three
categories—juxtaposed, superimposed and integrated—are equiv-
alent to the three categories Gleicher et al. [GAW*11] describe as
generic approaches to visual comparison (while the first two cat-
egories carry the same name in this classification, integration is
a form of explicit encoding). Similar categories are described by
Javed and Elmqvist [JE12] with the main difference that integrated
approaches are divided into overloading and nesting.

II.a.1. Juxtaposed: Juxtaposing node-link
diagrams in a small multiples approach
might be considered as simple, even triv-

ial. However, considering this as a multiple views approach and
just placing standard diagrams next to each other may not always
produce convincing results: it is hard to see the differences between
subsequent time steps, it is difficult to trace a node over several
time steps, each diagram is quite small and the overall representa-
tion is likely cluttered even for small examples. Several approaches
attempt to address these problems and suggest aligned and explic-
itly connected diagrams: TimeArcTrees [GBD09] arrange the nodes
onto vertical axes and optimize the node ordering (Figure 7, lin-
earized); this makes it easier to compare time steps and trace nodes,
but visual scalability stays low. Parallel Edge Splatting [BVB*11]
extends this approach by making each of the vertically arranged
graphs artificially bipartite—edges are all directed from left to right
(Figure 7, linearized bipartite). Additionally, plotting edge density
instead of drawing overlapping links, this extension increases scal-
ability. Also, a radial variant of Parallel Edge Splatting is possi-
ble [BBW12]. Other radially juxtaposed variants of node-link dia-
grams were introduced as well: TimeSpiderTrees [BFBD10] radially
layer the node-link diagrams as nested circles (Figure 7, radially lay-
ered); but instead of completely drawing the links in those diagrams,
only partial links are depicted (and expanded on demand). Farrugia
et al. [FHQ11] use a similar layout to depict ego-centred dynamic
graphs (i.e. only neighbouring nodes of a selected node are shown).
Since ego networks are quite sparse and small, completely drawn
links do not produce much clutter. To compare several ego networks,
their radial representation can be juxtaposed as small multiples.
Vehlow et al. [VBAW14] combine juxtaposed node-link diagrams
with a representation of evolving clusters as a Sankey diagram (also
called flow map). Similarly, Arendt and Blaha [AB14] extend story-
lines (i.e. lines that change their grouping along a timeline) by arcs
connecting the lines to encode edges.

fixed posi�ons relaxed posi�ons

Figure 8: Superimposed node-link approaches with different layers
representing the time steps.

�meline edges ego �meline parallel edges

Figure 9: Node-link approaches with an integrated timeline.

II.a.2. Superimposed: Instead of placing
diagrams next to each other, they can be
stacked on top of each other. In 2D, the

nodes should have the same positions and the edges belonging to dif-
ferent time steps need to be discerned by colour or stroke [EKLN04].
Stacked 2D diagrams can become 3D diagrams quite naturally
through adding the time dimension as z-axis. However, as the
third dimension is only used in discrete layers, these approaches
are often referred to as 2.5D techniques. For instance, Dwyer and
Eades [DE02] place 3D cylinders representing the nodes on an in-
visible 2D plane; edges at different levels indicate flows in the graph.
Similarly, Brandes and Corman [BC03] depict nodes as cylinders,
but also add transparent planes that help discern the stacked layers
(Figure 8, fixed positions). Erten et al. [EKLN04], in contrast, allow
the same node to have different positions on the layers; to preserve
the mental map, they use an adapted force-directed layout algorithm
that moves the same nodes to at least similar positions across lay-
ers (Figure 8, relaxed positions). Groh et al. [GHW09] extend this
approach by abstracting from nodes and links: they just use the con-
nections between the same nodes of different layers (i.e. the dashed
lines in Figure 8, relaxed positions) and visualize these as 3D tubes.

II.a.3. Integrated: In an integrated
diagram, the timeline is woven into the
node-link diagram—diagrams for different

time steps cannot be separated anymore without destroying the
readability of the diagram. For instance, Reitz [Rei10] shows ego
networks where the evolution of edge weights is plotted onto
each edge by varying its colour in sections; each edge, hence,
forms an individual timeline (Figure 9, edge timelines). Schmauder
et al. [SBW15] extend this approach to arbitrary graphs using
partially drawn links between nodes. Shi et al. [SWW*15] focus
on ego networks as well and introduce an approach they call 1.5D
layout: they connect a central timeline representing the ego node
with its neighbours by a link at the point in time where an edge first
appears (Figure 9, ego timeline). For graphs where edges represent
instant events (they can be assigned to a specific point in time
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Figure 10: Different visualization approaches for intra-cell time-
lines in matrix representations.

without having a duration), van den Elzen et al. [vdEHBvW13]
suggest Extended Massive Sequence Views, a technique that
arranges a list of events as a horizontal timeline and orders nodes
onto the vertical axis; edges are drawn at the respective position of
the timeline as vertical lines connecting two vertical node positions
(Figure 9, parallel edges). The authors discuss various strategies to
linearly arrange the nodes as well as a radial variant of the visual-
ization. A related approach by Burch et al. [BMW15] draws edges
comparably, but encodes time in a separate, pixel-based timeline
representation attached to each edge. In general, integrated ap-
proaches seem to be often restricted to only special types of dynamic
graphs. An advantage is that the integration of the timeline allows
the representation of arbitrarily fine samplings of continuous time.

II.a.4. Hybrid (juxtaposed, superim-
posed, integrated) The different ap-
proaches to map node-link diagrams onto

a timeline can also be combined. A simple approach is to have dif-
ferent views for the approaches and to smoothly transform one into
the other, for instance, juxtaposed node-link diagrams as well as
2D and 3D superimposed ones [FAM*11, ITK10]. While Federico
et al. [FAM*11] suggest three predefined views (camera perspective
and layer positions), Itoh et al. [ITK10] allow the user to indepen-
dently set camera perspective and layer positions.

5.2.2. II.b. Matrix-based approaches

+
Since adjacency matrices are used for visu-
alizing static graphs, they can also be em-
ployed for encoding dynamic graphs on a
timeline. The challenge is to connect the

spatial encoding of time with the matrix information, which seems
to be harder than in node-link diagrams because matrices are less
flexible with respect to layout. However, advantages of the matrix
representations—for instance, staying more readable for larger and
denser graphs [GFC05, KEC06]—justify to tackle these difficul-
ties. Depending on how the timeline and matrix are combined, we
identify two types of visualization techniques based on adjacency
matrices.

II.b.1. Intra-cell timelines: As a dimensional stack-
ing approach, the cells of an adjacency matrix may
each contain an individual timeline to represent the
dynamic changes of the edge encoded in the particu-
lar cell; the small intra-cell representations are a form

of time series encoded in a sparkline [Tuf06]. As illustrated in Fig-
ure 10, very different forms of intra-cell timeline representations

radially distributed radially layered stackedsmall mul�ples

Figure 11: Schematic illustrations of layered matrices approaches;
three shades of blue symbolize three time steps.

exist. For instance, it is possible to embed a simple bar chart show-
ing the time on a horizontal axis from left to right [BSW13, YEL10]
(Figure 10, left). In particular, Burch et al. [BSW13] show how a
hierarchy structuring the vertices can be attached to sides of the
matrix to represent a dynamic compound graph. Yi et al. [YEL10]
extend the basic approach by displaying aggregated timelines for the
vertices and encoding different edge types with different colours.
When the cells become too small, the timeline representations be-
come coloured cells (as when showing a static graph). Instead of
bars, Brandes and Nick [BN11] use so-called Gestaltlines as intra-
cell representations: stacked lines encode three metrics, one in their
angle, one in their length to the left and one in their length to the
right (Figure 10, middle). Moreover, Stein et al. [SWS10] suggest
a pixel-based approach that folds a timeline into a cell so that each
pixel (or any other quadratic subdivision) of the cell represents a
point in time (Figure 10, right). The weight of the edge at a specific
point is encoded in the brightness of the pixel; different folding
strategies such as row-by-row, column-by-column, diagonal, etc.,
are possible.

II.b.2. Layered matrices: Instead of split-
ting the cells of a matrix, adjacency matrices
can be juxtaposed or layered on a timeline.
While the straightforward approach is to use

adjacency matrices as small multiples (Figure 11, small multiples),
there are a couple of more sophisticated approaches: The TimeR-
adarTrees approach [BD08, BHW11] radially layers the time steps
encoding the list of edges. Details can be read from radial thumbnail
images attached to each circle segment representing a vertex; these
thumbnails form a kind of distributed matrix representation (Fig-
ure 11, radially distributed). A radially layered approach by Vehlow
et al. [VBSW13] literally bends the matrices of each time step
into rings of a circle (Figure 11, radially layered). Cubix [BPF14b]
stacks 2D matrices into 3D (Figure 11, stacked) and provides dif-
ferent small-multiples representations where adjacency matrices or
other slices of the 3D matrix are juxtaposed.

5.2.3. II.c. List-based approaches

+
Adjacency lists are a common way to model
graphs as a data structure but were only
rarely used for visualization purposes. Em-

ploying the colour of boxes to encode the source or target of an
edge, some ambiguity is introduced, but high-level structures are
preserved. Hlawatsch et al. [HBW14] introduce two ways of using
colour-coded list representation to encode a dynamic graph on a hor-
izontal timeline based on juxtaposition: First, each line represents a
vertex and lists of links encoded as boxes are stacked horizontally
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Figure 12: Two variants of list representations visually encoding a
dynamic graph by colour-coded targets of edges.

(Figure 12, left). Second, each line represents a link containing a box
if the link is active in a time step; lines belonging to the same vertex
are stacked vertically (Figure 12, right). While Figure 12 focuses on
outgoing edges, incoming edges can be encoded in the same way,
for instance, attached at the left side of the vertex representations.

5.3. III. Hybrid (animation, timeline)

While most dynamic graph visualization
techniques can be unambiguously classified
as either using animation or using a static
timeline, a few approaches combine both

mappings of time. The combination of the two time representa-
tions can, however, follow different strategies in those hybrid ap-
proaches. We consider as hybrid ones only those strategies that use
both representations closely connected and cannot easily be split
into independent techniques. Hadlak et al. [HSS11] suggest small
in situ visualizations to be integrated into a larger visualization;
in that way also animated diagrams can be embedded into a time-
line. Sallaberry et al. [SMM12] use a timeline-based, aggregated
representation of cluster evolution to navigate through an animated
node-link diagram. Beck et al. [BBV*12] animate long sequences
of graphs as a moving timeline representation based on Parallel
Edge Splatting, later extended by radial, matrix, and list variants
and flip-book browsing [BW15]. DiffAni [RM13] allows the user,
for instance, to interactively aggregate parts of a timeline represen-
tation into animations; the authors present a taxonomy of hybrid
approaches that can be systematically constructed from small mul-
tiples, difference representations and animation—DiffAni supports
arbitrary combinations. The Small MultiPiles approach [BHRD*15]
clusters and aggregates matrix representations of similar graphs
over subsequent time steps; while clusters of graphs are visual-
ized as small multiples, the contained graphs of each clusters can
be explored by flipping through them, which creates a form of
animation.

5.4. Comparison to related taxonomy

Concurrent to the publication of the previous version of this pa-
per, Kerracher et al. [KKC14] surveyed the design space of dy-
namic graph visualizations as well, however, without providing a
complete overview of the literature in their publication. Their cat-
egorization is not embedded into a hierarchy, but consists of two
main dimensions: the temporal encoding and the graph structural
encoding. These two dimensions match with our tag categories time

and paradigm, which guided the overall structure of our taxonomy.
Hence, independent of each other, both categorizations substructure
the visualization techniques in a similar manner. On a more detailed
level, the two classifications also largely match; however, their cat-
egorization differentiates the timeline-based approaches in a more
fine-grained manner, ours is structuring the animated approaches in
more detail.

6. Evaluation

Most papers we collected contain some sort of evaluation (Figure 5,
category evaluation). Nevertheless, most evaluations are ‘only’ case
studies, which are a rather lightweight form of evaluation not nec-
essarily involving users (103 out of 162 publications). In con-
trast, some papers specifically focus on evaluation (36 publications,
Figure 5, category type). This section primarily discusses insights
gained from these evaluation papers, but also reflect some in-
teresting evaluation results from technique or application papers.
The section is structured according to different types of evaluation
(Table 2 and Figure 5, category evaluation). Since surveys on the
field have already been discussed in Section 2, they are omitted
here. Also, case studies and expert reviews being lightweight eval-
uation techniques are not discussed in further detail. Figure 13
(left) shows that most evaluation approaches focus on animated
node-link diagrams, but fewer on timeline representations; ma-
trix visualizations are not yet evaluated in the context of dynamic
graphs.

6.1. Evaluation frameworks

Visualizations are explorative analysis tools and often do not address
a single task, but families of tasks. For evaluating visualization ap-
proaches, however, it should be clarified which tasks are addressed
in the evaluation; a task taxonomy can help selecting appropri-
ate tasks. Extending a task taxonomy for static graphs [LPP*06],
the taxonomy by Ahn et al. [APS13] collects and structures tasks
by three dimensions: entity (granularity such as nodes and links,
groups or complete network), property (topology of entities and
domain-specific attributes) and temporal feature (states over time);
these dimensions and their subcategories span a design space of
tasks. Archambault and Purchase [AP13a] divide tasks into inter-
pretation, change and memory tasks, each on a scale from local
to global. Bach et al. [BPF14a] introduce an alternative taxonomy
dividing tasks into temporal tasks (when), topological tasks (where)
and behavioural tasks (what). Kerracher et al. [KKC15] extend the
generic task framework by Andrienko and Andrienko [AA06] and
describe the design space of dynamic graph visualization tasks as a
combination of two dimensions: first, task categories such as lookup,
comparison and relation seeking; second, the data items involved
(single graph elements or graph structures and single or multiple
time points). In a follow-up work, Kerracher et al. [KKCG15] dis-
cuss how visualization techniques support the individual tasks of
their framework.

A further tool for evaluation is identifying desired properties of
the visualization, which are often called aesthetic criteria in context
of graph visualization. While many of those criteria were discussed
and tested for static graphs [BRSG07], Beck et al. [BBD09, BBD13]
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Figure 13: Distribution of time representations and graph visualization paradigms among evaluation (left) and application publications
(right).

extend these criteria to dynamic graph visualization and suggest
three dimensions grouping the criteria: general aesthetic criteria,
dynamic aesthetic criteria and aesthetic scalability criteria. These
criteria dimensions can be used for evaluating qualities of dynamic
graph visualizations and find the right visualization technique for a
given set of tasks and datasets [BBD13].

6.2. Algorithmic evaluation

A rather technical method of evaluation is measuring characteristics
of the layout algorithm. For instance, Frishman and Tal [FT04] com-
pare runtime, node density and cluster characteristics of their online
approach for drawing compound graphs to other approaches—the
results indicate that their approach better discerns clusters. For an-
other online approach, Frishman and Tal [FT08b] follow a similar
evaluation scheme and provide evidence that their approach main-
tains the mental map well and its implementation on the GPU is
more than a magnitude faster than a CPU implementation. The
same approach is applied by Gorochowski et al. [GdBG12], how-
ever, combining it with a visual analysis of the sample data because
not all important features are covered by the employed set of metrics.
Other approaches as well measure runtime performance [FWSL12],
preservation of the mental map [CTB13, FWSL12, HMHU13] or
cluster quality [LSCL10]. While evaluation constitutes only a part
of the above papers, Brandes and Mader [BM12] focus only on an
algorithmic evaluation of offline node-link approaches: they con-
trast layout stability to individual layout quality and conclude that
only linking nodes of adjacent time steps provides better results than
positioning nodes at or near fixed positions.

6.3. User studies

While algorithmic evaluation provides first insights into the char-
acteristics of a visualization, finally deciding whether a technique
is helpful requires involving users. In controlled experiments, dif-
ferent parameters of a visualization technique can be tested or two
approaches might be compared against each other under controlled
conditions. We group the studies according to research questions
they investigate.

Mental map: The role of the mental map has been discussed since
the first works on dynamic graph visualization and is probably their
best evaluated aspect. While we briefly summarize results of re-
lated studies, Archambault and Purchase [AP13a] review studies on
the mental map in much greater detail. In a first study, Purchase
et al. [PHG07] test different degrees of preserving the mental map
for a hierarchical node-link layout and find a positive effect of mental
map preservation for some of the tasks. However, in similar studies,
Purchase and Samra [PS08] and Saffrey and Purchase [SP08] cannot

confirm positive effects of preserving the mental map but, in con-
trast, find that favouring a good individual layout tends to produce
better results. Further, Archambault and Purchase [AP12, AP13b]
do not detect significant effects of preserving the mental map in one
study [AP12], but do in another where locating and path tracing tasks
were performed better in the mental map condition [AP13b]. Ghani
et al. [GEY12] vary the layout between fixed positions (perfect
mental map) and individually optimized layouts (no mental map);
their results, however, show that the mental map condition performs
better. Hence, although several studies have been conducted so far,
the role of the mental map is only partly understood yet, but at least
there are indications that its role is task-dependent.

Animation versus timeline: A central question that is reflected
by the two main categories of our taxonomy is the representation of
time—are animated approaches better than timeline-based ones, or
vice versa? For a graph with time-varying node attributes visualized
as a node-link diagram with static positions, Saraiya et al. [SLN05]
compare an animated slider solution to an approach with small time-
series visualizations in the nodes: they observe better performance
of participants for the animated approach when only one or two
points in time need to be studied; for tasks involving more time
steps, however, results are better for the timeline approach. Farru-
gia and Quigley [FQ11] contrast an animated node-link diagram to
a static approach showing node-link diagrams in a grid (timeline)
based on the same node layout; for the investigated time-related
tasks, the static approach generally tends to provide better perfor-
mance with respect to error rates and response time. With a similar
experiment design, Archambault et al. [APP11a] also find gener-
ally quicker response times for the timeline conditions; but for some
tasks related to the appearance of entities, animation produces lower
error rates. Specifically focusing on node-link layouts with a low
drawing stability, Archambault and Purchase [AP15], however, re-
port that an animated approach, better than a timeline-based small
multiples approach, supports the tracing of nodes and paths over
time steps. In a qualitative study, Boyandin et al. [BBL12] further
show that animation tends to reveal more findings on adjacent time
steps, while small multiples foster the discovery of patterns lasting
over longer periods. In conclusion of these studies, timeline-based
approaches seem to be preferable for tasks involving more than two
time steps. As Rufiange and McGuffin [RM13] show, hybrid ap-
proaches mixing animation and timeline, under certain conditions,
can produce better results.

Specific approaches: Further, some specific approaches were
evaluated, either varying a visualization parameter or comparing two
approaches against each other. Elmqvist and Tsigas [ET03] show
that their timeline-based node-link approach works better than Hasse
diagrams for visualizing the information flow between interacting
software processes with respect to most tasks. Rey and Diehl [RD10]
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investigate animation speed and labelling in animated node-link di-
agrams and find that an interactively selectable presentation speed
does not have a positive effect on comprehension performance; in
contrast, it is beneficial to always show labels instead of retrieving
labels only on demand. Archambault et al. [APP11b] test the impor-
tance of explicitly encoding differences in node-link diagrams for
two animated approaches and a small multiples approach; difference
maps help for certain comparison-related tasks and are preferred
by the participants. For another difference visualization approach,
Zaman et al. [ZKS11] also find conditions where it outperforms
animation. Bach et al. [BPF14a] compare their animated node-link
approach GraphDiaries to simpler approaches without staged ani-
mation or without animation at all; their results provide some evi-
dence that animation is helpful and staged animation tends to further
improve task performance. Evaluating an approach using differ-
ent timeline-based views connected by animated transitions, Smuc
et al. [SFW*14] observe diverse problem-solving strategies, which
suggests that the different views are required but the integration of
views needs to be as smooth as possible. Hlawatsch et al. [HBW14]
provide empirical evidence that a list-based approach can be supe-
rior to matrix and node-link representations for certain tasks related
to the degree of vertices and weights of edges, while lists perform
on a comparable level for other tasks. Shi et al. [SWW*15] evaluate
their integrated timeline approach for egocentric networks against a
small multiples and an animated approach; they find, among other
results, that for tasks analysing the temporal aspect of a focused
node, their egocentric approach performed best regarding error rate
and response time.

7. Application

Dynamic graph visualizations can be applied to various datasets
from very different domains. In this section, we present in particular
those publications classified as application papers, but occasionally
also reference technique papers that put a special focus on a certain
application. Despite the variety of application scenarios, only few
mature tools are readily available for dynamic graph visualization:
Gephi [BHJ09], Commetrix [Tri06] and KeyLines2 show animated
node-link diagrams and provide features for filtering, clustering and
computing network metrics. Selecting only the application papers
in our database, we see in Figure 13 (right) that almost only node-
link diagrams are used, but in combination with both animation and
timeline representations.

Social data: With the increasing popularity of social media, a va-
riety of datasets of social networks became available and a new area
of research formed around this topic. A challenge in this context is
to visualize the dynamics and evolution of these networks. Moody
et al. [MMBd05] motivate the use of dynamic graph visualization
for social network analysis and provide initial examples of how
animated node-link approaches can be used for visualizing these
networks. Bender-deMoll and McFarland [BdM06] present a frame-
work for testing different animated node-link layouts with respect
to this application. Social network metrics can be used to special-
ize and augment graph layouts [CTB13]. Brandes et al. [BIM12]
discuss the visualization of analysis models for temporal effects

2http://keylines.com/

in social networks. Specific types of dynamic social networks that
have been investigated are, for example, textual online conversations
such as chats [PT10], online communities [ATMS*11], the activity
and interest of bloggers [IYTK12], the development of character
relationships in literature [IA12, OKK13] or the propagation of mi-
croblogging messages [LQC*13]. Studying the evolution of these
networks might support answering sociological and psychological
questions, could help historians and literature scholars, but may as
well act as an end-user tool to retrieve facts from social media, for
instance, to find relevant news or people.

Documents: Texts and documents can be related through dif-
ferent kinds of connections such as citations, hyperlinks, similar
content, etc. If documents are created or existing ones are changed,
these connections change over time. For researchers, quite natural
applications are libraries of scientific publications, for instance, vi-
sualizing co-authorship [EHK*04a, Rei10, YAPM08], connections
between research areas [EHK*04a], co-citation networks [Che06]
(i.e. publications cited by the same other publication) or semantic
similarity of content [ABPdO12]. But, of course, the evolution of
other document collections can be visualized as well, such as hy-
perlink structures between web pages [TK05, YAPM08], semantic
relationships between retrieved entities [SNF10] or between mes-
sages in news streams [GHN13]. Since documents have a social
context (authors, readers, distributors, etc.), there is certain overlap
with social data—whether people or entities form the nodes of the
dynamic graph may act as a distinguishing criterion.

Software engineering: Among the first, dynamic graph visu-
alizations were applied to software-related data. Already in 1995,
Kimelman et al. [KLRZ95] discuss the problem of visual com-
plexity for visualizing program executions. Also visualizing the
execution dynamics of software, others depict the information flow
between processes [ET03], object interactions [GLW06], dynamic
call graphs [BMR*12, BBV*12] or objects migrating between
hosts [FT08a]. In addition to execution, another dynamic aspect
of software that can be visualized is its evolution—the changes
applied to software systems over time: for instance, the evolu-
tion of call, inheritance or flow graphs [CKN*03], of co-changed
files [BH06], or author–file relationships [OM08, OM09]. Evolu-
tion patterns, as described by Rufiange and Melançon [RM14],
can be detected with those visualizations. Hence, software systems
have different dimensions of time—execution and evolution—and
relevant graph data can be derived and combined from multiple
sources.

Others: There are various further applications of dynamic graphs
and their visualization. In research, for instance, in context of biol-
ogy, evolving metabolic pathways [RUK*10], simulated chemical
reaction networks [JSS*12] and uncertainties therein [VHK*13], or
protein interaction networks [BFL12] are studied. Psychology and
user interface research may profit from depicting eye gaze data as dy-
namic graphs recorded in eye-tracking studies [BBR*14, HEF*13].
Computer scientists can investigate the evolution of the Inter-
net [BBP08] or anomalies in communication networks [LSW13].
Business researchers and managers are supported in analysing
contagion in financial networks [vLDBF13] and movements in
stock portfolios [DE02]. Geography and politics researchers may
analyse migration [BBL12, SBW15] or traffic data [GBD09,
HEF*13] in context of spatial information. Dynamic graph drawing
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Figure 14: Yearly number of publications distinguished by selected
evaluation methods applied.

may even reach a wider audience when depicting popular topics
such as movie–actor affiliations [BHP06] or international soccer
matches [AFH*10]. In essence, every application where static graph
visualization can be applied is a candidate for also leveraging the
visualization of dynamic graphs—static graphs are often just a sim-
plification of dynamic ones.

8. Bibliographic Analysis

The collected literature database reaches a size that can hardly be
reviewed by just reading some of the papers. Hence, we complement
the qualitative survey of the field described in the previous sections
by a quantitative analysis of the bibliography: we study temporal
evolution of the field and its topics and identify influential publica-
tions. All figures of this section were created using our web-based
literature browser that was developed in the context of this work
(cf. Section 4). The published literature database and tool allow the
reader to replicate and extend this analysis.

8.1. Topics, trends and new ideas

The history of the field dates back to the 1990s, as outlined in Sec-
tion 1. The growing number of publications in general, but specif-
ically, the increasing quantity of evaluation and application papers
(cf. Figure 1) characterizes a maturing field. Also, among the eval-
uation methods, we observe a further maturation process: Figure 14
shows that evaluation by case studies is more and more replaced by
user studies. In 2014 and 2015, the number of papers peaked that
surveyed the field to some extent (cf. Section 2); this paper is part
of this particular trend. Being published more or less concurrently,
these surveys could only partly build upon each other. However,
the independent publication of several such related papers perhaps
indicates a need to consolidate and structure the growing field.

The focus of the publications evolved as well, in particular with
respect to the applied visualization paradigms. As indicated by
Figure 15, early publications only covered animated node-link di-
agrams. Only from 2002 onwards, time-to-space mappings have
been explored. While matrix-based approaches came up in 2008,
the first list-based approach was published in 2014. Tables 4 and
5 help identify other fundamentally new ideas that have been in-
troduced only since 2010: animated matrices (Taxonomy Category
I.c.), node-link approaches with an integrated timeline (Taxonomy
Category II.a.3.), intra-cell timelines of matrices (Taxonomy Cate-
gory II.b.1.) and hybrids of animated and timeline-based approaches
(Taxonomy Category III.). Within individual taxonomy categories,

Figure 15: Yearly number of publications distinguished by repre-
sentation of time (top) and the graph visualization paradigm (bot-
tom).

there have been recent innovations as well, for example, applying
edge bundling to dynamic graphs [HEF*13], stacked and sliced
matrices [BPF14b] or visualizing cluster evolution together with
graph evolution [VBAW14].

8.2. Publications

Determining the influence of specific papers provides insights into
what extent results found application in other scientific works
and practice. It might also serve readers as recommendations for
further reading. As a coarse quantifiable indicator of influence
in academia—not discerning positive and negative influence—the
number of citations of the papers can be considered. While the total
number of citations provides an accumulated measure of influence
and favours older publications, the number of citations per year is
more comparable for papers of different age. We focus in the follow-
ing only on publications categorized as technique papers because
these are likely to be cited due to the dynamic graph visualization
technique described.

Table 6 shows the top five technique papers ranked according
to their influence with respect to citations per year. Clear leader of
the list is a work by Misue et al. [MELS95]—one of the oldest
publications in the field—describing an online animated node-link
approach. While the second publication in the list [FT08b] belongs
to the same taxonomy category, the following ones also cover other
categories: not just animated approaches, but also timeline-based
ones are listed. All are, however, node-link representations; the
first matrix-based approach is the work by Brandes et al. [BN11]
and is rated 8th with 8.8 citations per year. Hence, the number of
citations per year still reflects the historic evolution of the topics in
the field. Nevertheless, newer papers are cited frequently as well,
for instance, the work on Parallel Edge Splatting by Burch et al.
[BVB*11].

8.3. State of the field

In conclusion, this bibliographic analysis shows that dynamic
graph visualization is a growing discipline of information visu-
alization. New visualization paradigms—timeline, matrix and list

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



F. Beck et al. / A Taxonomy and Survey of Dynamic Graph Visualization 149

Table 6: Top five technique papers ranked in citations per year, retrieved October 13, 2014 through Google Scholar; 2014 was counted as 0.75 years. For
simplification, all publications were assumed to be published on January 1 in the respective year.

Paper Year Category Citations Citations/year

1. Misue et al. [MELS95] 1995 ? 492 24.9

2. Frishman and Tal [FT08b] 2008 ? 122 18.1

3. Burch et al. [BVB*11] 2011 45 12.0

4. Brandes and Corman [BC03] 2003 134 11.4

5. Diehl and Görg [DG02] 2002 132 10.4

representations—gradually initiated new directions of research. The
most cited technique papers per year show a diverse structure, both
with respect to age of the publications as well as taxonomy category,
while still reflecting the history of the field. Hence, we observe a
growing and maturing, but still innovating field of research with a
sound mixture of continuity and diversity.

9. Research Challenges

The overview of the field forms a good basis for discussing the
main challenges of, and possible directions for future research. Our
tagging of publications and taxonomy of techniques allow us to see
which areas have already been studied in detail and which areas are
just covered by few works; the survey of evaluation results iden-
tifies answered and unanswered questions; the discussed applica-
tions point towards areas where dynamic graph visualization might
have a considerable practical impact. Specifically for the visualiza-
tion of multivariate dynamic graphs, Archambault et al. [AAK*14]
already discussed open problems, partly overlapping with the re-
search challenges introduced in the following. These challenges
only reflect the experience and subjective opinion of the authors—
Section 10 provides further ideas on research challenges by external
experts.

Evaluation: A first, quite generic research challenge is conduct-
ing evaluations. As in other areas of information visualization, only
a few questions have been evaluated so far. Although most efforts
have concentrated on the importance of the mental map, it is only
partially clear for which tasks and to what extent the mental map
needs to be preserved. Only a few other questions have been inves-
tigated. Hence, it is still unanswered which visualization technique
is suitable for which application. Also, setting the parameters of
the different techniques is rarely explored, such as magic constants
of layout and clustering algorithms, colour-mapping or sampling
rate and time aggregation. Moreover, questions of perception are
relevant, for instance, the users’ cognitive load watching an ani-
mation, effects of attention or typical misinterpretations of visual
elements.

Visual scalability: A further general challenge in information
visualization, which also applies here, is visual scalability: with an
increasing amount of displayed data, the generated diagrams should
remain readable. In most of the discussed applications, datasets of
interest are likely to be large. For static diagrams, already some scal-

ability comparisons have been conducted, for instance, contrasting
node-link and matrix diagrams [GFC05, KEC06]. While, in static
graphs, the number of nodes and the density of edges are the two
crucial parameters for scalability, Beck et al. [BBD09] argue that
the number of time steps needs to be considered as a third dimension
when studying dynamic graph visualizations. So far, scalability has
only played a minor role in designing most dynamic graph visual-
ization approaches, although it has been already discussed in depth
for static graphs [vLKS*11].

Hybrids: Some approaches already started to combine different
techniques, such as animation and timeline representations (Tax-
onomy Category III) or different variants of timeline-based node-
link diagrams (Taxonomy Category II.a.4). However, many more
possible hybrids exist between different categories of the taxon-
omy. While not all combinations are sensible, there are a num-
ber of hybrid variants that appear to be promising: for instance,
the combination of node-link diagrams and matrices have already
been successfully explored for static graphs [HF07, HFM07]. Re-
cently, it has been shown that animating a matrix diagram also
works if the animation process is designed with similar care as
in those works describing the transition problem for node-link
diagrams (Taxonomy Category I.a.3) [RM14]. Further, combina-
tions of animation and timeline approaches have not yet been fully
explored.

Extended data dimensions: While dynamic graphs add a time
dimension to static graphs, dynamic graphs themselves can be ex-
tended by other dimensions. As it is the case when we move from
static to dynamic graphs, adding a new data dimension usually re-
quires the visualization to change considerably. What has already
been studied, is adding a hierarchy to the vertices of the graph
(Taxonomy Category I.b.1 and partly II.a.1). Yet, most of these ap-
proaches assume that the hierarchy is constant or at least only grad-
ually changing. An open question is how to visualize a hierarchical
structure that changes more significantly along with the dynamic
graph. Additional data dimensions that have only been partly ex-
plored are dynamic multivariate graphs [BN11, YEL10, AAK*14],
dynamic graphs with uncertainty information [VHK*13] and geo-
located graphs [HEF*13]. Finally, the effects of using continuous
time with arbitrary fine sampling rates, rather than discretized time,
are largely unexplored.

Interaction: While most timeline-based approaches produce
static images, animated node-link diagrams inherently require

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



150 F. Beck et al. / A Taxonomy and Survey of Dynamic Graph Visualization

interactive displays. Although the first works in the field already
investigated smooth navigation in graphs, this focus seems to have
been lost over the years. Navigation in dynamic graphs can have
multiple dimensions: users might navigate in space (i.e. the static
graph) as well as in time. As recent works with a special focus
on navigation have shown, interaction could help integrate differ-
ent modes [RM13, HSS11] or filter down the data to a manage-
able size [AHSS13]. Working with several views introduces further
challenges, such as visually mapping and synchronizing multiple
representatives of the same objects between different visualizations.
Finally, annotating and editing a dynamic graph structure is not well
studied. All these interactive features and combinations of differ-
ent views and visualizations can be integrated into consistent visual
analytics approaches.

Applications: Without application, visualization would lose its
purpose. As discussed in Section 7, there are a number of ar-
eas where different dynamic graph visualizations have already
been applied. Looking at the recent development, we see that still
new applications have arisen, for instance, the analysis of char-
acters in literature [IA12, OKK13], understanding financial and
bio-medical contagion networks [vLDBF13], or visualizing eye-
tracking data [BBR*14, HEF*13]. This steady progress already
suggests that there are still more areas to be explored for dynamic
graph visualization. In particular, looking at the wide variety of
applications that static graphs have, we will probably find many
examples where dynamics are important but have not been studied
by means of visualization yet. As datasets often have application-
specific characteristics and there exist application-specific require-
ments, an adaption of existing techniques might not be straightfor-
ward but could require new research.

10. Experts’ Feedback

To obtain wide input and reflect the opinion of the community, we
conducted a survey regarding achievements and challenges of the
field. We invited active experts from the field of dynamic graph
visualization to participate in a short questionnaire study. For the
identification of experts, we selected authors from the collected
literature by applying the following rules: an author of one of the
collected papers was considered as an active expert if

� the person co-authored at least three papers in the field, with at
least one published in 2010 or later, or

� the person co-authored a survey that covered the area (cf. Sec-
tion 2) and was published in 2010 or later.

These rules led to an invitation of 32 experts (excluding the au-
thors themselves and the non-anonymous reviewers of the previous
version of the paper). The questionnaire was sent and the results
were collected via e-mail. Two invitees who could not participate
themselves suggested three further experts that we invited as well.
From the 35 invited experts, 16 took part by sending back a com-
pleted questionnaire (response rate of 46%); the list of participating
experts, who all agreed to be mentioned by name, is provided in the
Acknowledgments section and their expertise regarding dynamic
graph visualization can be retrieved with our interactive literature
browser.

The questionnaire contained five questions that can be summa-
rized as follows:

1. Q1: What is your opinion about the role of the mental map for
dynamic graph visualization?

2. Q2: Where do you see fundamental advantages or disadvantages
of the animated and timeline-based approaches compared to
each other?

3. Q3: We suggest six challenges for future research in the field.
Please rate the importance of each on a scale from 1 (not im-
portant) to 5 (very important).

4. Q4: Do you consider other future challenges as important for
the field?

5. Q5: Do you suggest to add a specific paper or is any paper from
previous years missing that you consider as relevant?

Additionally, the opportunity for general comments was given.
While Q1 and Q2 ask for a discussion of previous approaches and
evaluations (in particular, they cover the two main research ques-
tions of user studies discussed in Section 6.3), Q3 and Q4 refer to
future challenges as described in Section 9. In the following, we
qualitatively evaluate answers to Q1, Q2 and Q4 referring to the
individual experts by E1–E16. In contrast, Q3 can be summarized
in a quantitative way. We will not discuss Q5 independently because
the answers were already used to complete our literature collection
(cf. Section 4).

10.1. Discussion of achievements

To discuss what has already been achieved, we decided to specif-
ically address questions that have been controversially discussed
in the past, in particular, in context of evaluation papers (cf. Sec-
tion 6). Hence, we asked for opinions on the two topics most of the
user studies have been about: the role of the mental map and the
difference between animated and timeline-based approaches.

Q1: The role of the mental map

A total of 15 of 16 experts answered Q1. Some experts rated the
role of the mental map as important, in particular, in the context of
animated approaches, but also for timeline-based approaches (E1,
E10). The preservation of the mental map specifically eases the
tracking of nodes (E6) and is crucial for larger graphs (E11). The
term also helps to reason about good graph layouts (E7) and could
guide the evaluation of layout algorithms (E8). Further, E4 reports
that the problem of preserving the mental map has been a key issue
in projects with industry partners.

In contrast, other answers discuss limitations of the term and its
practical relevance. For instance, preserving the mental map might
not be as important for small graphs (E6). Some experts mention
that the results of empirical studies only partially cover important
aspects and provide different outcomes (E3, E11, E14, E15). They
point out that importance of the mental map depends on tasks (E3,
E6, E11, E14, E16), context (E3, E7) and users (E3, E7). Some
experts question the term mental map and its definition in general
(E2, E7, E8, E9): it seems to be only a translation of stabilizing
the position of nodes (E2, E7, E8), but does not directly reflect
a cognitive model (E2, E7). Appropriate definitions of the term
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might need to be application-dependent (E8) and should incorporate
cognitive theory (E7).

Addressing future research, E8 and E12 ask for more studies in-
vestigating the role of the mental map in more detail, in particular,
studying influence of the mapping of time, visualization paradigm,
graph rendering style, data characteristics, tasks and interactions.
E11 further suggests investigating the importance of the mental
map for big data. Finally, E5 points out that beyond dynamic graph
visualization, ‘the role of the mental map is still completely under-
estimated in the field of information visualization’: a mental map
eases understanding if something fits into that cognitive model, but
is an obstacle if not. E5 suggests generalizing the idea of the men-
tal map from the graph layout to other aspects like clusters and
attributes.

Q2: Animated and timeline-based approaches

Comparing the time-to-time mapping against the time-to-space
mapping, all 14 experts who answered directly the question high-
lighted advantages of both approaches and only few named a clear
preference (animation: none; timeline: E7, E15). Hence, the gen-
eral opinion seems to be that there is no clear winner among the
approaches, but selecting between the two should take context and
tasks into account.

Animation is the most congruent mapping of the time dimension
as time is represented as time (E5, E13), is ‘instinctively understood
by users’ and can hardly be used to encode other variables than time
(E13). Motion effectively and vividly highlights changes (E6, E7,
E10, E12, E13) and provides an impression of the rate of change
(E16). Animation can be more engaging or enjoyable for users (E2,
E13). Selecting a point in time and stopping the animation allows
reducing the complexity of the analysis (E7), can show the graph in
more space (E7, E13) and therefore scales better for larger graphs
(E11, E13). Hence, animation specifically serves tasks that do not
require a comparison of different time steps (E7). Animation speed
has to be chosen carefully, maybe adaptively (E8); tools need to
provide additional time sliders to navigate through time (E10).
In general, the user interface and interactions need careful design
(E15). However, even a thorough design of the animation process
might not prevent a certain visual overload with increasing data
complexity and length of animation (E10). Some cognitive overhead
is inherent to memorize the evolution, even when only comparing
two steps in time (E13)—‘temporal context becomes invisible’
(E5). The phenomenon of change blindness suggests that changes
might not be noticed by the viewer (E15) and it is difficult to control
what is perceived (E7). It becomes hard for the viewer to analyse the
overall evolution, in particular, long sequences of time steps (E11).
As a further consequence, time-related tasks might require more
time (E13). Running the animation like a film lacks interaction to ex-
plore the data (E13); certain interaction techniques like zooming or
selecting are difficult to apply during a running animation (E12). An
obvious, still important disadvantage of animation is that it cannot
be printed or represented statically in other media (E1). Applications
that suit animated approaches are presentation and communication
scenarios (E14, E15), in particular, in combination with oral pre-
sentation (E1) and presented to non-expert users (E15). Animation
is less suitable for exploration and confirmation tasks (E14).

Timeline-based approaches, in contrast, show the available data at
once (E13) and thereby summarize the whole dataset (E11), making
it possible to see the rate of change (E16). They ‘allow a user to
choose the amount of time needed to compare sequential states’
(E8). Comparison can be done with a lower overhead and load on the
user’s mental memory (E10, E12, E13). Specifically, the comparison
of longer sequences with more than two time steps is supported
(E7, E13). Further, it might be easier to encode differences between
time steps explicitly (E1). Interactions like selecting elements are
easier to integrate in the static diagram (E7). In general, timeline-
based approaches seem to support a greater variety of tasks without
impairing completion times and error rates (E6, E13). They are
not just suitable for presentation tasks, but also for exploration and
confirmation (E14). Not using animation, however, comes at the cost
of losing a visual variable and the requirement to use another one
for encoding time (E10). Usually, timeline-based approaches have
to fit the individual representation of a graph at a point in time into
smaller screen space (E1, E13). This requirement limits scalability
in general (E11, E13) and makes it hard to visualize many time steps
in particular (E1). Also, timeline approaches need to be designed
well and should be easy to read (E15).

E4—while supporting the general distinction between mapping
of time to time or space—questions the usage of the term timeline in
this context: ‘Animation is based on a timeline as well’. In general,
the experts conclude that the selection of the right approach is task-
dependent (E5, E7, E9). A solution that combines advantages of the
two approaches could be hybrid techniques (E5). ‘One fundamental
issue for both approaches is how to handle scale on the temporal
data dimension’. (E13)

10.2. Research challenges

In addition to the first questions looking at achievements in retro-
spect, the second part of the questionnaire addresses future research
challenges. On the one hand, the experts rated the challenges that we
propose in Section 9; on the other hand, we asked them to suggest
new challenges that are not covered yet by our challenges.

Q3: Ratings of importance

Q3 asked the experts to assign ratings from 1 (not important) to 5
(very important) to each of the challenges of Section 9 (we referred
to the early publication of this work [BBDW14] for definitions of
the challenges). Of the 16 participants, 15 answered Q3. Table 7
summarizes these 15 answers by providing the average importance,
the variance of the answers as a measure of disagreement and a
histogram of the ratings.

The results show that visual scalability is rated highest with an
average of 4.5—most participants consider the challenge as very im-
portant; the low variance value indicates a strong agreement among
the experts. Extended data dimensions and interaction are rated on
average as important (4.1), closely followed by evaluation (3.9), all
three with a low to medium variance in the answers (0.8–1.2). Fi-
nally, hybrids and applications share a medium level of importance
(3.5 and 2.9) with a medium to high variance (1.1, 1.7); hybrids are
seen as less important, yet all experts ranked them ≥2 on the scale
from 1 to 5.
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Table 7: Importance ratings of challenges for future research (cf. Section 9)
from 1 (not important) to 5 (very important) given by 15 experts.

Challenge avg var histogram

evaluation 3.9 1.1 1 5

visual scalability 4.5 0.7 1 5

hybrids 3.5 1.1 1 5

extended data dimensions 4.1 0.8 1 5

interaction 4.1 1.2 1 5

applications 2.9 1.7 1 5

Q4: Additional challenges

As part of answers to Q4, 12 experts named the following challenges
that are not covered by the previously mentioned ones (if necessary,
answers were cut or slightly edited as indicated by square brackets):

1. New metaphors: ‘I would like to see new metaphors, new
paradigms, new innovation, new approaches in an area that I
think has been a little inward-looking in recent years’. (E3)

2. Guidelines: ‘[...] developing guidelines that support the user to
apply appropriate techniques should be on the agenda for future
work’. (E4)

3. Graph dynamics: ‘[...] a visualization of graph dynamics would
aim to adapt visualizations and analysis methods for time-
varying multivariate data to time-varying graph-structured data’.
(E5)

4. Tasks: ‘Identification of concrete, and useful “large” graph tasks
that can be aided by dynamic visualization’. (E9) ‘Fully eluci-
dating the tasks which users need to carry out when exploring
temporal graph data’. (E13)

5. Data velocity: ‘Many dynamic graph applications can include
real-time data, which adds additional challenges’. (E11)

6. Specific analytical methods: ‘[...] we need specific methods
for data reduction (i.e. filtering, aggregation) as well as data
mining, to be tightly intertwined with [visualization], according
to the Visual Analytics paradigm’. (E12)

7. Dynamic graph comparison: [...] ‘visual techniques for sup-
porting comparison between two changing networks [...] has not
received much attention [...]’ (E13)

In addition, the experts suggested refinements or extensions of the
previous challenges: E6 points out that visual scalability is under-
explored with respect to the number of time steps. E10 argues that
hybrids can be extended to combinations of general visualizations
with dynamic graph representations. As a specific instance of the
extended data dimensions, E1 would be interested in the evolution of
clusters in the graph. E7 suggests rephrasing and narrowing down
the challenge of application to domain knowledge—how domain
knowledge can be used to improve a specific visualization appli-
cation. Other comments refer to previous questions, in particular,
to Q1: coming up with clear definition of the term mental map and
general terminology is also a research challenge (E2, E9). Related to
that, E7 sees a connection of evaluation, visual scalability and inter-

action to the basic question: ‘How is the graph structure represented
in our mind and how does our mind operate on this representation?’

10.3. Discussion and limitations

These answers provide a broad overview of how experts in the com-
munity assess the state of the field, backed by a stringent selection
process of experts and a high response rate. It confirms that there
are still issues that are controversially discussed and many open
questions for future research. The ratings of challenges show that
we identified a valid set of challenges: a substantial number of ex-
perts rated each challenge as important. The level of importance,
however, varies from a very high importance for visual scalabil-
ity to a still high one for extended data dimensions, interaction,
evaluation and finally to a medium importance of hybrids (i.e. com-
bination of visualization techniques) and applications (i.e. investi-
gating new application scenarios). However, it is unclear how the
new challenges posed by the participants would have been rated in
comparison to the ones introduced in Section 9. Also, the impor-
tance ratings do not necessarily predict relevance of future research
tackling the respective challenge; ratings might not be independent
because the formulated challenges cannot be interpreted as fully
orthogonal. In general, the study only reports subjective opinions
of the participants; the required filtering and summarization of the
answers could potentially have also introduced a certain bias. Nev-
ertheless, the answers of the experts, together with our discussion
of future challenges in Section 9, could serve as starting points for
new research projects.

11. Conclusions

This work presented the state of the art in visualizing dynamically
changing relational data. Building on previous work in the graph
drawing and information visualization communities, the visualiza-
tion of dynamic graphs has become an active and constantly growing
research discipline. While, initially, animated node-link diagrams
dominated the research, timeline-based approaches gained more
importance recently. First empirical evaluations of the approaches
were conducted. With the increasing availability of temporal data,
dynamic graph visualizations have been adapted to many areas of
application. By systematically collecting and categorizing the liter-
ature, we structured the field and collected the works spread over
different areas of research and communities. This review makes
approaches more comparable as it points out similarities and dif-
ferences using a consistent taxonomy. Studying the development of
the field based on the collected data, there are no indicators that
research within the area has met an end. On the contrary, new visu-
alizations are still introduced, evaluation is only in its infancy and
there are many open challenges and interesting research problems.
The feedback received from experts of the domain reveals contro-
versial issues, prioritizes research questions and provides ideas for
future research.
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