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Highlights: 

• Defines a taxonomy describing levels of reproducibility for modelling studies 

• Levels progress from repeatability to runnability, reproducibility, and replicability  

• An analysis using the SUMMA hydrologic model is used to demonstrate the taxonomy 

• Containerization of the conditions of analysis allows for achieving reproducibility  

• Sciunit software facilitates this containerization of the conditions of analysis  

Abstract 

  Despite the growing acknowledgment of reproducibility crisis in computational science, 

there is still a lack of clarity around what exactly constitutes a reproducible or replicable study in 

many computational fields, including environmental modelling. To this end, we put forth a 

taxonomy that defines an environmental modelling study as being either 1) repeatable, 2) 

runnable, 3) reproducible, or 4) replicable. We introduce these terms with illustrative examples 

using the Structure for Unifying Multiple Modeling Alternatives (SUMMA) hydrologic 

modelling framework along with cyberinfrastructure aimed at fostering reproducibility. Using 

this taxonomy as a guide, we argue that containerization is a key missing component in 

environmental modelling and is necessary to achieve the goal of computational reproducibility. 

The provided examples demonstrate how new tools, including a user-friendly tool for 

containerization of computational analyses called Sciunit, can lower the barrier to reproducibility 

and replicability in the environmental modelling community. 

Keywords 

reproducibility; replicability; containers; Docker; Singularity 

Software Availability 

The analysis example illustrated in this research is available free and open source, under an MIT 

license, from GitHub at https://github.com/uva-hydroinformatics/pysumma-sciunit.  

https://github.com/uva-hydroinformatics/pysumma-sciunit
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1. Introduction  

Emphasis on the importance of research reproducibility is steadily rising, yet many studies 

are still not reproducible (Bell et al., 2009; Garijo et al., 2013; Hothorn and Leisch, 2011; J. H. 

H. Stagge et al., 2019). One study found that 70% of researchers tried but failed to reproduce 

another researcher's experiments (Baker, 2016). This failure was largely due to lack of 

documentation and the omission of important details from the published article. Additionally, 

numerous studies have concluded that scientific articles commonly leave out details essential for 

reproduction (Ioannidis et al., 2009; Nekrutenko and Taylor, 2012; J. H. H. Stagge et al., 2019). 

Even when these details are in place, complex computational studies can take hundreds of hours 

to reproduce, especially for a scientist not involved in the original study (Baggerly and Coombes, 

2009). Reproducibility in such computational studies is particularly difficult because they rely on 

nontrivial software systems with multiple software dependencies. As computational studies 

become more complex and dependent on a variety of software systems, this difficulty leads to 

the “reproducibility crisis” being experienced across fields where scientists are unable to 

reproduce analyses from the information provided in articles and software documentation alone 

(Baker, 2016; Baker and Penny, 2016). Some scientific disciplines (including biology, 

biostatistics, and biomedicine) have been discussing this reproducibility crisis for some time 

(Peng, 2011), while in other fields, such as Hydrology and Water Resources, the topic is still 

being brought to light (Hutton et al., 2016; Rosenberg et al., 2020; J. H. Stagge et al., 2019).  

Using Hydrology and Water Resources as case study, this paper addresses reproducibility 

challenges applicable in the broader field of Environmental Modelling by offering a taxonomy to 

aid in the interdisciplinary communication around reproducibility as well as an approach 

involving containerization of computational experiments to enhance reproducibility. 
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One of the challenges in discussing the reproducibility crisis in computational modelling 

fields is the lack of a standard definition for reproducibility. Several scientists have made efforts 

to define reproducibility (Easterbrook, 2014; Goodman et al., 2018; Gorgolewski and Poldrack, 

2016; Ioannidis et al., 2009; Stodden et al., 2013). The problem has recently resulted in a high-

level report by the United States (US) National Academies in collaboration with the US National 

Science Foundation (hereafter, referred to as the National Academies report) (National 

Academies of Sciences Engineering and Medicine, 2019). The National Academies report 

acknowledges the lack of a standard definition for computational reproducibility across scientific 

fields. To address this problem, it offers a standard definition for reproducibility along with a 

higher-level concept named replicability. The report defines computational reproducibility as 

“obtaining consistent results using the same input data, computational steps, methods, code, and 

conditions of analysis” and replicability as “obtaining consistent results across studies aimed at 

answering the same scientific question, each of which has obtained its own data”  (National 

Academies of Sciences, Engineering, and Medicine, 2019). We have adopted these definitions in 

this paper, but argue that there are stages in environmental modelling, and likely other 

computational modelling fields as well, before one reaches “reproducible” as defined in the 

National Academies report. Without consistent definitions of these earlier stages, there will 

continue to be confusion on what exactly constitutes a reproducible computational study.  

As an example of this confusion, a common explanation for achieving reproducibility in 

computational fields is a study that has all code and data shared with the published article, but 

this explanation is incomplete for computationally complex studies. The idea is widely held as 

evidenced by many scientific journals now requiring authors to provide “Data Availability” 

statements providing Digital Object Identifiers (DOIs) for data and models used in the analysis. 

However, this requirement alone will not ensure that a computational study is reproducible. For 
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example, suppose a researcher publishes an article and shares the associated data and models 

through an open data repository. If other researchers have the necessary digital resources and try 

to reproduce this research using the paper, data, and models, they may be unable to do so if the 

first researcher did not share exact details of the “conditions of analysis,” as the National 

Academies report (National Academies of Sciences, Engineering, and Medicine, 2019) puts it, 

used to complete the study. The conditions of analysis speak to the computation environment 

used to conduct the experiment including the operating system used, but also the exact versions 

of all software and software dependencies used in the study. Even in simple cases where only 

one software system is used for an analysis (e.g., a single simulation model or single analysis 

software like Python or R), because software is being constantly updated and dependencies may 

change, sharing the data and code for that simulation alone may not be sufficient for achieving 

reproducibility if not all software dependencies are shared too. One needs a way to create a self-

contained package or container of the conditions of analysis that preserves these conditions that 

were present during experimentation so that, even if the container is moved to different 

computational environments, the experiment continues to re-execute as originally designed.  

Any alternative way researchers have proposed to address the general confusion about 

different levels of reproducible research is by organizing studies into three categories: low, 

medium, and high reproducible research (Tatman et al., 2018; Peng, 2011). Low reproducible 

research occurs when a well written article, which may include a detailed methodology section, 

does not provide the digital resources (such as code, data, and computational environment) 

necessary to reproduce that research. When one of these resources, typically the data associated 

with the article, is published but the others are withheld, this research is classified as being 

“medium reproducibility” (Tatman et al., 2018). The highest level of reproducibility, referred as 
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the “gold standard of reproducibility” by Peng (2011), occurs when all codes, data, and 

environments used in the research are both described in the published article and shared.  

These three levels of defining reproducibility provide a useful way to classify studies, but 

they tend to focus on the sharing of digital objects rather than on the functional aspects of 

reproducibility. We argue that the sharing of digital objects is a prerequisite to reproducible 

research. The real challenge and need for categorical distinctions along a reproducibility 

spectrum should target functional requirements showing the levels at which computational 

experiments can be rerun by the original authors and, ultimately, by others to reproduce and 

replicate the study results. For studies that require only minimal software tools, it seems feasible 

for researchers to achieve reproducibility without spending a significant amount of additional 

time and effort beyond gathering digital objects and setting up virtual environments for an 

analysis. For example, the concept of virtual environments in Python that allow one to package 

the specific version of Python and dependent libraries used in an analysis is becoming common 

place with tools like Anaconda (https://www.anaconda.com).  However, when an analysis makes 

use of more than just a single software system, capturing the conditions of analysis (National 

Academies of Sciences Engineering and Medicine, 2019) or computational environment (Peng, 

2011) that includes all software dependencies becomes more complicated. It can often be unclear 

even to the most sophisticated modeler exactly what software was used by a model or larger 

analysis workflow, given the complex dependencies and sub-dependencies with many scientific 

software systems, including modelling systems.  

Container technologies offer a solution for this problem (Handigol et al., 2012; Knoth and 

Nüst, 2017; Piccolo and Frampton, 2016). Docker (Merkel, 2014) and Singularity (Kurtzer et al., 

2017) are the most common container technologies, but these are programmable tools and, for 

many modelers, require a steep learning curve for how to work with them, which is often a 
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function of the complexity of the software program being contained. In addition, because it is 

unclear exactly what software to include in a container to make an analysis reproducible, 

scientists may overestimate the software needed, making for bloated containers that become 

more like virtual machines, thus losing one of the main benefits of container technologies. For 

this reason, there are efforts in scientific communities to create cyberinfrastructure technologies 

and approaches better suited for computational experiments (Brinckman et al., 2019; Marwick et 

al., 2018; Stodden et al., 2015) including efforts to lower the barrier to container technology 

adoption (Kjeldgaard, 2020; Nüst et al., 2017; Nüst and Hinz, 2019). The Geotrust project 

funded through the US National Science Foundation EarthCube program that is advancing 

Sciunit (http://sciunit.run) is one such effort (Chuah et al., 2020; That et al., 2017; Yuan et al., 

2018). Using Sciunit, a tool for tracing and encapsulating dependencies in a Linux environment, 

researchers can create virtual environments for computational analyses that only include the 

software dependencies used within the analysis (That et al., 2017). Sciunit acts as a monitoring 

system, recording what software dependencies were used by an analysis and then packaging 

these dependencies into a virtual environment. In capturing dependencies during program 

execution, Sciunit is unlike Docker, which uses programmatic methods to capture dependencies. 

Sciunit also uses content-based data de-duplication (Yuan et al., 2018), and is thus more efficient 

to use than Docker (Meng et al., 2015).  

In past work we have shown how Geotrust’s Sciunit can be combined with HydroShare to 

improve reproducibility in computational analyses (Essawy et al., 2018). Here we extend on this 

idea to provide a more complete view of best practices for reproducible and replicable 

computational analyses. First, we present a taxonomy to capture the reproducibility spectrum for 

environmental modelling beginning with running an analysis on a single machine and ending 

with reproducing and replicating that study. Then, we demonstrate the path along this spectrum 

http://sciunit.run/
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with an analysis using the Structure for Unifying Multiple Modeling Alternatives (SUMMA) 

hydrology model (Clark et al., 2015a, 2015b) as an example application. As part of this example, 

we demonstrate how the Geotrust Sciunit tool and open data repositories, such as HydroShare, 

can be leveraged to achieve both reproducibility and the higher-level concept of replicability. A 

discussion follows that first speaks to nuances in the pursuit of reproducible computational 

analyses, namely the idea that reproducibility does not require an exact match in a computational 

environment or the results of the analysis, but instead requires results that are, as the National 

Academies report states, “consistent.”  This makes knowing when reproducibility has been 

achieved more challenging because quantifying an exact match is computationally simpler than 

quantifying a consistent match. This section also outlines gaps that remain in achieving 

reproducibility of environmental modelling analyses that should be addressed through future 

research and development efforts. Finally, we conclude with a summary of the contributions of 

this study, which are mainly a clearer definition of a taxonomy for describing environmental 

modelling studies as repeatable, runnable, reproducible, or replicable and an illustrative example 

for how to move analyses along this taxonomy so that modelers can be more confident that their 

studies are reproducible rather than being only repeatable or runnable. 

 

2. Methodology 

2.1. Defining a Taxonomy for Reproducible Environmental Modelling 

The first objective in this study was to define an appropriate taxonomy for capturing the 

spectrum of reproducibility for computational environmental modelling. To do this, we reviewed 

and synthesized ideas from literature. We also adopted the definitions provided by the National 

Academies report as this is a high-level report aimed at clarifying two concepts in particular: 

reproducibility and replicability. We expanded on the definitions provided in this report by 
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adding additional explanation of these definitions and, importantly, the common steps in 

environmental modelling that come before the reproducibility step. The result of this work is a 

four level taxonomy of repeatability, runnability, reproducibility, and replicability described 

more fully in the results section of the paper and used to organize an example application where 

a hydrologic modelling analysis moves through the stages in the taxonomy each representing a 

step along the reproducibility spectrum.  

In designing the taxonomy, we had two main goals. The first goal was to allow researchers 

to better distinguish the level of reproducibility of computational studies by providing clear 

definitions for placing a given study along a reproducibility spectrum. While past researchers 

have also used the concept of a reproducibility spectrum (Peng, 2011), designating studies as 

either reaching low, medium, or high reproducibility, we designed the taxonomy to focus on 

functionality rather than data availability. Our approach views availability as a prerequisite for 

reproducibility rather than a distinguishing characteristic. The second goal of the taxonomy was 

to not only place an analysis along the reproducibility spectrum, but also understanding what 

additional steps are required to advance to the next level in the reproducibility spectrum. 

Through an example application presented in this paper, we demonstrate how research can 

advance an analysis along the spectrum. 

 

2.2. Steps for Creating a Reproducible Analysis 

The second objective in this study was to design a general approach for advancing 

computational analyses common in environmental modelling along the reproducibility spectrum. 

The obvious goal of any modelling study is to get a simulation running on the researcher’s own 

machine. Once this has been achieved, the next step should be to repeat this analysis on a new 

machine. In repeating an analysis on a different machine, the researcher will be forced to 
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overcome potential difficulties that another researcher may face when attempting to replicate the 

study. This step allows the researcher to document steps more clearly and completely by 

overcoming potential problems that another research may face when trying to setup and 

reproduce the study on a different machine. While a researcher must share these resources, 

reproducibility cannot be claimed until a third party has verified that it is possible to reproduce 

an analysis. The more researchers able to verify that an analysis can be reproduced in their own 

computational environment, the more confidence one can have that the work has achieved 

reproducibility.  

While a researcher can make an analysis reproducible with sufficient documentation and 

sharing of digital resources, for complex analyses doing so is time consuming, challenging to do 

correctly, and difficult to keep up to date. Figure 1 illustrates this point with a simple example. 

Suppose Researcher A shares completed work in the form of a published article with associated 

code and data. Because the full computational environment capturing the conditions of analysis, 

including all dependencies, is not shared with this study, Researchers B, C, and D must try and 

recreate the computational environment and dependencies on their own. Research B has a 

different operating system, Research C has a different core software system for the analysis, and 

Researcher D has the wrong software dependencies. As a result, none of the researchers are able 

to reproduce the results of the analysis. Without detailed documentation on required software 

dependencies and the broader conditions of analysis, it may not even be clear to Researchers B, 

C, and D why they are unable to reproduce the results of Researcher A. 
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Figure 1. An example of why reproducibility can be challenging due to underlying software 

dependencies and simply sharing data and code is insufficient for achieving computational 

reproducibility.   

 

The following methodology allows Researcher A to better share her analysis in a way that 

can be more easily reproduced. This method emphasizes the use of a container to encapsulate a 

virtual environment and open data repositories for sharing digital resources.  These are critical 

enabling technologies and tools for advancing reproducibility in a research context where the 

software is part of the experiment and the environmental modelling is conducted with research 

simulation models that do not have a standard release schedule and installation package. The 

simulation models used by scientific teams for research within the scientific community are often 
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developed in a bespoke fashion--- often advanced by different research teams, and updated in a 

non-coordinated manner. Thus, unlike commercial simulation software that has more formalized 

release schedules, continuous integration testing, and installers, simply getting some scientific 

software properly installed while also knowing what version of the software is being used is a 

nontrivial exercise. For such bespoke software, it is increasingly important to snapshot a working 

execution and make the snapshots reproducible for others in different environments. The steps 

illustrated in Figure 2, and described below in a general, model agnostic way, demonstrate this 

need. The Results section includes results when applying of this methodology for a specific 

modelling analysis.  
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Figure 2. General steps necessary for ensuring that reproducibility is achieved. 

 

1.) Researcher A creates the analysis on her local machine and repeats it several times to ensure 

the analysis is working correctly. From here we can say repeatability is achieved.   
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2.) Researcher A moves the analysis to another machine and repeats Step 1. Completing this step 

will allow Researcher A to better understand and document the conditions of analysis so that 

anyone attempting to reproduce the study can also run the analysis on their own 

computational environment.  

3.) Researcher A, acknowledging that it is time consuming to perfectly document the steps 

needed to recreate the conditions of the analysis based on performing Step 2, creates a 

containerized virtual environment that packages the conditions of analysis as a reproducible 

unit. This containerized virtual environment is shared with the community alongside the 

article in an open repository with its own digital object identifier (DOI) and metadata, as 

shown in Figure 3.  

 

 

Figure 3. Details for Step 3 in the method for achieving reproducible analyses where a researcher 

publishes not only the article with associated data, but also a virtual environment that can be run 

using container technology on their own machine. 
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4.) Other researchers download this containerized virtual environment and required input data to 

their own machines to verify that they can obtain Researcher A’s results. The more scientists 

able to reproduce the analysis in their own environment, the more confidence Researcher A 

has that her work has reached what Peng (2011) calls the reproducibility gold standard.  

5.) Once researchers have been able to reproduce the analysis, they may now wish to replicate it 

by using the same analysis but with their own data sets. Because they were first able to 

reproduce the study on their own, they can be more confident in reusing the analysis to build 

from past work and advance their own research. 

 

2.3. Leveraging Advances in Cyberinfrastructure to Create Reproducible Workflows 

The third objective in this study was to effectively leverage cyberinfrastructure to reduce the 

burden scientists have in creating reproducible analyses. Achieving reproducibility remains time 

consuming and tedious due to a gap in technology. Recent advances in the broader information 

technology field can be used to assist researchers in better documenting and sharing code, data, 

metadata, and building a virtual environment to achieve reproducibility. Some scientists have 

begun using these new tools and approaches with the aim of making their research more 

reproducible, and they have discussed the reproducibility of their research in their published 

articles (Ivie and Thain, 2018; Sadler et al., 2018; Woodson et al., 2018). In these studies, online 

data repositories such as GitHub, Figshare, Zenodo, and HydroShare are becoming more 

commonly used by scientists to describe and share their data and code. Many of these 

repositories provide the ability to publish digital resources through their system assigning a 

digital object identifier (DOI) to the resource that can be used to uniquely identify that resource 

in perpetuity. Containers and virtual environments are still uncommon tools in scientific studies, 
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perhaps because of their steeper learning curve for use in computational modelling and analysis 

studies. 

While there are a growing number of tools available to scientists to make their work more 

reproducible and replicable, we focus on two specific systems: (i) the Sciunit tool 

(http://sciunit.run) and (ii) the HydroShare online repository (http://www.hydroshare.org). The 

Sciunit tool is software that enables researchers to create virtual environments for reproducing 

their computational analyses with minimal user interaction. Sciunit advances the concept of a 

research object, which is an automatic aggregation of digital artifacts such as code, data, scripts, 

and temporary experiment results that together with any research paper provide an authoritative 

and far more complete record of a piece of research (Bechhofer et al., 2013). HydroShare is an 

open repository for sharing hydrologic data and models as digital resources, including detailed, 

hydrologic-specific resource metadata (Horsburgh et al., 2015; Tarboton and Idaszak, 2015).  

We showed in prior work how combining these two tools, Sciunit and HydroShare, can 

improve reproducibility for computational analyses (Essawy et al., 2018). We showed how 

Sciunit can be used to create containerized virtual environments, but lacks mechanisms for 

sharing them within a community of users. HydroShare, on the other hand, allows for sharing 

codes, data, and descriptive metadata, but it does not address the challenge of packaging virtual 

environments for reproducing complex computational analyses. Building from this research, here 

we extend this work to the more complete taxonomy for describing repeatable, runnable, 

reproducible, and replicable studies, illustrating how an environmental modelling study advances 

along this taxonomy and how tools like Sciunit and HydroShare enable studies to move from 

being repeatable, to runnable, then reproducible, and finally replicable.  

Applying the general five-step procedure outlined in the prior section, the Sciunit tool is 

used to capture, encapsulate, and make the model execution portable by creating Sciunit 
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containers while the HydroShare repository is used to share the resulting Sciunits and other key 

digital resources in the analysis. More specifically, the Sciunit tool is used to automatically 

containerize (or package) and share the virtual environment to HydroShare as a sciunit and then 

a HydroShare compute platform such as CUAHSI JuypterHub or CyberGIS Jupyter for Water is 

used to interact with the shared Sciunit through a Jupyter notebook (Figure 4). These JupyterHub 

implementations, because of their ability to read and write data from and to HydroShare, 

provides a powerful analysis and model execution environment (Bandaragoda et al., 2019). The 

advantage of this methodology is: 1) it reduces the time necessary to download, install, and run 

the workflow on local machines, 2) scientists don't face dependency issues such as missing or 

out-of-date dependencies, and 3) it avoids local computing restraints that scientists face such as 

limited memory or storage.  

 

 

Figure 4. Interaction between the Sciunit Tool and HydroShare. 

 

2.4. Example Application using the SUMMA Hydrologic Model 

An example application is presented to illustrate how the five-step procedure presented in 

the prior section can be applied with Sciunit and HydroShare for an environmental modelling 
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analysis. The example uses the Structure for Unifying Multiple Modelling Alternatives 

(SUMMA) hydrologic modelling framework to simulate different hydrologic hypotheses and 

show how to reproduce the model simulation process (Clark et al., 2015a, 2015b).  The SUMMA 

structure enables users to implement different modelling approaches with controlled and 

systematic analysis and provide insight for the advanced unified modelling framework. Figure 5 

shows the SUMMA model construction and process flexibility. The SUMMA structure consists 

of a core (solver) with outer branches and produces a numerical solution with conservation 

equation from water and energy flux and state. The SUMMA model provides flexibility to 

evaluate the interplay between the choice of model parameters and the choice of process 

parameterizations, separating modelling decisions on process representation from their numerical 

implementation, and providing capabilities to experiment with different numerical solvers.  

 

Figure 5. The SUMMA Model Construction and Process Flexibility (Clark et al., 2015a, 2015b). 
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Building from four synthetic and nine field study test cases of SUMMA described in 

Clark et al. (Clark et al., 2015b), we selected and automated two of the test cases (1) Field Data 

Test Case 5: Snow interception at Umpqua and (2) Field Data Test Case 7: Sensitivity of 

evapotranspiration to the stomatal resistance parameterization (Aspen stand at Reynolds 

Mountain East). These two test cases are described by in Clark et al. (Clark et al., 2015b) and the 

digital resources needed to reproduce the paper are available online. However, the test cases 

were not reproducible as defined by the National Academies report because the conditions of 

analysis were not completely described and documented. We demonstrate in the Results section 

how following the five-step procedure described earlier and using the Sciunit and HydroShare, 

one can move the SUMMA analysis from being repeatable, to being runnable, and finally to 

being reproducible and replicable.   

 

3. Results  

3.1. Taxonomy for Reproducibility in Environmental Modelling 

The taxonomy resulting from this work organizes the reproducibility spectrum into four 

levels: repeatability, runnability, reproducibility, and replicability (Figure 6). These levels 

represent a progression where the base level, repeatability, is the first step to achieve, followed 

by runnability, reproducibility, and, finally, replicability. The terms reproducibility and 

replicability are consistent with those proposed in the National Academies report. We argue that 

the two lower-level concepts, repeatability and runnability, are needed as precursors to correctly 

capture the steps along the path to reproducibility and replicability. The four levels are defined 

below and illustrated more fully later in this section using the SUMMA model as a case study. 
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Figure 6. The reproducibility taxonomy for complex computational studies comprising a 

progression that requires increased effort and time from repeatability, through runnability, 

reproducibility, and replicability. 

 

• Repeatability is achieved upon obtaining consistent results using the same input data, 

computational steps, methods, and code on the original researcher’s machine. This level is 

normally achieved in scientific papers; the author is able to rerun the analysis on his or her 

own computer to obtain the analysis results. However, it does require detailed documentation 

and benefits greatly from automation of steps to make repeating the analysis in a consistent 

way possible. 
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• Runnability is achieved when the author of the research can obtain consistent results using 

the same input data, computational steps, methods, code and conditions of analysis on a new 

machine. Achieving this level requires thought and care to document the conditions of the 

analysis, meaning software dependencies and related details of the computational 

environment, in such a way that the analysis can be repeated correctly in a new computing 

environment.  

• Reproducibility is achieved when a new researcher, not an original author of the analysis, is 

able to reproduce the analysis in their own computational environment. Achieving this step 

shows that one is able to achieve the National Academies report definition of reproducibility: 

“obtaining consistent results using the same input data, computational steps, methods, and 

code, and conditions of analysis.”   

• Replicability is the higher-level concept defined in the National Academies report as 

“obtaining consistent results across studies aimed at answering the same scientific question, 

each of which has obtained its own data.” Replicability also allows scientists not involved in 

the original study to build from and expand on research once they are first able to reproduce 

that research.  

Note that the concept of results being consistent, used in these definitions, adopted from the 

National Academy report is less rigid than exact numerical equivalence.  Rather it involves some 

degree of evaluation as to how close is good enough, acknowledging numerical differences that 

arise on different platforms. This concept is addressed more fully in the discussion section of the 

paper. 
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3.2. Modelling Example Case Study: Repeating the SUMMA Analysis 

In this section we present a modelling example case study that steps through the four levels 

of the taxonomy using the general methodology described in Section 2.2 applied for the specific 

environmental modelling use case described in Section 2.4 that leverages the SUMMA model. 

The first step is for the author to repeat an analysis on her own machine and obtain 

consistent results.  We did this for Test Case 7: Sensitivity of evapotranspiration to the stomatal 

resistance parameterization (Aspen stand at Reynolds Mountain East described in  Clark et al. 

(Clark et al., 2015b). For this test case, we created an automated analysis using the SUMMA 

Python wrapper software pySUMMA (Choi et al., 2018) to model the sensitivity of 

evapotranspiration to the stomatal resistance parameterization for the Aspen stand at the 

Reynolds Mountain East study site. We installed the SUMMA model by following the steps in 

the SUMMA Installation documentation 

(https://summa.readthedocs.io/en/latest/installation/SUMMA_installation/).  

After we installed the SUMMA model, we developed a workflow using pySUMMA to 

model the impact of stomatal resistance parameterizations on total evapotranspiration. Figure 7 

shows the script used to set up and run the Test Case 7 SUMMA model simulation using 

pySUMMA and create a visualization of the model. This script shows how a SUMMA model 

can be initialized, how the model configuration can be adjusted with single lines (e.g., setting the 

stomata resistance function to ‘Jarvis’), how SUMMA can be executed, and how the results can 

be visualized all from a single Python script.  While these steps can be completed without 

pySUMMA through manipulating input files for a SUMMA model directly, pySUMMA acts as a 

wrapper for these text files and as a means for documenting a model configuration for a specific 

experiment.  
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Figure 7. The script “simulation_object.py” is used to run SUMMA Test Case 7 model 

simulation and create a visualization.  

The result from running the script shown in Figure 7 shows the plot generated from the 

analysis. This can be compared to the plot that appears in Clark et al. (Clark et al., 2015b) to 

gauge if the results are consistent. In this case, consistent results were achieved and, therefore, 

we can conclude that the analysis has reached the repeatable stage.  We are assuming for the sake 

of this paper that we are playing the role of the original author in this study as the original paper 

did not provide details on repeatability.   

 

3.3. Making the Analysis Runnable using Sciunit and CUAHSI HydroShare JupyterHub 

Once the analysis was repeated, the next step was to make the analysis runnable on a 

separate machine. To do this, we made use of the Sciunit tool to package the analysis along with 

its dependencies and provenance metadata.  Figure 8 shows the steps to package the workflow 

analysis using the Sciunit tool. These steps are: 1.) create a new Sciunit “MyAnalysis.” This will 

create a virtual directory, which will include the captured execution of the computational 

workflow with all the dependencies and provenance metadata associated with it; 2.) open the 

“MyAnalysis” Sciunit to begin working in the desired Sciunit; 3) execute the code required to be 
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packaged as a virtual environment in order to repeat the analysis; 4.) show the details of the 

virtual environment encapsulated in a Sciunit package; 5.) place the packaged Sciunit on 

HydroShare as a digital resource, and 6.) test the runnability of the package by executing the 

Sciunit on the CUAHSI HydroShare JupyterHub app linked to HydroShare and configured to 

open and execute scripts acting on content from Resources in HydroShare (Note: To run a 

Sciunit again requires the Sciunit tool, which is installed on CUAHSI HydroShare JupyterHub). 

This initial test of this execution by us (playing the role of the original author) on the separate 

JupyterHub app computer demonstrating runnability is detailed in the following paragraph.  

Once the Sciunit is shared on HydroShare, users of HydroShare can interact and execute the 

shared Sciunit from HydroShare using JupyterHub, thereby achieving reproducibility.  Doing so 

would achieve the reproducibility gold standard (Peng, 2011).  
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Figure 8. The steps followed to package the workflow analysis using the Sciunit tool. 

 

The CUAHSI HydroShare JupyterHub app is a deployment of JupyterHub (Tarboton et al., 

2018) hosted at http://jupyter.cuahsi.org that is part of the overall HydroShare 

cyberinfrastructure linked to, but separate from, the HydroShare repository 

(www.hydroshare.org). JupyterHub enables Literate programming, an approach that describes 

the written program so that the user can understand it (Piccolo and Frampton, 2016). Literate 

programing allows the researcher to split the code into fragments that can be executed 
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independently, and it enables the researcher to organize the fragments in a way that is easily 

understandable. Jupyter gives scientists the capability of combing data and visualizations in 

powerful ways when communicating their research (Pérez and Granger, 2007).  Scientists use 

Jupyter notebooks as a supplement to the published manuscripts so that others can replicate their 

analysis and re-generate the published results. For example, Sadler et al., (2018) took a step 

toward creating reproducible research in the field of hydrology by publishing all codes and data 

on HydroShare. Additionally, Sadler et al., 2018 used the Jupyter functionality within 

HydroShare to create notebooks for some of the scripts used in his study, and he shared these 

notebooks with other researchers so they could interact with the notebooks using Jupyter.  

Step 5 resulted in a HydroShare resource named MyAnalysis (Figure 9) (Choi, 2020). To 

run this in JupyterHub, the user would first click the “Open with” button from the resource’s 

landing page in HydroShare and select CUAHSI JupyterHub.  This step will open an instance of 

JupyterHub where the user can reproduce the workflow saved in the Sciunit package. Figure 10 

shows these steps for reproducing the analysis with commands issued through the Jupyter user 

interface. The user must issue Sciunit commands by using the “!” expression in Jupyter. The 

sciunit open MyAnalysis command will open the Sciunit. The sciunit show command will 

show the latest packaged experiment within “MyAnalysis” Sciunit. While the sciunit list 

command will list the all the packaged experiments within “MyAnalysis” Sciunit. Finally, the 

sciunit repeat e1 command will rerun the experiment 1 (e1) analysis on the host machine. 

Examining the plot generated validates that results are consistent with the original work and 

demonstrates runnability. 
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Figure 9. Screen shot of HydroShare Resource landing page holding the Sciunit package. 

CUAHSI JupyterHub appears under the “Open with” button. 

 

  

Figure 10. The steps taken on Jupyter notebook to repeat the analysis using the Sciunit tool 

commands. 
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3.4. Reproducing the SUMMA Analysis using Sciunit and HydroShare 

Once runnability has been validated, the original researcher can make the HydroShare 

resource holding the Sciunit package public and accessible to other interested researchers.  It can 

also be permanently published and be given a citable DOI. A new researcher can then access this 

resource to reproduce the analysis. One way the new researcher can do this is to also use the 

CUAHSI HydroShare JupyterHub app, essentially repeating the validation of runnability done by 

the original author above. This is, however, only a weak demonstration of reproducibility, 

because it uses the same environment (CUAHSI HydroShare JupyterHub) where runnability was 

tested.   

The following steps describe how other researchers can reproduce the analysis on their 

own computer using the Sciunit package shared on HydroShare, a stronger test for 

reproducibility. These steps assume the new machine has Sciunit installed but  makes no 

additional assumptions of software availability on the new machine. 1.) Download the Sciunit 

resource from HydroShare. 2.) Navigate to the location where the Sciunit resides. 3.) Use the 

command line to unpack and initiate the selected Sciunit using sciunit open. 4.) Use the 

command sciunit list to see what packages are within the Sciunit and which package will be 

used in the process (since some Sciunits may contain multiple packages, for example, Sciunit 

may use the same datasets but employ different methods). 5.) Repeat the “e1” package to 

generate the analysis. 6.) Once the analysis is repeated, a directory will be created with a copy of 

the analysis and all associated files. Examining the plot generated validates that results are 

consistent with the original work and demonstrates reproducibility. 
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3.5. Replicating the SUMMA Analysis 

Once the user achieves reproducibility following the steps outlined in the prior section, the 

user is now in a position to replicate the work by modifying the Sciunit package and running it 

using a new dataset or code aimed at answering the same research question using the different 

data, or exploring whether a different model or approach to the analysis produces results that 

support the conclusions. A different implementation of the model, here may be new code, but the 

same underlying equations or principles, and this would serve to evaluate whether the code and 

solvers actually implement the equations properly. While replicability could be achieved without 

first reproducing another’s work, we suggest that in many cases the path to replicability is best 

traveled by first being able to reproduce past work. This puts a researcher in a better position to 

interpret any differences that may arise and at the same time be more efficient and take 

advantage of and reuse code from the original researchers.    

The steps for achieving replicability within CUAHSI HydroShare JupyterHub using Sciunit 

build off of the steps for reproducibility. Once the five steps needed for reproducing an analysis 

have been completed, the next step is to 1.) navigate to the directory that includes the analysis 

created and edit the script to use different data or a different approach (Figure 11). Next, 2.) the 

user would commit changes and repeat Sciunit execution (package) “e2" with the sciunit given 

command, as shown in Figure 12. After completing these steps, the user has replicated the study 

by creating a copy of a past analysis, changing that analysis’s input data, and rerunning the 

analysis using the new input file. Because all software dependencies are handled by the Sciunit 

tool, the analysis will be reproducible on any machine with a compatible OS and one that has the 

Sciunit client software installed. This same process could be repeated outside of the CUAHSI 

HydroShare JupyterHub environment following a similar procedure to the one described in 

Section 3.4. 
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 Figure 11. The modified software resulting from the replication analysis.  

 

 

Figure 12. Commit changes to the software into the Sciunit and repeating the “e2” (experiment 

2) run.  

 

4. Discussion 

4.1. Defining and Assuring Consistent Results 

The National Academies report’s definition for reproducibility includes the phrase 

“consistent results,” acknowledging that achieving reproducibility does not require obtaining the 
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exact same results as the original study. Very often in computational modelling, numerical 

differences due to a variety of factors including rounding and precision mean that the output 

from an analysis does not have to be exactly the same as prior runs of the analysis, but it should 

be “close enough.” Furthermore, some computational modelling strategies are stochastic so 

achieving the exact result from a prior run is impossible. Obviously, close enough is a relative 

measure that requires expert judgment based on the specific requirements of the study and the 

tolerance for differences in numerical results. For this reason, it is a more difficult standard in 

some ways that achieving the exact results from a prior analysis. 

The “consistent results” requirement also points to the complicating factor that it is not 

necessary to have an exact recreation of the computational environment in order to achieve 

reproducibility. Thus, while we made the claim at the start of this paper that software 

dependency differences could be the reason for an inability to reproduce a prior computational 

study (see Figure 1), this may not always be true. For example, consider the case illustrated in 

Figure 13 which presents a more detailed view of case described in Figure 1. In this more 

detailed view, two researchers, A and B, have slight differences in their computational 

environments yet runnability can still be achieved if the results from Researcher B's setup 

(different libraries and operating system) can produce results that are close enough to Researcher 

A’s results. There is risk here, however, because just because the results are close enough for one 

run (reproducibility), there is no guarantee that a slight change in the input data could still 

produce results that are close enough for some other run (replication). However, there is value in 

allowing for software inconsistencies because, if setup B is close to the setup A, setup B has 

migrated the model to later versions of dependency software. There clearly needs to be the 

ability to move to new software versions while also achieving reproducibility along the way. At 

the same time, it is well known that some software mitigations, like the migration from GDAL 
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v2 to GDAL v3 illustrated in Figure 13, can cause breaking changes, so documenting these 

dependency changes is important. To test for possible breaking changes, ideally the analysis is 

run across a set of different input data to increase confidence in reproducibility as new software 

updates are incorporated into the analysis.  

 

 

Figure 13. An example for how runnability can be achieved if the results from researcher B setup 

is different than the setup of researcher A 

 

4.2. Limitations and Remaining Challenges 

While computational resources (data, code, and environment) are important, these alone are 

insufficient to ensure reproducibility. The researcher must also include documentation and 

metadata about the software they use in order to run their programs correctly. Documentation in 

the journal article itself is often lacking and must be accompanied with user manuals or other 

resources, including Jupyter notebooks that more fully describe the computational analysis. 

Metadata is needed to uniquely identify computational resources within the growing ecosystem 
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of data and software. While metadata for data is well established, recent efforts have been made 

towards capturing software metadata. OntoSoft is an example that provides an ontology and 

portal for addressing the challenge of capturing metadata for scientific software in a formal way 

(Gil et al., 2016, 2015).  In hydrology, the HydroShare system can be used to describe metadata 

for data and models. HydroShare defines two key computational modelling concepts: a model 

program and a model instance. The model program is the software for executing the model and 

the model instance is the input files required for executing the model (Horsburgh et al., 2015; 

Morsy et al., 2017, 2014; Tarboton et al., 2014).  

This study focuses on studies where input data has already been prepared for an analysis and 

all required data for running the analysis are stored locally (i.e., there are no references to 

external data or services). Once this is the case, the remaining goal is to perform model 

simulations and analyze the model output as described in this paper. Following this work, a next 

step needed to achieve reproducibility in complex computational studies is to have workflows 

that automate the end-to-end process of reproducing the analysis from raw data to publication-

ready figures and tables. The general workflow should automate the steps to: 1) obtain the raw 

data published in an online repository, preferably from a published, immutable external resource 

with a DOI for reproducibility, 2) run one or more scripts needed to prepare the raw data for the 

model, 3) run the model using the prepared datasets, and 4) post-process the model output to 

generate publication ready figures and tables. This four-step workflow should be containerized 

into a virtual environment that can be repeated by other researchers. Figure 14 shows the 

proposed approach to achieve reproducible research.  
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Figure 14. A proposed approach to achieve reproducible research.  

Some efforts have already been made to create generic processes to automate the larger 

workflow required for hydrologic modelling. One example is work using the Variable Infiltration 

Capacity (VIC) hydrological model, a macro-scale hydrologic model that applies water and 

energy balances to simulate terrestrial hydrology at a regional level (Liang et al., 1996). The VIC 

model, like many hydrologic models, requires significant effort to prepare its input data. Billah et 

al. (2016) demonstrated a single-step process to create a workflow that automated the preparation 

of the input data for the VIC. While workflow software can help to better capture the 

provenance, it is still important to have sufficient metadata for each step within the workflow 

(Essawy et al., 2017). An example of workflows focused on metadata capture is work using 

MODFLOW-NWT as a demonstration model (Essawy et al., 2018). The MODFLOW-NWT is a 

version of the United States Geological Survey's groundwater model, MODFLOW (Niswonger 

et al., 2011). The work done for the MODFLOW-NWT, because it leverages the Sciunit concept 

provided through the GeoTrust project, improves reproducibility in the way it guarantees the 

replicability of research. Because this workflow is automated, the user is unable to change the 

parameters of the workflow execution, and all data run through this workflow will be executed 

according to the same parameters specified by the automated workflow. Work is needed to 

merge these ideas and concepts into a complete end-to-end workflow for repeatable, runnable, 

reproducible, and replicable environment modelling that stretches from data preparation, to 

model execution, to post-processing of model outputs, all containerized, well documented with 
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appropriate metadata, easy to understand and reuse, and discoverable through online data 

repository systems.   

 

5. Conclusions 

This research has shown a path to achieving reproducibility and replicability of 

environmental modelling studies by first providing a more formal taxonomy that defines studies 

as being repeatable, runnable, reproducible, or replicable.  After defining this taxonomy, we 

focused on a methodology that uses this taxonomy in describe steps needed to move research 

along the spectrum from being repeatable to being replicable. Using a hydrologic modelling 

analysis as an example, we demonstrate these steps and highlight the important role of containers 

and software tools that enable scientists to use containers in achieving reproducible and 

replicable studies.  

The hydrologic modelling analysis demonstrating this process uses the SUMMA modelling 

framework and different parameterizations of stomatal resistance to estimate total 

evapotranspiration for a study site. We demonstrated how to achieve the steps along the 

taxonomy with existing cyberinfrastructure software tools as follows. 1.) Repeating an analysis 

on the same computer with the same inputs as its original application. 2.) Running the same 

analysis on another machine and getting consistent results by packaging it as a container using 

the Sciunit software. 3.) Reproducing the analysis by sharing it to HydroShare and allowing 

other researchers to re-execute it through the literate programing JupyterHub. 4.) Replicating the 

analysis by allowing researchers to easily change the shared Sciunit package to use their own 

data or modelling ideas and then repeating the 1-4 sequence of steps.   

While this work moves closer to achieving reproducible and replicable environmental 

modelling studies, there are still remaining limitations and challenges to be addressed. First, it is 
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difficult to know precisely when an analysis has been reproduced because achieving this goal 

does not require an exact match of the computational environment but rather requires a similar 

computational environment. That is, perhaps some dependences have been updated to new 

versions, but it is essentially the same computational environment and set up. Therefore, the 

results may not be exactly the same but are consistent with results in the prior analysis run. 

Creating automated tools for judging this potentially vague criteria of “consistent results” for 

reproducibility remains a challenge. Literate programming tools like Jupyter are a major step 

forward in providing documentation alongside analysis, but more work is needed to better 

document computational analyses in ways that foster reproducibility and replicability. This is 

especially true for efforts to document and automate end-to-end workflows that operate from raw 

input data as inputs, create model input files, execute models, and produce publication-ready 

publications. Capturing these entire end-to-end workflows in a way that can be not only 

reproduced and replicated by others, but also easy to understand and reuse, remains an open 

challenge.  

 

6. Acknowledgements  

We gratefully acknowledge the National Science Foundation for support of this work under 

awards ICER-1639759, ICER-1661918, ICER-1540901, and OAC-1664061.   

 

7. References 

Baker, M., 2016. Muddled meanings hamper efforts to fix reproducibility crisis. Nature. 

https://doi.org/10.1038/nature.2016.20076 

Baker, M., Penny, D., 2016. Is there a reproducibility crisis? Nature. 

https://doi.org/10.1038/533452A 



37 
 

Bandaragoda, C., Castronova, A., Istanbulluoglu, E., Strauch, R., Nudurupati, S.S., Phuong, J., 

Adams, J.M., Gasparini, N.M., Barnhart, K., Hutton, E.W.H.H., Hobley, D.E.J.J., Lyons, 

N.J., Tucker, G.E., Tarboton, D.G., Idaszak, R., Wang, S., 2019. Enabling Collaborative 

Numerical Modeling in Earth Sciences using Knowledge Infrastructure. Environ. Model. 

Softw. 120, 104424. https://doi.org/https://doi.org/10.1016/j.envsoft.2019.03.020 

Bell, A.W., Deutsch, E.W., Au, C.E., Kearney, R.E., Beavis, R., Sechi, S., Nilsson, T., Bergeron, 

J.J.M., Beardslee, T.A., Chappell, T., Meredith, G., Sheffield, P., Gray, P., Hajivandi, M., 

Pope, M., Predki, P., Kullolli, M., Hincapie, M., Hancock, W.S., Jia, W., Song, L., Li, L., 

Wei, J., Yang, B., Wang, J., Ying, W., Zhang, Y., Cai, Y., Qian, X., He, F., Meyer, H.E., 

Stephan, C., Eisenacher, M., Marcus, K., Langenfeld, E., May, C., Carr, S.A., Ahmad, R., 

Zhu, W., Smith, J.W., Hanash, S.M., Struthers, J.J., Wang, H., Zhang, Q., An, Y., Goldman, 

R., Carlsohn, E., van der Post, S., Hung, K.E., Sarracino, D.A., Parker, K., Krastins, B., 

Kucherlapati, R., Bourassa, S., Poirier, G.G., Kapp, E., Patsiouras, H., Moritz, R., Simpson, 

R., Houle, B., LaBoissiere, S., Metalnikov, P., Nguyen, V., Pawson, T., Wong, C.C.L., 

Cociorva, D., Yates, J.R., Ellison, M.J., Lopez-Campistrous, A., Semchuk, P., Wang, Y., 

Ping, P., Elia, G., Dunn, M.J., Wynne, K., Walker, A.K., Strahler, J.R., Andrews, P.C., 

Hood, B.L., Bigbee, W.L., Conrads, T.P., Smith, D., Borchers, C.H., Lajoie, G.A., Bendall, 

S.C., Speicher, K.D., Speicher, D.W., Fujimoto, M., Nakamura, K., Paik, Y.K., Cho, S.Y., 

Kwon, M.S., Lee, H.J., Jeong, S.K., Chung, A.S., Miller, C.A., Grimm, R., Williams, K., 

Dorschel, C., Falkner, J.A., Martens, L., Vizcaíno, J.A., 2009. A HUPO test sample study 

reveals common problems in mass spectrometry-based proteomics. Nat. Methods 6, 423–

430. https://doi.org/10.1038/nmeth.1333 

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, 

R.W., 2016. Using a data grid to automate data preparation pipelines required for regional-



38 
 

scale hydrologic modeling. Environ. Model. Softw. 78, 31–39. 

https://doi.org/10.1016/j.envsoft.2015.12.010 

Brinckman, A., Chard, K., Gaffney, N., Hategan, M., Jones, M.B., Kowalik, K., Kulasekaran, S., 

Ludäscher, B., Mecum, B.D., Nabrzyski, J., Stodden, V., Taylor, I.J., Turk, M.J., Turner, 

K., 2019. Computing environments for reproducibility: Capturing the “Whole Tale.” Futur. 

Gener. Comput. Syst. 94, 854–867. https://doi.org/10.1016/j.future.2017.12.029 

Choi, Y.-D., 2020. MyAnalysis | CUAHSI HydroShare [WWW Document]. HydroShare. URL 

https://www.hydroshare.org/resource/7d1403636fd3444c87e3c5b40b000b91/ (accessed 

4.28.20). 

Chuah, J., Deeds, M., Malik, T., 2020. Documenting Computing Environments for Reproducible 

Experiments, in: Ian Foster, Gerhard R. Joubert, Luděk Kučera, Wolfgang E. Nagel, F.P. 

(Ed.), Volume 36: Parallel Computing: Technology Trends. IOS Press, pp. 756–765. 

https://doi.org/10.3233/APC200106 

Clark, M.P.M.P., Nijssen, B., Lundquist, J.D.J.D., Kavetski, D., Rupp, D.E.D.E., Woods, 

R.A.R.A., Freer, J.E.J.E., Gutmann, E.D.E.D., Wood, A.W.A.W., Brekke, L.D.L.D., 

Arnold, J.R.J.R., Gochis, D.J.D.J., Rasmussen, R.M.R.M., 2015a. A unified approach for 

process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res. 51, 2498–

2514. https://doi.org/10.1002/2015WR017198 

Clark, M.P.M.P., Nijssen, B., Lundquist, J.D.J.D., Kavetski, D., Rupp, D.E.D.E., Woods, 

R.A.R.A., Freer, J.E.J.E., Gutmann, E.D.E.D., Wood, A.W.A.W., Gochis, D.J.D.J., 

Rasmussen, R.M.R.M., Tarboton, D.G.D.G., Mahat, V., Flerchinger, G.N.G.N., Marks, 

D.G.D.G., 2015b. A unified approach for process-based hydrologic modeling: 2. Model 

implementation and case studies. Water Resour. Res. 51, 2515–2542. 

https://doi.org/10.1002/2015WR017200 



39 
 

Easterbrook, S.M., 2014. Open code for open science? Nat. Geosci. 

https://doi.org/10.1038/ngeo2283 

Essawy, B.T., Goodall, J.L., Xu, H., Gil, Y., 2017. Evaluation of the OntoSoft Ontology for 

describing metadata for legacy hydrologic modeling software. Environ. Model. Softw. 92, 

317–329. https://doi.org/10.1016/j.envsoft.2017.01.024 

Essawy, B.T., Goodall, J.L., Zell, W., Voce, D., Morsy, M.M., Sadler, J., Yuan, Z., Malik, T., 

2018. Integrating scientific cyberinfrastructures to improve reproducibility in computational 

hydrology: Example for HydroShare and GeoTrust. Environ. Model. Softw. 105, 217–229. 

https://doi.org/10.1016/j.envsoft.2018.03.025 

Garijo, D., Kinnings, S., Xie, Li, Xie, Lei, Zhang, Y., Bourne, P.E., Gil, Y., 2013. Quantifying 

reproducibility in computational biology: The case of the tuberculosis drugome. PLoS One 

8. https://doi.org/10.1371/journal.pone.0080278 

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee, 

H., Mills, H.J., Oh, J.H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X., 

2016. Toward the Geoscience Paper of the Future: Best practices for documenting and 

sharing research from data to software to provenance. Earth Sp. Sci. 

https://doi.org/10.1002/2015EA000136 

Gil, Y., Ratnakar, V., Garijo, D., 2015. OntoSoft: Capturing scientific software metadata, in: 

Proceedings of the 8th International Conference on Knowledge Capture, K-CAP 2015. 

https://doi.org/10.1145/2815833.2816955 

Goodman, S.N., Fanelli, D., Ioannidis, J.P.A., 2018. What does research reproducibility mean?, 

in: Getting to Good: Research Integrity in the Biomedical Sciences. pp. 96–102. 

https://doi.org/10.1126/scitranslmed.aaf5027 

Gorgolewski, K.J., Poldrack, R.A., 2016. A Practical Guide for Improving Transparency and 



40 
 

Reproducibility in Neuroimaging Research. PLoS Biol. 14, 1–13. 

https://doi.org/10.1371/journal.pbio.1002506 

Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., McKeown, N., 2012. Reproducible Network 

Experiments Using Container-based Emulation, in: Proceedings of the 8th International 

Conference on Emerging Networking Experiments and Technologies, CoNEXT ’12. ACM, 

New York, NY, USA, pp. 253–264. https://doi.org/10.1145/2413176.2413206 

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.J., 

Tarboton, D.G., 2015. Hydroshare: Sharing Diverse Environmental Data Types and Models 

as Social Objects with Application to the Hydrology Domain. JAWRA J. Am. Water 

Resour. Assoc. 52, 873–889. https://doi.org/10.1111/1752-1688.12363 

Hothorn, T., Leisch, F., 2011. Case studies in reproducibility. Brief. Bioinform. 12, 288–300. 

https://doi.org/10.1093/bib/bbq084 

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., Arheimer, B., 2016. Most computational 

hydrology is not reproducible, so is it really science? Water Resour. Res. 52, 7548–7555. 

https://doi.org/10.1002/2016WR019285 

Ioannidis, J.P.A., Allison, D.B., Ball, C.A., Coulibaly, I., Cui, X., Culhane, A.C., Falchi, M., 

Furlanello, C., Game, L., Jurman, G., Mangion, J., Mehta, T., Nitzberg, M., Page, G.P., 

Petretto, E., Van Noort, V., 2009. Repeatability of published microarray gene expression 

analyses. Nat. Genet. 41, 149–155. https://doi.org/10.1038/ng.295 

Ivie, P., Thain, D., 2018. Reproducibility in scientific computing. ACM Comput. Surv. 

https://doi.org/10.1145/3186266 

Kjeldgaard, L., 2020. smaakage85/dockr: create lightweight docker image for an R package 

[WWW Document]. URL https://github.com/smaakage85/dockr (accessed 4.28.20). 

Knoth, C., Nüst, D., 2017. Reproducibility and practical adoption of GEOBIA with open-source 



41 
 

software in Docker containers. Remote Sens. 9, 290. https://doi.org/10.3390/rs9030290 

Kurtzer, G.M., Sochat, V., Bauer, M.W., 2017. Singularity: Scientific containers for mobility of 

compute. PLoS One 12, e0177459. https://doi.org/10.1371/journal.pone.0177459 

Liang, X., Lettenmaier, D.P., Wood, E.F., 1996. One-dimensional statistical dynamic 

representation of subgrid spatial variability of precipitation in the two-layer variable 

infiltration capacity model. J. Geophys. Res. 101, 21403–21422. 

https://doi.org/10.1029/96JD01448 

Marwick, B., Boettiger, C., Mullen, L., 2018. Packaging Data Analytical Work Reproducibly 

Using R (and Friends). Am. Stat. 72, 80–88. 

https://doi.org/10.1080/00031305.2017.1375986 

Meng, H., Kommineni, R., Pham, Q., Gardner, R., Malik, T., Thain, D., 2015. An invariant 

framework for conducting reproducible computational science. J. Comput. Sci. 9, 137–142. 

https://doi.org/10.1016/j.jocs.2015.04.012 

Merkel, D., 2014. Docker: lightweight Linux containers for consistent development and 

deployment. Linux J. 2014, 2. https://doi.org/10.1097/01.NND.0000320699.47006.a3 

Morsy, M.M., Goodall, J.L., Bandaragoda, C., Castronova, A.M., Greenberg, J., 2014. Metadata 

for describing water models, in: Proceedings - 7th International Congress on Environmental 

Modelling and Software: Bold Visions for Environmental Modeling, IEMSs 2014. pp. 53–

59. https://doi.org/10.13140/2.1.1314.6561 

Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., Rajib, 

M.A., Horsburgh, J.S., Tarboton, D.G., 2017. Design of a metadata framework for 

environmental models with an example hydrologic application in HydroShare. Environ. 

Model. Softw. 93, 13–28. https://doi.org/10.1016/j.envsoft.2017.02.028 

National Academies of Sciences Engineering, Medicine, 2019. Reproducibility and Replicability 



42 
 

in Science. The National Academies Press, Washington, DC. 

https://doi.org/10.17226/25303 

Nekrutenko, A., Taylor, J., 2012. Next-generation sequencing data interpretation: Enhancing 

reproducibility and accessibility. Nat. Rev. Genet. https://doi.org/10.1038/nrg3305 

Niswonger, R.G., Panday, S., Motomu, I., 2011. MODFLOW-NWT , A Newton Formulation for 

MODFLOW-2005, USGS reports. 

Nüst, D., Hinz, M., 2019. containerit: Generating Dockerfiles for reproducible research with R. J. 

Open Source Softw. 4, 1603. https://doi.org/10.21105/joss.01603 

Nüst, D., Konkol, M., Schutzeichel, M., Pebesma, E., Kray, C., Przibytzin, H., Lorenz, J., 2017. 

Opening the publication process with executable research compendia. D-Lib Mag. 23. 

https://doi.org/10.1045/january2017-nuest 

Peng, R.D., 2011. Reproducible research in computational science. Science (80-. ). 

https://doi.org/10.1126/science.1213847 

Pérez, F., Granger, B.E., 2007. IPython: A system for interactive scientific computing. Comput. 

Sci. Eng. 9, 21–29. https://doi.org/10.1109/MCSE.2007.53 

Piccolo, S.R., Frampton, M.B., 2016. Tools and techniques for computational reproducibility. 

Gigascience. https://doi.org/10.1186/s13742-016-0135-4 

Rosenberg, D.E., Filion, Y., Teasley, R., Sandoval-Solis, S., Hecht, J.S., van Zyl, J.E., 

McMahon, G.F., Horsburgh, J.S., Kasprzyk, J.R., Tarboton, D.G., 2020. The Next Frontier: 

Making Research More Reproducible. J. Water Resour. Plan. Manag. 146, 01820002. 

https://doi.org/10.1061/(ASCE)WR.1943-5452.0001215 

Sadler, J.M., Goodall, J.L., Morsy, M.M., Spencer, K., 2018. Modeling urban coastal flood 

severity from crowd-sourced flood reports using Poisson regression and Random Forest. J. 

Hydrol. 559, 43–55. https://doi.org/10.1016/J.JHYDROL.2018.01.044 



43 
 

Stagge, J.H., Rosenberg, D.E., Abdallah, A.M., Akbar, H., Attallah, N.A., James, R., 2019. 

Assessing data availability and research reproducibility in hydrology and water resources. 

Sci. Data 6. https://doi.org/10.1038/sdata.2019.30 

Stagge, J.H.H., Rosenberg, D.E.E., Abdallah, A.M.M., Akbar, H., Attallah, N.A.A., James, R., 

2019. Author Correction: Assessing data availability and research reproducibility in 

hydrology and water resources. Sci. Data 6, 35. https://doi.org/10.1038/s41597-019-0039-0 

Stodden, V., Bailey, D.H., Borwein, J., Leveque, R.J., Rider, W., Stein, W., 2013. Setting the 

Default to Reproducible Reproducibility in Computational and Experimental Mathematics, 

in: ICERM Workshop. p. 19. 

Stodden, V., Miguez, S., Seiler, J., 2015. ResearchCompendia.org: Cyberinfrastructure for 

reproducibility and collaboration in computational science. Comput. Sci. Eng. 17, 12–19. 

https://doi.org/10.1109/MCSE.2015.18 

Tarboton, D.G., Idaszak, R., 2015. HydroShare: Advancing Hydrology through Collaborative 

Data and Model Sharing. iRODS User Gr. Meet. 

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodall, J.L., Band, L.L.E., 

Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D.R., Merwade, 

V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D.R., Goodall, J.L., Band, 

L.L.E., Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D.R., 

2014. Hydro share: Advancing collaboration through hydrologic data and model sharing. 

Proc. - 7th Int. Congr. Environ. Model. Softw. Bold Visions Environ. Model. iEMSs 2014 

1, 23–29. https://doi.org/10.13140/2.1.4431.6801 

Tatman, R., Vanderplas, J., Dane, S., 2018. A Practical Taxonomy of Reproducibility for 

Machine Learning Research. Reprod. ML Work. ICML’18. 

That, D.H.T., Fils, G., Yuan, Z., Malik, T., 2017. Sciunits: Reusable research objects, in: 



44 
 

Proceedings - 13th IEEE International Conference on EScience, EScience 2017. Institute of 

Electrical and Electronics Engineers Inc., pp. 374–383. 

https://doi.org/10.1109/eScience.2017.51 

Woodson, C., Hayes, J.H., Griffioen, S., 2018. Towards reproducible research: Automatic 

classification of empirical requirements engineering papers, in: Proceedings of the ACMSE 

2018 Conference. p. 8. https://doi.org/10.1145/3190645.3190689 

Yuan, Z., Ton That, D., Kothari, S., Fils, G., Malik, T., 2018. Utilizing Provenance in Reusable 

Research Objects. Informatics 5, 14. https://doi.org/10.3390/informatics5010014 

 


	A Taxonomy for Reproducible and Replicable Research in Environmental Modelling
	Abstract
	1. Introduction
	2. Methodology
	2.1. Defining a Taxonomy for Reproducible Environmental Modelling
	2.2. Steps for Creating a Reproducible Analysis
	2.3. Leveraging Advances in Cyberinfrastructure to Create Reproducible Workflows
	2.4. Example Application using the SUMMA Hydrologic Model

	3. Results
	3.1. Taxonomy for Reproducibility in Environmental Modelling
	3.2. Modelling Example Case Study: Repeating the SUMMA Analysis
	3.3. Making the Analysis Runnable using Sciunit and CUAHSI HydroShare JupyterHub
	3.4. Reproducing the SUMMA Analysis using Sciunit and HydroShare
	3.5. Replicating the SUMMA Analysis

	4. Discussion
	4.1. Defining and Assuring Consistent Results
	4.2. Limitations and Remaining Challenges

	5. Conclusions
	6. Acknowledgements
	7. References

