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Preface

“Mathematics is the language with which God wrote the universe.”— Galileo

A frequent challenge faced by beginners in machine learning is the extensive background
required in linear algebra and optimization. One problem is that the existing linear algebra
and optimization courses are not specific to machine learning; therefore, one would typically
have to complete more course material than is necessary to pick up machine learning.
Furthermore, certain types of ideas and tricks from optimization and linear algebra recur
more frequently in machine learning than other application-centric settings. Therefore, there
is significant value in developing a view of linear algebra and optimization that is better
suited to the specific perspective of machine learning.

It is common for machine learning practitioners to pick up missing bits and pieces of lin-
ear algebra and optimization via “osmosis” while studying the solutions to machine learning
applications. However, this type of unsystematic approach is unsatisfying, because the pri-
mary focus on machine learning gets in the way of learning linear algebra and optimization
in a generalizable way across new situations and applications. Therefore, we have inverted
the focus in this book, with linear algebra and optimization as the primary topics of interest
and solutions to machine learning problems as the applications of this machinery. In other
words, the book goes out of its way to teach linear algebra and optimization with machine
learning examples. By using this approach, the book focuses on those aspects of linear al-
gebra and optimization that are more relevant to machine learning and also teaches the
reader how to apply them in the machine learning context. As a side benefit, the reader
will pick up knowledge of several fundamental problems in machine learning. At the end
of the process, the reader will become familiar with many of the basic linear-algebra- and
optimization-centric algorithms in machine learning. Although the book is not intended to
provide exhaustive coverage of machine learning, it serves as a “technical starter” for the key
models and optimization methods in machine learning. Even for seasoned practitioners of
machine learning, a systematic introduction to fundamental linear algebra and optimization
methodologies can be useful in terms of providing a fresh perspective.

The chapters of the book are organized as follows:

1. Linear algebra and its applications: The chapters focus on the basics of linear al-
gebra together with their common applications to singular value decomposition, ma-
trix factorization, similarity matrices (kernel methods), and graph analysis. Numerous
machine learning applications have been used as examples, such as spectral clustering,
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kernel-based classification, and outlier detection. The tight integration of linear alge-
bra methods with examples from machine learning differentiates this book from generic
volumes on linear algebra. The focus is clearly on the most relevant aspects of linear
algebra for machine learning and to teach readers how to apply these concepts.

2. Optimization and its applications: Much of machine learning is posed as an opti-
mization problem in which we try to maximize the accuracy of regression and clas-
sification models. The “parent problem” of optimization-centric machine learning is
least-squares regression. Interestingly, this problem arises in both linear algebra and
optimization and is one of the key connecting problems of the two fields. Least-squares
regression is also the starting point for support vector machines, logistic regression,
and recommender systems. Furthermore, the methods for dimensionality reduction
and matrix factorization also require the development of optimization methods. A
general view of optimization in computational graphs is discussed together with its
applications to backpropagation in neural networks.

This book contains exercises both within the text of the chapter and at the end of the
chapter. The exercises within the text of the chapter should be solved as one reads the
chapter in order to solidify the concepts. This will lead to slower progress, but a better
understanding. For in-chapter exercises, hints for the solution are given in order to help the
reader along. The exercises at the end of the chapter are intended to be solved as refreshers
after completing the chapter.

Throughout this book, a vector or a multidimensional data point is annotated with a bar,
such as X or 7. A vector or multidimensional point may be denoted by either small letters
or capital letters, as long as it has a bar. Vector dot products are denoted by centered dots,
such as X - Y. A matrix is denoted in capital letters without a bar, such as R. Throughout
the book, the n x d matrix corresponding to the entire training data set is denoted by
D, with n data points and d dimensions. The individual data points in D are therefore
d-dimensional row vectors and are often denoted by X;...X,. Conversely, vectors with
one component for each data point are usually n-dimensional column vectors. An example
is the n-dimensional column vector 3 of class variables of n data points. An observed value
y; is distinguished from a predicted value g; by a circumflex at the top of the variable.

Yorktown Heights, NY, USA Charu C. Aggarwal
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