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Preface to the
Second Revised Edition

This book has been revised exhaustively according to the global demands of the students.
Attention has been taken to add minor steps between two unmanageable lines where essential so
that the students can understand the subject matter without mental tire.

A number of questions have been added in this edition besides theoretical portion wherever
necessary in the book. Latest question papers are fully solved and added in their respective units.
Literal errors have also been rectified which have been accounted and have come to our
observation. Ultimately the book is a gift to the students which is now error free and user- friendly.
Constructive suggestions, criticisms from the students and the teachers are always welcome

for the improvement of this book.
AUTHORS
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Differential Calculus-I

(MOl INTRODUCTION

Calculus is one of the most beautiful intellectual achievements of human being. The mathematical
study of change motion, growth or decay is calculus. One of the most important idea of differential
calculus is derivative which measures the rate of change of a given function. Concept of derivative
is very useful in engineering, science, economics, medicine and computer science.

2

The first order derivative of y denoted by Z—y, second order derivative, denoted by %
3 x x
third order derivative by % and so on. Thus by differentiating a function y = f(x), n times,
x

d"y

xn

successively, we get the nth order derivative of y denoted by or D"y or y (x). Thus, the process

of finding the differential co-efficient of a function again and again is called Successive
Differentiation.

nth DERIVATIVE OF SOME ELEMENTARY FUNCTIONS

1. Power Function (ax + b)™
Let y = (ax + b)"
v, ma (ax + b)™!

y, = m (m=-1)a* (ax + b)">

y, = m(m-1) (m=2) ... (m —n —1) a" (ax + b)""
Case I. When m is positive integer, then
m(m=-1)...(m-n+1)(m-n)...320

., — (m_n) 3[2|:l tl"(ax + b)m—n
d" M i}
0 Yo = o (ax+Db) —mﬂn(ax"'b)m "
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Case II. When m = n = +ve integer

n

dx"

Y, = %a”(awb)o =|nd' O (ax+b)" = na"

Case III. When m = -1, then

1
y = (x+b'= (ax +b)
O y, = (1) (-2) (-3) ... (-n) a" (ax + b)™™
. d" { 1 } D" na"
dx" lax+b) —  (ax+b)™!
Case IV. Logarithm case: When y = log (ax + b), then
B a
Yo = ax+b
Differentiating (n—1) times, we get
dn—l 4
= q" ax+b
yn a dxn—l( )

Using case 1II, we obtain

n _1yn-1 _ n
4 —{log(ax +b)} i L

O
dx (ax+b)"

2. Exponential Function
(l) Consider y = amx
yl = Ti’l{/‘lmx, logell

y2 — m2amx (logea)2

yn = m" g™ (loge a)n

(11) Consider y = emnx

Putting a = ein above | y = m"e™

3. Trigonometric Functions cos (ax + b) or sin (ax + b)

Let y = cos (ax + b), then
y, = —asin (ax + b) = a cos (ux+b+gj
2
y, = —a*cos (ax + b) = a* cos (ux+b+7nj

31
Yy, = +a sin (ax + b) = @ cos [ux+b+7j
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or

y, = 4 cos (ax+b) = u”cos(ux+b+nn]
dx" 2

n

Similarly, y, = sin(ax +b) = a"sin (ux +b +”2T[]

x}’l

4. Product Functions e* sin (bx + ¢) or e* cos (bx + ¢)
Consider the function y = ¢ sin (bx +c)

y, = e™b cos (bx + c) + ae™ sin (bx + c)

= e™ [b cos (bx + ¢) + a sin (bx + ¢)]

To rewrite this in the form of sin, put

a = rcos @ b=rsin @ we get

Yy, = e™ [rsin @ cos (bx + ¢) + r cos @ sin (bx + c)]

y, = re"sin (bx + ¢ + @)

Here, ro= m and @ = tan™'(b/a)
Differentiating again w.r.t. x, we get
y, = rae™ sin (bx + ¢ + @) + rbe™ cos (bx + ¢ + @)
Substituting for a and b, we get
y, = re™. r cos @sin (bx + ¢ + @) + re™ r sin @ cos (bx + ¢+ @)
y, = r’¢ [cos @sin (bx + ¢ + @) + sin @ cos (bx + ¢ + Q)]
=re“sin(bx +c+ @+ ©

O y, = r* e sin (bx + c+ 20)
Similarly, y, = r’e”sin (bx + ¢ + 3¢)
— dn ax o: — n_ ax _:
y, = e™ sin(bx +c¢) = r"e™ sin (bx+c+n@
dx"

In similar way, we obtain

dn ax
Yo = gpn e cos(bx+c) = pe™ cos (bx+c+nq)
Example 1. Find the nth derivative of %
1-5x+6x
Sol. L L !
ol Let Y= 1osx+ex® T (x-1)Bx-1)
2 3 By Partial fracti
V= 5r-1 3x-1 (By Partial fraction)
O =2 2% — 1) — _ 1)
v, =2 5 @x-17-3 5 @Gx-1)
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0" n 2" (=D n 3" n (D" na"
=2 —|_+1 -3 —|_+1 As @ +b) 1=—|_n+1
(2x-1)" (B3x-1)" dx (ax+Db)
2n+1 3n+1
= -1 " n - .
or yn ( ) |_|:(2x_1)n+1 (3x_1)n+1
Example 2. Find the nth derivative of e™ cos® x sin x.
) (1+cos2x)
Sol. Let Yy = €% cos® x sin x = ¥ -,  sinx
1 ax s 1 ax .
= —e" sinx+——e" (2cos2xsinx)
2 2x2
1 ax _: 1 ax .- .
= —e™sinx+—e™{sin(3x) -sinx}
2 4
le” sinx+le“x sin 3x
or vy =7 1
1 n_ax . 1 n_ax -
O y, = Z[r e™ sin (x+n(p)]+z[r1 e™ sin (3x +n9)].
where v = g2+1;tan@=1/a
and ro= 1/,12.,.9;tar16:3/1/z.
2x
Example 3. If y = tan™ 1-2" find v . (U.PT.U., 2002)
4 2x
Sol. We have y = tan -2
-x
Differentiating y w.r.t. x, we get
1 d( 2x (1-x%)? Eg(l—xz)+4.x2
vy, = 2 B 2= 1 > > _.2\2
1+(2x) dx\1-x (1+x* -2 +4x%) ~ (1-x%)
1-x?
210+x%) 2 2

YoZ @exd)? T a+x?d)  (x+i(x-i)
1[ 1 1
i —,] , (by Partial fractions)
1Lx—1 x+1

Y

Differentiating both sides (n-1) times w.r. to ‘x’, we get

1[ (DD (D) n—l)}
i

I = (x—i)" (x+i)"

N W
( ) Z(In—) [(x_l')_n _(x +l')_1’l]

" n-1
- ()f(ln_) [ (cos®~isin®) ™ —r ™ (cos @ +isin 6 "]

(where x =7 cos 6, 1 = r sin 0)
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D" n-1)r
= = [cosnB+isinn®—cosnO
i

Y, =
0 = tan® [1j
X
x-1
Example 4. If y = x log . Show that
x+1
x-n x+n
_ n-2 - -
b = G I {(x—l)” (x+1)”}
x-1
Sol. We have y = xlo e [log(x — 1) — log (x + 1)]

Differentiating w.r. to ‘x’, we get
1 1

x-1 x+1

Y, = log(x—l)—log(x+1)+x[

=log(x-1)-log (x + 1) + [1+ﬁj+[—1 +Lj
1 -1 N 4L
or yl—og(x—)—og(x+)+x1 i1

Differentiating (n-1) times with respect to x, we get

n-1 n-1 n-1 n-1

Y. = Flog(x-l)- log(x+1)+d - e (x
X

+isinn @]

2(-1)*! | n=1 r" sinnB, where r = /42 +1

(U.PT.U., 2002)

)

x+1

+1) -1

-1 (-)" Y n-1
LD

n-2 n-2 n-1
= d {d log(x — 1)} d — {; log(x +1)} + Sl
X

d n-2 d d n-2 (x_l)n (x+1)n
_ dn—Z ( 1 )_ dn—Z ( 1 )+(_1)n—1ln7_1+(_1)n—1‘n7_1

dx" 2 \x=-1) dx"2\x+1 (x-1)" (x+1)"
O 2 (O 2 ()T n-2 () D) -2
T (x+1)"! (x-1)" (x+1)"

2y x-1  x+1  (n-1) (n-1)
= (-1 |n_2{(x_1)n G+ )’ (@-1) (x”)n}

x—-n x+n }

_1\n—2 _ _
1) @[(H)n o

3

x
Example 5. Find y (0) if y = 2.1

3 3 _ _1\(2
Sol. We have y = X7 _xt o141 (eI +x+1)+ 1

x?-1  x*-1 (x=1)(x+1) x% -1
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B x2+x+1+ 1
or Y2 TGx+1) -1 +1)
x2-1+1 1
x+1 (x=-1)(x+1)

1 1 1 1
y = x+ +— -
x+1 2lx-1 x+1

B L
or Y= 5T alx-1 kel
1[ CD'|n D
D yn = 0 + 2 (x_1)71+1 (x+1);1+1

(-1)”|_n{ 1 1 }

or yn = 2 (x—l)"ﬂ + (x+1);1+1

-1)"
At x=0y, 0 = ( )|_n{ 1 + 1 }

2 (_1);1+1 (1);1+1

) (_1)71 |_1’l

When 7 is odd, y (0) = 5 [1+1]= | n
_1);1 n

When 7 is even, y (0) = ( 5 R [-1+1]=0.

EXERCISE 1.1
2
1. Ify , find nth derivative of y. (U.P.T.U., 2002)

T -1 (x+2)

{Ans. Y, = ()7 n+1 1-21 + >(-1) L: + 4) LZ]
3(x-1)" 9(x-1)" 9(x+2)"
2 —-1)" 2 2
2. Find the nth derivative of ———— . Ans. oDy |1 - 1 ’ +1
(x—a)(x -b) @=b) [(x=a)"" (x=b)"

1+x
3. Find the nth derivative of tan™ [1 — x} .

[Ans. (-1)"!| n—1sin" Bsin n8 where 8 = cot”x |

4. If y = sin® x, find y. {Ans. isin[xﬂag) —i.S".sm[3x+n:ﬂ

X - - c c
5. Find nth derivative of tan™ [;j : [AIIS- -1" Y n-1a""sin" Bsin ne]



DIFFERENTIAL CALCULUS-I 7

6. Find y , where y = e".x. [Ans. e’ (x +n)]
1-x 2(-1)"| n |

1 = - A e a1

7. Find y , when y T+x" { ns (x+1)"™
8. Find nth derivative of log x2. [Ans. 1" n-1 2]
9. Find y, y = ¢ sin’x. {Ans. %[1—5"/ 2 cos(2x +n tan"'2)]

10. If y = cos x - cos 2x - cos 3x find y .

1
[Hint: cos x - cos 2x - cos 3x = Z[(COS 6x +cos 4x +cos 2x +1)]
Ans. 1 6" cos(6x + nE) +4" cos(4x +ni-[) +2" cos(Zx +n—rj
4 2 2 2

(Wl | EIBNITZ'S* THEOREM

Statement. If u and v be any two functions of x, then
D*(u.v) = "¢ D" (u).v + "c,D"'(u). D(v) + "c, D"*(u).D* (v) + ...
+ "¢, D" (u).D'(v) + ... + "c, u. D"v ...(i)
(U.PT.U., 2007)
Proof. This theorem will be proved by Mathematical induction.
Now, D (u.v) = D (u).v +u.D(v) ='c, D (u).0 + 'c, u.D(v) (i)
This shows that the theorem is true for n = 1.
Next, let us suppose that the theorem is true for, n = m from (i), we have
D" (uwv) = "¢, D"(u).v + "c, D™ (u) D (v) + "c, D"*(u) D* (v) + ... + "c,
D™(u) D" (0) + ... + "¢, u D"(v)
Differentiating w.r. to x, we have
D" (o) = "c,{D™*(u) b+ D™ (1) (D(v)} +"c; {D™(u)D(v)+ D" (u)D?(v)}
+ "¢, {D"(u)D?(v)+ D" 2(u). D*(0)}+...+" ¢, { D" (u)D"v + D" (u)D"* (v)}

+ e + "¢ {D(u) D™ (v) +uD™* (v)}

m

But from Algebra we know that "c + "c _ = "'c  and "¢, = ""'c, =1
0 D™(ww) = "D ()@ +("cy +" ¢;)D™ (u) D(v) +("c; +" ¢,)D" u D0
+ ot (M, M,y D™ () D (0)+. " e, u D™ ()

(AS mcm = Cm+1 :1)

* Gottfried William Leibnitz (1646-1716) was born Leipzig (Germany). He was Newton’s rival in
the invention of calculus. He spent his life in diplomatic service. He exhibited his calculating machine in
1673 to the Royal society. He was linguist and won fame as Sanskrit scholar. The theory of determinants
is said to have originated with him in 1683. The generalization of Binomial theorem into multinomial
theorem is also due to him. His works mostly appeared in the journal ‘Acta eruditorum’ of which he
was editor-in-chief.
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|:| DnHl(u,U) — m+1C0Dm+1(u)|])+m+l Cle(u) DD(U) +m+1 Csz_l(u) mZ(v)_'_“.

+™ e D™ () D" (0)+. A" e, u D™ (v) ...(iii)

Therefore, the equation (iif) shows that the theorem is true for n = m + 1 also. But from (2)
that the theorem is true for n = 1, therefore, the theorem is true for (n =1 + 1) i.e., n = 2, and so
for n =2 + 1 = 3, and so on. Hence, the theorem is true for all positive integral value of n.

Example 1. If y*/" + y/™ = 2x, prove that

-y, +@u+xy +@-m?)y =0. (U.PT.U., 2007)
1
Sol. Given v+ T = 2x
|:| y2/m _ 2xy1/m + 1 — 0
or (yl/m)Z _ 2x(y1/m) +1 =0
O 22 - 2xz + 1 V™ = z)

O 7z =

ZERCE Ly e

0 y1/m - xi\/xz——l 0 Y= [x + \/xz—l]m (1)

Differentiating equation (i) w.r.t. x, we get

et —1]" {11 2 }: v 1]’

y =
1 2Vx? -1 Vat-1

m
H o= 2—y1 Oy Va2 -1=my

x2 -

or yr (> =1) = miy? (i)
Differentiating both sides equation (if) w.r.t. x, we obtain
2y y,(* = 1) + 2y = 2m* yy,

O vy, =1 +xy, -my = 0

Differentiating n times by Leibnitz's theorem w.r.t. x, we get
D" (y,) - (x*=1) + "c, D"'y,-D*(x* = 1) + "c,D"?y,D*(x’~ 1) + D" (y,)x + "c, D*" (y,) Dx-m*y,
=0
n(n-1)
2

+(m*-n+n-my =0

0y, @®@-1)+ny -2x+ y-2+y -x+ny —my =0

n+l

O -1y ,+@2n+1)xy

n+l
o «@®-1y,+@n+1)xy A (n*-m?)y =0. Hence proved.
Example 2. Find the nth derivative of ¢* log x.
Sol. Let u = ¢* and v = log x

(-1 n-1 . o (-D)"n
Then D" (u) = ¢* and D" (v) = 7i7 D"(ax+b)™! =7L

- x" (ax +b)"™!
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By Leibnitz’s theorem, we have
D" (e*log x) = Dre*log x + "c, D*' (¢*) D(log x) + "c, D** (¢")D* (log x)
+ ..+ ¢ D" (log x)
1 n(n-1 1 (-1)"!| n-1
= ¢“ log x + ne* —+M€x(——2) + .+ € —I—
X |_2 X x"
n_nn-1) N (_1)n_1| n-1

O D (e* 1 = ¢ |logx+— Lt .
(e* log x) e|: g . o o 1

Example 3. Find the nth derivative of x* sin 3x.
Sol. Let u = sin 3x and v = &?

O D"(u) = Dn (Sln 3x) = 3" sin [3x+?j

Dw) = 2x,D*(v)=2,D% (@) =0
By Leibnitz’s theorem, we have
D" (x* sin 3x) = D" (sin 3x)x* + "c, D" (sin 3x) - D (x*) + "c, D"*(sin 3x) - D*(x?)

-1m
=3 sin(3x+”_2n) - x2 + n3*! sin (3x+n > )-Zx

-1 _
+ nn-1) - 3"2 sin (3x+n 22]-[)[2

2

=11
= 32 sin (3x+n—2n) + 2nx - 3" sin (3x+ 1 > )

+ 3"2n(n-1) - sin (335 +1Z 2“).

Example 4. If y = x log (1 + x), prove that

(-D)"2| n=2(x +n)
R
Sol. Letu=1log (1 +x),0v=x

Y, = (U.PT.U., 2006)

dn dn—l d
D" (u) = e log (1+x) = e [dxlog (1+x))

dn—l 1 dn—l

-1
dxn—l x+1 dxn—l (X )

-1)" ' n-1
n — _ — 2 —
O D' (u) = (x+1)" and D(v) =1, D*(v) = 0
By Leibnitz’s theorem, we have
y, = D" (xlog (1 +x)=D"(log (1+ x))x+"c, D" (log (1 + x)) Dx
-1)" -1 n(-1)"?|n-2
x n + n-1
(x+1) (x+1)
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O
<=
=

Il

2| —2 -x(n-1) + n(x +1)
O[22 | Gy T (a1

-xn+x +xn +n}

(—1)"'2 n-2 |: (x+1)n

x+n

Example 5. If y = a cos (log x) + b sin (log x). Show that
Xy, +xy, +y =0
¥y o+ @n+l)xy  + W+ 1)y =0.

Sol. Given y = acos (log x) + b sin (log x)
1 1
O y, = -asin (log x) [;j + b cos (log x) [;j
xy, = -asin (log x) + b cos (log x)

Again differentiating w.r.t. x, we get

1 . 1

xy, +y, = —acos (log x) (;j — b sin (log x) [;)
O Xy, + xy, = —{acos (logx)+ bsin (log x)} = -y
O ¥y, +xy, +y = 0. Hence proved.
Differentiating (i) n times, by Leibnitz’s theorem, we have

n(n-1)
Y, X+ny -2x+ |_2 y-2+y ~x+ny +y =0

O xy,+@u+xy +@-n+n+1)y =0
o xy,+@r+1)xy +@+1)y =0. Hence proved.

Example 6. If y = (1 — x)™® ¢, show that
1-xy, , -Mmn+oax)y —nay  =0.
Sol. Given y = (1 — x)®. e
Differentiating w.r.t. x, we get
y, = a(l-x)*te* - (1-x)"e™a

v, = (1—x>-ae-w.a[ : —1] :ya[ & ]

1-x 1-x

= y, 1 -x = oaxy

Differentiating n times w.r.t. x, by Leibnitz’s theorem, we get
y,1-x)-ny = ay-x+nay,

o 1-xy,,-0n+ox)y —nay  =0. Hence proved.

(-1)=2 | n-2 |:(x+1)nj| Hence proved.

(U.PT.U., 2003)

Example 7. If cos™ (Z) = log [%) , prove that xy , + 2n + )xy  + (n> + m*) y = 0.

b

4 z) _ (1)’”_ x
Sol. We have cos (b = log ) =" log -
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O y = bcos [mlogij
m

On differentiating, we have

x 2 1
v, — b sin [mlog—j-m—a—
m X m

. 1 x
O Xy, = —mb sin | M ng

Again differentiating w.r.t. x, we get

+ mb cos [ 1 xjm 1 1
X — mloe X lm. — .~
yz y1 Og ” i .
m
x
x (xy, +y,) = —m’bcos (m log Zj = —m?y
or Xy, + xy, +my = 0

Differentiating n times with respect to x, by Leibnitz’s theorem, we get

+ny, +my =0

n+l

Y, X*+ny  -2x+ M 2y + xy
2

Oxy ,+@u+ 1y +@-n+n+m’y =0
O xy,+@i+1)xy  + @ +m?)y =0. Hence proved.
Example 8. If y = (x> - 1)", prove that (U.P.T.U., 2000, 2002)
-1y, +2xy , —nntl)y =0
" dpP
Hence, if P = d (x* = 1)", show that d{(l—xz)"} +nn+1)P =0.
" dx" dx dx "
Sol. Given y = (@-=1)r
Differentiating w.r. to x, we get
2nx (x* =1)"
= nx®-1y"1t2x = ——
Y, ( ) 2-1)
O -1y, = 2nxy

Again differentiating, w.r.t. x, we obtain
-1y, +2xy, = 2nxy + 2ny
Now, differentiating # times, w.r.t. x by Leibnitz's theorem

(x> =1y, , + 2nxy,  + Zn(an_l)yn +2xy, , + 2ny = 2nxy, . + 21y + 2ny,
or -1y, +2xy  (+l —n)+ (> -n+2n-2n*-2n)y =0
or -1y, +2xy  —@+ny =0

O -1y  ,+2xy  —nn+ 1)y =0. Hence proved. (1)
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Second part: Let y = (x> -1)"
O P = =
" dx" =

Now

d oy d } d 5

- 1 - - = —_— 1 - 4

-yl Loy,

= (1 - x2)yn+2 2xyn+1 - [(x2 _1)yn+2 +2xyn+1]

d 1-92 d P . . .
0 . (1-x )a w( = — [n(n+1)y,] [Using equation (i)]

d 142 dp,

or Ir (1-x7) o, +mn(n+ 1y, =0 Hence proved.
Example 9. Find the nth derivative of y = x"* log x at x = %
Sol. Differentiating
1
y, = (n-1)x""log x + x** "
-1 n-1 n-1
or y, = (n=Dx"" fogx +X 0 xy, =@m-1y+x!
X X
Differentiating (n—1) times by Leibnitz's theorem, we get
P — dn_l n-1 _ _
xy + "y, = -y, dxﬁx =(n-1)(n-2)..21=|n-1
O xy +(n-1y = -y, -
n-1
O xy, = |[""liey =
X
R 1
t X = 5

Il
N
=
|
—_

(3

Tt Tt
Example 10. If y = (1 — 2?7/ sin"x, when -1 < x < 1 and T, < sin™'x <5 then show
that (1 - x?)y =0.

Sol. Given y = (1 — 2?72 sin”'x

-2n+ 1Y xy —n*y

n+1 n-1

Differentiating
1 1
Y (1 — 2332 (2x) sinx + (1 — 2372 1_ 2
1
B x(1-x2) 2sin'x R T xy +1
i T (1-+2) 1-x2)  (1-x%)
O y, 1=x*) = xy + 1
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Differentiating #n times w.r.t. x, by Leibnitz's theorem, we get
n(n—1)

v, 1 =x)+ny (2x) + v, (2)=xy +ny

Q1-x)y  -Cn+Dxy —m*-n+n)y =0
o (Q-x3y,-@n+1xy —ny =0. Hence proved.

Example 11. If y = x" log x, then prove that

(i) Y = % (if) Y, =Y, + (n—l).

Sol. (i) We have y = x" log x
Differentiating w.r. to x, we get

xﬂ

y, = nx' - log x + —

x

O xy, = nx".log x + x"
xy, = ny + x" (1)

Differentiating equation (i) n times, we get

xyn+1 + nyn = nyn + B

Yor = Proved.
3 " _dmt(d o,
(if) y, = o (x .logx) = dx”_l(dxx logx)
n-1 n
= d‘i” 5 [7 +nx”_1.logx)
— dn_l n-1 dn_l n-1
= n e (x .logx)+ T X
As y, - (x” log x)
x
=ny_ + [(n-1). Proved. .
' U y,-© dx?(x 1logx)

EXERCISE 1.2

Find the nth derivative of the following:
x n 1 n 1 n 1 n-1 n -n
1. ¢ log x. Ans. ¢*|logx+"c; O-~"c, B5 +[ 2"c; B5 +.. 1) n-1"c,x
x X x

2. x% e [Ans. e"[x2 +2nx +n(n —1)]]
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6(-1)"| n—4
3. x° log x. {Ans. T]
1- 2(-1)"| n]
4. x' Ans. %
1+x (1+x)"

5. x2 sin 3x.

{Ans. 3" x? sin(Sx T %[) +2nx 3! [sin{Sx +%(n —1)T[}} +3"2pn(n-1) sin {Sx +g(n —2)}

6. ¢t (2x + 3). [Ans. e*(2x+3)% +6n(2x +3) +12(n ~1)(2x +3) +8u(n -1)(n 2)}
7. If x = tan y, prove that (U.PT.U., 2006)
aQ+x)y,, +2nxy, +nn-1y, , = 0.
8. If y = ¢* sin x, prove that y"-2y" + 2y = 0.
9. If y = sin (m sin™'x), prove that
Q-2)y,,-@2n+Dx-y  + (m -n’y =0. (U.PT.U., 2004, 2002)

1
10. If x=cos h KE) log y} , prove that (x> - 1)y, + xy, -m*y =0 and (x*- 1)y, , + 2n + D)xy

+ (n* = m?y, = 0.

11. If cos™ (%) = log (%) , prove that x>y _ + 2n + Dxy, , + 2n%y = 0.

12. If y = e*'x, prove that (1 + %)y . + {2(n + 1) x -1}y , + n(n+1l)y = 0.
13. If siny = 2 log (x + 1), show that
(x+ 1% ,+@Qn+ D+ 1y,  +(n+4y =0.

14. If y = C, (x+«/x2 _1)n +C, (x—«/xz _1)n, prove that (x> - 1)y . + (2n + 1)xy, = 0.
15. If x = cos [log (y"/)], then show that (1 - x¥)y , - @2n + 1) xy , - (n* + a®) y, = 0.

1.2.1 To Find (y,), i.e., nth Differential Coefficient of y, When x =0

Sometimes we may not be able to find out the nth derivative of a given function in a compact form
for general value of x but we can find the nth derivative for some special value of x generally
x = 0. The method of procedure will be clear from the following examples:

Example 1. Determine y (0) where y = gmeosx,
1

SO]- We haVe y = plmcosTx
Differentiating w.r.t. x, we get (1)

-1
em cos~Lx m (ﬁ] D m . yl I mem cos~Lx

Y

or vl—x2 yl

-my O (1 -xM)y} = m*y?
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Differentiating again
1- x2) 2y1 Y, - 2xy21 = 2m2yy1

O 1 -2y, —xy, =m’y (i)
Using Leibnitz's rule differentiating n times w.r.t. x
2n(n-1)
1 -x)y,., - 2my,, - Tyn - XY, - ny, = my,
or 1-xy,,-@n+lxy, , — @+ mPy =0
Putting x =0
Yz 0) = (22 + m?)y, (0) =0
b Y 0 = (12 + m?)y,(0) ...(iid)

replace n by (n - 2)

y,(0) = {(n-2+m?y,, ()
replace n by (n — 4) in equation (iii), we get
Y, (0) = {(n-4)+m}y,,(0)

O v,(0) = {(n -2 + m*} {(n - 4> + m*} y,_, (0)
Case I. When 7 is odd:

y(0) = {(n -2y +m? {(n -4y +m? .. (1> + m?y, (0) ...(iv)

[The last term obtain putting n = 1 in eqn. (iii)]
- 1
Now we have y, = — pmeos™x m[—l—2
1-x
= I
At x =0, y,(0) = —me 2 ..(v) | Ascos™ 0 =E
Using (v) in (iv), we get
mTt

y () = —{(71—2)2 +m2}{(n -4) +m2} (12 +m2) me 2 .
Case II. When n is even:

y0) = {(n -2y +m? {(n -4y +m? .. 2>+ m?y, (0) ()

[The last term obtain by putting n = 2 in (iii)]

From (ii), y,0) = m*(y),
O y,(0) = m? "2 ...(vid) Asy = gmeos X

O y(0) = €™ 0 = gm2
From eqns. (vi) and (vii), we get
y(0) = {(n =27+ m?} {(n -4+ m?} ... (22 + m?) m*"™>

Example 2. If y = (sin"'x)*. Prove that y (0) = 0 for n odd and y,(0) = 2.22.4%...(n - 2)%,

n # 2 for n even. (U.PT.U., 2005, 2008)
Sol. We have y = (sin™ x)? (1)
On differentiating y, = 2sinx- > O y1\/1—x2 = 2\/?, (AS \/? = sin™ X)

1-x

Squaring on both sides,
(-2 = 4y
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Again differentiating
2(1 - %) y,y, - 2xy; = 4y,
Q-x)y,-xy, =2 (i)
Differentiating n times by Leibnitz’s theorem

, 2n(n—-1)
Q- y,,-2nxy - |i y,—xy ,—ny =0

Q1-y,-Cn+1)xy  —n*y =0
Putting x = 0 in above equation

Yz 0) =12y, (0)
. Yz 0)

0
n y (0) ...(iid)

replace n by (n - 2)

or

or

or

v,0) = n-27y,, (0
Again replace n by (n — 4) in (iii) and putting the value of y_, (0) in above equation

y,0) = (n-27 (n-4)7y,, (0
Case I. If n is odd, then
y(0) = (n-2)* (n—-4) (n-06)..1%y, (0)
But ¥,(0) = 2 sin0- 11 > =0
O y(0) = 0. Hence proved.
Case II. If n is even, then
y(0) = n-2y>(n—-4)..2>y,(0) ...(iv)
From (if) y, (0) =2
Using this value in eqn. (iv), we get
y0) = (n-2)y* (n—-4)y..2>2
y(0) = 2224 .. (n - 2)*, n # 2 otherwise 0. Proved.
Example 3. If y = [x+~/1 +x2]m, find y, 0).

Sol. Given y = [xe1e22] (i)

m-1
0 = m lx+V1+x7 1+——=
=l | { Jiea? }
3 m[x+\/1+x2]m . my
V1+x2 1+x?
Yiv1 +x2 = my
Squaring V(1+x?) = mAy? ..(if)

Again differentiating, y> (2x) + (1 + x*)2y,y, = m*2yy,

vy, 1 +x%) +xy, —m’y =0 ..(ii)
Differentiating n times by Leibnitz’s theorem
2n(n-1)

12

(1 + x2)yn+2+ 2nxyn+1 + yn + xyn+1 + nyn - m2yn = 0
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or aQ+xy,,,+@2n+ Dxy,  + @ -m?y =0
Putting x = 0, we get
Yy (0) + (17 = m?) y,(0)
0 Ypr 0) = = (= m) y, (0) iv)
replace n by n - 2

Il
o

y, 0 = -{(n-2-m%}y,, (0)
Again replace n by (n - 4) in (iv) and putting y_, (0) in above equation

y,0) = (1) {(n - 2> = m*} {(n - 4> - m? y,_, (0)
Case I. If n is odd
y0) = —{(n-2*-m* {(n -4y -m* ... {1* = m? y, (0)
But y,(0) = my(0)
or y(0) =m (Asy(0)=1)
O y0) = {m*—(n-27{m* - (n - 4)%} ... (m* - 1%)-m.

Case II. If n is even
y, ) = {m*—(n -2} {m* - (n - 47})... (m* - 2%) y, (0)
O y, 0) = {m* = (n =24 {m*> - (n - 4)% ... (m* - 2°)-m*.
(As y, (0) = m?).
Example 4. Find the nth differential coefficient of the function on cos (2 cos™ x) at the point

x = 0.
Sol. Let y = cos (2 cos™ x) ()
On diffentiating, y, = —sin (2 cos™ x) l:_—zl
1—2
X
or Y, J1—x2 = 2sin (2 cos™ x)
Squaring on both sides, we get
y¥(1l-x) = 4sin’ (ZCOS_1 x)
= 4 {1—cosz(2cos_1 x)}
or v(l-x) = 4(1-v)
Again differentiating w.r.t. x, we get
2y, (1= %) = 2xy5 = - 8yy,
or v, -x)—-xy, +4y = 0 (1)
Differentiating n times by Liebnitz’s theorem
2n(n-1)

1 -x2)y,, - 2my,,, - Yo = WYy = 1Y, + 4y, =0
n+. n+ |_2 n n+ n n

-y, -@r+1)xy -n=-4)y=0
Putting x = 0 in above equation, we get
Yo O = (* =4y, (0) = 0

or Yo 0) = (> -4) y,0) ...(ii)
Replace n by n — 2, we get
y, 0 = {(n -2y -4}y, 0
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Again replace n by (n — 4) in (iii) and putting y , (0) in above then, we get

v, 0 = {(n-27 -4} {(n-47 -4}y, , ©)
Case I. If n is odd
y, 0) = {(n-2P-4{(n-47-4} ... (1*-4)y, (0)
But y, (0) = 2sin (2 cos'0) = 2 sin (M) =
O y, (0) = 0.
Case II. If n is even
y, (0) = {(n-27-4H{(n -4y -4} ... {22 -4}y, (0)
y,(0) = 0
Hence for all values of 1, even or odd,
y, (0) = 0.
Example 5. Find the nth derivative of y = x* sin x at x = 0. (U.PT.U, 2008)
Sol. We have y = x*sin x = sin x. x? (1)

Differentiate n times by Leibnitz’s theorem, we get

Yo = e, D" (sin x). x* + ne D (sin x) D(x?) + ne, D2 (sin x) D* (x?) + 0
- -2
= x%. sin(x+%-[) + 2nx . sin(x+n—21n) +n(n -1) sin(x+ 1 n)
= x? sin(x+ﬂ-[) + 2nx sinf x+ 8- T +n(n - 1) sin(x+ﬂ-[—n)
2 2 2 2
T T T
= x2 sin(x+n—) - 2nx cos(x+n—) -n(n-1) sin(x+n—)
2 2 2
y, = (& —n*+n) sin(x+%-[) - 2nx cos(x+%-[)

Putting x = 0, we obtain
y, (0) = (n—-n? sin%-[.

Example 6. If y = sin (a sin™ x), prove that
Q-2y ., -@n+Dxy  —@n-a’)y =0

Also find nth derivative of y at x = 0. [U.PT.U. (C.O.), 2007]

Sol. We have y = sin(a sin™ x)

Differentiating w.r.t. x, we get

y, = cos(a sin™ x).

yl\/l—xz

Squaring on both sides, we obtain

1-x2

a cos(a sin™ x)

y?2 (1 —-x%) = a*cos® (asin' x) = a* [1 - sin® (a sin™ x)]
y2 (1 -x) =a (1-y) ()
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Differentiating again, we get
2y, y, (1 -x) - 2xy? = - 2 a’yy,

or v, 1 =x) —xy, = - a%y ...(ii)
Differentiating n times by Leibnitz’s theorem
(1 - xz)yn+2 - anyn+1 _% yn - xyn+1 - nyn == azyn
or (1-x)y,,-@n+xy  — @ —-a)y =0 ...(iv)
Putting x = 0 in relation (iv), we get
Yo 0) = (0* = a?)y, (0) = 0
or v, 0) = (m*-a’y (0) (v)

Replace n by (n — 2) in relation (v), we get
y, 0) = {(n =27 -a%y,, (0)
Again replace n by (n - 4) in equation (v) and putting y, , (0) in above relation, we get
y, 0) = {(n =27 -} {(n -4y -y, (0)
Case I. When 7 is odd:
y, 0) = {(n-2y-a} {(n-47>-a% ... {12 - a’ly, (0) ()
[The last term in (vi) obtain by putting n = 1 in equation ()]
Putting x = 0, in equation (i), we get
y, (0) = cos(@asin? 0).a=cos0.a0 y, (0)=a
{(n-2)2-0a% {(n —4)?*-a% ... {12 - a%. a

Hence, y, (0)
Case II. When n is even:

Y, 0)
Putting x = 0 in (iii), we get

{(n—=2)2-0a% {(n - 4)?*-a% ... {22 - a’}y, (0).

[The last term obtain by putting n = 2 in equation ()]

1, 0) = —@y0) = -a x, = 0 (As y(0) = 0)
Hence, y,(0) = 0.
EXERCISE 1.3
1. If y = tan™ x, find the value of y, (0) and y, (0). [Ans. |£ and 0.]

2. Ity = grsin!x, prove that (1 -x?) y, . ,—(2n + 1xy, ., — (n*+a*) y =0 and hence find the
value of y when x = 0.

|:Ans. nis odd, y, (0) = {(71—2)2 +a2} {(71—4)2 +a2} .. (32 +4a% (1> + a®)a n is even,

y, (0) = {(71—2)2 +a2} {(71—4)2 +a2} ...... 4> + A2 + a? a2.:|

3. Iflogy = tan"'x, show that (1 +x*)y_, + {2+ D)x-1}y,  , +n (n+ 1)y =0 and hence
find y,, y, and y, at x = 0. [U.PT.U. (C.O.), 2003]

[Ans. 4, @ =14, 0 =-14,0=5]
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4. If f (x) = tan x, then prove that
F10) =, 2 (0) + "¢, f=* (0) = ...... = Sin (%T)
5. If y = sin’'x, find y,_ (0).
|:Ans. nis odd, y, (0) = (n-2)*(n-4)>...5.3.1niseven, y (0) = 0.:|
6. Find y (0) when y = sin (m sin h™ x).
[Ans. nis odd, y, (0) = (7 =22 +m?Hm- 92 +m?} @2 + ) m-n
is even, y = (0) = 0.:|
7. Ity = [log{xh/m}r, show that
v, ,,(0)=-n*y (0) hence find y, (0).

=2
|:Ans. nisodd,y (0),=0niseveny (0) = (-1) 2 (n -2y (n -4y .. & 22.2.:|

PARTIAL DIFFERENTIATION

Introduction

Real world can be described in mathematical terms using parametric equations and functions such
as trigonometric functions which describe cyclic, repetitive activity; exponential, logrithmic and
logistic functions which describe growth and decay and polynomial functions which approximate
these and most other functions.

The problems in computer science, statistics, fluid dynamics, economics etc., deal with func-
tions of two or more independent variables.

(Il FUNCTION OF TWO VARIABLES

If f (x, y) is a unique value for every x and y, then f is said to be a function of the two independent
variables x and y and is denoted by

z=fy
Geometrically the function z = f (x, y) represents a surface.
The graphical representation of function of two variables is shown in Figure 1.1.

f
x.y) 1‘\_

z

y

o) >
z=f(xy) X

Fig. 1.1
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PARTIAL DIFFERENTIAL COEFFICIENTS

The partial derivative of a function of several variables is the ordinary derivative with respect to
any one of the variables whenever, all the remaining variables are held constant. The difference
between partial and ordinary differentiation is that while differentiating (partially) with respect to
one variable, all other variables are treated (temporarily) as constants and in ordinary differentia-
tion no variable taken as constant,

Definition: Let z=f(x,y)

0z
Keeping y constant and varying only x, the partial derivative of z w.r.t. ‘x’ is denoted by ™

and is defined as the limit

0z _ . flx+dx,y) - f(x,y)

ax -0 ox

f4
Partial derivative of z, w.r.t. y is denoted by a_y and is defined as

oz _ . fley*dy)-f(xy)
im .
dy 3y -0 oy

0z 0 Z
Notation: The partial derivative I is also denoted by afj; or f_similarly (Ty is denoted

0
by @ or f,. The partial derivatives for higher order are calculated by successive differentiation.

0%z 0*f 0’z 9*f
Thus, §=¥ Zfrxrvz_zsz
oz 9% 3’z 0
ox0y ~ oxay = for ayox - ayox = f,.,and so on.
d
Geometrical interpretation of 0z and o :
ox oy

Let z = f(x, y) represents the equation of a surface in xyz-
coordinate system. Suppose APB is the curve which a plane
through any point P on the surface || to the xz-plane, cuts. As
point P moves along this curve APB, its coordinates z and x
vary while y remains constant. The slope of the tangent line at
P to APB represents the rate at which z-changes w.r.t. x.

5}
Hence, a—z = tan O (slope of the curve APB at the point P)
X

0
and a—; = tan @ (slope of the curve CPD at point P)
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2 2 2,2
Example 1. Verify that 6ax 6uy = 6ay aL; where u(x, y) = log, [x xyy J
22 Hy?
Sol. We have u(x, y) = log,
Xy
O u(x, y) = log (x¥* + y») — log x — log y
Differentiating partially w.r.t. x, we get
ou 1
o x2 +y° x
Now differentiating partially w.r.t. y.
0%u o 4xy
oyox (x2 y? )2

Again differentiate (i) partially w.r.t. y, we obtain
ou 2y 1
W T ()

Next, we differentiate above equation w.r.t. x.

0%u B 4xy

oxdy _(x2+y2)2
Thus, from (A) and (B), we find

2 2
O _ O . Hence proved.
oxdy  Oyox
92 9’
Example 2. If f = tan™ (Z), verify that GyOJ; = axgy .
Sol. We have f= tan™ (y)
x

Differentiating (i) partially with respect to x, we get

= B

x
Differentiating (i) partially with respect to y, we get
y_ L L _ o«
dy 1+(yjz x o xt+y’
x

Differentiating (i) partially with respect to y, we get

If a[ -y J (% +y2)=1) - (~)(2y)
oyox 9y B (x2+y2)2

x2+y2

MATHEMATICS—I

(U.PT.U., 2007)

.(if)

...(iid)
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and

or

and

y?-a? .
= m ...(iv)

Differentiating (iif) partially with respect to x, we get

Pf o [ x J (x* + 7)) -x(2v)

- 2

oxdy — ox|x*+y? (x3+y2)
2_.2
Yo -x
= —— ..(0)
()
2 2
O From eqns. (iv) and (v), we get :yOJ; = :x gy . Hence proved.
. ou_ou) () 0u_ou
Example 3. If u(x + y) = x* + 1, prove that n o) - 4 ax oy
. Xt +y’
Sol. Given u =
x+y
. w (ry)@)-(F )0 2o -y
ox (x+y)’ (x+y)
() @)-(F ) 2oy a2
% (x+y)’ (x+y)’
0 0 4x
. w4y

ox 0y (x+y)
ou  ou Ay _(x-y)?

1 T oy - - B eee ]
ox dy (x+ y)2 (x+ y)2 (@)
o ou _ (Fe2y-y?) oy +2y )
% (x+y)’
2(x*-9%)  2(x-y)
= 2 ° ...(if)
(x+y) (x+y)
O From (ii), we get
2 2
Ou _ou 4(x-y) ou  ou
o ol T Tz A\l ) ). H d.
[ax ay) (x+y)2 [ o ayj rom (i) ence prove
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0
Example 4. If u = sin™! [—) + tan™ (Z), show that x fy o= 0
X oy
. . X Yy .
Sol. Given u = sin? (j + tan™! (;) ()
Yy
0
T
=1 X
y
0
or x a—” - . (i)
X (yz _xz) x“+y
and from (i), ? - ;2 [_%J s g
A0 5 At
Ll X
Yy
ou X xy
_— = - +
or Y ay (y2 _x2) 2 +y2 ...(7)
Adding (i1) and (iii), we get x % +y u = 0. Hence proved.
ox oy
2 2
Example 5. If f(x, y) = x* tan™ (y) - y* tan™! [£] then prove that of _9f .
x y oxdy  Oyox
0
Sol. lsz-tan‘l LA > X - -2 1 L
ax X y x2 x 2 y
A7)
. y
) 2 3
or L = 2x - tan™! (y) - zyx > - zy > = 2x tan™ (y) -y
0x X x“+y x“+y X
Differentiating both sides with respect to y, we get
02 1 1 2 2_ .2
1+(y) x y X y
x
5) 1 1
Again al = x2- 2y - 2y tan™ (xj — P 1 = [_%J
Y 1+(yj Y 1+[xJ Y
* y
oy ol) 2
or ay x2+y2 — 2y tan y + x2+y2
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or

and

x(x2+y2) x x
= W—Zy’cam‘1 ; = x - 2y tan™ ;

Differentiating both sides with respect to x, we get

/ —1-2y — (—):1— L I
Ox Oy (xJ y

1+ F

y

Hence proved.

Thus, from (i) and (ii), we get
’°f _ 9°f
oxdy  dyox

Example 6. If V = (x* + y* + z%)"/2, show that

v 9V %y

70}62 + 6y2 + 7622 =0.
Sol. Given V = @+ + 25V
O O_V = - 1 (> + 12 +2)%2 20 =—x (& + 2 + 227
ox 2
o’V 3/, o g5 s o g\32
O P {x{—z(x +y +z ) [Zx}+(x +y° +z ) a
— 3x2 (x2 + y2 + ZZ)—S/Z _ (x2 + y2 + ZZ)—3/2
= (@ + 1P+ Bx - (2 + Y + 27)]
0’V
P (P + >+ 222 2% -y - 2

Similarly from (i), we can find

a%v

ay_2 = P+ 1P+ 202 - x2 -2
762‘/ 2 2 2\-5/2 2 2 2
P = (¥ + 1+ 7Y (222 - x* -1

Adding (i), (iii) and (iv), we get

v 9’V %y

N2 ~— = (Z+PP+)2 [ -1P -+ Q- -22) + (222 - x2 -]
y y Y y

x? " Gyz " 0z*
= (¥ +y*+2z)°2[0] =0. Hence proved.
Example 7. If u = f (r), where r* = x* + 1%, show that

azu 02u

1
Z g S OO (UL.P.T.U., 2001,

r

25

...(if)

2005)
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Sol. Given o= X2+

Differentiating both sides partially with respect to x, we have

)
rax

or
0y
Now, u

ou
Ox

Similarly,

O

peor X
YOl oy Ty
Yy

r
f(r)

coy o
f (). o (r) -

Again differentiating partially w.r.to x, we get

u
9x?

u
0x?
0%u
Similarly, 0_y2
Fu | o

Adding,
Ox oy

Example 8. If u = log (x* + 1 + 2° -

x ¢ g
, » from (i1)

)|-xf (n@r/ax)

Oox

Kl [f(f)x} o [F 1 eerfox
o

1,2

R IS ALORN (r)}

— [2f'() + f"(r) = 1f ()], from ()

1
= f'(r) + f"(r). Hence proved.
r

3xyz); show that

( o 0 0 T 9
ottt lu=- ———.
Ox Oy Oz (x+y+z)2
Sol. Given u = log (x* + 1® + 2° - 3xyz).
ou 3x% - 3yz
O By 434343
ox x°+y° +z° —3xyz
Similarl Ou B 3y2 - 3xz
1imilarly, ay = X3 +y3 +Z3 —3XyZ
Ou 3z% - 3xy
0z X+’ +z®-3wyz’

— T’f (r)+x*f"(r)- *Ja( )} from (ii).

iz 21" (r)+ (x? +y)f"(r)-( )f(r)]

()

...(ii)

...(iii)

(U.PT.U., 2003)



DIFFERENTIAL CALCULUS-I

or

Adding eqns. (i), (ii) and (iii), we get

Ou
Oox

ou gy
oy T oaz
ou  Ou
y — 4+ 2=
oy 0z
0 0
— 4+
oy 0z

3(x2 +y2 +2° -Xy —yz —zx)

x° +y3 +2° —3xyz

3(x2 +y2 +27 -Xy -yz —zx)

(x+y +z)(x2 +y? +2°

-Xy -yz —zx)

27

|As a’ +b° +¢° = 3abc = (a+b+c)(a® +b* +c* —ab —bc —ca)

3
x+y+z’

0 0 0o 0 0
—t—t— || —+—+—|u
Ox Oy 0z)\dx 0y 0z

0,0, 0)fou 0u Ou) (9, 0 0
T \ox dy oz)lox oy 9z) " \ox oy oz

o1 o 1
x+ty+z) oy\x+y+z) Oz\x+y+z

3

x+y+z

-9

Example 9. If u = tan™

Sol. Given

9%u

Oxdy

_1_1]:
| (r+y+z)’ (xty+z)” (xry+z)

Y , show that

1/(1 +x? +y2)

1

(1 2 +y2)3/2 0

2

tan” ——2 ]
1
|:1 +{x2y2 /(1 +x? +y2)”
\/(1 +x? +y2).1 —y%(l +x? +y2)_1/22y
x X
(1427 +y7)
x (1x* +y?) -y

1+x2+y% +x%y% \/(1 +x? +y2)

...(iv)

} from (iv)

(x+y+z)”

Hence proved.
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ou X 1+x2 X

i W i) o) (o))
Again differentiating partially w.r.to x

0%u 0 X _ 1 0 X
oxdy  Ox (1+y2) (1+x2 +y2) (1+y2) ox (1+x2 +y2)
. { (1+x2+y2)1 —x%(l +22 +y2)1/22x]

(1+57) (127 +y)
1 (142 +y?)-22 1
= . = . Hence proved.
(1+y2) (1+x2+y2)3/2 (1+x2+y2)3/2 | Y
2 y2 22
Example 10. If Zin tten t 2eu 1, show that
(aujz + ou 2 +(au)2 xa_u+y0_u+za_u 002
ox) \oy) \oz) =2 "ax Yoy oz) (LLPT.U., 2002)
Sol. We have
2 2 2
e ()
a>+u b*+u P +u
where u is a function of x, y and z
Differentiating (i) partially with respect to x, we get
2x x? . 2 z> Ou
T2+ 2 2t ox 0
a Tu (a +u) (b +u) (c +u)
Ou Zx/(u +u) 2x/(u2+u)
or ox 5 5 2 5 2 27 © 5 5 2
x /(u +u) +y /( +u) +z /(c +u) z X /(u +u)
ou Zy/(b2 +u) ou _ 27:/(c2 +u)

Similarly, ;
imilarly, ay Z[xz/(a2+u)2i| oz zlixz/(a2+u)2j|

Adding with square

o (o] . LA e
— |+ = =] =

) o) e (sl el ]
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(3 (3] (3

or

or

or

or

Also, v
50, X

ou ou
+ y?y + ZE

272

From (ii) and (iii), we have

5+

2 2
o) (o
ayJ " (02)

Lo
=2 "ox

3| /()

ou Odu

+ ya_y + ZE) . Hence proved.

sz/(a2+u)2[(”2+”) (b2+u) (c2+u)

= [1], from (i)

Example 11. If x* ¥ z* = ¢, show that at x =y = z,

0’z
Ox dy

Sol. Given

xXoypzr =

= — (x log ex)!. Where z is a function of x and y.

¢, where z is a function of x and y.

Taking logarithms, x log x + v log y + z log z = log c.

Differentiating (i) partially with respect to x, we get

0z

(1+logx)

a:

(1+logz)

0z

Similarly, from (i), we have a_y -

9%z

ofe
oxdy ~ ox\dy )~

0| (1+log
ox 1+log

1+1 9 1+1 B
~ (@ +logy) - 5 [0+ log 2)7]

g [0 ]

(1+logy)

(1+logz)

{x G) . (logx)l} + |:z C) +(log z)l} g—i

0’z

oxdy

0’z _ (1+logy)
Oxdy z(1+log 2)2

At x =y = z, we have oy

_[1+logx
1+logz

9%z

J ﬂ from (iii)
z

J} , from (iif)

(1+logx)’

x (1+logx)’

0

29

...(iii)

...(ii)

...(iii)
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0"z L L As 1 1
0x0y ~ x(1+logx)  x(log, e +logx) = (Aslog e =1)

- {xlog (ex)}_1 . Hence proved.

~ xlog(ex) -
Example 12. If u = log (x* + 3° — x% — xy?) then show that
0%u u 9% 4
w2 + 2 + o2 = = 2"
dx ox0y gy (x+v)
Sol. We have u=log (¥* + i* — Xy — x1/%)
ou 3x% - 2xy - y?

P — (i)

ou 3y’ -x'-dy i)
oy (x3 +y3 —xzy —xyz)

Adding (i) and (ii), we get

u ou (3x2 - 2xy —yz) +(3y2 -x? —2xy)

o ay (x3 +yd —x2y —xyz)

2 (x-y)°*
(x+y) (x* +y* - 2xy)

Qu, o 2y 2 (iii)
ox Oy (x+y)(x- y)2 (x+y)

2

Nowa—2u+ —azu+ﬂ—ii u
©oox? dxdy  gy> \0x 0y
0,0 0,0
=t | =+
ox dy) \ox oy
= i+i 2 (from iii)
ox Oy) x+y
2 ()2 )
=2 o \xry) TPay (xvy
2 2 4
=— - 5 =— ——5- Hence proved.

x+y

—

(x+y)  (x+y)

Example 13. If u e¥?, show that

o%u
dxdydz - (1 + 3xyz + x*y’z)e™.
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or

or

or

u
Sol. We have u = e[ P ev:.xy
0%u 0
oz = @ (ev=xy) = e x’yz + eVx
3%u

oz = (¥yz + x) e¥

a%u
Hence 0x0y0z

(2xyz + 1) e + (Xyz + x) e¥=yz
= (1 + 3xyz + ¥*?z%) e¥". Hence proved.
Example 14. If u = log r, where r* = (x — a)* + (y — b)* + (z — c¢)%, show that

Pu w1

+ 5 + = —.
ox? ay* 0z* r?
Sol. Given o= (x—aP+ (y-bP+(z-cp
Differentiating partially with respect to x, we get

or or x—a
2r 7m = 2(x-a)or ;= = ()

0x ox 7
or -b or _
Similarly, a_y = (yr ) and a_y = (zirc)
Now, u = logr.
0 %_10r_1(w)f ’
n  oroox  rUoro )M (i)
Ou x-a
ox 1P
0 o9 (H) W)= (x-a) 2(0r/ &)
x> ox \r? )~ A
Pu _ r26d
a2 A , from (i)
2 2
Similarl 0_1;: - r-2(y-b) o _ r’=2(z-0*
Y oy A ' 922 o )
a%u Lzu 0%u 32 —2{(x—u)2 +(]/ _b)2 +(Z _C)Z}
O P + 0y2 + 0272 = i
3r? —2r2

= T i from (i) = 2 Hence proved.

31
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Example 15. If u = »* tan™ (y/x) — y* tan™ (x/y), prove that

Ol x2-y?
ayax - x2 + yz '
Sol. Given u = x*tan’ (y/x) — y* tan™ (x/y).
Differentiating partially with respect to x, we get
B 1) (Y- s L d
0x 1+(y/x) X X 1+(x/y) Y
22y y°

y
= - - + 2x tan™
Ayt Py X

2,2
= - M + 2x tan™! (%) = -y + 2x tan™ (%)

Again differentiating partially with respect to y, we get

2
0u = i—y+2xtan_1z =-1+2 1 Ell—
Oyox oy X yY X

2 x2 -
= -1+ 22x2: 2y
Pyt oty

> . Hence proved.

Example 16. If z = f (x — by) + @ (x + by), prove that

azz 022
b2—2 = 72.
ox oy
Sol. Given z =f(x-by)+ @+ by) (D)
0z
O o =f"(x-by) + @ (x + by)
d = b (i
an ) =f"( ) + 9" (x + by). (i
0z
Again from (i), a_y ==bf" (x=by) + bo' (x + by)
9’z 0%z
and W = " (x - by) + b*@" (x + by) = b? FYE from (i7). Hence proved.
Example 17. If u (x, y, z) = log (tan x + tan y + tan z). Prove that
in 2 u in 2 ou in 2 %—2 U.PT.U., 2006
smxax+smyay+smzaz—. (urru., )
2
Sol. o see %

ox tanx + tany + tanz
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ou seczy
a_y - tanx +tany +tanz
ou sec’ z
0z " tanx+ tany +tanz
O sin 2 9u in 2 ou in 2z u
sin 2x o + sin 2y dy + sin oz

sin 2xsec” x +sin 2y sec® y +sin 2zsec” z

tanx +tany +tanz

2 (tanx + tany +tanz)

(tanx +tany +tanz)

2. Hence proved.

EXERCISE 1.4

: l : r2+y2+zz A 8
1. Find dxdyoz if u=e : [ ns. xyzu]
2. Find the first order derivatives of
ou ou |
N = 5 Ans. — =xY (ylogx +v); — =x¥* ! log x
() u = xv. { ns ox (ylog x +y) dy & ]

(if) u = log (x+\/x2 —yZ) [Ans. M L M y(x2-y) (x +W)_l

Jx -
3. If u = sin™! x—\/? ,showtha’ca—uz—z a—u
Jx +.Jy 0x x Oy
4 Tu=e i that T2 4 2% _ g
. If u = ¢ (x cos y — y sin y), prove tha P i P = 0.
2 2 1 ¥ 0%u 9%u
5. If u =alog (x> + ¥*) + b tan x,provethata?+$:0
0°z 2
6. If z = tan (y — ax) + (y + ax)*% prove thatw—z—f%:&
2P 22
7. 1fu= 4 hat 244 2L W
CIfu= . »prove that =~ + 5 + o =
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
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’u  o°
If u =2(ax + by — (x> + y?) and @ + b* = 1, find the value of Pl # [Ans. 0]
2 —-4yz
u
If u = log (2 + 1» + z?), find the value of . Ans. ————
g0 +y ) i Vet dyoz (x2 +y? +22)2
s o 1 9%u %u 0%u 2
If u = (x +y*+z )Z,thenprovethat ax_2 + 6y2 + g =
9%z 9%z
Ifz=Ff(x+ay) + ¢ (x —ay), prove that — = a>—-
flx+ay) +@(x-ay),p oy P
If u = cos™ [(x—y)/(x+y)] prove that o2 + ya—u = 0.
! ox dy
B2 2
If u = log (x* + ), show that 6_1; + % = 0.
X
If — A2 2. 2. h th t % % a_u — 2
w= Sy s e s 2 ghen el 0 A g, A =(x +y + 2>
. O
Prove that f(x, t) = a sin bx. cos bt satisfies —5 = b 5
Ox ot
%u  u 9%y
If u =r", where r = ./x? +y2 +22 find o 4 6y2 4 2 [Ans. m (m + 1)r™?]
9%u 0%u 9%u
Ifu=(@2+1y>+2)" prove that — + — + — =2 (x> + 1> + 292
(¥ +y+2)7, p axzayzazz(y)
i 1 9 GERANGLE 3
Ife=t e_Zf, find the value of n, when —5 — (1’2 —) =—. [Ans. n= —}
r or or ot 2

For n = 2 or — 3 show that u = " (3 cos® 6 — 1) satisfies the differential equation

) (ﬂ%) 1 @ (Sme%)
o \ or) " sin6 90 ) ="

If u = &® 1 h that @ . : azu
U= Ccos (a 10/°4 1’), SloNRY WAkl 2 r or " r 692

or
_zfz
Ife(x v) = (x - y), show that y% +x?—a; =x2 - 1)~

[Hint: Solve for z = (y* — x?) log (x — y)].

1 u  0u 9%y
Ifu= - and 7 = (x — a)> + (y — b)* + (z — ¢)?, prove that ﬁ + W + g = 0.
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9%u 9%u

2
u
23. If LY, 2) = 3 4y sin h 5z, that — + 52 + =5 =0.
u (x, y, z) = cos 3x cos 4y sin h 5z, prove tha P 3 ayz + 922
v

9
1 9
24. 1f % = au + bv; y* = au = bo, prove that (Z_Z)y (%) T2 [g_yJ (0_5)

25. Ifx:rcose,y:rsine,find(%),(a—xj 0_9 6_9 a_y .
orJg" \08), ox), \dy) \ox),

[Ans. cos 6, —7sin 6, =+~ sin 6, 7! cos 6, — cot 0.]

(Bl HOMOGENEOUS FUNCTION

A polynomial in x and y i.e., a function f (x, y) is said to be homogeneous if all its terms are of
the same degree. Consider a homogeneous polynomial in x and y

— -1 2,2
f,y) = ax"+a x"7'y +a, X+ .. +ay

fornl@ot] (2]
0

Hence every homogeneous function of x and y of degree n can be written in above form.

or f @,y

NOTE: Degree of Homogeneous function = degree of numerator — degree of denominator.

Remark 1: If fl,y) =ax" +ax™y'+ax™. y?+ .. +axmry ™

2 n
x" {ao +a1§+a2[§) +o +an[§) }

U flx, y) = F[i); degree = n
Remark 2: If fl,y) =ay" +ay™. x+ ... +ay X
Bot
y y
O fy)=y"F (i] ; degree = —n

Another forms are also possible i.e.,

fe,y =y F[i);f(x, y) = y" F(y/x)
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EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS
Statement: If f is a homogeneous function of x, y of degree n then
¥ ¥
Yoy TV = nf. (U.PT.U., 2006)

Proof. Since f is a homogeneous function

O fxy =x"F (%) (D)

Differentiating partially w.r.t. x and y, we get

5)
L = nx"!'F (1) +x" F' (
0x X X

d 1
é X F (Z) (;) ...(iii)

[=
N—
VR
><||

N
N—

Multiplying (ii) by x and (iii) by y and adding, we have

and

0
x—f +y ﬁ = nx" F (y) —xy F (Z) +x" 'y F (Z)
ox dy X X X

nx" F (Z)
X

O x1+yﬁ:nf (from (7).
ox oy
. . of
In general if f (xl, Xy eees xn) be a homogeneous function in Xy Xy ey X, then X, 67 + X, 67
1 2
of

+...+xna:nf.

Corollary 1. If f is a homogeneous function of degree 1, then

62 2 62
X J2c+2xyﬂ+y2 ch:n(n—l)f.
ox Oxoy oy
Proof. We have
of of .
xax+yay—nf (i)
Differentiating (i) w.r.t. x and y respectively, we get
0 2 2
_f+xﬂ+y"f — (i)

0x 0x? 0xdy 0x

2 ) 2
X :y_aj; + Ef +vy gy_{ =n %
Multiplying (ii) by x and (iii)
o’ f
x2¥ + 2xy m + 12 xy? X ooty "

by y and adding, we have

of L [g_fyg]
X Y
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O x202—f+2xy627f+y2627£:n2f—nf:n(n—1)f
ox? 0xdy oy
Example 1. Verify Euler’s theorem for the function
fx,y) = ax* + 2hxy + by~

Sol. Here the given function f (x, y) is homogeneous of degree n = 2. Hence the Euler’s
theorem is

LA S (i)
ox oy
Now, we are to prove equation (i) as follows:
% = 2ax +2hy, ZJ; = 2hx + 2by

O xg +yg = 2ax* + 2hxy + 2hxy + 2by?

Ox oy

= 2(ax* + 2 hxy + by?) = 2f

O x i +y ¥ . 2f, which proves equation (i).

ox dy

Example 2. Verify Euler’s theorem for the function u# = x" sin (%)

Sol. Since u is homogeneous function in x and y of degree 1, hence we are to prove that

ou % .
X P +vy y = nu ..(1)
Y
We have wo= atsin |
au sl (y) ’ (Z) (_l)
0 - = nx"'sin + x" cos >
ox X X X
au . (y) h (y) i
or X — = nx"sin - x"1ycos | ...(i0)
ox X X
Similarly, y g—; = yx"' cos Z) ...(1id)

Adding (i) and (iii), we get

du ou (v
X a +y ay = nx" sin (x)
ou Ou
O X oty dy = nu

which verifies Euler’s theorem.
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E-yy
Example 3. If u = sin™ W , show by Euler’s theorem that

du _ y ou
ox  x dy
Sol. We have u = sin™?! \/;_\/y = sinu = \/;_‘/?
&/;-f-ﬁ \/;4.\/?
iy

Let

f=sinu= Y
ey

Here, f is a homogeneous function in x and y

1 1
where, degree n = 55 0
. By Euler’s theorem, we have
of of
X ooty " 0.f=0
. 92 .
or xa(smu)+y y (sin u) = 0|Asf=smu
ou du
or X COsu: S +YCoSuU 8y=0
du ou 0
= X ooty P
= ou - % Hence proved.
ox x oy
Example 4. If u = log [(x* + ¥*)/ (x + y)], show that
Py ULP.T.LL., 2000
ax+ya—y—. (, )
2yt 2yt
Sol. We have u = log, Xty = e = Xty
4., 4
x+y

Here the function f is a homogeneous function in x and y of degree, n =4 -1 =3
By Euler’s theorem

x5+ya_y = nf =3f

3f

U
=
=4
~
-
+
<
&
2
1
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L,
= ow Y 3y e = 3e"
L d
= x oty y - ence proved.
Example 5. Verify Euler’s theorem for
. x Yy
u = sin’! ; + tan™! T f (U.PT.U., 20006)

Sol. Here u is a homogeneous function of degree,

n = 1-1 = 0; hence by Euler’s theorem
u ou
X a +Vy a—y =0
Now, % = 1 > . l + %(—%J
1_[9“] Y 1+(yj *
pe
Yy
ou x xy ,
or Xy = \/yz—xz - x2+y2 (D)
oau 1 X 1 1
and Iy - 2|72 T 7 \x
1_(36] Y 1+(y)
y X
au -X xy

or y - =
oy \/yz .2 (xz +y2)
Adding (i) and (ii), we get
ou ou

— = 0, hence Euler’s theorem is verified.

Xax+]/a—y

x
Example 6. If u = x sin™ [;j + y sin™ (%) , find the value of

0%u 0%u 0%u

2
Py + 2xy 233y +y 5 - (U.PT.U., 2007)

x2

Sol. We have

=

I

R

w»

@,

-
VY
<R
N—

+

<

»

@,

>

|
N—

|QJ
<
I}
1]
>
|
N—
+
=
=
N
VY
< |~
N—
+
<
—_
N
|
RN|Q:
N——

o0x
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and

and

ou ) ou )
= x — -sec’u+y — -sec’u
ox oy

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

U N x? y?
= x 5 X sin y + \/yz—xz _\/xz—yz

1-= 1-L

ou 1 X . (1) 1 (l

— =X - ——= | + sIn + Y

ay xz yZ X ]/2 x
X

au x? Y y?
= Yoy =7 Ja_a3 TV (;)+xz—_yz
Adding (i) and (ii), we get

u B [E .l[zj_
xax+yay—xsm v +tysint | =u

Differentiating (iii) partially w.r.t. x and y respectively.

P R R
ax T TV aay T oo T 0 T
’u  du 0%u ou %u 0u

ou ou _ =0
* dyox i Y Ty ay? oy =Y ay? X vy

Multiplying equation (iv) by x and (v) by v and adding, we get
o%u o%u o%u

2 2 2 _
o3 + 2xy 333y + vy By2 0.
3 3
X+
Example 7. If u = tan™ x_g , prove that x % +y g—; = sin 2u and evaluate
9°u ’u 9°u

2 2 .
b's E)xz + 2xy 339y + vy ay2

Sol. We have
) x3+y3 x3+y3
u = tan x—y = tan u = x—y
3+ y3
Letf = tan u = Xy
Since f (x, y) is a homogeneous function of degree
n=3-1=2
By Euler’s theorem, we have
L % ftanu) =21
X . +y PV nf = x o (tan u) +y 3y (tan u) = 2 tan u
= 2tan u

(i)

)

...(ii)
...(iii)

...(1v)

..(v)
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ou u tanu ] )
or X = +y a—y = ol = sin 2u. Proved. .(7)
Differentiating (i) partially w.r.t. x, we get
%u | du o%u ou

x?+a+y8xay

2 cos 2u - —
ox

U T o uy O
or x?+yaxay—(cos u—)ax
Multiplying by x, we obtain
, 0%u .\ u © oy 1 ou ..
x Py xy 233y = x (2 cos 2u -1) o ...(i0)
Again differentiating equation (i) partially w.r.t. y, we get
9%u Pu  ou 5 cos 2y 22
X Syax +y 8y2 + w cos 2u 3y
9%u 0%u au
or y ay2 + x Jyox = (2 cos 2u — 1) 3y
2 2 ou
or % gyﬁ’ Ty aiauy = ¥ (2cos 2u=1) 5 (multiply by y) (i)
Adding (i) and (iii), we get
9%u 9%u o%u du  ou
g= - —+y—
x? W + 2xy 2xay + 12 W (2cos 2u - 1) | *50 ]/ay
= (2cos 2u — 1) sin 2u, (from (7))
= (2sin 2u cos 2u — sin 2u)
= sin 4u — sin 2u
_ 5 cos (4u+2u) cos (4u—2u)
- 2 2 '
9%u 9*u o%u
Hence, x* w2t 2xy ax_ay + 1P W =2 cos 3u - cos u.
y X
Example 8. If z = x" f L) rxs ; , prove that
9%z 9%z 9%z oz, 0z
X B + 2xy 3x3y + 12 ay_2 +mnz =(m+n-1) [xaxﬂ/ay .
(zj x
Sol. Let u=xfx,v=xg Y
then Z = U+0v ..(0)

Now, u is homogeneous function of degree m. Therefore with the help of (Corollary 1, on
page 36), we have
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R 9%u 0%u R 0%u .
X Py + 2xy % +y ayz m@m-1)u ..(ii)
X
Similarly for v = x" g [;] , we have
, 0% 9%v . 2%
X 972 + 2xy m + vy _8y2 =nm-1vo ...(1f)

Adding (if) and (iii), we get
82 82 d

x2 2 (u+v)+2xy?ay (u+v)+yzay_2(u+v):m(m—1)u+n(n—1)v
2%z 0%z 0%z
= x2$+2xym+yza_yz=m(m—l)u+n(n—1)v(Asz:u+v). ...(iv)
Again from Euler’s theorem, we get
ou ou v v
xa+ya_y =muandx£ +y@ =no

2 9
Adding X w+0v)+y Ay (u +v) = mu+ no

0z 9z
= x£+y Ay = mu + no ..(v)
Now, mm-1)u+nm-1)v=mu+ n*) - (mu + no)

m(m+mn)u+n(m+n)v-—mn (u+9v)-(mu+ no)

(mu + nv) (m + n) — (mu + nv) — mnz
= (mu + nv) m +n-1) — mnz
_j — mnz, from (v)

Putting this value in equation (iv), we get

9%z 0%z 8_22 0z 0z
X2 Pl 2xy oxay + 2 a7 = (m + n -1) xaﬂ/@ — mnz

9%z 0%z 2%z 0z 0z
xa_x+y_ . Hence proved.

= x2a—xz+2xym+yzv+mnz:(m+n—l) 3y
2y+3
Example 9. If u = sin™ A AR , show that
ﬁx8+y8+28

o w
ax+y8y+zaz

X + 3 tan u = 0. (U.PT.U., 2003)
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2y+3
Sol. We have u = sin? B A
x8+y8+28
X+2y+3z
= sin u = #,letf:sinu
x8+y8+28
. Degree of homogeneous function f, n = 1 — 4 = — 3, from Euler’s theorem, we have
o s of :
Xo ty y tz o = -3 sinu
. 9 9 .
= xa(smu)+y ay(s1nu)+z$(smu)=—3smu
ou Ju  _du
or x$+y$+z$ cosu = —3sinu
o o ou 3t = 0. H d
or X ox TV ey t2, titanu =0 ence proved.
1
n 2x2+y2+zx)2
Example 10. If V' = log, sin 7 (. find the value of
2(x2+xy+2yz+zz)§
Wy vz whenr=0y=1220
Y o YV 9y T2 whenx=0y=1z=2
1
n(2x2+y2+zx)2
Sol. We have V = log sin T
2(x2+x]/+2]/z+zz)§
1
T (2x2 +y? +zx)2
eV = sin T
2(xz+xy+2yz+zz)g
1
n (262 + y? + zx)2
or sin! (e") = ( ) T

2(xz+xy+2yz:+z:2)3
2.2 3
2
Lot fesin (@) = n(Zx +y +zx) :
2(x2+xy+2yz+zz)5

W

Since f is a homogeneous function .. n =1 -

WIN
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and

or

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

By Euler’s theorem, we get

S o oS _ 1
xax+ya_y+zaz B 3f
= x = (sinleé’) + 2 (sint e") + z 9 (sin! ¢") = 1 sin! ¢
ox Y 0z 3

xa—V+ a—V-i-Za—V —1X€V 1 il oV
= E yay % m 3 sin™ e

- xﬂ/+ ﬂ/.pzﬂ/— 1_62V><—Si1'1713‘/
x VTP e T T 3
s 1 1
Now, (ev)ng) = sin ZXZ} = —2, eV = E
15,
i
.1V _ =
(sm e )"i? = 7
15

Putting all these values in equation (i), we get

L) A\ Al U SV A £
x Yy T T 3747 f

V2

A A A

x Yy TP T 12

Example 11. If u = x3)? sin™ (%), show that

ou au zazu 0%u 28_2”

x8x+yay = 5u and x . +2xyw+y 8y2 = 20u.

Sol. u

x3y? sin! (%)
2 2
Ve (ZJ sin-! (1) - F (1) P(ij:(z) sin_lz
X X X x x x

*. u is a homogeneous function of degree 5 i.e., n =5

ou ou

FRR a_y = 5u. Proved.

Next, we know that (from Corollary 1, on page 36)

By Euler’s theorem, we get x

o%u 9%u 2%u
W OZ P Gy YV 7 = n-Du=56-Du
) 9%u 92 ) 92u
X ? + 2xy xoy TV W = 20 u. Hence proved.

()
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Example 12. If = x / (%) + /5 (Z), prove that
0%u 0%u 0%u
_ 2 _— = .
1 Py + 21y oxdy + 12 8y2 0
Sol. L = g du, =2 g h =
ol. Let u = 1f L) an u, = 2f x,tenu—u1+u2
Since #, is a homogeneous function of degree one. So by Corollary 1 on page 36, we get
u 0’u 82”1
xzax2l+2xyaxia;+f¥ =11-1)=0 (2
and #, is also a homogeneous function of degree 0
01, 9%u, 9%u, .
7 87 + ny axay +y2 ayz =0 ...(Zl)
Adding (7) and (77), we get
2 az 82
xzax—z (u1+u2)+2xyax—ay () + 11,) + 1P W (4 + 1,) = 0
0%u 0%u 0%u
= 7 a2t 2y axdy + 12 W = 0. Hence proved.
242 2 2
Example 13. If # = sin™ (¥* + 1%)¥/5, evaluate X ou + 2xy du + yza_':,
ox? 0xdy d

Sol. Given u = sin (@ + )5

31\2/5
sin w = (¥ + /)% = 2°° (1+y3]

x
Let f=sinu
3\25
f= 5 (1+y_3J )
x
which is homogeneous of degree 77 = g By Euler’s theorem
of of 6
— 4y = —
w75/
= xi(sinu)+yi(sinu) = Soinu
ox oy 5
ou 6
or X——CoSU+Yy——COSU = —giny
ox ay
x%+y% = étanu ..(21)
ox dy 5
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Differentiating (ii) w.r. to 'x’, we get
ou _d%u o%u
—txty—— =
ox  ox oxdy

Multiplying by x

A

Y ooy
Differentiating (ii) w.r. to ‘y’, we get
u  ou .  du
Xt —+tY—

ayox dy oy

Multiplying by y

w2, P
Y Yy d oy xyaxay
Adding (iii) and (iv), we get
2 2 2
2P g P 20
oxoy Yy

ox?

0%u

2 azu
—+
oxoy

X5 —+
ox?

ay2

o%u ) o%u
oxoy ay

or

+

Example 14. If u = 3x* cot™ (Z
x

X ou +
ox?

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

...(iii)

..(iv)

16y* cos™ [3] then prove that

12u.

Sol. The given function is homogeneous function of degree 4. By Euler’s theorem, we have

ou

ox

Differentiating (i) w.r. to x, we get
ou _*u  o%u

or

Differentiating (i) w.r. to y, we get

P
yayz

%u  du
—+—+
oxoy  dy

2 azu

ay2

Qu o,
xyaxay yay Y

or

(i)

ou
ox

ou
4x
ox

...(iii)
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Adding (i) and (iii), we get

,0%u %u 5 0%u u  ou
X—+ —tY —5 = Jx_—+y—
ox oxoy dy ox oy
2 2 2
or x2M+ o7 + 207U = 3 x 4u = 12u. Hence proved.

x> oxoy Y W

EXERCISE 1.5

Verify Euler’s theorem

1oy /1o x y
1. Jx?* -2, 2. [x‘l +y4J/[x5 +]/5J. 3. cos™ v + cot™ (})

14 (Y Xy T a Y
4. 3y 0 tan™! (x) 5. (rty) 6. cos™ [y] + cot™ (xj
eyt ou ou
7. If u = log, Xy , show that x = + vy dy = 3. (U.PT.U., 2000)
11y (11 u M9
8. Ifu= (x4+y4) (x5 +y5j, show that x 5 + vy ay = 2—0 u [U.PT.U. (AG), 2005]

0z x
] + log x — log y, show that x == + vy 2_; = 6x*y? sin”! [;]

= R el
9. If z = x*y* sin [ o

X
y
[WPT.U. (C.0.)., 2003]

10. Ifu:x3+y3+z3+3xyz;showthatx% +y g—; +z % = 3u.
11. If u = cos™ {x—y} prove that x ou +y o =0.
x+y | ox ay
ou ou
12. If u = log [(x* + y?)/(x + y)], prove that x > Y B_y = 1. (U.PT.LL, 2008)
ou ou

— qin-l (42 1+ 12 s — _
13. If u = sin™ {(x* + y*)/(x + y)}, show that x x TV oy = tan u.

_ ou au 1
14. Ifu =sin! {(x + y)/(Jx + @)}. Show that x o Y y =2 tan 1.
15. If u = tan! [(x2 + v?)/ th that au %—1‘2
. If u = tan”? [(x? + ¥?)/(x + y)], then prove atx 50 +y 3y =7 sinlu
16. If u is a homogeneous function of degree n, show that

o%u o%u u 2u o%u

ou
@% 57 +Y 3y ==V 5 Oy Sz x5, ~w-D g,
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ou
17. Ifu:f(%j,showthatx % Y % = 0.
i 1
x4 +y4 o%u o%u o%u

1
— sin~! 2 = 2 — 4t - = — 2
18. If u = sin , prove that x 2 + 2xy xdy + Y ayz = 114 tan u [tan“u — 11].

i 1
%0 4 e

19. P that aM+ ou 5t if in! X4y
o rove at X —— = = AF tan u ir U = sin - — | .
o Yy T2 Vx+.fy

+ s P
X+y  z+x  y+z’

2 PY/* 2 |2 oz ou za_zu ﬁ
21. If u = y* e/’7 + x* tan Y ,showthatxax+y Ay = 2u and x 2 + 2xy axay+

20. Verify Euler’s theorem for f =

9%u
y? a_yz = 2u.

. 11 0%u o%u o’y tanu
22. If (x/;+\/?) sin u = 43 +y3, prove that xzy + 2xy xdy + ¥ W - 12

tan u
12
y_

o%u
23. If u = tan’! x |, show that 2 —
1

ox?

1 logx—logy of %
24. If f(x, y) = 2 +F E W show that x a +y dy +2f(x, y) = 0.
ou ou

— coc-l [(x3 4 13 & — _
25. If u = sec! {(x +y)/(x+y)},5howthatxax+yay—2cotu.

TOTAL DIFFERENTIAL COEFFICIENT

Let z=f(x ) (D)
where x = ¢ (f) and y = y (t), then z can be expressed as a function of ¢ alone by substituting the
values of x and y in terms of t from the last two equations in equation (i).

dz
And we can find the ordinary differential coefficient ar which is called total differential

coefficient of z with respect to t. Since it is very difficult sometimes to express z in terms of t alone

dz
by eliminating x and y. So we are now to find —- i without actually substituting the values of x

t
and y in terms of t in z = f (x, y).
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Let dx, 8y and 6z be the increaments in x, y and z corresponding to a small increament &f in

the value of t.

.(if)

{Adding and subtracting f (x + ox, v)}

then z+0z = f(x+ 0,y +dy)
where x+0 = ¢@t+0t),y+0y=wy(t+03t)
dz 8z - flx+8x,y+3y)— f(x,y) .
Now, T T a0 o T %;]_IB 5 (from i)
_ Lim SEFOx,y+8y)— fx+8x, )+ f(x+8x,y) - flx,y)
- 80 St
- fle+8x,y+8y)- fx+8,y) 15 fX+3Y)- flxy)
- =0 St T a0 ot

_ gzji%1[f(?f+5x,y+5y)—f(X+?5xfy)_ S_y} . Lim [f(x%x,y)—f(x,y)_ g}

oy ot

Also, as &t - 0, &x - 0, 8y —» 0

ox ot

dt -0 | dy &t -0 | ox Ot
_ Sy dy | ooy dr
gy dt ox  dt
dz oz dx 0z dy
= = =22 =22 (i) (As z =
A R (i) (As z = f (x, )
. | dz 0z dn 9z dn oz X,
1 genera at = o dt T ox, dt 7T ox, dt
The above relation can be also written as
oz 0z
dz = adx + % dy | which is called total differential of z.

Corollary: If z = f (x, y) and suppose y is the function of x, then f is a function of one
independent variable x. Here y is intermediate variable. Identifying t with x in (iii), we get

dz
dx

9z dx %2 dy

o dx T dx

1.7.1 Change of Variables

dz 0z

dx  ox

dz dy

ay dx |

Let z=f (x, y) where x = ¢ (s, t) and y = ¥ (s, ) then z is considered as function of s and ¢.

Now the derivative of z with respect s is partial but not total. Keeping t constant the

equation (iif) modified as
0z

9z _ o o
0s

J dy
ox 0s i

dy s

(A)
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In a similar way, we get

9z _ o ox o oy (B
ot ox ot oy of

The equations (A) and (B) are known as chain rule for partial differentiation.

Example 1. Find the total differential coefficient of x> y w.r.t. x when ¥, y are connected by
2 +ay+yr = 1

Sol. Let z = 2%y (D)

Then the total differential coefficient of z

dz )z dx o0z dy oz 92 dy

BT ok T e T T -
oz 0z
From (i) Pl 2xy, @ = x2 and we have
2 +ay+yr o= 1 ...(iii)
Differentiating w.r.t. x, we get
dy dy 0

2x+Ex+y+2yE =

2 2 d—y—o
(2x +y) + (x + 2y) I

dy 2x+y
- dx — x+2y

Putting these values in equation (i), we get
dz 2x+y x*(2x+y)
T 2y [‘x+2y] =2V vzy)
Example 2. If f (x, y) =0, ¢ (y, 2z) = 0, show that

T wa g o

W oz dx  ox oy
Sol. We have fxy) 0 ...()

*.2) =0 (i)

5

From (i) £=1+1.Q=O:}d_y=_8x

dx ox  dy dx dx of

9y

)

y d _ 00 0 dz __ odz__\%y
From (if) dy = 3y + e dy =0 dy =

/N
Q| QU
N |-&
—
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Multiplying these two results, we get

e ()

dx

%) )

¥ ke F

or @ % - oy Hence proved.
Example 3. If u = u [y—x,z—le show that
xy  xz
x? % + 2 g—;+ 2 % = 0. (U.P.T.U., 2005)
Sol. Let s = y_x=l_landt:ﬂ:l_l
xy X oy zX x z
So ﬁ=—i§=i ﬁ=_iﬁ=lﬁ=0
ax ¥y oy oz 22y
0s
e 0
Since u = u(s,t)
W w as w o
ox s Jdx  of ox
ou ou (_l) ou 1
- nx T oos 22T (_FJ
Lw .
or X T T % o (1)
Next, ou = ou 95 + du ot
oy Js dy ot dy
wu 1 gy , 9 u y
or y = yz s +0=y dy = s (i)
ou ou os ou ot 1 Ju
and Z - st 'TZw
= 22 N (ifi)
0z ot
Adding (i), (i) and (iii), we get
Jou L L w w du
XLty y t S = T T T s T = 0. Hence proved.

2 2 2 2
Example 4. Prove that % + % = % + %,
x Y

x = &cosa—msino, y=Esin o +mn cos o.

where
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and

and

Sol. We have X =

ox

a_g =
Now, Let u =
Jdu
a_ﬁ =
ou
% =

=

Pu
0er =
9%
0er =
ER
o>
E
on?
Adding (iii) and (iv), we get
0%u 0%u

" n?

Again

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

Ecoso—msina, y =& sin o+ M cos o.

a
€0s 0, G = - sin o an ag—smoc,an—cosoc
u(x, y)
ou x +% OL% + si oc% (@)
ox 9 "oy ag T Y gy TERY G
ou ox ow dy o o ou ’
. on + 3 =-sin o o + cos o 3y (i)

i (%J = c:osoci + sinoai cosoc% + sin(x%
o€ o8 ) = ox oy ox dy

2 0%u

u
2 . . 2 N
COs“0L —ax2 + 2 sin o, cos O _axay + sin“o ayz

0%u

...(iii)

) (auj .0 ) . ou ou
T |3 | =|—-sSIn0— + Ccoso— —SINo— +CcCoOsO0L—
an (o 0x oy 0x oy

. 0%u
2 sin o, COS O _axay +

0%u

sy —
SINn-o -
ox?

0%u
ox?
0%u

el Hence proved.
X

Example 5. If u = f (y - z, z — x, x — y), show that

ou
+

% ou

0%u
cos2a. B_y2

..(iv)

0%u

- (cos?a. + sin?a) + (cos?o. + sinZor) 8_y2

oy % = 0. (U.PT.U., 2003)
Sol. Let r = y-zs=z-x,t=x-y
Then u = f(rs,t)
du of or of ds  of ot
o T 9 ox o5 ax ot ox
= % = % x 0 + % (1) + % 1) ‘AS %:0,%:—1,%:1
ou o of .
N & = -t (1)
ou o or o 3 of ot
o T oy ey ot oy
= % 1) + % 0) + % (-1) ‘AS g—;=1,§—;=0,§—;=—1
ou o JFf y
N W = o o ..(if)
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; w o ¥ ¥
an Z ~ or oz s 0z ot oz
of of o o las o195 19 g
= 5 (-1) + g (1) + E (0) 9z 2 oz
- w o (i)
0z or 0s
Adding equations (i), (if) and (iii), we get
BB B e prove
o T 3y +5,=0 ence proved.
Example 6. If x = v cos 0, y = r sin 6, show that
or X 20 . 2% 9%
5 = g;%=r£andf1ndthevalueofﬁ+v‘
Sol. We have X = rcosB,y=rsin0
= r2 = x>+ y*and 6 = tan™ (%)
or 7cos6
21’-1 = 2x:>—=f= = cos 6 ..(7)
ox ox r r
ox .
and we have X = rcos6= 5 = cos 0 ..(ii)
From equations (i) and (ii), we get
> = o ence proved.
N a ol
ow, B - rsin 0 = . 3 =~ sSin ...(ifi)
20 1 in©
and @L . (_lz)z_ zy2=—r51?
ox Y x x“+y r
1+
X
I SR R |
= -, sin@=r = =-sin ...(iv)
From equations (iii) and (iv), we obtain
T ;
%0 T ence proved.
90 9% %0 2x
Since Pl % = P ZyX—ZJZCZ 2= 12 ]/2 5 ...(V)
x4y (x +y ) (x +y )
d 29 1 (1) x 0%0 2xy (o)
an = = .S = ...(vi
Yoo W) Tt ()
X

Adding equations (v) and (vi), we get

0% 0%
a? Ty

0.
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Example 7. If ¢ (x, y, z) = 0, show that

). (%), (3]
oz ), \ox), \ay) =~ L (U.P.T.UL, 2004)

Sol. We have ¢ (x,y,z) = 0

Keeping y as constant, differentiate partially w.r.t. x, we get
&) EE)
ax) " \oz) \ox y
90
&, - -3 |
0x y = - (84)) ..(0)
0z

Next, keeping z as constant, differentiate partially w.r.t. y, we obtain

W () W
ox ayz+8y_

...(ii)

i
TR
|
N\_/
Il
/ﬂl/_\
\&g
N—

oy 34))
ox
%)
o J 0z
Similarly, (B_Z)x = - [8(1)] ...(1ii)
Ay
Multiplying equations (i), (if) and (iii), we get
dy ( 9z ) 0x
(&)x ox y [a_yl = -1. Hence proved.
Example 8. If x + y = 2¢° cos ¢ and x — y = 2i ¢° sin ¢, show that
P’V 9V 9’V

7 5 =Y Ty (U.PT.U., 2001)

Sol. We have x +y = 2¢° cos 0
x -y = 2ie® sin ¢

Adding 2x = 2 (€% (cos ¢ + i sin @)
x = e®*ie 0
and subtracting, we get y = €%~ 10 (i)
Let V=V(y

V. _ oV ox IV
® ~ ox 08 "oy e
w v, As ooy
06 x Y oy 96 26
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and

and

2%V ) (aVJ o 0 vV v
— = — |=—| = | X—ty—| |x—+y—
202 ~ 00 \ 00 ax 7 dy a7 dy

ay

90

AV LAV LRV [xa_vwa_vJ
= 07 " o Ve T aay U ey
Vv oV ox IV gy IV BV )
-, = _— = = — —_— AS—_ =
Now 0 = ox % Ty a0 ax WGy W "=
oo v v
- a0 = ' "ox yay
v () (o a) (@v_ v
Next a¢2 = % =1 ax yay ax ]/ay
2 2 2
= 2aV Za‘;_bq/avq.xﬂ.,_yﬂ
x> oy oxoy  Jox oy
v P pd% % b K
202 T 71 x? Y ay? yaxay ox yay
Adding equations (iii) and (iv), we get
2 2 2
% + (—;T‘Z/ = 4xy E?xavy Hence proved.
Example 9. If x = r cos 0, y = r sin 6, z = f (x, y), prove that
0z 0z 1 oz 0z 0z . 1 oz
ax—arcose raesme a—y—a 6+raecose
az(r”.cosne)
Prove also that ————% =-n(n—-1) "~ 2-sin(n - 2) 6.
ox oy
Sol. Here z is a function of x and y where x and y are functions of r and 6.
wen = _zw x®
- Yie have x T oorox T o9 ox
= o o
dy = ooy T o8 oy
Now, x = rcosB,y=rsin, sor>=1x*+y’>and 6 = tan™ (%)
™ o 6 or o 00 sin® 4 99 cos6
en, o = o8 ay—sm,a =-—, and 5 =~
Substituting these values in equations, (i) and (i), we have
R B
o = 080 50— sin® -5 Hence proved.
0z oz 1 0z
5, =sin 0 = + — cos 6 7;- Hence proved.

ay o r 00’

55

...(iii)

_1y

...(ii)

..(iv)
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Again substituting " cos 16 for z in (iv), we get

J 0 cosH
@ (r'* cos n@) = sin 0 S (r cos nB) +

3 (r"* cos n0)

cos0

= sin O ("~ ! cos n0) + (- r"n sin n0)

= nr"(cos nB sin @ — cos O sin n0)

0 (r” cos ne) .
or T = nr'"" sin (0 — n6) (v)
Bz(rn cosne) o |9 (r” cos ne)
Now, dxdy T oox ay

= % [”rn_l sin (1—”)9] , from (v) = n % [r”‘l sin (l—n)e]

=n [cose% {r”_l sin(1- n)e} - g % {r”_l sin(1- n)e}}

= n[cose(n—l)r”_zsin(l—n)G—Sin—er”‘l(l—n)cos(l—n)6}

= -nm-1)r2[sin (n - 1)0 cos  — cos (1 — 1) O sin 0]
= —-n(m-1) 2 sin (n - 2) 6. Hence proved.
Example 10. If u = f (x, y) and x = r cos 6, y = r sin 6, prove that
Pu  u u 1 *u 1 ou
o T T T e T
Or

9%u o%u
Transform [ax_zJ + (W} = 0 into polars and show that u = (Ar™ + Br™) sin n0 satisfies

the above equation.

Sol. We know x = rcos 9, y =rsin 0 (1)
P2 o= 224y ...(i0)
a (Y
and 6 = tan . ...(iif)
F g t 2 i =2 i — E — rcosd f H
rom (ii), we get 2r oy S Xor o= = , from (i)
o .
or ox = 08 ...(iv)
Similar] or y rsin® - ©)
milarly, - =+ = = sin (v
1mila: y ay , r S1
00
Also from (i), 2 - — L . (—%) S
X X" +y

) 2
S
X
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00 rsin® sin® ,
or Y ...(vi)
. 20 _ 1 (l) _ X _rcos® _ cosé (o)

oy 1+(y)2 X 4y 2 ;

X
ou ou or ou do
Now, we know % - o + 3 o
ou ou [ sin® . .
=35 (cos ©) + Y (—T) , from (iv), (vi)
0 sin® o
or o (u) = cos @ > (u) - & (u) ...(0tii)
) ou
Replacing u by P
u 9 (du d (ou) sine o (du
w T o (5) = cos 8.5, (&J T %(3)
_ 0 [ ou sin® au} sin® 9 [ ou sin® au}
=080 -—|Ccos ————— | -——— —| oSO — ————
ar r d0 20 ar r do
2 sin® _du %u) 19 (. . ou
= cos 0 {cosegr—g—sine-%(%-g—g)] -y H_SmeerCOSG'W]_7£(SIHS'£)}
o%u Pu . (1 2%u 1 ou
or 5?=m9P“5ﬁﬂ“%5%72ﬁ}
. 2 2
_ ﬂ {—sinea—u+cose-a—u—l[sinea—g+cose-a—uﬂ
" or oroe r 00 00
9%u , . 0% 2sinBcos® 9*u  sin’6 9% sin’0 u
or ﬁ:cosey—farae+r—zw+75
2cos0sin® Ju ,
+ r—2 30 ...(ix)
Similarly, @ = sin? 0 a_zu + 2sinbeosd ou + cos”6 &
T or? r ar 90 82
cos’® ou  2cosBsin® Ju
P S 0
Adding equations (ix) and (x), we get
9%u a_zu ) - 2y r ., ) o%u
F + 8y2 = (cos*© + sin” 0) W + 7 (sin® O + cos* 0) W

ou w1 %u 1 du

il
Hence proved.

1
+ 7 (sin? @ + cos? )
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Or
If u = (Ar'" + Br™) sin n6, then
% — An—l B n -1y qj e._u_ At Br™ 0
o = n (Ar" — Br~ )smn,ae—(r+ r™) n cosn
9%u
and 52 = n[An -1)r" =2+ B (n + 1) ¥ 2] sin nb;
o%u 9 (ou .
%2 - 3 (% =— (Ar" + Br~") n?> sin nO
Pu 1 u 1 du , .
ar—z+r—zaoﬁ+?§= nfA (n-1)r?*+ B+ 1) r"?] sin no

1 1
-2 (Ar" + Brn?sinn 0 + r—n(Ar”‘1 — Br1) sin 10

= [A{n*>~n-n? + n}r"? + B(n* + n — n> —n)r™ 2] sin nd

0. Hence proved.
Example 11. If x = 7 cos 6, y = r sin 0 or r> = x? + y?, prove that

Pro 9 1y ()]
awr oyt o |lox dy

Sol. Since x = r cos 8 and y = r sin 6

or x oy % 2-x® o r?—y?
x oty T T A Tyt T
- 9% 3_2,, (rz_xz) ( z_yz) 2r2—(x2+y2)
Adding i 8y2 = 3 + 3 = 3
= 2r2r; r B R
9% o%r
or 87 + 8_y2 = - ..(1)

()
AlSO, ; ox ay

|
N |-
—
/
N R
N
N
+
—
RS
N
H_/
1l
N |-
I/
=
- [
ol T
<
)
~

1 3% 9%
;

= = ? + 8y2 , from (i) Hence proved.
Example 12. If V = f (2x - 3y, 3y — 4z, 4z - 2x), compute the value of 6V _+ 4V + 3V_
(U.P.T.U., 2008)
Sol. Let r=2x-3y,s=3y -4z, t =4z - 2x
V = flr,s, t)
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V. _ o or o ds of ot
x dx  Or ox s ox of ox

S S ‘As _Ir_,05 g0t
= 520+ = (-2) x Tox ox
- V.= 2f —2f ()

oV _of or O 95 o ot

Vo= oy Ty Tas oy ot oy
of of of o _ 405 _ 40t
A A Moy Ty T
= V, = -3 + 3 N0
Similarly
Vo= 4f - 4f ..l

Multiplying (i), (i7) and (iii) by 6, 4, 3 respectively and adding, we get
6V, +4V +3V = 12f - 12f - 12f + 12f + 12f - 12f
= 6V, +4V +3V = 0. Hence Proved.

du
Example 13. If u = x log xy, where x* + 1 + 3xy = 1, find i [U.P.T.U. (C.O.), 2005]

Sol. By total differentiation, we know that
d d
Ju dx ou dy _ du_ du dy

du_ (@)
de  ox dx dy dx  ox dy dx

we have u = x log xy

or

u
ox
u
ay

log xy + iy =log xy +1 (7))

= %(x) =

<R

Also, given that
1

Differentiating w.r.t. ‘x’, we get

dy dy
3¢ + 312 =% + 3y + 3x—2= 0
X + y dx+ y+ xdx

= (x2+y)+(x+y2)% =0
W |
P ()

Using (i), (ifi) and (iv) in (i), we get

du _ _E x2+y
5 - (1 +logxy) y[x+y2]

X+ y® + 3xy
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Example 14. If x =u + v + w, y = vw + wu + uv, z = uvw and f is a function of x, y, z, show

that ua—f+val+wal = xal+2ya—f+3za—f.

ou v ow ox dy 0z
Sol. Let f = f(xr Y, Z)

Jf i.ax o ay of oz
ou ox Ju ay Bu dz ou

= %+(w+v)g—f+vw% ‘Asg—ft = 1,% = (w+v),% = vw
or u% = ug—£+u(w+v)g—£+uvw% (1)
S S xSy S oz
dv  9x dv dy dv 09z v
= g{c+(u+w) a{/+ > E)z =1, gy (u+w),% = uw
or v% = vg—£+v(u+w)g—jyf+uvw% (i)
Similarly
w% = w%+w(u+v)%+uvw% .. (i)
Adding (i), (i) and (iii), we get
ui+v—f+ g = (u+v+w)1+2(vw+wu+uv)1+Susz%
ou v ow ox oy 0z
or ui+vi+wi = x1+2y1+321. Proved.
ou  Jv ow ox ay oz

Example 15. If by the substitution u = x* — 1%, v = 2xy, f(x, y) = ¢(u, v) show that
B_f Ff 4@ + ) %, %
ox*  dy E u2 ov”

Sol. We have flx, y) = o, v)

Differentiating partialy w.r.t. “x’

0 0
a_f = %%4_%% - 2_‘)('%4.2]/% ‘As_u — ZXI_U — 2]/
ox ou dx dv ox ou v ox ox

2
YA T %Y
o2 ox \ ox ox ou v

ou ou Jdv)odx 0Jv ou 0 ) ox
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0 ) %0 %0
= |2 2 2 2 2 2
(xaz+yan x+[xavau+ya y

Pf 220 gy 0% za¢

o - T T -0
Again differentiating f(x, y) partially w.r. to y
of d0 Jdu  dp Jv L) d0 du v
— = Lt — = 2y + 22—~ |[As— = -2y, — =2
ay  ouay avay T [y Yy T
2
Y ay u av
= i(—Zy%nLZxaq)) ou +i( %0, Zx@)%
au au dv)dy ov ou dv ) dy
0%, 0% 0 0
= | 2y—5+2 2 2 2x— | (2
[ Yo P aua )T W e 07 )
2 2 2 2
o I _ 4200 gy 90 | 412970 (i)
ay ou oudv v

Adding (i) and (ii), we get

az_faz_f=4(2 2) 2¢+4(2 2)32¢

+ X4y ) — X4y —
ax?  ay? )2 a0
2 2
= 4(x2+y2) 8_¢+8_¢ . Hence Proved.
ou®  o?
Example 16. If x*> + y*> + 22 — 2xyz = 1, show that dx + dy + dz = 0.
\/1—y2 \/1—22
Sol. We have
¥+ + 22 -2xyz =1
or X-2xyz+ Yy =1-yp -2+ 2 77
(x-yz = 1-y)(1Q-2%

or (x = yz)

\/(1— v) \/(1—22) ()

Again Y -2xyz + 22 x* = 1 -x*-22+ 22 x°

or y-—zx=(1-2)1-29)
or (y —zx) = \/(1—x2) \/(1—22) (i)
Similarly z-xy) = \/(1_x2) . \/(1_}/2) .. (iii)

Let u=x+yY+z22-2xyz-1=0
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By total differentiation, we get

ou ou ou
du = —dx+—dy+—dz =0
" oy T
As% = 2x-2yz
ox
au
or (2x — 2yz)dx + (2y — 2zx)dy + (2z — 2xy)dz = 0 B_y = 2y—2zx
% = 2z—2xy
or (x —yz)dx + (y — zx)dy + (z — xy)dz = 0 ...(iv)

Putting (i), (i) and (iii) in equation (iv), we get

J1=92) J(1-22) axe f(1-27) J(1-2%) dy+(1-2%) [(1-?) dz = 0

Dividing by \/(1—x2) \/(1—1/2) \/(1_22),weget

dx dy dz

+ +
\/1—]/2 Vi-22

EXERCISE 1.6

= 0. Hence proved.

al x 1
Cdy ) ane W_ |y +y logy
1. Find o if ¥+ y* =c. { ne Lcylogx ¥y |
. du du 49|
2. If u = x log xy, where x> + 1 + 3xy = 1, find —.|Ana —=(1+logxy)+—|—
8 Xy Y+ Bxy dx[ —=(1+logxy) [(ym_
du (2x+y)]]
3. If u = x? y, where x? + xy + y?> = 1, find % [Ans E=2xy 2 l:(x+2]/)
4. If V is a function of u, v where u = x — y and v = x — y, prove that
LV vy
oz Y ay> y ou? yav2 '
azu 82u
5. Transform the Laplacian equation 2t a_yz = 0 by change of variables from x, y to 7, 6
(% 9%u
when x = ¢" cos 0, y = ¢’ sin 6. NG € ar2+862 =0

dd_ 42 = 511 h 3.3 - Ans. d——1+10gxy—— +y
6. Fin 7 if 4 = x log xy where ° + + 3xy = 1. dx yx+y
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7. If the curves f (x, y) = 0 and ¢ (x, y) = 0 touch, show that at the point of contact

of 9% _ o

ox 9y dy ox

o d _ dy ytanx+logsiny
8. Find d_Z’ when (cos x)Y = (sin y)*. Ans e log cosx —xcot y

9. If x =rcos 6, y =r sin 0, prove that
0% % (oY
Fr (WJ ‘
10. If z is a function of x and y and x = e* + ¢, y= ¢* —¢” prove that
oz 0z 0z oz
W T wm
11. If u = log (tan x + tan y + tan z) prove that
. ou _ ou . ou
(sin 2x) e + (sin 2y) a_y + (sin 2z) - 2.
12. If u = 3 (Ix + my + nz)®> — (x* + y? + z?) and > + m? + n*> = 1, show that
Pu  u du
2t E)—yz + Pz
13. If u = x> + 2xy — y log z, where x = s + 12, y = s — t2, z = 2¢, find
ou ou ou

ou
u ou Ans _g % _g_4
3’ ot @ 2D [ i }

14. If u = x2 — y? + sin yz, where y = ¢* and z = log x, find %
1
Ans 2(x-e")+e” 1 logx+—
[ na 2x-e*)+¢* cosfe"log ) g H

15. If z = z(u, v), u = x> - 2xy — y* and v = y, show that (x + y) % +(x-y) % = 0 is equivalent
X Y
0z

to — = 0.
° Jv

CURVE TRACING

Introduction

It is analytical method in which we draw approximate shape of any curve with the help of
symmetry, intercepts, asymptotes, tangents, multiple points, region of existence, sign of the first
and second derivatives. In this section, we study tracing of standard and other curves in the
cartesian, polar and parametric form.
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m PROCEDURE FOR TRACING CURVES IN CARTESIAN FORM

The following points should be remembered for tracing of cartesian curves:

1.8.1 Symmetry
(a) Symmetric about x-axis: If all the powers of y occurring in the equation are even then the
curve is symmetrical about x-axis.
x2 yZ

Example. 2t Ec 1, y* = 4dax. (U.PT.U., 2008)

(b) Symmetric about y-axis: If all the powers of x occurring in the equation are even then
the curve is symmetrical about y-axis.

Example. x? = day, x* + yt = a2

(c) Symmetric about both x- and y-axis: If only even powers of x and y appear in equation
then the curve is symmetrical about both axis.

Example. x? +y? = a2 (U.PT.U., 2008)

(d) Symmetric about origin: If equation remains unchanged when x and y are replaced by
- xand - y.

Example. x° + y° = Ba*x?y.

Remark: Symmetry about both axis is also symmetry about origin but not the converse (due
to odd powers).

(e) Symmetric about the line y = x: A curve is symmetrical about the line y = x, if on
interchanging x and y its equation does not change.

Example. x® + Y3 = 3axy. (U.PT.U., 2008)

(f) Symmetric about y = — x: A curve is symmetrical about the line y = — x, if the equation
of curve remains unchanged by putting x = — y and y = — x in equation.

Example. x3 — 3 = 3axy. (U.PT.U., 2008)
1.8.2 Regions

(a) Region where the curve exists: It is obtained by solving y in terms of x or vice versa. Real
horizontal region is defined by values of x for which y is defined. Real vertical region is defined
by values of y for which x is defined.

(b) Region where the curve does not exist: This region is also called imaginary region, in
this region y becomes imaginary for values of x or vice versa.
1.8.3 Origin and Tangents at the Origin
If there is no constant term in the equation then the curve passes through the origin otherwise not.

If the curve passes through the origin, then the tangents to the curve at the origin are
obtained by equating to zero the lowest degree terms.

Example. The curve a?y? = a?x? — x*, lowest degree term (> — x?) equating to zero gives
y = = x as the two tangents at the origin.

1.8.4 Intercepts

(a) Intersection point with x- and y-axis: Putting v = 0 in the equation we can find points where
the curve meets the x—axis. Similarly, putting x = 0 in the equation we can find the points where
the curve meets y-axis.
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(b) Points of intersection: When curve is symmetric about the line y = + x, the points of
intersection are obtained by putting y = = x in given equation of curve.

(c) Tangents at other points say (4, k) can be obtained by shifting the origin to these points
(h, k) by the substitution x = x + I, y = y + k and calculating the tangents at origin in the new
xy plane.

Remark. The point where dy/dx = 0, the tangent is parallel to x-axis. And the point where
dy/dx = e, the tangent is vertical i.e., parallel to y-axis.
1.8.5 Asymptotes
If there is any asymptotes then find it.

(a) Parallel to x-axis: Equate the coefficient of the highest degree term of x to zero, if it is
not constant.

(b) Parallel to y-axis: Equate the coefficient of the highest degree term of y to zero, if it is
not constant.

Example. x%y —y-x=0
highest power coefficient of x i.e., x> = y
Thus asymptote parallel to x-axis is y = 0
Similarly asymptote parallel to y-axis are x> -1 =0 = x = = 1.
(c) Oblique asymptotes (not parallel to x-axis and y-axis): The asymptotes are given by

y = mx + ¢, where m = lim (zj and ¢ = gl_rf; (y — mx).
X—oo \ X

(d) Oblique asymptotes (when curve is represented by implicit equation f (x, y) = 0):
The asymptotes are given by y = mx + ¢ where m is solution of ¢ (m) = 0 and c is the solution of

cd/(m) + ¢, ,(m)=0orc= M Here ¢ (m) and ¢

¢y, (m)
y = m in the collection of highest degree terms of degree n and in the collection of the next highest
degree terms of degree (n — 1).

(m) are obtained by putting x = 1 and

n-1

1.8.6 Sign of First Derivatives dy/dx (a < x < b)
dy

(@ —=>0, then curve is increasing in [a, b].

dx
dy

(b) =<0, then curve is decreasing in [a, b].

dx

d
(o) If Yoo , then the point is stationary point where maxima and minima can occur.

dx
2

szy (a< x< b)

1.8.7 Sign of Second Derivative

2
(@) d—‘12/> 0, then curve is convex or concave upward (holds water).
x

dzy

(b) ey <0, then the curve is concave or concave downward (spills water).
X
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1.8.8 Point of Inflexion

A point where d?y/dx? = 0 is called an inflexion point where the curve changes the direction of

concavity from downward to upward or vice versa.

Example 1. Trace the curve y = x3 — 3ax.

Sol. 1. Symmetry: Here the equation of curve do not hold
any condition of symmetry. So there is no symmetry.

2. Origin: Since there is no constant add in equation so the
curve passes through the origin. The equation of tangent at origin
is y = 0 i.e., x-axis (lowest degree term).

3. Intercepts: Putting y = 0 in given equation, we get

¥-3ax2 = 0=>x=0, 3a

Thus, the curve cross x-axis at (0, 0) and (34, 0) .

4. There is no asymptotes.

d
5. 9 3x2 — 6ax.
dx

d
For stationary point d—z =0=3x-6ax=0=x =0, 2a

d’y
dx®
= 6a > 0 (convax) and y_. = - 4a.
%y
7. Inflexion point: 2 O0=6x-6a=0=x=0,a
x

8. Region: — oo < x <o since y is defined for all x.
9. Sign of derivative

2 2
6. —5 = 6x — 64, (—yj = —6a < 0 (concave) and y_ = 0 and (
x=0

Interval Sign of y Quadrant Sign of y’
—e<x<0 y<0 I y' >0
0<x<2a y<0 v y’ <0
20 < x < 3a y<0 v y'>0
30 < x < oo y>0 | y’ >0

Using the above calculations. We draw the graph in Figure 1.3.

Example 2. Trace the curve y? (@ — x) = x5, a > 0.

Sol. 1. Symmetry: Since y has even power so the curve
is symmetric about x-axis.

2. Origin: The curve passes through the origin.

3. Tangent at origin: The coefficient of lowest degree
term is y¥>? =0 or y = 0 and y = 0 i.e., there is a cusp at the
origin.

><

Y
1
a 2a /
o + + > X
(3a, 0)
(2a, —4a")
Fig. 1.3

d2

a4y _
R ]x—za = 12a - 6a

Nature of curve

increasing
decreasing
increasing
increasing

(U.PT.U., 2006)

X=a

Double | tangent

4. Intercepts: Putting x = 0, then y = 0 = origin is the
only point where the curve meets the co-ordinate axes.
5. Asymptotes: Asymptotes parallel to y-axis obtained

by equating to zero the highest degree term of y i.e., (x —a) =
0=>x=a.

7

(a, 0)

Fig. 1.4
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3

6. Region: 1% = this shows that the values of x > 4, y is imaginary. So the curve does

a-x
not exist x > a. Similarly, the curve does not exist when x < 0.

Here the curve only for 0 < x < a.
7. Sign of derivation:
dy

1
, xi(%_x)
A —\2_ J , in the first quadrant for 0 <x <a, —= > 0, curve increasing in the first
dx (a—x)Va-x dx
quadrant.

The shape of figure is shown in the (Fig. 1.4).

Example 3. Trace the following curve and write its asymptotes. (U.PT.U., 2003)
x®+ 1y = 3axy.

Sol. 1. Symmetry: Interchage x and y. Then equation of curve remain unchanged.
. The curve is symmetric about the line y = x.
2. Origin: The curve passes through origin.
3. Tangent at origin: The coefficient of lowest degree term is x =0 or y =0

. x = 0 and y = 0 are tangents at origin.
4. Intercepts: Putting y = x, we get

2x3 = 3ax? = 2x3 - 3ax? =0

=x2(2x-3a) = 0
= x:Oandx:%
2 N
3 3
At x =0,y=0and at x = d _ A N

2777 N
3a 3a
Thus, points of intersection are (0, 0) and D)
along the line y = x. e
5. Asymptotes: Since the coefficients of highest
powers of x and y are constants, there are no asymptotes
parallel to x-and y-axis.

Putting x = 1 and y = m in highest degree term
(¥ + %), we get
o,(m) = 1+m*=0

= m = -1 (Real solution)
Again putting x =1 and y=m
in next highest degree term (- 3axy), we get
(Bam)  a
3> m
At m = -1,c=-a.

Asymptotesy = mx +c=>y=-x-aory +x+a=0.
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6. Derivati dy _ay-x’ (d_y) = —1ie, thet tt(%%) ki
-Derivative: - - = oz = i (%%) = - lie, the tangent at | 7=, =~ | making

an angle 135° with x-axis.

7.Region: When both x and y are negative simultaneously equation of curve is not satisfied
(2 + (9> = 3a (=x) () = - (® + °) = Baxy
= There is no part of the curve exists in 3rd quadrant
The shape of the curve is shown in Fig. 1.5.

2 2 2
Example 4. Trace the curve ,3 _,_yE — 43 (Astroid).

2 2 2 AVE 2/3
Sol. We have ,3 +y§ —a3 = [_) +(1) =1
a a

<" )
— | =1 (i
or [uz + o (1)

1.Symmetry: Since there are even powers of x and y so the curve is symmetric about both
axis.

2. Origin: Since there is constant term so the curve does not passes through the origin.
3. Intercept: Putting y = 0, we get x = = a.
= The curve cross x-axis at (a, 0) and (-4, 0)

Similarly, putting x = 0 then y = + a i.e., the curve cross y-axis at (0, a) and (0, —a).

1
d 2 d
4. Derivative: & =— (1)3 = (d—y) =0i.e., tangent /Y
dx x X/ (a,0) B 4(0.a)
dy P
at (a, 0) is along x-axis and | 7,- 0n oo = tan 5 ie., a
A
tangent at (0, a) is y-axis. C > X
g 0, a) is y 20 0 a @ 0)
1 ) 1
23 3
5. Region: (y—J =1- (x_zj
a? a D
(0, -a)
X y?
oif 7 >1ie,x>a, wehave =<0 ie, 2 <0=yis Fig. 1.6
a

imaginary, so the curve does not exist for x > a. Similarly, the curve does not exist for x < —a and
y>ay<-a

6. Asymptotes: No asymptotes.

The shape of the figure is shown in the Fig. 1.6.
Example 5. Trace the curve x%y? = a2 (12 — x?).
Sol. 1. Symmetry: The curve is symmetric about both axis.
2. Origin: The curve passes through origin.
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3.Tangents: The tangents at the origin > — x> = 0. ie.,
y=z%x
4. Intercepts: Cross the line at origin i.e., (0, 0).

5. Region: y? = a%x?/(a® — x?) this shows that the curve
does not exist for x2 > a% i.e., for x > a and x < —a.

6.Asx > a, > > and as x — —a, y> — oo

The shape of the curve is shown in Fig. 1.7.

Example 6. Trace the curve y? (@ + x) = x%2 (b - x),
(Strophoid).

Sol. 1. Symmetry: There is only even power of y so
the curve is symmetric about x-axis.

2. Origin: The curve passes through the origin.

3. Tangents at origin: The lowest degree term is

ay* — bx?
b
tangents are ay? —ax?= 0= y== B X.

0, sox2(b-x)=0
= x=0,0b

4. Intercepts: Putting vy

The curve meets x-axis at (0, 0) and (b, 0). y-intercept:  x=-a

69

put x = 0 then y = 0. So (0, 0) is the y-intercept.
5. Asymptotes: Asymptotes parallel to y-axis is
x+a=0=x=-a.

b—x
a+x

when x > b and x < —a. Thus curve exist only in the region
—a<x<b

6. Region: y = = , ¥ becomes imaginary

7. Derivative: — =

dx 2(a+x)*?(b-x) dx

Thus, the tangent at (b, 0) is parallel to y-axis.

(—2x% = 3ax + bx +2ab) (ﬂ) _
(b,0)

Therefore from above calculations, we draw the curve (Fig. 1.8) of given equation.

Example 7. Trace the curve y? (x> + y?) + a? (x> — y?) = 0.

Sol. 1. Symmetry: The curve is symmetric about both axis.

2. Origin: Curve passes through origin.

3. Tangents at origin: The tangents at the origin are x> - y>2 =0 or y = + x.

4. Intercepts: At x-axis
2

(0, 0)
0 (put x = 0)

At y-axis = y* - a%y
Yy -a’) =
= y =

H <

a, 0

Thus, the curve cross y-axis at (0, a) and (0, — a) and (0, 0).
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5. Tangent at new point (0, — a) and (0, a)

Putting Yy = y+a, we get
(y + a)? [x2 +(y+a)2]+az[x2 —(y+a)2] =0

The tangent at the new points are y =0, y = 0

y=x

(0‘ a) AY

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

i.e., parallel to x-axis.
6. Region: x? = y? (4> - y?)/(a®> + ¥?)

The curve does not exist when y? > a?

or y>aandy <-a

The curve exist in the region when —a2 <y < a.

7. No asymptotes: The shape of the curve shown in Fig. 1.9.
Example 8. Trace the curve x%y? = a? (x> + y?).
Sol. 1. Symmetry: Curve is symmetric about both axis.

Fig. 1.9

(0, _a)

2. Origin: Curve passes through the origin. Tangnt at (0, 0) are x> + y?> =0 = y = + ix, which

give imaginary tangents. So (0, 0) is a conjugate point.
3. The curve does not cross the axis.
4. Asymptotes: Asymptotes are x =+ gand y = + a.

Y

5. Region: y? = a?x?/(x?> — a?). If x¥* < a*ie, x < +a
then y is imaginary i.e., the curve does not exist when

x<aand x < —a. X’

-

Similarly does not exist when y <aand y <-4
6. > > asx >aand x> > wasy —>a

The shape of the curve is shown in Fig. 1.10.
Example 9. Trace the curve (x? - a?) (y? - b?) = a®b?.

Sol. The given curve is (x? — a?) (y* - b?) = a?V?
or x2y? - bPx% - a?y? = 0 or x%y? = b’x? + a?y?
1. Symmetry about both the axes.
2. (0, 0) satisfies the equation of the curve.
Tangents at the origin are a’y?> + b?x?> = 0, which give
imaginary tangents. So (0, 0) is a conjugate point.

3. The curve does not cross the axes.
X' <

.
Fig. 1.10

Y

4. Equating the coefficients of highest powers of
x and y we find that x = + g and y = + b are the asymptotes.

b2x?

x2

5. Solving for y, we get y* = 7
o If x> < a? ie., x is numerically less than a, y? is
negative i.e., y is imaginary i.e., the curve does not exist

between the lines x = —ag and x = a.

-1 ---==

g
<
I
o

Similarly arguing we find that the curve does not exist between the lines y = - b and y = b.

6. y¥» >oasx > aand x> - wasy — a.

With the above data, the shape of the curve is as shown in Fig. 1.11.
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Example 10. Trace the curve y? (a — x) = x* (@ + Xx).
Sol. 1. Symmetry about x-axis.

2. Passes through (0, 0), the tangents are > = x? or y = +x. Tangents being real and distinct,
node is expected at the origin.

3. Curve crosses the x-axis at (— a4, 0) and (0, 0). Shifting the origin to (-4, 0) and equating
the lowest degree terms to zero, we get new y-axis as the tangent at the new origin.

4. x = ais the asymptote.

5. For x < — g, the curve does not exist. Similarly for x > 4, the curve does not exist.
6. Asx - a, y* - oo

7. No point of inflexion.

O Shape of the curve is as shown in Fig. 1.12.

Y
! h
i J" |
I \\ 4
X< (-a,0)} X o) (a, 0) X
1 7’
1 .7 N
I 7’
1 7
v’
Fig. 1.12
EXERCISE 1.7
11 1
1. Trace the curve y? (22 — x) = x3 2. x2+y2 =42 (U.PT.U. (C.O.), 2003)
(U.PT.U., 2004)
Y
\Y A
Tangent +
0, Z
Ans. 5 v > X Ans. ) 3
> Asymptote al4 .,

O a/4 (a,0)
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2 2
x\3 (y)3
5. (ZP (L) - 5.4 = i
(g) p x® + Yo = a’x%y
Y
A
(0, b)
b|
Ans. -2 a > X Ans.
-@ 0™, | ° @, 0)
(0, -b)
5. a?y?> = x> (2a — x) 6. 9ay* = x(x — 3a)?
Y
4
i
Ans. e — Ans.
:(2a, 0)
7. aty? = a? 1t — b 8. xy? = 4a® (22 - x)
Y Y
4 4
i i
_a, 0)!
Ans. & ), — > X Ans. o| 2a 5
! [¢] I(a, 0) (2a, 0)
9. 13 = x(a® - x?) 10. y = 8a%/(x? + 4a?)
Y
A Y
Ans. ™ /\(a, O)> X Ans.
(-a, 0) s
O %
AN > X
S0 O Asymptote
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Ml POLAR CURVES

The general form (explicit) of polar curve is r = f(6) or 8 = f(r) and the implicit form is F(r, 8) = 0.
Procedure:

1. Symmetry: (a) If we replace 8 by -6, the equation of the curve remains unchanged then
there is symmetry about initial line © = 0 (usually the positive x-axis in cartesian form).

Example. r = a (1 = cos 6).
(b) If we replace 8 by T - § the equation of the curve remains unchanged, then there is a

symmetry about the line 0 = g (passing through the pole and 1 to the initial line) which is usually
the positive y-axis in cartesian).

Example. r = a sin 36.

(¢) There is a symmetry about the pole (origin) if the equation of the curve remains unchanged
by replacing r into — r.

Example. 12 = a cos 26.
(d) Curve is symmetric about pole if f(r, 8) = f(r, 8 + 1)

Example. 7 = 4 tan 6.

(©) Symmetric about 6 = E ie, (y=x),if f(r, 8) = (rg —ej

) 3m . 3m
() Symmetric about 8 = Ty e =-x),iff(r,0)=f (r,7 —6)

2. Pole (origin): If r = f(8,) = 0 for some 6 = 6, = constant then curve passes through the
pole (origin) and the tangent at the pole (origin) is 6 = 6,.
Example. r =a (1 + cos 8) =0, at 6 = 1L

3. Point of intersection: Points of intersection of the curve with initial line and line

e:

NS

Tt
are obtained by putting 8 = 0 and 6 = PR

4. Region: If 7? is negative i.e., imaginary for certain values of 6 then the curve does not
exist for those values of 6.

5. Asymptote: If lim r = o then an asymptote to the curve exists and is given by equation
6-a

rsin (@-a) = f'(a)
1
where a is the solution of % =0.

8
r

6. Tangent at any point (z, 8): Tangent at this is obtained from tan ¢ = , where

@ is the angle between radius vector and the tangent.

7. Plotting of points: Solve the equation for r and consider how r varies as 0 varies from
0 to o or 0 to — o. The corresponding values of r and 0 give a number of points. Plot these points.
This is sufficient for tracing of the curve. (Here we should observe those values of 8 for which r
is zero or attains a minimum or maximum value).
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Example 1. Trace the curve r?> = 4 cos 28 (U.P.T.U., 2000, 2008)

Sol. 1. Symmetry: Since there is no change in the curve when 6 replace by — 6. So the curve
is symmetric about initial line.

2. Pole: Curve passes through the pole when 72 = 4% cos 26 = 0

. T T
ie,cos20=00 20 == E or == Z
6 =3m/4 Y o
. . n \\ A, // Ng
Hence, the straight lines 6 = = 7 are the tangents N o 0
e
at origin to the curve. N /
\
3. Intersection: Putting 6 = 0 (-a, m) N X
O r>=4?0 r = + a the curve meets initial line AR (a, 0)
to the points (a, 0) and (-a, ). ,y// .
o5
4. As 0 varies from 0 to T, r varies as given below: %,,’ // \\e = _nl4
6 =0 30 45 90 135 150 180
2 = a2  a%/2 0 - a? 0 at/2  a? Fig. 1.13

~imaginary -
5. Region: The above data shows that curve does
not exist for values of 6 which lying between 45° and 135°.
Example 2. Trace the curve r = a sin 30 (U.PT.U., 2002)
Sol. 1. Symmetry: The curve is not symmetric about the initial line.
2. Origin: Curve passes through the origin

when r = 0

O asin30 = 0

O 30 = 0, 1, 2m, 31 471 571

- o .o T 2n 4w osm
- /3/ 3/T[/ 3/3

are the tangents at the pole.
3. Asymptote: No asymptote since r is finite for any value of ©.
4. Region: Since the maximum value of sin 30 is 1.

T 31 5T

So, 30 = E ,7 ,T,etc. . 0=2n/3 .
T 31 5m \\6;}45? AN o
or 9=g,?,?,etc. N
for which r = a (maximum value). =0
O The curve exist in all quadrant about the (6=m -
m 3m 5T
lines 6 = g , ?, ? at distancer = a. 0 = Tml6 //
The shape of the curve is given in the (Fig. 1.14).  4_ ;n/3 ! \ 6=11w/4

\
0=3m2 6=5n3
Fig. 1.14
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Example 3. Trace the curve r = ae®

Sol. 1. No symmetry about the initial line.
2. AsBO - o, r - o and r always positive.
3. Corresponding values of 8 and r are given below:
6 = 0 /2 T 3n/2  2m
r = a qe™/2 ae™ ae3n/2 qena
with the above data the shape of the curve is shown below:
Example 4. Trace the curve r? cos 20 = a? (Hyperbola)

1
Sol. 1. Symmetry about pole and about the line 8 = ~TT.

2. Changing to cartesian the equation becomes
2-p = 2
O The equation of the asymptotes are y = + x or

0 = + —T are its polar asymptotes.

3. When 8 =0, 12 =42 or r = za ie., the points (4, 0)
and (-4, 0) lie on the curve. (Here co-ordinates of the points
are polar coordinates).

4. Solving for r we get r> = a?/cos 26. This shows

. 1 .
that as 0 increases from 0 to ZTE, r increases from a to co.

1 3
5. For values of 8 lying between 1 T and 1 T, 12 is

negative i.e., v is imaginary. So the curve does not exist for

Tnce<3n
4<<4.

Example 5. Trace the curve r = a cos 26.
Sol. 1. Symmetry about the initial line and the line

I8

0= 5 i.e., y-axis.

1
2. Putting r = 0, cos 20 = 0 or 20 = + ETE or

T are the tangents

=

1
0==x« ZT[, i.e., the straight lines 6 = +
to the curve at the pole.

3. Corresponding values of 8 and r are given below:

8=0° 30° 45° 60° 90° 120°
—a 0 —la -—a
r=a > > -a

75

0=mn/2

135° 150°  180°
0 111
’ a

Plot these points and due to symmetry about the initial line the other portion can be

traced.
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Example 6. Trace the curve r = a (1 — cos 8) (cardoid).

Sol. 1. Symmetry: No change in equation when we replace 8 by — 8. So the equation of

curve is symmetric about initial line.
2. Pole (region): If the curve passes through origin then
r =0 0a(l-cosB) =0
O cos® = 1=cos00 B6=0.

Here, the straight line 8 = 0 is tangent at origin.

3. Intersection: Putting® = 0thenr =20
and putting 0 = mthenr=2
U Intersection points on initial line = (0, 0) and (24, m). 0=1i2
4. Region: It exists in all quadrant. /—
5. Asymptotes: No. asymptotes. (28,19

6. As 0 increases from 0 to Tt r also increases from 0 to 2a.
The corresponding values of r and 0 given below:

6=0 60° 90° 120° 180°
_ a W
r=a > a > a

\, 0.0 %70

With the above data the shape of the curve is given in (Fig. 1.18).

Example 7. Trace the curve r = a + b cos 6, when a < b.
Sol. 1. Symmetry: The curve is symmetric about initial line.

2. Origin: For originr =00 a+bcos®=00 cos 08 = —%

3. Corresponding values of 6 and r are given below:
Lt T T 21

0=0 i3 2 3

e o) ) . Y[

b 21
Leta > Y then r is positive for all values of 8 from 0 to —~ but

Fig. 1.18
31
vy T
_ b
%) @-b

r is negative when 6

3
3 ) 21 T )
=7 Tt or Tt Here, r must vanish somewhere between 6 = 5 and iR Let 6 = a (lying between
an o 3m
5 and )-

6 =2mn/3
For which r = 0 then 6 = a is the straight line which is §

tangent to the curve at the pole and for values of 8 lying between
a and 1, r is negative and points corresponding to such values of
6 will be marked in the opposite direction on these lines as 7 is

0 =mn/2 0=m/3

negative for them.
Thus in this case a < b, the curve passes through the origin

a
when 0 = o = cos™! {_(Ej} and form two loops, one inside the
other as shown in the Fig. 1.19.
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EXERCISE 1.8

1. Trace the curve 2. Trace the curve
r=a (1 + cos 0) r = a sin 20
\%
0=m/2
(a w2) 0= 34 o=
\ //’
(a,m) N/
0=m N, 0=0
Ans. o) > Ans. =~ ¢
(2a, 0) RN
s \
P \
// \
0= 5m/4 0= 74
3. Trace the curve 4. Trace the curve
asin’0
r = 2a cos O P ——
cosB
Y
A
Y
N
x=0
A(a, 0)
Ans. Ans. R > X
[Hint: Change it in cartesian coordinates,
P (x—a) = - 2]
5. Trace the curve 6. Trace the curve (U.PT.U., 2003)
r=2(1-2sin 0) r = a cos 20
0= /2 0= 37'\c/4 0 =m/2 6/2 /4
N
0=n
Ans. Ans.

0 = 3n/2
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7. Trace the curve

8. Trace the curve

r=a (1 + sin 0) 12 cos 20 = a?

Y 0 =m/2
0=m/2 \
(0, 2a)
Ans. AN ///
A N O
ns K
8=0 I
0 X
(-a, 0) (a, 0)
[Hint: Change in cartesian form x? — y2 = 4?]

0 = 3n/2 0=-nmnl4

PARAMETRIC CURVES

Let x = f,(t) and y = f,(t) be the parametric equations of a curve where t is a parameter.
Method I: Eliminate the parameter ‘t’ if possible and we shall get the cartesian equation
of curve which can easily traced.
Example. x =a cos t, y =asin t 0 x2 + y* = a2

Method II: When the parameter ‘+’ cannot be eliminated.

1. Symmetry: If x = f,(t) is even and y = f,(t) is odd then curve is symmetric about x-axis:
Similarly, if x = f|(t) is odd and y = £, (t) is even then curve is symmetric about y-axis.
2. Origin: Find ‘t' for which x = 0 and y = 0.

3. Intercept: x-intercept obtained for values of ¢ for which y = 0, y-intercept for values
of t for which x = 0.

4. Determine least and greatest values of x and y.

) ’ .
5. Asymptotes: 4 l_l,mtl x(t) = oo, ¢ _l,mtl y(t) = o, then t = t, is asymptote.
6.

d
Tangents: ol (vertical tangent) and d_z = 0 (horizontal tangent).

Remark. If the given equations of the curves are periodic functions of ¢ having a common
period, then it is enough to trace the curve for one period.

Example 1. Trace the curve

x =a(t-sint),y=a (1l -cost)
Sol.

(Cycloid)
1. Symmetry: Since x is odd and y is even so the curve is symmetric about y-axis.
2. Origin: Putting x = 0 and y = 0, we get

0
and

=a(t-sint)d t=0
0

a(l-cost)yd cost=10 t=0,21 4T, etc.
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dx dy dy  dy/dt asint
. — =a(l- ), = =asint 0O — = =
3. g Ta(-cosh 5 =asin dx ~ dydt ~ a(1-cost)
dy 2asint/2.cost/2 t
O - = — = cot
dx a(1-1+2sin”t/2) 2
Corresponding values of x, y, % for different values of t are given below:
t =0 I 3m 2
= 9 T 9 T
x =0 a(n—lj am a(?’nﬂ) 2att
2 2
y =20 a 2a a 0
% = o 1 0 -1 — o0

4. Tangents at y = 0 are vertical and at y = 2a is horizontal. Curve is periodic for period
2min the interval [0, 211. Curve repeats over intervals of [0, 2 ar] refer Fig. 1.20.

—4an —2am (0] 2am dan

Fig. 1.20

Example 2. Trace the curve x = a cos® t, y = a sin® t. (Astroid)
Sol. 1. dy/dt = 3a sin® t cos t.
dx/dt = -3a cos® t sin t

dy dy/dt  3a sin’ t cost

. - - 2
dx  dx/dt  -3acos”tsint
)
or d_z =—tan t.
2. Corresponding values of x, y and dy/dx for different Fig. 1.21
values of t are given below:
,_, m™ m om st oamo7m
- 4 2 2 n 4 2 4 m
4 2 a a
=1 on Y o - 242 0 22 °
a a -a -a
v=0 %R * a2 0 242 — 22z °
dy
—=0 -1 — 1 0 - © 1 1 0

dx
Plotting the above points and observing the inclinations of the tangents at these points

the shape of the curve is as shown in Fig. 1.21.
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Example 3. x =a(t+sint), Y
y =a(l-cost)
Sol. 1. dy/dt = a (sin t); Bt=sm | ______ Cion
an
dx/dt = a (1 + cos t) : - an |
0 dy _ dy/dt _ a(sin t) t=—m2 |t = w2
dx dx/dt a(1l+cost) X’ X
O =
2asinltcoslt =0
2 2 v’
- 1
”(2C0525t) Fig. 1.22
1
or dyldx = tan Et'
2. Corresponding values of x, y and dy/dx for different values of ¢ are given below:
t = “In 0 Ln
=-T > > Tt
1 1
X =-Tu —a(ET[—l) 0 a(ET[+1) am
y =2a a 0 a 2a
dy/dx = — o -1 0 )

EXERCISE 1.9

Trace the following curves:
1. x =asin 2t (1 + cos 2t), y = a cos 2t (1 — cos 2t)

Y
4
C A
\ O/
Ans. > X
B

2. x=a(t-sint), y=a (1 + cost)

2a:
t=m/2 :t =3n/2

Ans.

V2
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1 t
3. x=acost+ Eﬂ log tan? (E]’ y = a sin t (Tractrix)

Y
B (0, a)

Ans. Oa
0,-a)
5
a(t+t a(t-3
4. X = ( 4)/y: ( 4)
1+t 1+¢
Ans.

EXPANSION OF FUNCTION OF SEVERAL VARIABLES

(R TAYLOR'S THEOREM FOR FUNCTIONS OF TWO VARIABLES

Let f(x, y) be a function of two independent variables x and y. If the function f(x, y) and its partial
derivatives up to nth order are continuous throughout the domain centred at a point (x, ). Then

fla+hb+k =fa b+ [haf @0b) , (”’b)}
Ox oy
L L l:hz CF@h) oy S @) 2 0f (a,b)}
2 ox 0xdy ay?
. [m CIOD | 3y @) 32 0 @D) 43 0fta b)}
|3 ox® 0x*dy oxdy? dy

fla+h b+ k) = fla, b)+ {h+k }/( 4,b)+ B{: a"}

11,0 .0
3{ ™ ay} f(a,b)+...
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Proof. Suppose P(x, y) and Q (x + h, y + k) be two neighbouring points. Then f (x + h, y + k),
the value of f at Q can be expressed in terms of f and its derivatives at P.

Here, we treat f(x + I, y + k) as a function of single variable x and keeping y as a constant.
Expanded as follows using Taylor's theorem for single variable.*

ofx,y+k) 1 O flx,y+k)
0x |2 ox*
Now expanding all the terms on the R.H.S. of (i) as function of y, keeping x as constant.
ofxy) K Pfxy)
dy |2 ay?
oxy) , K O*fxy) ,
dy |2 oy’
9 k* 9% f(x,
foy e P00 OT00, L,
y B oy
LHCY) oy
ox oy
i ]’12 azf(xr y) +2]’lk azf(xr y) +k2 azf(xl y) +
| 2 0x? 0xdy ay*
For any point (g, b) putting x = a, y = b in above equation then, we get

, @b . of (ﬂ,b)}
oy

fox+hy+k = fix, y+k +h ..(0)

flx+h, y+k)

{f(x, y)+k

ha{f(x,yhk
Ox

+77

L2 ox?
flx, ) +

flx+h, y+k)

X

f@+hb+k = f@ab)+ [

0 f @) o 0*f@b) o0 (a,b)} .

Bl: 0x? ay? ay?
Or

2
f(a, b) + {h:x+k:}/(a,b)+l2{h£c+k:y} f(a, b)

f@+hb+k

1], 0
h—+k—| f(a,b)+.
+ E’{ o }f( ) Hence proved.
Alternative form:
Putting a+h=x0h=x-a
b+k=y0k=y-b

then f(x,y)=f(a, b) + {(x a)—+(y b)%}f(a b) + [ {(x u)—+(y b)—} fla,b)+... .. (i1)

* Taylor's theorem for single variable

of WX h
fx+h —f(x)+ha—£ —a—Jz[ E—J;
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1.11.1 Maclaurin's Series Expansion
It is a special case of Taylor's series when the expansion is about the origin (0, 0).
So, putting 2 = 0 and b = 0 in equation (2), we get

2
Fly) = 0,0+ {xa%wi}f(o,owi{xiwi} £(00)+...

oy |_2 ox ~ dy
Example 1. Expand e* cos y about the point (1’2) (U.PT.U., 2007)
Sol. We have f(x,y) = e cosy ..(i)
d =1,b= ik 1, = L
an a =1, —4,f(,4)—€COS4—ﬁ
i
rom oy = sy o =ecos = 5
i
a_f e“siny O i (1’ 4) e sin L ¢
= - 1 = — 1 - —
0y 4 dy 4 J2
20 1
62f e*cos y U i (L 4j ¢ 62f e sin
—_— = = —, = — 1
0x2 Y 6x2 \/E axay Y
2 i
M I A
axdy =~ " cos Yy = i
By Taylor's theorem, we have
. - of (1, ”j of (1, ”j
f(1+h,—+k) - f(l,j + | n 4 vk 8 (i)
4 4 ox oy

Tt Tt
Letl+h=x0 h:x—landZ +k=y O k:y—Z,equation(Z)reduceintheform

e

2 (-3 -3 -

0 f(xy) = %[u(x—l) —(y -E)J’C';)z —(x—l)(y—fj—(y—gjz +}

Example 2. Expand f (x, y) = ¢¥ log (1 + x) in powers of x and y about (0, 0)
Sol. We have f(x,y) = ¢ log (1 + x)

Here, a =0and b=0,thenf(0,0) =e"log1=0
of e’ of
—_— = —_— 0,0 =
Now, ox 1+x N ax( ) !
of
a_y:eylog(1+x) O @:0
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of e . OO _

oxdy  1+x oxdy

0 e’ a’f (0,0

_é = o O f(2 ) _ 4
Ox (1+x) ox

o*f 3£ (0,0)

52z = ¢ log (1 O —~ =0

oy e’ log (1 + x) o7

Now, applying Taylor's theorem, we get

_ _ 900 , , o (00) 2 9°f (00)
f(0+h,0+k) _f(hrk)_f(010)+ (h ox ay j |_2(h axZ

2 2
+ 2hk a f(0,0) +k2 a f((;ro) +
Oxdy oy
Let h = x, k = y, then, we get

fy =elog (l+x)=f(00) + (x

9o (0,0) af 00,
ox oy

1
O+(xT+yx0)+ = 2D +2xy x1+y>x0]+ ...

2

¥2
X— —+ XY + ...
2 y

O e’ log (1 + x)

Example 3. Find Taylor’s series expansion of function f (x, y) = e ¥ . cos xy about the
point x, = 0, y, = 0 up to three terms. (U.PT.U., 2006)

Sol. We have f(x,y) = eV cos xy.
Now, we get the following terms f (0, 0) = 1.

a 2 2
—f:—e_x_y (2xcosxy+ysinxy)DM:0
ox dx
a 2 2
a_J;z—e_x_y (2ycosxy+xsinxy)Daf(§—(y)'0):0
o 9°£(0,0) 32 £(0,0) 92£(0,0)
Slmllarly, axay = O, ax—z = —2, V =-2
Cf00 P00 300
ocay ~ U e TV Tae T
9°£(0,0)
ay3 =0
Applying Taylor's theorem
o ., 9Y
fh k) = £(,0) + ( ] (0, 0) B( kayj f(0, 0

é( 2k jf(o 0)+...
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Putting i = x, k = y and all values then, we get
fx,y = e_xz_yz-cosxy: 1+(xx0+yx0)
L[x2(-2) +2xy %0 +12(2)]

e

+ é[f x 0 +3x%y x0 +3xy* x0 +y° XO]

2.2
0 eV lcosxy = 1-x2-1% ...

Example 4. Find Taylor's expansion of f(x, y) = cot™ xy in powers of (x + 0. 5) and
(v — 2) up to second degree terms. Hence compute f (— 0.4, 2.2) approximately.

Sol. Here f (x, y) = cot™ xy

31
f(=052) = cotl(-1) = —

4
o -y 0f(-0.5,2)
Now ox  1+x%y? H ox =1

af -x 0f(—0.5, 2)

T 1y . oy~
OF _ @yon . P05 _
dxdy (1+x%y?)? 9xdy
o’f _ 2xy° . 02f(-0.5,2) _
ox? 1+ x2y2 )? ox?

o*f _ 2x3y . 02f(-0.5,2) _ 1
ayz (1+x2y2)2 ayz 8

Now applying Taylor's series expansion, we get

f(=05+h2+k

a0 1(,0 ,0Y
f(-05,2) + (ha +k@j [f(-05,2) +_(h$ +k—j f(-05,2) +...

|2 oy

Let -05+h=x0h=x+05
2+k=y0k=y-2 |Asa=-05b=2
3m 1
0 f(x,y):cot‘lxyzz+(x+0.5)(—1)+(y—2)xZ
1 5 of 1
+E (x+0.5)7(—2) +2(x +0.5)(y —2) X0 Hy -2) <)l
_ o 0.5 1 2 0.5)? L 2)?
or fx,y = 1 —(x+.)+4(y—)—(x+.)—16 y—27+ ..
Putting x =—-04and y =22
04,22 L 0.1 02 0.1)2 L 0.2)%
f(_’)_4_()+4_()_16()

2.29369.
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Example 5. Calculate log [(1.03)® +(0.98)"* -1] approximately by using Taylor's expan-

sion up to first order terms.

11
Sol. Let f (x, y) = log (XE .,.yZ _J

f@1,1) = logl=0
2

of 1xx 3 of 1
- = —(11) = =
Now ox 11 - ax ) = 3
3lxd+yt -1
|Takinga =1,b=1
3
of 1xy 4 0 1
= T O Tay - o
oy 11 ox 4
4\x3 +y4 -1
Now, applying Taylor's theorem
0 0
= h—+k— |f(L1)+...
fQ+h1+k f(1'1)+(6x ayjf( )
1 1
But fd+h 1+k = log [(1...;1)3 +(1+k)4 _1}
g 1+h1+k 1 [ 3 i } O+h 1 k 1 ]
fA+h1+k = log (1+h)3 +(1+k)4 -1| =0+ h x 3 + k x 1 ..(0)
Putting i = 0.03 and k = — 0.02 in equation (i) then, we get
1 1 1 1
log [(1.03)3 +(0.98)4 _J = 0.03 x 3 + (- 0. 02) x 1
= 0.005.
Example 6. Expand x¥ in powers of (x — 1) and (y — 1) up to the third degree terms.
(U.PT.U., 2003)
Sol. Here f (x, y) = x¥ f@d1n=1
0
Now ¥ = yav! 0 UACT . 1
ox ox
0 of (1,1
a—J;:xylogx 0 —f((ay) =0
o’f °f(1,1)
= -l -1 —_— . _
ndy W+ yxd - log x O oy 1
o’ f ’f
wr T Y- D . T
0’ 2
—ch :xy.(logx)z 0 af(irl) =0

Oy
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°f
dxdy’
°f
0x*dy
>f
9x°
°f
oy

y¥l(log x)? + 2207 - log x

-2+ yly - 1) 22

yy-1) (y — 2uv3

= x¥(log x)*

Now applying Taylor's theorem, we get

fAd+h1+k

Let

log x + yx¥=2

@1+ (ha%+kij @1+

oy

1(,0 ,9Y
+ B(hax"'kayj -f(l, 1)+

l1+h=xand1+k=y
h=x-1landk=y-
fy =

1
ik

Using all values in above equation, we get

Example 7. Obtain Taylor's expansion of tan™

=1+ (x-1)+

fy =

1

b] o7
{(x—l)axﬂy—l)ay} f+..

0+

1
E

O

&l

0 0 1
(1, 1)+ {(x‘l)ax"'(y‘l)ay}f"'

12

. %[o +3 (x=1)%(y -1) +0 +0]

second degree terms. Hence compute f (1.1, 0.9).

Sol. Here
f@y)
of
Now, P

y

T (@)

Yy

f@)

o (1)
Ox

|

87

°f(1,1) 0
oxdy> -
’f(1,1) )
w2y
o’y
a3 =0
°f(1,1)
o

0

2
hax+kj (@1

oy

) a7
{u—nw+@—nw}f

[0+2(x-1)(y -1) +0]

T+@-D+@x-1)y-1)+ %(x-l)z(y-l).

- about (1, 1) up to and including the

(U.PT.U., 2002, 2005)
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y__z_ 0 LTV
oy~ (x*+y?) oy 2
0% f 2xy 0*f 1
-7 - — ~2 11 = =
o2 (x2+y2)2 0 6x2( p ) ’
2 _ 02
°f _ 22xy22 0 —J;(m) _ 1
ay? (x“+y%) dy 2
92 2_.2 92
Ly 0 Lo

0xdy (* +y?) 0xdy

By Taylor’s theorem

fQ+h1+k

o .0 1,9 87T
£, 1)+ {h—+k@}f(1, 1) + {hax+kay} FAL)+...

ox LZ
Let l+h=x0 h=x-1
l+k=y0k=y-1
) ) 1 0 a7
O fy = fQ, 1)+{(x-1)ax+(y-1)ay}/+ B{(x-l)axﬂy-l)ay} f+..
m 1 1 11, .21 _ _
- 4o (-1)ve- [Z}B[(x 0?5 )+ 20
x 2 L
O+(y 1)( 2)}
_ — 1 1 l 1 l 12 l 12
foy =7 -5 @-D+5 G-+ @-1"-7@H-1)"+...
Putting x = 1.1, y = 0.9, we get
1109—E 1 1.1-1 l09 1 l11 1)2 l09 1)2
f(-,-)—4—2-(-—)+2(-—)+4(-—)—4(-—)
= 0.785 - 0.05 — 0.05 + 0.0025 - 0.0025
= 0.685.

Example 8. Find Taylor's expansion of 1/1+x+y2 in power of (x — 1) and (y - 0).

Sol. Here  f(x,y) = 1+x+y> | f@L0o= 2

0 Z_{c S Z—ﬁ O %f(l,O) = 1/2/2
gf; _ #wz O aiyfa,m =0
in; o m - (i_é(l’ 0)=- 4.213/2

2 2 9%£(1, 0) 1
Oy \/1+x+y2 (I+x+y7) Yy 2
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3f y 0°f(1,0)
oxdy 21+x+y?)>? H oxoy 0.
By Taylor's theorem, we get
o ., 0 3 0T
1+h0+k =f(1,0 h—+k—|f(1,0 +k 1,0
FAsR 0 = f00+ ik Fa,0 B{ g | S0
Let l+h=x0h=x-1k=y
1 1 2 1
O f(x/ y) = \/§+(x—1)|32f+yx0 + E(x_l) (_Wj+(x_1) x0 + —\/—
= ﬁ{1+x—1_(x—1)2+£+ }
4 32 4 T

EXERCISE 1.10

1. Expand f (x, y) = x2 + xy + y? in powers of (x — 1) and (y - 2).
[Ans. f(x, ) =7 +4 (x-1)+5W-2)+(x -1+ (x-1) @y -2)+ 1y -272*+..]

2. Evaluate tan! (%) : [Ans. 0.6904]

3. Expand f (x, y) = sin (xy) about the point (1, T1/2) up to and second degree term.

[Ans. fx,y) =1 —%(x ~1)2 —E”(x —1)(y -ﬂ—%(y-z‘ﬂ .

4. Obtain Taylor's expansion of x% + 3y — 2 in powers of (x — 1) and (y + 2).
[Ans. f(x, y) = =10 -4 (x - 1) + 4 (y + 2) = 2(x — 1)? + ...]
5. Expand ¢¥ in powers of (x — 1) and (y — 1).

|:AI'IS €{1+(X 1)+(y 1) +( 21) +(X 1)( 1)+(y 1) }

6. Expand cosx cosy in powers of x and y.

[Ans. f(x,y):1— (x +y )+ (x +6x2y? +yt) +...

9
7. Expand f (x, y) = ¢?* cos 3y up to second degree. [Ans. 1 + 2x + 2x2 - > v+ .

8. Obtain Taylor's series expansion of (x + h) (y + k) /(x + h + y + k)

2 2 2.2 2.2
{Ans xy  hy kYR 2hky K +}

Tty Gt G ) ) ()

9. Obtain Taylor's expansion of (1 + x — y)™' in powers of (x — 1) and (y — 1).

[Ans.1—x+y+x2—2xy+y2+...]

10. Find Machaurin's expansion of e* log (1 + y). [Ans y+xy L % 3 —+ }
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OBJECTIVE TYPE QUESTIONS

A. Pick the correct answer of the choices given below:

3
1. If u = %, then D is
0x0y0z
(i) (¥’yz + x) (i) (FPyz — x)ev*
(iii) e™=.xy () (1 + 3xyz + x*y’z*)e

oy
Py

2. If u = sin™

, then ou is equal to
0x

Jx+Jy
x Ou ou
@) ——— (i) —
y oy oy
0
) —%a—; (iv) xyg—:
3.1If z=1log . [y2+2 then 0z and % are
Y ox dy
N X y .. X Yy
@) 2 vyl (i) PR
X ¥ ] X y
(111) , (iv) ;
PRI PRGN
0%u
_ o2 y2 422 -
4. If u = e *v"*%, then S is
(i) 7xy (i) 6xyzU
(ii) — 8xyzu (iv) 8xyzu
2 2
5. If z = x"! y f(y/x) then xZTZ + yaay;; is
. 0z y
(1) nax (i1) nz
-
(111) n(n — 1)z (iv) 3y

6. If fx, y, z) = 0 then %Balﬁ is
oy 0z Ox

(i) -1 () 1
(iii) O (iv) 2
. ou ou .
7. If u = x3 i sin”! (y/x), then xa + y@ is:
@ 0 (i) 6u
(iii) — 8u (iv) 5u
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8

10.

11.

12.

13.

14.

15.

) 0
. If u = xy fly/x), then xa—z + y% is
(1) yu (i) xu
(iii) u (iv) 2u
. The degree of u = [22/(x* + y*)]'* is
o2 1
0 3 (i)
=2 s
(@) 3 (iv)
dz .
If z = x* y° where x = t* and y = #* then o is
(i) t* (i) 0
(1ii) 23tY7 (iv) 23t
0z oy
If x> + y* + 22 = a* then — and — at (1, -1, 2) are
0x 0x
1 1
N —=1 0 —= -1
0 = i) =
1 1
(1if) P -1 (iv) b 1
The equation of curve x° + 1* = 3axy inersects the line y = x at the point
3a 3a  3a
) [ 32,22 o[22 -2
(z)(a 2) (@) (2 2)
(361 361) : (_361 _3ﬂ)
(7)) 2’ o (iv) ' "o
The equation of the curve x*y — y — x = 0 has maximum
(i) One asymptote (i7) Four asymptotes
(iii) Three asymptotes (iv) None of these
The curve 7* cos 28 = a* is symmetric about the line
Lt L
i) 8 =— i) 6 = —=—
@) 5 (1) 5
(1)) 8 = —37“ (v) B=T
The parametric form of the curve x = a cost, y = a sin t is symmetric about
(1) x-axis (i) y-axis
(i17) both axis (iv) about y = x

B. Fill in the blanks:

_ W N =

The nth derivative of y = x*' log x at x = % i SJ—
The nth derivative of y = x sin x is ..........

If y = e* sin x, then y" — 2y' + 2y = ..........

If y = sin 2x then y, (0) = ...........

91
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[N

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.
27.

28.
29.

30.

= o O 0 N S U
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If y = sin hx, then y, (x) = ..........

If y=e'x, theny (x) = ..........

If y =sin’ x, then y (x) = ..........

The nth derivative (y ) of y = x* sin x at x = 0 is ..........
If y = tan™ x and n is even, then y (0) = ..........

If y = cos(m sin™ x) and n is odd then y, (0) = ..........

. If y = (sin™ x)* and 7 is odd then y (0) = ..........

2
. If z = fx - by) + @(x + by), then bzg—i = e
X

2

If u = log(2x + 3y), then 6axauy Ze—

ou ou
— px + by _ b—+g— =
If u =e~*% flax — by), then ax 7 Gy e

Ifu:x2+y2,x:s+3t,y:25—t,then%: ..........

2 2

If f(x, y) be a homogeneous function of degree 1, then x* % + nyﬁ +

0x 0xdy
2.2

XY then x%+y% =

x+y ox ~ oy

If u = (xz + yz + 22)1/2, then xa—u ar Yy— +z— = ...

If log u =

If flx, y) = 0, @y, z) = O, then G i = ——
oy 0z dx

Ifxzercose,y:ersinethena—e: .......... anda—e: ..........

ox oy

3_.2 2.3
If u = al §y+xy ;y , then x%+y%: ..........
X -xy-y 0x oy

xt -yt ou ou
then x—+y— = ...

Xy’ ox ~ oy

If }1“}1 x(t) = oo, tli_,rr}l y(t) = o, then t = .......... is asymptote.

If u = log

The curve r = a (1 — cos 6) is symmetric about the ..........

d
The tangent is parallel to x-axis if d—y S —
x
The curve x*y* = a* (y* — x*) has tangents at origin ..........
The curve y?(a — x) = x*(a + x) exists if ..... X e

The curve 12 (¥* + %) + a* (¥* — y?) = 0, cross y-axis at ..... and ...

(U.PT.UL, 2008)

y

20°f _
6y2

If fix, y) = ¢’ log(1 + x), then expansion of this function about (0, 0) up to second degree

termis ..........
tan™ {(0.9) (-1.2)} = ..........
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31.

32.
33.

10.

11.

12.

If fix, y) = e* - sin y, then

0°£(0,0) _

P

Expansion of ¥ up to first order tem is ..........

o, y) = f1,2) + oo

. If f(x, x,, ..., x,) be a homogeneous function then xla—+x2—+...

. Indicate True or False for the following statements:

o(u,v) _ 0(u,v) y a(x,y)

. If u, v are functions of 7, s are themselves functions of x, y then =

a(x,y)  9(r,s) O(r,s)

. Geometrically the function z = f(x, y) represents a surface in space.

o . o

. If fix, y) = ax® + 2hxy + by? then vl Sl 2f.
x

oy
0z

. If z is a function of two variables then dz is defined as dz = %dx +—dy.
x

o, o, .

X ox " Ox
1 2 n

=n(m-1)f

Ifu=

2, .2
x2+y2 + 4, then xa—u+ya—u =
x> -y ox oy

. When the function z = f(x, y) differentiating (partially) with respect to one variable, other

variable is treated (temporarily) as constant.

. To satisfied Euler’s theorem the function f(x, ) should not be homogeneous.

0
. The partial derivatives %z and — are interpreted geometrically as the slopes of the

ox oy

tangent lines at any point.

(@)
(ii
(i
(iv

)
)
)
(@)
(i)
(iii)
(iv)

(@)
(i)

The curve 1> = 4ax is symmetric about x-axis.
The curve x° + 1° = 3axy is symmetric about the line y = — x.
The curve x* + y* = a? is symmetric about both the axis x and y.
The curve x° — 1* = 3axy is symmetric about the line y = x.
If there is no constant term in the equation then the curve passes through the origin
otherwise not.

. d’y . o :
A point where Tt # 0 is called an inflexion point.
If * is negative i.e., imaginary for certain values of 6 then the curve does not exist for
those values of 6.

: . . L
The curve r = ae® is symmetric about the line 6 = PR

Maclaurin’s series expansion is a special case of Taylor’s series when the expansion
is about the origin (0, 0).

Taylor’s theorem is important tool which provide polynomial approximations of real
valued functions.
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(iii) Taylor’s theorem fail to expand f(x, y) in an infinite series if any of the functions

f.x oy, f(x ), fxy(x, y) etc., becomes infinite or does not exist for any value of x, y
in the given interval.

(v) fix, y)=fa, b) + |(x—a) a_ax —(x—b)

o
dy

fa, b) + ...

ANSWERS TO OBJECTIVE TYPE QUESTIONS

A. Pick the correct answer:

1.
4.
7.
10.
13.

B. Fill

12.

15.

18.

21.
24.

27.
30.

3. H@—D%wym%}%{u—1>§—£+<ym>—

C. True or False:

1.
5.
9.
10.

11.
12.

(iv)
(iv)
(iv)
(iv)

(iii)

in the blanks:

2ln-1

initial line

—a<x<a

- 0.823

F
F
T
0T
0T
0T

(R

10.

13.
16.

19.

22.
25.

28.
31.

2

NN
™

(if)
(if)
(if)

~N ™™

== 0 Ul N

(i)
0
(iv)
)

. ()

(R

. nt nm
xsin|x+— |-ncos|x+—
2 2

- Zero

. Try yourself

Zero
0%u
oyox

nmn — 1)f
LA
Ox Oy

1

0

(0, a) and (0, — a)

0

5.

8.
11.

14.

17.

20.

23.
26.

29.
32.

anN oW

. (i)
. ()

. (i)
. (i)

(iii)

sin hx

(n—n2) sin%-[

Zero

2 abu

3u log u

_ sin?0 cos2 O

7

y
tl
y=%x
x—ﬁ+x
2 Y

efl +(x-1)+ -1}

ada
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Differential Calculus-Ili

s JACOBIAN

The Jacobians* themselves are of great importance in solving for the reverse (inverse functions)
derivatives, transformation of variables from one coordinate system to another coordinate system
(cartesian to polar etc.). They are also useful in area and volume elements for surface and volume
integrals.

2.1.1 Definition

If #=u(x, y) and v = v (1, y¥) where x and y are independent, then the determinant

o ou
ox  dy
Jv  Jv
ax dy
is known as the Jacobian of #, o with respect to x, ¥ and is denoted by
0 (u,v)

3 (x,y) or [ (u, v)

Similarly, the Jacobian of three functions # = u (x, ¥, 2), v= v (x, y, 2), w = w (, y, z) is defined

as
w o o
ox dy Oz
Jd(uwo,w) |dv dv v
d(x,y,z) |ox dy oz
(x,y,2) o o e
ox dy Oz

J(u, 0, w) =

* Carl Gustav Jacob Jacobi (1804-1851), German mathematician.

95
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2.1.2 Properties of Jacobians
1. If u =u (x, y) and v = v (x, y), then

2(wo)  3(xy)

Ay Ao - rori=1 (UP.T.LL., 2005)

J(u,0) o dxy)

where, J = a(x,y) and J' = _6 o)
Proof: Since u = uxy) 0

v = v(x ) ..(if)
Differentiating partially equations (i) and (ii) w.r.t. u and v, we get

W ow ax wm
w T T T w Tyt ou i)
ou ou Jox Ju oy .
g =0 = =~ + a_y X % ...(iv)
T S
w0 T T aw Ty ()
v U dx Jv Y .
w1l %W’ @ * (v1)
ou  Ju ox  ox
dwo)  Ixy) ox  dy du  dv
Now, Sy ¥ ame T | BIx |
Y ’ ox dy Ju dv
du a_” ox dy

o ay B
= low 9| X gz g;

o w| [ 9
(By interchanging rows and columns in II determinant)

Quox Oudy  Ouox oudy
= oxou dyou  0xdv dydv (multiplying row-wise)
Qvdx do dy v ox dody
oxdu dy ou dx dv Jdy Jv

Putting equations (iii), (iv), (v) and (vi) in above, we get

dwo) d(vy) 1 0 _,
Ay ~owo |0 1|7
or JJ7 = 1. | Hence proved.

2. Chain rule: If u, v, are function of 7, s and r, s are themselves functions of x, y i.e.,
u=u(r,s),v=ov(,s)andr=r(x,y),s =s(x, y)

then Jd(m,v) _ d(wv) d(r,s)
d(x,v) a(r,s) d(xy)

Proof: Here u = u(r,s),v=0(s)

and r= rxy,s=s(x1y)
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Differentiating u, v partially w.r.t. x and y

ou
ox
ou
a
dv
ox
LY

%y

o(u,v)  I(r,s)
Ar,s)  Ax,y)

Now,

ou or Ju 9s
+ — —

o ox T 9s  ox
ou or Ju 9ds

oray " as oy
_war w o

ar ox 0s ox
Jdv or Jv 0ds

o'y T as oy
ou du or or

_ o o5 ox oy
- v Jdv| | 9s ds

s ox  dy

ou du or  0s

e ox  ox
= 871; azS; -|or 0Os

o ds| |9y Iy

97

...(ii)

. (iv)

By interchanging the rows and columns in second determinant

Using equations (i), (ii), (iii) and

8u87’+8u85 E)uE)erE)_ui
or ox dsodx drdy Jsdy
= dvdr dvads dvadr 0Jvds
Orox 0sdx ordy 0sdy
(iv) in above, we get
ou du

_ 5 ay _ a (u/ U)

a(r,s)  d(xy) dv v I(xy)
ox dy
Or
d(u,0) d(u,v) a(r,s) - d
= : . ence proved.
d(x,y) d(r,s) 9(x,y) P
. 9(u0)
Example 1. Find , when u = 3x + 5y, v = 4x — 3.
9(%y)
Sol. We have u = 3x + 5y
v = 4x - 3y
ou ou v Jdv
o = ,ay=5,a=4and@=—3
o
™ d (1,0) ox  dy 3 5 9 _ 20 9
us, a(x,y) = ldv dv|T|g 377" =— 47

o Ay

| multiplying row-wise
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d(u,7, .
Example 2. Calculate the Jacobian M of the following:
9(x,Y,2)
U= x+2y+z,v=x+2y+3z w=2x+ 3y + 5z (u.r.T.u., 2007)
Sol. We have u =x+2y +z
v=x+2y+ 3z
w=2x+3y + 5z
o w w w dw
ox oy oz Tox oy oz 7
W X a5
Ty TN oy T
W
; ox dy oz 1 2 1
Now, W@ _Jdo 20 do|_|1 5 3
a(x,y, Z) ox ay 0z > 3 5§
W
ox dy oz
=1(10-9)-2(B-6)+1(3-4) =2
Example 3. Calculate M if u = %, v = %, w = ﬂ
d (1,0, W) x y z
Sol. Given u = %,v=3—,w=ﬂ
x y z
W2 w2 w2y w_ 3% o 3w ok
ox x> "9y x' oz x'ox y'ay oyl Yy
ow 4y Jw  4x ow dxy
. = —, — =—and — =- —
ox z = oy z 0z z
oo au| | 2E2H
ox dy 0z * X X
d (u,v,w) o v o 3z -B3zx 3x
Now, ——r - =|% 0 &_| = —= =
d(x,y,2) ox ay 0z ¥ y y
W du| |y Ay
ox dy oz z z z2
_ oz |12z 12| 2z -l2uz 12w 2y 120z 120z
R A x| oy » x|y ozt
d (1, v, W)
= - =0+48 + 48 = 96.

9(x,Y,2)

LG R [URRL)

But, we have dwo,w) * W =1 (Property 1)

Ivyz) 1

o(wv,w) 96
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Example 4. If u = xyz, v =2+ y*+ 22, w=x+y + z find | (x, y, 2). (U.P.T.U., 2002)
Sol. Here we calculate J(u, v, w) as follows:

J(u, v, w)

But J(x, y,2) - J(u, v, w)

] (%Y, 2)

Ju
ox
v
0x
ow
x

u
dy
g
dy
Jw
E%

u
0z yz 77X xy
v

Z
o 1 1 1
0z

yz 2y — 2z) — zx (2x — 2z) + xy (2x — 2y)
2 [’z — yz> — zx* + 2% + xy (x — y)]
2[-z(@-y)+ 2 (x—y) +ay (x - y)]

2 (x = y)[-zx —zy + 22 + xy] Asx?—y? = (x—y)(x+y)

2(x-ylz@z-%-y(z-x)]
2x-y) (z-y z-x
-2x-y) (-2 (-2

1

Example 5. If x = Jow , vy = Jwu, z = Juv and u = r sin @ cos ¢,

property.

Consider

a(x,y,2)

9(r,6,0)

a(x,y,2)

d (1,0, W)

o 9 (x,y,2)
v = rsin O sin ¢, w = r cos 6, calculate .
a(r,6,9)
Sol. Here x, y, z are functions of u, v, w and u, v, w are functions of r, 6, ¢ so we apply IInd
0(x,y,2) 9 (u,0,w) 0
= . (i
d(wu,w)  9(r,8,9)
ax o ax
Ju Jdv oJw
9y 9y 9y
Ju Jdv Jw
o 0 o
Ju Jdv Jw
g Lljw 1o
2Vo 2Vw
ljw o 1ju
2V u 2Vw
1o 1w
2Vu 2\v
1 [ ML\/ME L[] o201
8 vuw Vwuvo | 8 8 4
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a(x,,2) )
- o(wv,w) ...(if)
ou Jdu  Jdu
P % sin@cosd rcos@cos¢ -—rsinOsing
Next % = % g—z g—z =|sin@sin¢ rcosOsing  rsinO cosd
8_w a_w B_w cos6 —rsin® 0
or a0  do

= sin® cos ¢ (r* sin?0 cos ¢) — r cos B cos ¢ (—r> sin O cos O cos ¢)
+ r? sin 0 sin ¢ (sin? 0 sin ¢ + cos?O sin ¢)

r* sin 0 cos? ¢ (sin? 0 + cos?0) + 72 sin O sin? ¢

d (u,v,w)
= m = r?>sin 0 cos*¢ + r* sin 0 sin®>¢ = r* sin O (i)
Using (i) and (iii) in equation (i), we get

—8 (x,3,2) _ 1 x 1> sin B = r’sin

a(r,e,0) 4 o4

Example 6. f u =x (1 -, o=y 1 -2, w=z1-r)"?

o(u,v,w
where r=L[x2 +y2 +22, then find W

Sol. Since o= X+ P+ 22
o x Jr _y or
x Ty
Differentiating partially u = x (1 — r*)™/> w.r.t. x, we get

- +(3) 2 1-r)z &

N

N

ox ox
-1 B3 ox 1 x?
= (172w (1or2)2 T = S (1_r2)§
au 1—7r% +x2
= ox 3

(1—r2)E

Differentiating partially u w.r.t. y, we get

L e R P/ A

G Ll R
ou xy
= - = —J _
Yoy
and % = _*2
0z 3

1)
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Similarly s b © 1oty oy
, =, = T 3,3 = 3, = 3
R I (e
ow zX ow zy ow 1-r2+22
= —= = —= _ = —
S ) e (1)
1-1%+x2 xy Xz
3 3 3
(1—r2)2 (1—1’2)E (1—1’2)E
a(u,v,w) yx 1-r2+y? yz
Thus, ——— = 3 3 3
R A (N R e B
zX zy 1-r2+22
) (1) (1-r)
1-r?+x? xy xz
= L 3 yx 1—r2+y2 yz
(1—1’2)E zx zy 1-72 +2?

= (1_1,2)? [A=-7+x) {1 -7+ 1A -1+ 2H)- y*2?
—xy {xy (1 - r* + 2%) — xyz?} + xz{xy’z — zx(1 — 7 + yH)}]
= (1—r2)_7 [A-72+x)Q1-P+1y) (1 -1r+29)
-1 -7 2> + ¥ + x°2%) - X2
- (1_72)%9 (=727 + (1= 72 (2 + 2 + 22)]
- (1—r2)_79 [(A =72+ @1 =11
= (1—1’2)%9- Q- -r+r]= (1_r2);;.
Example 7. Verify the chain rule for Jacobians if x =, y = u tan v, z = w. (U.P.T.U., 2008)
ox ox ox

Sol. We have X =u > = =1 — == =
ou v ow
y =utanov = %:tanv,s—az:use&v,g—z:O
zZ = w = %=%=0,£=1
ou Jv Jw
; 1 0 0
X, Y,z
J = &: tanv  usec?v 0| = u sec® v ..(0)
d (1, v, w)

0 0 1
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Solving for u, v, w in terms of x, y, z, we have

u=x
v = tan’! Y _ tan—lz
u X
W=z
%:’a_u:%:()’%:_ y /@: el /a_v: aw—_zo and
ox dy 0z ox Pyt oy eyt oz
o _
0z
a ) 1 0 0
u,v,w y x X
= - |- 0 = - i
J (%, y,2) x*+ y2 x2+y2 x2+y2 (if)
0 0 1 1+

Hence from (i) and (ii), we get

IJ = usec?v.

u SeC2 (%

2.1.3 Jacobian of Implicit Functions

If the variables 1, v and x, y be connected by the equations
fiuo,xy =0
f,w,v,xy) =0

i.e., u, v are implicit functions of x, y.
Differentiating partially (i) and (i) w.r.t. x and y, we get

af; off oJu o, v
. iid

a—x a—u . ax + % . & =0 ...(lll)
9 i ou i ou )
oy + el % + el 2y - 0 ...(iv)
B W o F W

x ow oax T oax T 0 ~(0)
af_2+af2 %_’_afz av:()

dy oy o

Of  Ofi | |9u du
I(f, o) Oowov)  |ou dv | |ox dy

o) Axy | g_v gv
du  dv X y

..(0)

i au O dv 9w, v
ou dx Jv dx Ju dy 9Jv dy
hou hd hou 3w
ou dx 0v dx Ju dy Jv Iy
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Using (iii), (iv), (v) and (vi) in above,
_%
0x
_o%h
ox
I(fi.fo) dwo ,
Thus, 3 (w,0) X Ay -1
d(u,0) ,
~ oy Y

Similarly for three variables u, v, w

o (u,v,w)

ayy TV

and so on.

we get
_h
ay i
Y I
dy

2(fi, /)
9 (x,y)

I(fi f2)
J(x,y)

d(fi, f)
d (u,v)

3 (f1 f2 f5)

d(x,y,z2)
(f1, far f3)

0 (u,v,w)

Example 8. If u* + v* = x + y, u*> + v* = x* + 1°, show that

0

=0

-1 -1 L
a3 =3y -x)
3u? 302

oy 2 =6 uv (u—0)

3y -2?) (2-a?

o) _  y*-x’
a(x,y) 2uv (u—-0)’
Sol. Let flzu3+v3—x—y=
fz =12+ - - P
dh A
I(fi.) | 9% |
T R A
ox  dy
dh  oh
and I(frf) _ | 9w 9o | _
d(mv) |9 h |
u v
o(A.f2)
d(u,0) d(x,v)
Thus, — =
Ay T AR
d(u,v)

Example 9. If u, v, w are the roots of the equation in k,

(u—v) (v-—w) (w—u)
(a=b)(b—c)(c—a) '

d2(x,1,z
that ( Y ) = -

d (1, v, W)

6uv(u-v) 2uv (u—0)

X

Ifr
9

dy

y

103

(U.P.T.U., 2006)

Hence Proved.

a+k

b+k

c+

A =1, prove
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y z

Sol. We have ik + bik + ik

=1

or xb+k(c+bh+y@a+k)(c+b+z@+k)(c+k=@+k (b+k)(c+k)
or B+k@+b+c—x-y-z)+kfbc+ca+ab—- (0D +c)x—(c+a)
y — (a + b)z} + (abc — bex — cay — abz) = 0
Since its roots are given to be u, v, w, so we have
u+v+w=—@+b+c-x-y-2)
uv +vw+wu=bc+ca+ab-b+c)yx—-(c+ay—-(@+b):z
uvw = — (abc — bex — cay — abz)
Let fisu+rv+w+a+b+c-x-y-z=0
fysuv+ow+wu—-bc-ca-ab+b+c)x+(c+a)y+@+bz=0
f, = uow + abc — bex — cay — abz = 0
oh h
ox dy 0z -1 -1 -1
N ofi.fofs) |9 b 9 (b+c) (c+a) (a+b)
ow, — Y =
9(x,y,2) Jx dy 0z —bc —ca —ab
o s I
ox dy 0z
1 0 0
=|b+c a-b a=¢ | =(@-Db)a-c)b-c)
bc  c(a-b) bla—c)
o%h h A
and 3, 0,) Y 99 3wl = (v+w) (w+u) (u+v)
% % % ow wu uv
ou 0dv  Jw
1 0 0
=|v+w U-v u—-w ¢, —-C-C,C,>C-C)
vw  wu-v) o(u-—w)
= (- v)(u - w)(v - w)
d(f,farf3)
a 7Y, b b b
Thus, 2wo0) _ (x¥,2) _ (a=b)(a—c)(b-¢)
(% Y,2) d(f f2.f3) (u-v) (u-w)(v-w)
d(u,v,w)
o(x,Y,z - - -
M:— (u-9) (v-w) (u w). Hence proved. |As]]’=1.
d (1, v, W) (a=b)(b-c)(a—c)

Example 10. If u = 2axy, v = a (x* — y?) where x = r cosO, y = r sin 6, then prove that
d(u,v)
a(r,8)

= — 4a%°.
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Sol. We have

0 (u,0)
9 (%)

Now,

o (u,0)
9 (%)

or

and

d (u,0)
a(r,0)

Hence

Example 11. If u® + ©°
then show that

Sol. Let fi

fs

d(fi, fo.f3)

Now,
ow d(x,y,2)

d(fi, fo. f3)

d(x,y,z)

d(fi.f2.3)

d
an 0 (u,v,w)

ou Jdu

ooy

Jdv  dJvu

ax oy
= — 4a*r?

ox  ox

o 90

dy Iy

o 9
d(1,0)

u=2axy, v =a (x* - 1%

105

2ay  2ax s
20 —2ay = — 4a*(x* + v?)
Asx?+ y* =77
cos®  —rsin®
| sin®  rcos® |
d(x,
%) = (—4a**).r = — 4a*7°. Hence proved.

T o(xy)  a(re)

+W=x+y+z, B+ 0+ =+ P+ ut+v+w=x>+y +2,

d (1,0, w) _ (x—y)(y—z)(z—x) )

(Y2 (u—-0v)(v-w)(w-u)
wW+r+w-x-y-z=0
W+ +wr - -y -z22=0
u+v+w-x>-yY-z2=0

1
ox
iy
0x
Cis
0x

Iy
ou
s>
Ju
s
Ju

I
dy
I
dy
s
dy

I
0z
iy
0z
Cis
0z

0
3(x -

2(x-y)
—6[( - 1) (x - 2) - (= 2) (x - y)]
—6(x-y) (x—2) [(x +y) - (x + 2)]

Iy
Jv
i
Jv
dfs
Ju

Iy
Jw
s
Jw
s
Jw

yZ) 3(.7(2 _ZZ)

-1 -1 -1
- |3 By 32
2 2y 2
0

|C2—>C2—C1,C3 —>C3—C1
2(x-2)

= 6(x-y) (V-2 (z-x)

3u? 30 3w
= 2u 20 2w
1 1 1
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or

and
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3u? 3(02 —uz) 3(w2 —uz)
= 2u  2(v-u) 2(w —u) |C2 -G-C,G->G-G
1 0 0

Expand it with respect to third row, we get
= 6[(v* - ) (w-u) - (w* - w) (v-u)]
6 (w—-u)(w-u)[(v+u) - (w+ u)

d(fi.f2.3)

= W = —-6w-0) (v-w) (w-u)
3 (fi,fa: f3)
Hence d (1, v,w) = 1)y J (x’ Y, Z) -4 6(X—y)(y—Z)(Z—x)
9(%,y,2) (A fa f3) 6 (u—v)(v—w)(w-u)
d(u,v,w)

(=Y (y-2) (2=
= (U-0) (v—w) (w_u)- Hence proved.

Example 12. u, v, w are the roots of the equation

9 (u, v, w)

d(abc)’

Sol. We have (x —a)* + (x = b)* + (x — ¢)® =
B—a®=-3xa(x—a)+x°-DP-3xb(x-b)+x*-c-3xc(x—¢c)=0
3x3-3x2(a+b+0)+3x @+ +AD)-@+bP+c%)=0

Since u, v, w are the roots of this equation, we have

(x-aP+x-0b°+((x-¢)? =0, find

u+o+w = ﬂ+b+C A ) b
uo + vw + wu = a* + b* + 2 s o+P+y = -b/a
3,13, .3 af+By+yo = c/a
ww = % opy = —dfa
Let fisu+v+w-a-b-c=0
fy=uww+ovw+wu—-a-b0-c*=0
3,13, 3
f, = uvw_%
LI O oo B I SR Y N o
Now # = 22 -2 -2d =20 Aa-b) Z”_C)r(cz—wz—clJ
(a,b,¢) 2 - e (@2-b) (o) BT

-2{@-b) @-c)-@-o) @-)}=-2@a-b) (b-c)(c-a)

A1 f2,f3) _ ! ! ! ! 0 0 (c2—>c2—c1)
)

v+w u+w v+u = [v+w  U-v u-w |,
o(u, v, w) €3 >C3—0
vw wu uv vw  wu-v) vu-w
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(u—-0)ou-w)- Wu-w) wu-2o)

-—(u-0) (v-—w) (w-—u)

A f1, fo. f3)

a(u,v,w) _ d(a,b,c) _ —2(a-b)(b—c)(c—a)

Thus d(a,b, c) =V A fr far f) - (u-0) (v-w) (w-u)
o(u,v,w)

(a-b)(b-c)(c—a)

- (u-v) (v-w) (w-u)

2.1.4 Functional Dependence
Let u = f (x, y), v = f, (x, y) be two functions. Suppose u and v are connected by the relation
f(u,v) =0, where f is differentiable. Then u and v are called functionally dependent on one another
. . . . , . ou Ju Jv v
(i.e., one function say u is a function of the second function v) if the =, 5—, 5= and are not
ox’ ay’ ox Iy
all zero simultaneously.
Necessary and sufficient condition for functional dependence (Jacobian for
functional dependence functions):

Let u and v are functionally dependent then
fuv) = 0 (1)
Differentiate partially equation (/) w.r.t. x and y, we get

F w F )
o x 9 ox 0 ~8)

oo F w

PR TR e v 0 ...(ii)

) 9
There must be a non-trivial solution for a—J; #0, a—j; # 0 to this system exists.
u 3
Jdx dx .. .
Thus, ou ov| = 0 |Por non-trivial solution |[A| =0
y
u ou
or dx dy| - | Changing all rows in columns
o
ox dy
d(u,v)
or =
(%, y)

Hence, two functions u and v are “functionally dependent” if their Jacobian is equal to
Zero.
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Note: The functions u and v are said to be “functionally independent” if their Jacobian is not equal
to zero ie., J(u, v) # 0
Similarly for three functionally dependent functions say #, v and w.

a (1, v,w)
—7 =9
a(xy,2)

J(u, v, w) =

Example 13. Show that the functions u =x + y -z, v=x-y +z, w=x2+ > + 2> - 2yz
are not independent of one another. Also find the relation between them.

Sol. Here U=x+y-zov=x-y+zand w=x*+y* + 2> - 2yz
o
ox dy oz 1 1 -1
a(ulvlw) du Ju v
Now, W =5 @ > = 1 -1 1
w  w  dw 2xx 2y-2z 2z-2y
ox dy 0z
1 1 0
= |1 -1 0| (C,—>C,+C)
2x 2y-2z O
= 0. Hence u, v, w are not independent.
Again U+0 =XxX+Yy-z+x-y+2z=2x
U-v =x+y-z-x+y-z=2({Yy-2)

M+vP+Ww-0?=4>+4(y-2z7
402 + > + 22 = 2yz) = 4w
= (W+0?+Ww-0? = 4w

or 2(u* + v*) = 4w or 1 + v* = 2w.

Example 14. Find Jacobian of u = sin™ x + sin"'y and v = x1-y* + ¥ 1-x% . Also find
relation between u and v.

Sol. We have u

sin x + sinTy, v = x1-y* + Wl-x°

N o) |ox oy V1-a? 1-y
ow, = =
a(x’y) ? ? 1_y2 _ xy _ xy + /1_x2
X Yy \/1_x2 \/1_y2

+1-1+

Xy Xy
= ——— ————="—= = 0. Hence u and v are dependent.
V1-x? 1[1—3/2 Vl—xzwll—yz

Next, u = sin'x + sin'y = u = sin? {x\/l—yz +yx/1—x2}

Assin!A + sin"'B = sin‘l{A\/l—Bz +Bx/1—A2}

x\/l—y2 + y\/l—xz =0

or v = sin u.

= sin u
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Example 15. Show that 2 + 2/ivy + by and Ax* + 2Hxy + By are independent unless

a _h_ b
A H B’
Sol. Let u = ar + 2y + bif
v = Ax¥ + 2Hxy + By
. 0 (u,v)
If  and o are not independent, then =0
(x,y)
Ju du
o a? 2ax+2hy  2hx+2by
or d dv| ~ |2Ax+2Hy 2Hx+2By| = °
ox oy

= (ax + hy) (Hx + By) - (ix + by) (Ax + Hy) =0

= (aH - /hA) 2 + (aB - bA) xy + (hB - bH) » = 0

But variable x and y are independent so the coefficients of +* and 3* must separately vanish
and therefore, we have

.a h h b
aH - A = Oand/zB—bH:OZ.e.,z=Eandﬁzg
) a h b
e, A - "B Hence proved.

Example 16. If 77 = 2% ¢7 cos /iz, v = 2* €7 sin /iz and w = 32* ¢% then prove that #, v, w
are functionally dependent. Hence establish the relation between them.

Sol. We have w = 2* ¢7 cos iz, v = ¥* ¢V sin hiz, w = 31* ¢%
ou/ox Ju/dy u/dz| [2xe™Ycoshz -x’e Vcoshz x’eVsinhz
= |0v/ox Jv/dy dv/oz| = 2xe Vsinhz —x’e Vsinhz x%e™Y coshz

ow/ox oJw/dy dw/oz 12x%e ™% —6xte™ 0

o(u, v, w)

d(x,y,z)

2x e” cos /z{0 + 6x° 3 cos /iz} + ¥ e cos /iz{0 — 124° &% cos /iz}
+ 2 e? sin /iz{-122° €% sin fiz + 1227 ¥ sin /iz}

1247 e* cos /2z — 12X ¢* cos /2z =0

Thus #, v and w are functionally dependent.

Next, 322 -3¢ = 3(¥ e cos /Pz — ¥ e sin /Pz) = 31 ¥ (cos /P z — sin /7 z)

= 3t e
= 32 -3 = w
EXERCISE 2.1
d(x, 1
1. If v=7rcos 0, y=rsin 6 find M [Ans. }
a(r,0) r
XX
2. Ify, = %, v, = s A %2 how that the Jacobian of y,, y,, y, with respect to x,,
1 Xo X3

x,, X, is 4. (UP.TU, 2004(CO), 2002)
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. If x =rsin O cos ¢, y = r sin O sin ¢, z = r cos O, show that

a(x,y,2) .
7 _ 12 gin 6. (U.P.T.UL, 2000)
d(r,6,0)
9(%y,2) 2
.Mfu=x+y+z uv=y+z uvw = z, evaluate . (u.p.T.U., 2003) [Ans. u v]
d(u,v,w)
2 X%+ 2) d (u, v)
- y_ — (—y 1 —, |:AnS. _li|
.Ifu—zx,v— 7x , find 3(x,y) ox

.Ifx=acosh& cosm, y=asinh & sin n, show that

d(x,y)
(&)

1
= Eaz(cos h 2E - cos 2n).

M rvtrw=x+ P+ u+rP+rw=x>+y+2,u+0+w=x>+y + z then evaluate

d(u,v,w) A (1-4xy - 4yz — 4zx + 6xyz2)
il Al dad A ns.
9(x,y,2) 27u*0?w® +2-3 (u? +v* +w?)
: L 9(ww)
. If u, v, w are the roots of the equation (A — x)* + (A —y)* + (A —z)* = 0 in A, find W

-2(x-y) (y—z)(z—x)}

(U.P.T.UL, 2001) {A“S- =) (-0 =)

CMu=x +x,+x, +x,uv=x,+x, +x, uow = x, + x, and uowt = x,, show that

d
(1, %, %3,%4) = Sow.
d (4, v,w,t)
o (1, d(x,
Calculate | = agz,;; and [’ = agu,zg . Verify that [J”= 1 given
2 2 x
N Y _ yz Ans. =4 =X
(z)u—x+7,v_7. {HS] x'] 2y
(i) x = e"cos v, y = ¢" sin v. [Ans. J=e*, ]’:e‘2“.]
d (u,v)

Show that = 6r° sin 20 given u = x* — 2y*, v = 2x* —y?> and x = r cos 6, y = r sin 6.

(X, 2
If X=u%, Y =uv?and u = x> - 12, v = xy, find a((x ;)) _[Ans, 6x2y2(x2 +y2)(x2 —y2) }

(r,0)

d(1,, .
Find L w), ifu=x*v=siny w=e* [Ans. —6e7%x cos y]
I(xy2)
Find 282 Lo aein 2 A 2
in a(x,y,z),l U=3x+2y-z,v=x-y+z,w=x+2y-z [Ans. -2 ]

Find | (u, 0, w)ifu=xyz, v=xy+yz+zx, w=x +y + z [Ans. (x—y)(y—z)(z—x)]
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16. Prove that u, v, w are dependent and find relation between them if u = xe? sin z, v = xeV

Ccos z, w = x%%. [Ans. dependent,u2 +0l=w ]
2 2(y+z -
17. u = - LU= (]/—)2’ w = ad . [Ans. dependent, uvw? =1]
2 (y aF Z) 3 (x_y) X
18. If X=x+y+z+u Y=x+y-z-u, Z=xy—-zuand U = x* + y* - 2 — 1, then show
2(X,Y,Z,U)
that ] = ——————- = 0 and hence find a relation between X, Y, Z and U.
d(x,y,zu)
[Ans. XY = U+ZZ]
X y z .
19. If u = ,0v=——,w= ——, then prove that u, v, w are not independent and also
Y-z z—x x-y
find the relation between them. [Ans uo+ovw+wu+1=0 ]
20. fu =x+2y +z v=x-2y+ 3z w=2xy — xz + 4yz — 2z°, show that they are not
independent. Find the relation between u, v and w. [Ans. dw=u’ -0’ ]
x+y : L., 9u,0) .
21. Ifu = and v = tan™ x + tan™ y, find . Are u and v functionally related? If
1-xy (%, y)
yes find the relationship. [Ans. yes, u = tan 0]
Avy,2) 5
22. fu=x+y+z uv =y + z, uvow = z, show that ————~ = uv.
do(u, v, w)

a(u,v) _ i =

xy)  ul+o’

23. If * + y* + u> — v* = 0 and uv + xy = 0 prove that

zX

24. Find Jacobian of u, v, w w.r.t. x, y, z when u = ﬂ, U= —,Ww = ﬁ. [Ans. 4]

x y z

m APPROXIMATION OF ERRORS

Let u = f (x, y) then the total differential of u, denoted by du, is given by

du = % dx + g_i dy
If 6x and dy are increments in x and y respectively then the total increment 6u in u
is given by = fx+d,y+dy)-f(xy)
or fx+ox,y+0y) = f(x,y) +ou
But du = du, &x = dx and Oy = dy

9 9
. From (i) ou = B_{c Sx + a_jyf dy
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Using (iii) in (ii), we get the approximate formula

3 d i d & d ]
flx+ox,y+dy = f(x,y)+ax Y+ Gy Y ...(iv)
Thus, the approximate value of the function can be obtained by equation (iv). Hence

dx or dx = Absolute error
dx dx ) .
T oy = Proportional or Relative error
and 100 x d—; or 100 x % = DPercentage error in x.

1
Example 1. If f (x, y) = x*y10, compute the value of f when x = 1.99 and y = 3.01.

(U.P.T.U., 2007)
1
Sol. We have f (x, y) = x2y10
of Loof 1 5 =
- = 0 2 - — 10
ox 2y, dy 10"V

x+8x=2+(-0.01)=1.99

Let x = 2,80=-001 ® y+8y=1+(201)=301
y = 1,0y =201

N 3 dy) = g 3 s 9

ow, f(x +dx, y + y)—f(x,y)+ax X+ Ty Oy

1 1 9
= fl2 + (- 001), 1 +201) = £ (2, 1) + 2x2AN10 x (- 0.01) + 75 @* (1) O x (2.01)
1
22 x 110 4 (= 0.04) + 0.804
~ 4- 004 + 0.804 = 4.764.

0

= £(1.99, 3.01)

Example 2. The diameter and height of a right circular cylinder are measured to be 5 and
8 cm. respectively. If each of these dimensions may be in error by + 0.1 cm, find the relative
percentage error in volume of the cylinder.

Sol. Let diameter of cylinder = x cm.

height of cylinder = y cm.
2
then vV = m;y (radius = %)

V. omy IV om?

ox 2 "y 4
oV oV

av = — dx+ — d
= ™ x+ayy
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1 1
- — — 2
= av = 2nxy.dx+ 4nx.dy
1 1 -
AV Enxy.dx 1™ dy A dy
or - = 5 + 5 =2 — 4+ —=
|4 ™y ™y X y
4 4
av d
or 100 x = = 2 (100x@) +100 x
V X y

dv 01 01
Given x =5 cm., y = 8 cm. and error dx = dy = + 0.1. So 100 x Vv + 100 2x€+§
=+ 5.25.
Thus, the percentage error in volume = + 5.25.

Example 3. A balloon is in the form of right circular cylinder of radius 1.5 m and length
4 m and is surmounted by hemispherical ends. If the radius is increased by 0.01 m and the length
by 0.05 m, find the percentage change in the volume of the balloon. [U.P.T.U., 2005 (Comp.), 2002]

Sol. Let radius = r = 1.5 m, ér = 0.01 m

height = h =4 m, 6h = 0.05 m 115
4 i
volume (V) = i h + S nr* + S = mth + P 4 ¢1.5mH
3 3 3 :
W W |
5y = 2mh 4+ dmt, = = wr 4mi
dv—ﬂd ﬂdk— 2nrh + 4mr?) d 2dh !
=5 r+ah = 2nrh + 4nr?) dr + mr "E
1 1.5
av 2
or 7 - 2nr(h+ir) dr + r y h .
m’2(h+r) m’2(h+r) Fig. 2.1
3 3
~ 3x2(h+2r) 3 h - 3 (201 + 20) dr +rdh]
= Ghear) T Ghean T e an PR A
3 Sr=d
= —— [2(4 + 3)(0.01 1.5 (0.05 r=ar
15(12+6) [2(4 + 3)(0.01) + 1.5 (0.05)] Sh—
= l 0.14 + 0.075] = @
=9 [0.14 + 0.075] = 9
av 215
= 100 x —; = 100 x = 2.389%

Vv 9
Thus, change in the volume = 2.389%.
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Example 4. Calculate the percentage increase in the pressure p corresponding to a reduction

1

of 5
Sol. We have

Taking log of equation (i)

logp +141log V

Differentiating
1 1.4
—-dp + —-dV
p TV
or 100 x ap
p

% in the volume V, if the p and V are related by pV'* = C, where C is a constant.
pVi4 = C

.(f)
log C
0= d—; =-14 d—“//
-1.4 (100xd7V)
LA (_—21) dVVZ%%: 2><1100
0.7

Hence increase in the pressure p = 0.7%.

Example 5. In estimating the cost of a pile of bricks measured as 6" x 50" x 4’, the tape is
stretched 1% beyond the standard length. If the count is 12 bricks to one f#°, and bricks cost Rs.

100 per 1000, find the approximate error in the cost.

Sol. Let length (1)
breadth (b)
height (1)
%4

or log V

1
- dv

On differentiating v

AV
100 —
Y

or

AV
100 —
Y

av
Number of bricks in dV

Hence, the error in cost

(U.P.T.U., 2004)
x ()

Y
y4
Ibh = xyz
log x + log y + log z
1, 1 1,
X x+yy+z Z
d
100« B 100 Y 00 E
X y z
1+1+1=3
Vo 3(ex50xy)
100 ~ ~ 100 = Coewved
36 x 12 = 432
432 x 1000 = Rs. 43.20.

Example 6. The angles of a triangle are calculated from the sides 4, b, ¢ of small changes

da, &b, dc are made in the sides, show that approximately 6A =

A [0a — 0b cos C — &c. cos B]

where A is the area of the triangle and A, B, C are the angles opposite to a, b, c respectively. Verify

that A + 6B + 6C = 0.

(U.P.T.UL., 2001)
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Sol. From trigonometry, we have

2,2 2
cos A = u:b2+c2—a2=2bccosA
2bc
= a> = b>+ c*-2bc cos A

On differentiating, we get
a-di = b-db+c-dc—db-ccosA-Db-dccosA+bcsin A -dA

= bcsinA-dA = a-da-b-db—-c-dc+db-ccosA+b-dccosA
= 2A - dA = a-da—-(b-ccos A)-db-(c-bcos A)dc
= 2A-dA = ada-(@acosC+ccosA—-ccosA)db—-(acosB+bcosA
1, .
— b cos A) de AsA—EbcsmA
a=bcosC+ccosB
or 2A-dA = ada-dba cos C—-dca cos B
AsSA = dA
a ~ ~
N 84 = 5 [6a— 8b. cos C - &c. cos B da = da, 8b = db
2A d¢ = dc
Hence proved.
b
Similarly, OB = A [6b — &c. cos A — da. cos C]
c
and oC = A [6¢c — da. cos B — db. cos A]
Adding A, 6B and dC, we get
1
0A + 0B + 0C = Z[(a—bcosC—ccosB)6a+(b—acosC—ccosA)Sb
+ (c—a cos B-Db cos A) &c]
1
= z[(a—a)8a+(b—b)8b+(c—c)86]
= 0A + 0B + 0C = 0. Verified.

Example 7. Show that the relative error in ¢ due to a given error in 6 is minimum when
0 = 45° if ¢ = k tan 6.

Sol. We have ¢ = ktan® (D)
On differentiating, we get
dc = ksec®0do (i)
. . dc  sec?0do 246
From (i) and (ii), we get = an8 - sin2o

Thus, @ will be minimum if sin26 is maximum
C
Since sin 8 lies
ie., sin20 =1 = sin 90 between — 1and 1

= 20 =90 = 0 = 45°. Hence proved.
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Example 8. Find approximate value of

2 2 21Y2

[(0.98) +(201)* +(194°] "

Sol. Suppose f(x,y, z) = (x2 +y? +22)1/2

0 Z_J; :x(x2+y2 +Zz)‘1/2,%: y(x2+y2 +Zz)—1/2,
Now
flx+d,y+dyz+0dz)=f(xy 2)+ L ox + ¥ oy + i 0z
’ ’ r dx dy YT o
Let x=1,y=22z=2 0&=-.02, 0y = .01, &z = —.06.

0 £(0.98 201, 1.94) = (12422 +22)" +0) 12 x (-0.02) +2/(9) ™ (01) +2(9) ™" (~0.06)

1
=3- 3 (0.02-0.02 +0.12)
=3 -0.04 = 2.96.

Example 9. Prove that the relative error of a quotient does not exceed the sum of the relative
errors of dividend and the divisor.

Sol. Let x = dividend
y = divisor
z = quotient
Then X _
Yy

Taking log on both sides
log x —log y = log z

dx d dz
Differentiating a4 _ =
x y z
O the relative error in quotient is equal to difference of the relative errors of dividend and
divisor.

dz
Hence . (relative error) in quotient does not exceed the sum of relative errors of dividend

and the divisor

d d )
ie., Z o 20 % Hence proved.
z x

Example 10. The work that must be done to propel a ship of displacement D for a distance
2
2D3
‘S in time ‘t’ proportional to

7 Find approximately the increase of work necessary when the

displacement is increased by 1%, the time diminished by 1% and the distance diminished by 2%.

Sol. Let the work = W
2

$?D3

then W O 5
t




DIFFERENTIAL CALCULUS-II 117

SZD—2/3

O e where K is proportional constant.

Taking log on both sides

2
log W = log K+ 2log S+ ElogD—Zlogt

dw
On differentiating — =2 E 2 d7D _ ﬂ

W S 3 D t

dw ds 2

W (100x%) 4 2 [100x 82 100x)
0 100 < 7 ( - ) . ( ) (

2 (2 El 2 (-1 -
2+ 5 M-2() =

O Approximate increase of work = 3 %.

Example 11. The height & and semi-vertical angle a, of a cone are measured from there A,
the total area of the cone, including the base, is calculated. If # and o are in error by small
quantities ok and da respectively, find the corresponding error in the area. Show further that, if

I8

a= ', an error of + 1 per cent in /1 will be approximately compensated by an error of -19.8

minutes in d.
Sol. Total area of the cone A
A= 12+ 10l A
or A= 10 tan’a + Tt (h tan ) (h sec O)
= 10 (tan’0 + tan O sec O)

%= tana 0 # htana
l
—=seca 0% hseca
h Lo
S —
Differentiating 8A = 21 dh (tan*d + tan o sec O) Fig. 2.2
+ T (2tan O sec® . da + sec®a Oa + tan’d - sec d - O0)
or 0A = 21h tan 0.0k (tan a + sec a) + T (sec®> A + 2.tan A sec A

+ tan? a) sec a . o
= 21 tan 0. Ok (tan O + sec Q) + T2 (sec O + tan O)* sec 0.00

0A = T (tan O + sec ) [Ztana.%ﬂtana +secd)seca .50(}.

oh
- x 100 = 1 and 0A = 0 in above.

0 = 102 tanE +sec—n 2tan — (100 X E) L +(tan —T[+sec—'j. seC—T.[E')O(
6 6 6 h ) 100 6 6 6

2

> 00 " (T J'J N

o4

Now, putting o =
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1 3 1
0 + |=] 6a=0 Oda =- radian.
100/3 (3) 100/3
1 180
or o0 = — x —— degree
1003~ °°®
9
=— x 60 minutes (1° = 60 minutes
53 ( )
9%x60
=- ——————— = - 19.858 minutes. Hence proved.
5x314x1.732
Example 12. If the sides and angles of a plane triangle vary in such a way that its circum
) ) da db dc
radius remains constant, prove that + + = 0 where da, db, dc are small

cos A cosB cosC
increaments in the sides a, b, ¢ respectively.
Sol. Let R be the circum radius.

a
We know that R = 2sin A
. R 1 OR _ axcosA
da  2sinA’ 0A 2sin’A
O dR = oR da + LS dA
oa 0A
L
2sin A 2sin“ A .
1 N Fig. 2.3
or 0= ~= {da_a@s .dA} |As R = constant
2sin A 2sin A
a cosA da a
O da - SinA dA:ODcosA:sinA'dA
da
O oA = 2R dA
o db
Similarly, wosB - 2R dB
dc
osC 2R dC
Adding these equations, we get
da db dc .
+ + = 2R (dA + dB + dC) (7

CcOsA cosB cosC

A+B+C =T
O dA+ dB+dC = 0 (1)
From (i) and (i), we get

da db dc

+ + = 0 H d.
CcosA cosB cosC ence prove
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Example 13. Considering the area of a circular ring as an increment of area of a circle, find
approximately the area of the ring whose inner and outer radii are 3 cm. and 3.02 cm.
respectively.

Sol. Let area of a circle = 107
or A = 12
O dA = 21rdr ..(0)

Now area of circular ring 0A is the difference between A, of outer ring and A, of inner
sphere

choose ¥ = 3 cm. and & = 0.02, then

A-A, = A(r+0r)-A(r)=0A=dA
O A - A, = dA =21rdr (from i)
O A-A = 2mx3x.02
= 12 mcm?

Example 14. Calculate (2.98)°
Sol. Let fy) =y o 0.02

af g - x-1
O w -V log v, dy =

Fig. 2.4
) of

LA
Now, f(x+ ox, y+ dy) fxy+ F. ox + oy oy

Let X
O f(2.98, 3)

3, =-002 y=3 0y=0

f3,3) + 3. 1log 3 x(-0.02) +0

3% — 3% x (.4771213) x 0.02 |log3 = 4771213
27 (1 - 0.00954) = 26.74.

EXERCISE 2.2

1. The period T of a simple pendulum is T = 2Tt \/z . Find the maximum error in T due to
8

possible errors up to 1% in 1 and 2.5 % in g. (U.P.T.U., 2003) [Ans. 1.75%]

2. In the estimating the number of bricks in a pile which is measured to be (5m x 10 m x
5 m), count of bricks is taken as 100 bricks per m®. Find the error in the cost when the tape
is stretched 2% beyond its standard length. The cost of bricks is Rs. 2,000 per thousand

bricks. (U.P.T.U., 2000) [Ans. Rs. 3000]
3. Find the approximately value of f(0.999) where f(x) = 2x* + 7x% — 8x* + 3x + 1.
[Ans. 4.984]

ox

[Hint: £(0.999) = f(x +8x) = f(x) +—=—. & = f(1) + f'(l)(—0.00l)}
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1
If the kinetic energy T is given by T = 5 mv* find approximate change in T as the mass
m changes from 49 to 49.5 and the velocity v changes from 1600 to 1590.
[Ans. 144000 units]

5. Find the approximate value of (1.04)3. Ans. 1.12
PP

10.

11.

12.

13.

14.
15.

16.

If A be the area of a triangle, prove that the error in A resulting from a small error in ¢

is given by
Uy NE IS T
T 4[s s-a s-b s-c
Considering the volume of a spherical shell as an increment of volume of a sphere,
calculate approximately the volume of a spherical shell whose inner diameter is 8 inches

1
and whose thickness is = inch. [Ans. 41 cubic inches]

A diameter and altitude of a can in the form of right circular cylinder are measured as
4 cm. and 6 cm. respectively. The possible error in each measurement is 0.1 cm. Find
approximately the maximum possible error in the value computed for the volume and

lateral surface. [Ans. 5.0336 cm?, 3.146 cm2]
2 2
Find the percentage error in calculating the area of ellipse 2ty = 1, when error of
+ 1 % is made in measuring the major and minor axis. [Ans. 2%]
5

The quantity Q of water flowing over a v-notch is given by the formula Q = cH 2 where
H is the head of water and c is a constant. Find the error in Q if the error in H is 1.5%.
[Ans. 3.75%)]

Find the percentage error in calculated value of volume of a right circular cone whose
altitude is same as the base radius and is measured as 5 cm. with a possible error of

0.02 cm. [Ans. 1.2%]
Find possible percentage error in computing the parallel resistance r of three resistance
1 1 : .
r, 1, 1, from the formula 1 = —+ — + — if r, r, r, are each in error by plus 1.2%.
r n r? 3

[Ans. 12%]

The diameter and the height of a right circular cylinder are measured as 4 cm. and 6 cm.
respectively, with a possible error of 0.1 cm. Find approximately the maximum possible
error in the computed value of the volume and surface area. [Ans. 1.6 Ttcu. cm, Tisq. cm]

1
Find ((382)%+2(21)°[5. [Ans.=2012 ]

Show that the acceleration due to gravity is reduced nearly by 1% at an altitude equal to
0.5 % of earth’s radius. Given that an external point x kilometers from the earth’s centre,

2
r
such an acceleration is given by g (;) , where 7 is the radius of the earth.

Calculate the error in R if RI = E and possible errors in E and I are 20% and 10%
respectively. [Ans. 10%]
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17. In the manufacture of closed cylindrical boxes with specified sides a, b, c (a # b # c) small
changes of A %, B %, C % occurred in a, b, c respectively from box to box from the
specified dimension. However, the volume and surface area of all boxes were according

to specification, show that
A B C

a(b-c) b(c-a)  c(a-b)

18. Find (83.7); - [Ans. 3.025]

19. Find y (1.997) where y(x) = x* — 2x° + 9x + 7. [Ans. 24.949]

20. The time T of a complete oscillation of a simple pendulum of length [ is governed by T

1
- 2”\/; where ¢ is a constant.

(a) Find approximate error in the calculated value of T corresponding to an error of 2%

in the value of L. (U.P.T.U., 2008) [Ans.1%]
(b) By what percentage should the length be changed in order to correct a loss of 2
minutes per day? [Ans. —0.278%]

il EXTREMA OF FUNCTION OF SEVERAL VARIABLES

Introduction

In some practical and theoretical problems, it is required to find the largest and smallest values
of a function of two variables where the variables are connected by some given relation or
condition known as a constraint. For example, if we plot the function z = f(x, y) to look like a
mountain range, then the mountain tops or the high points are called local maxima of f(x, y) and
valley bottoms or the low points are called local minima of f(x, y). The highest mountain and
lowest valley in the entire range are said to be absolute maximum and absolute minimum. The

graphical representation is as follows.

Absolute maximum

Local maximum

Absolute minimum
Local minimum

Fig. 2.5
Definition

Let f (x, y) be a function of two independent variables x, y such that it is continuous and finite

for all values of x and y in the neighbourhood of their values a and b (say) respectively.
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Maximum value: f(g, b) is called maximum value of f(x, y) if f (a, b) > fa + h, b + k). For small
positive or negative values of h and k i.e., f(a, b) is greater than the value of function f(x, y,) at
all points in some small nbd of (a, b).

Minimum value: f(a, b) is called minimum value of f(x, y)if f (a, b) < fla + h, b + k).

Note: fla+ h, b+ k) - f (a, b) = positive, for Minimum value.
fla+ h, b+ k) - f (a, b) = negative, for Maximum value.

Extremum: The maximum or minimum value of the function f(x, y) at any point x = 4 and
y = b is called the extremum value and the point is called “extremum point”.

Geometrical representation of maxima and minima: The function f(x, y) represents a
surface. The maximum is a point on the surface (hill top). The minimum is a point on the surface
(bottom) from which the surface ascends (climbs up) in every direction.

Z=f(x,Y) Z=f(xy)
A A

P (maximum)

7N\ ./

Q (minimum)

»Y »Y

(a) (b)
Fig. 2.6
Saddle point: It is a point where function is neither maximum nor minimum. At such point
fis maximum in one direction while minimum in another direction.
Example: z = xy, hyperbolic paraboloid has a saddle point at the origin.
Remark 1 : If f(x, y) < fla, b) where (x, y) is a neighbourhood of (4, b). The number f(a, b)
is called local maximum value of f(x, v).

Remark 2 : If f(x, y) 2 f(a, b) where (x, y) is a neighbourhood of f(a, b). The number f(a, b)
is called local minimum value of f(x, y).

2.3.1 Condition for the Existence of Maxima and Minima (Extrema)
By Taylor’s theorem

2 2 2
f@+hb+k=f(ab)+ (ha—f+ka—fj + L {hza—fuhkﬂwza—{ +.... ..(0)
ox Oy (@, b) |_2 ox dxdy ay .5

Neglecting higher order terms of h? hk, k?, etc. Since h, k are small, the above expansion
reduce to
0f (a,b) 0f (a,b)
f@ehbvk) = fab+h = vk =g
y 0f (a,b) 0f (a,b)

otk Ty ...(if)

O fa+hb+k-f(a b
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The necessary condition for a maximum or minimum value (L.H.S. of eqn (ii) negative or
positive) is

oAb 0f (a,b)

h
ox " oy

o(ab)  9(ab)
O S =0 g

The conditions (iii) are necessary conditions for a maxmium or a minimum value of f(x, y).

=0 |hand k can take both +ve and —ve value ...(iii)

Note: The conditions given by (iii) are not sufficient for existence of a maximum or a minimum value

of flx, y).

2.3.2 Lagrange’s Conditions for Maximum or Minimum (Extrema)

Using the conditions (iif) in equation (i) (2.3.1) and neglecting the higher order term #?, k*, h? k etc.
we get

fla+h b+ k-f@b)

2 2 2
1 {hZ %...zhka_f +k2 6_]2‘}
|2] ox 0x0y " |,

. o*f o’ f o’ f
Putting ﬁ = 7, axdy =s, —5 =1, then
1
f@a+hb+k-f@b = E[h2r+2hks+k2t]
1 | K292 + 2hkrs +k>tr
= 2 ’
1| (hr +ks)2 +k2(rt —52)
Of@+hb+k)-f(b = > ...(iv)
r

If rt —s* > 0 then the numerator in R.H.S. of (iv) is positive. Here sign of L.H.S. = sign of r.
Thus, if rt-s* > Oand r<O0,then f(a+h b+ k) —-f(@, b)<0

if rt—s*> > Oand r>0,then f(a+ h, b+ k)— f(a, b)>0.
Therefore, the Lagrange’s conditions for maximum or minimum are: (U.P.T.U., 2008)
1. If rt =s* > 0 and 7 < 0, then f (x, y) has maximum value at (4, b).
2. If rt = > 0 and r > 0, then f (x, y) has minimum value at (g, b).
3. If rt —s* <0, then f(x, y) has neither a maximum nor minimum i.e., (a, b) is saddle point.
4. If rt —s*> = 0, then case fail and here again investigate more for the nature of function.

2.3.3 Method of Finding Maxima or Minima

0

) f
1. Solve a_J; =0and @ = 0, for the values of x and y. Let x =4, y = b.

The point P(a, b) is called critical or stationary point.



124

and

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

2. Find r,sand tat x=4a,y =D.
3. Now check the following conditions:
(i) ¥rt—s*>0and r <0, f(x, y) has maximum at x = a, y = b.
(i) If rt—s*>0and r >0, f(x, y) has minimum at x = a, y = b.
(i) If rt — s> <0, flx, y) has neither maximum nor minimum.
(iv) If rt — s> = 0, case fail.
Example 1. Find the maximum and minimum of u = x* + 1® — 63(x + y) + 12xy.

ou ou

Sol. Pl 3x% - 63 + 12y; a_y =31 - 63 + 12x
r o= LZ,; =6x,s= 0°u =12, t= a_z,;, = 6y
Ox dxdy oy

Now for maximum and minimum value

ou ou

w - 0 and a_y =0
O 3x*+12y-63 = 00 x*+4y-21=0 ..(0)

3y’ +12x-63 = 00 > +4x-21=0 ...(if)

Subtracting (i) and (ii), we get
-y x+y)-4@x-y =0

O x-yx+y-4) =0
O x = yand x+ y =4
Putting x = yin (i), weget x> + 4x -21=00 (x +7) (x-3) =0
O x = 3, x=-7
y = 3, y=-7
Again putting y = 4-xineqn (i), we get
O ¥*+4(@-x)-21 = 00 x¥*-4x-5=0
O x=5(x+1) =00 x=5x=-1
O y = 4-5=-1,y=4-(-1) =5

Hence (3, 3), (5, -1), (-7, =7) and (-1, 5) may be possible extremum.

At x =3, y=3, wehave r =18, s=12, t =18

O rt—s> = 18 x 18 = (12> >0 and r = 18 > 0.

So there is minima at x = 3, y = 3, and the minimum value of u is

3+ (3)°-63 (3+3)+ 12 (3) (3) = - 216.

Atx=5 y=-1,wehave r=30; s=12, t =-6

O rt— s> =30 (- 6) — (12)*> < 0, so there is neither maxima nor minima at x =5, y = — 1.
Atx=-7,y=-7 wehave r =-42, s =12, t = - 42

O rt—s*>=(-—42) (- 42) - (12)*> 0 and 7 < 0, so there is maxima at x = -7, y = — 7 and its

maximum value is

7P+ 7P-63(-7-7)+12(-7) (-7) =784
Atx=-1,y=5wehave r=-6;s=12, t =30
Ort - s> = (- 6) (30) — (12)* < 0, so there is neither maxima nor minima at x =-1, y = - 5.
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3 3
Example 2. Show that minimum value of u = xy + L +2 s 3
x oy

2

Ou 3.2, 0U 3,2 0°u 3,3
Sol. — =y—-a’x “;,—=x-a ,r=——=2a°x";
o ox / oy Y ox?
62u _ 621,[ 3 -3
T oxay =57 =2
) o ou ou
Now for maximum or minimum we must have —— =0, — =0
ox oy
al/l_ 342 — 21, — 3 /
So from —=(, weget y—ax>=0o0r X’y =a ..(i)
ox
ou . .
and from @ =0, weget x—ay?=0or xi* = a° (i)
Solving (i) and (ii), we get x*y = xy>or xy (x — y) =0
or x =0, y=0and x =y.
From (i) and (ii), we find that x = 0 and v = 0 do not hold as it gives a = 0, which is against
hypothesis.
O We have x = y and from (i) we get x° = 4® or x = a and therefore, we have x = a = y.
This satisfies (i7) also. Hence it is a solution.
At x =a=y wehave r=20%°=2,s=1,1t=2
O rt—s>=@2)2)-1=3>0
Also r = 2> 0. Hence, there is minima at x = a =y
0 The minimum value of u
= xy + (@/x) + (@®/y)
at X = a= y
= a.a + (a*/a) + (a*/a) = a®> + a*> + a* = 3a>. Hence proved.
Example 3. Discuss the maximum or minimum values of u# when u = x* + 1* — 3axy.
(U.PT.U., 2004)
ou ou *u
= _ 2 _ - Y e 27 Gy
Sol. - 3x* — 3ay; dy 3y* - 3ax; r o2 6x;
2 2
s = 0"u =—3a,t=a—g=6y.
oxdy oy
Ou _ . Ou _
Now for maximum or minimum, we must have a =0, 6_ =0
¥
ou _ ) _ .
So from » =0, weget x> —ay =0 ()
au - 2 —_ .
and from —=0, we get 1 —ax =0 ...(i0)
Solving (i) and (ii), we get (y*/a)* — ay = 0
or yv'-ay = 0ory (P-a)=0 ory=0, a

Now from (i), we have when y =0, x =0, and when y =4, x = + a.
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But x = - 4, y = 4, do not satisfy (ii), here are not solutions.

Hence the solutions are x =0, y =0; x =a, y = a;

At x=0, y=0,wehave r =0, s =-3a,t = 0.

O rt- s>=0 - (-34)* = negative and there is neither maximum nor minimum at
x=0,y=0.

Atx=a,y=a, wegetr=6as=-3at=6a

O rt—s* = (6a)6a) — (-3a)* = 36a> — 92> > 0

Also r=6a>0if a>0and r<0if a <0.

Hence there is maximum or minimum according as a < 0
or a > 0. The maximum or minimum value of u = - #* according

asa<0ora>0.

Example 4. Determine the point where the function

u = x>+ y*+ 6x + 12 has a maxima or minima.
Sol o 2x + 6; g _ 2
ol. 3 - X T6 " Y
0%u 0%u 0%u
' ox? ’ dxdy oy’
Now for maxima or minima we must have 6_u = O,a—u =0.
ox oy
ou
From o =0, weget2x+6=0 or x=-3
ou
From @ =0, weget2y=0 or y=20

Alsoat x =-3,y=0,r=2,5s=0,t=2
Or-s>=22)-(0)PF=4>0and r=2>0
Hence, there is minima at x = -3, y = 0.

Example 5. A rectangular box, open at the top, is to have a volume of 32 c.c. Find the

dimensions of the box requiring least material for its construction. (UPT.U., 2005)
Sol. V = 32cc
Let length = [, breadth = b and height = &
Total surface area S = 2lh + 2bh + Ib (D)
S = 20+bh+1b
Now volume Vo= bh=320 b= % (i)
Putting the value of ‘D" in equation (i) b
32 32 l
= I+ — - .
5 2( lh)h+l(lhj Fig. 2.7
s = om+ 2432 (i)
I h
oS 64 0S 32
0 — = - —, —=2-=2

a — T2 o T2
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and

and

For minimum S, we get

as 64 32
o = 00 2- 5 =00h="7 (iv)
as 32 16
— = 002-=3=001=—=
oh 2 "2 ®©)
From (iv) and (v), we get
4
o= 32X gpogg =2
256

1
Putting h = 2, in equation (v), we get [ = Z6 =4

From (if) b = 32 =
4x2
3%s
Now, ~5 = g:g:2ﬂrz2>0
al 3 64
3%s %S 64 64
—~ =20s=2and — = =—=2=80+t=8
aloh sTead 5T s
0 n—-g = 2x8-4=12>0

O rt—s*>0and r >0
Hence, S is minimum, for least material
I=4,b=4h=2
Example 6. Examine the following surface for high and low points z = x* + xy + 3x + 2y + 5.

0z 0z
Sol. T = 2xXx+y+3 —=x+2

ox ay

2 2 2
r = E=2;s=az=1;t=E=0
ox? 9xdy ay?

For the maximum or minimum we must have

0z 0z

x 0, y " 0.

0z )
From Pl 0, weget2x+y +3=0 (1)

0z .
From a_y = 0, weget x+2=0. ...(i0)

From (ii), we get x =—-2and U from () y=-3 +4 =1.

Hence, the solution is x = -2, y = 1 and for these values we have r =2, s =1, t = 0.
O rn-s=2)0) -1y =-1<0.

O There is neither maximum nor minimum at x = -2, y = 1.
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1 1
Example 7. Discuss the maximum and minimum values of 2 sin 5 (x + y) cos 5 (x-1vy)

+ cos (x + y).

1 1
Sol. Let u = 2sin E(x+y)cos Y (x—1vy) +cos (x+y)
= sin x +sin y + cos (x + y)
. n | o .
n - cos x —sin (x + v); ay—cosy—sm(x+y)
ou o’u
rE =—sin x —cos (x + y); s = axay——cos(x+y),
2
t = %:—siny—cos(x+y)
) o ou ou
For maximum or minimum, we must have — =0,—=0
Ox oy
ou .
From Pl 0, we get cos x —sin (x+ y) =0 ()
ou
From a_y =0, we get cos y —sin (x + y) = 0. ...(i0)

Solving (i) and (ii), we get cos x = cos y which gives
x = 2nTt = y, where 7 is any integer. In particular x = y.

When x = y, from (i), we get cos x — sin 2x = 0

1
or cos x (1 —2 sin x) = 0 which gives cos x =0, sin x = 5

1 1
If sin x = > then x = nmt+ (-1)" ng: Yy, Tx=y
and for these value of x and y, we have
r o= —% — Cos [2nn+(—1)”%n} < 0. (Note)

Similarly, t <Oand s <0and r> s, t > s.
O rt-s>0. Also r <0.

Hence, there is a maximum when x = n1t + (1)~ %T[ = .
If cos x = 0, then x = 2nT + %T[Z Yy, o x=y
1
From here, we get x = y = + ETE, (3/2)m, (5/2)m etc.
1
If x = Eﬂ:y,thenr:—1+1:0, s=1,t=0

O rt - s*> < 0. Hence, there is neither maximum nor minimum at x =

N | =
|
Il
<
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or
or

and

or

If x= —%n:y,thenr:1+1:2:t, s=1
O rn-s2=2x%x2)-1=3>0.Alsor>0

129

. 1 o .
Hence, there is minimum at x = - 5 T =y. In a similar way we can discuss other values too.

Example 8. Show that the distance of any point (x, y, z) on the plane 2x + 3y — z = 12, from
the origin is given by

L= [+ 3y -127].

Hence find a point on the plane that is nearest to the origin.

Sol. I = distance between (x, y, z) and (0, 0, 0)

J-02 +(-0% +(z -07] = [ +y? +27]

= \/[xz +y2 +(2x +3y —12)2], vz=2x4+3y-12

P = ¥+ y + (2x + 3y - 12)* = u (say)

P o= u=>5x+ 10" + 12xy — 48x — 72y + 144 ..(0)
O ou = 10x+12y—48;%:20y+12x—72
ox oy
621/1 2 2
L T PAL R S A
ox 0yox dy
O rt—s> = (10) (20) — (12> =56 > 0 and r > 0, so there is a minimum
value of I.
Also ? = 00 10x + 12y —48 =0 or 5x + 6y = 24 (i)
X
ou
Pl 00 20y +12x - 72 =0 or 5y + 3x = 18 ...(iii)
Y

12 18
Solving (ii) and (iii), we get x = [7) Y= [7j

12 18
Also 2x+3y—-z = 12 or2[7j+3[7j—z:12

24 +54 -7z = 84or7z=24+54-8=-6 or z=

12 18 6
O The required point is [— - ‘—j

7' 7" 7)
Example 9. Discuss the maximum and minimum values of

x4+ 2x%y — % + 3y

Sol. Let u = x*+ 22— x>+ 32
Th 9 4x* + 4 2x ; u = 2x* + 6y;
en o = WO+ Ay - 2x; ay - x* + 6y;
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2 2 2
0 S NI S S S S i
0x oxdy oy
. .. ou ou
For maximum and minimum, we must have — =0, — = 0.
ox oy
ou .
From e 0, weget2x(2x* +2y-1)=0 or 2x¥2 +2y-1=0 ()
ou
From oy = 0, weget2x? + 6y =0or x>+ 3y =0 (i)
1
Solving (i) and (ii), we get 4y + 1 =0 or y=- 1
y 3 1
O From (ii), we get x> = — 3y = 1 or x =+ E\/g

1 1 1 1
O The solutions are x = E\/g,y:— 1 and x = - E\/§,y:_ "

1 1
When x = —\/§,y=— —, we get
2 4
1
o= 12 (%j+4[—%)—2:6,s:4 (ﬁ): 2J3,t=6

2
O rt—s>= 6 x6— (2\/5) >0.Alsor>0

1 1
O There is a minimum when x = E\/g, y=-7
Again when x = - %\/g,y:— i,wehave r=6,s=-— 2\/§,t:6
2
O rt—s>=(6) (6) - (—2\/5) > 0. Also r > 0.
Hence as before there is a minimum when
1 1
= —‘\/5 = -
X VoY 1
Example 10. Find the shortest distance between the lines
x=-3 _y-5_z-7 x+1 _y+1_z+1
1 =2 1 ™ 7T 6 1
-3 -5 -7
Sol. Let a =y_2 :Zl =A0x=A+3y=5-2\,z=7+ A
Thus any point P on the lineis (3 + A, 5 -2\, 7 + A)
an e 7 - -6 1 H X =- + “ry__ —Ol, z=- + M

The point Qis (-1 +7 p, —-1-6, -1+ p)
0 Distance between these two lines is

D
O D>

\/(3 +A+1-7p)% +(5 -2\ +1 +6u)2 H7 A H 41)?
u(Say) = 6A? +86p? — 40Au + 105.
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ou
H oA
ou
But a—)\

Solving these equations,

r

Now, rt — s

O

131

121 — dop, o

= — =172y — 40A.
ou M- 40
ou

= 0and %:OD 12N — 40p = 0, 172p — 40A = 0.
weget A=0, u=0

0%u 0%u 0*u
f— —_— = = — = 2 = = —

a)\Z 12/ t auz 7 a)\a“ S 40

(12)-(172) - (- 40)> = 464 > 0

rt—s*>0 and r > 0

Hence u occurs minimum value at A = 0 and p = 0.

The shortest distance is

D

given by
= J42+62+8%2 = J116 = 229.

Example 11. The temperature T at any point (x, y, z) in space is T (x, y, z) = Kxyz*> where
K is a constant. Find the highest temperature on the surface of the sphere x* + y? + 2z = a2

(U.P.T.U., 2008)

Sol. T = Kxyz? (D)
P+ yr+z2 = 20 22=a2- 2 — 1P
From (i) T = Ky (@®>— x*- 1
O g—z = Ky (@®- x*- y*) -2 Kx?%y = Ky(@@* - 33> — %)
oT
Similarly, E = Kx(@*- x* = 3p%)
for maximum and minimum value
9T =0 da—T—OD =0and y =0
3y - odan oy - x=0and y =
or 32+ Y = a?
¥+ 3y = a
Solving x =y ==+ g
aZT aZT 2 2 2
Sl =-6 Kxy, s= axdy = K (a* - 3x* - 31
o°T
and t = W = — 6Kxy
At (0, 0) r=0s=Ka?and t =0
O rt—s? = 00- Ka>=- Ka®2<0
So, there is neither maximum nor minimum at x =0 and y =0
a a a a
At x_zry—zandX——E,y——E
3 2K
r = - gKaz =- gKaz <0, t= _Eny’S: _aT
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9 47,2
rt—gs* = ZK2a4— a’K =2K%* > 0

O rt—s>>0and r <0

Hence, T has a maximum value at x = + a/2 and y =+ a/2

2( 2 4
The maximum value of T = K - a_(a_) = &
4\ 2 8

Example 12. Find the maximum and minimum values of the function

z =sin x sin y sin (x + y).

or

or

or

Sol. Given z = sin x sin y sin (x + V)

[2 sin x sin y] sin (x + y)

2
1
=5 [cos (x — y) — cos (x + y)] sin (x + y)
1
= [2 sin (x + y) cos (x — y) — 2 sin (x + y) cos (x + v)]
1
z=7 [sin 2x + sin 2y — sin(2x + 2y)]
0z 1
O o =5 [cos 2x — cos (2x + 2y)]
b
0z 1
a_y = E [cos 2y — cos (2x + 2y)]
0%z . )
r = 0x_2 = —sin 2x + sin (2x + 2y)
0%z
= = i 2 2
s axdy sin (2x + 2y)
2
t = % = —sin 2y + sin (2x + 2y)
)
For maximum or minimum, we must have % =0, £ =0
ox oy

0z
From Pl 0, we get cos 2x — cos (2x + 2y) = 0

0z
From —— =0, we get cos 2y — cos (2x + 2y) = 0

oy
Solving (i) and (ii), we get cos 2x = cos 2y which gives
2x = 2nTt + 2y. In particular 2x = 2y or x = y
When x = y, from (i), we get cos 2x — cos 4x =0
cos 2x —(2 cos?2x - 1) =0~ cos20=2cos? B -1
2cos?2x—cos2x—-1=0

...(id)
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I+
@D

1+./(1+8 1
or cost:—):

—~

1
:1,— —
2

S
’J; ‘

21 .
or 2x =2nm+ 0, 2mm+ ? , where m, n are zero or any integers

or X = nuT, mm=*

wlo

Tt
In particular x = 3

Tt Tt
When x = g,wehave y=x= 45

21 4T
and then r = — sin 5t sin ?,from (A)
BB
2 2 ’
4T
s = sin ?,from(B)
V3
or s = - —
2
21 4T
and t = —sin 5 + sin ?,from ©
BB,
2 2
Y 39
0 s = () (-ﬁ)_(-7 3o 2.0
= positive.

T T
Thus at x = g =y rt—s>>0,r <0, so there is a maximum at x = ? = .

) T T m T
Hence, maximum value =sin —.sin - .sin | 7+t

3 3 3 3
_ BB 36
2 2 2 8

If we tak - D theny-—x-- &

wetake  x = - = theny=x=-
1

and r:\/g,s—zx/g,t—\/g
O t 2—2 0 0
- = >0, 1>
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_ BB 3B

2 2 2 8

Example 13. Find the local minima or local maxima of the function
flx, y) = 4x* + y* — 4x + 6y — 15.
Sol. We have fix, y) = 4%+ y*—4x + 6y - 15

S 8 -4 and i:2y+6.
oy

Ox
F tati 'ti—o di_
or stationary point == = 0 an ay
O 8x-4 =00 x:%and2y+6:0Dy:—3

Now, the given function can be written as
flx,y) = @x =12+ (y +3)>-25 ()
Since (2x = 1)> 20 and (y + 3)* 2 0.
From (i), we get
flx, y) 2 = 25 for all values of x and y. Hence f(1/2, — 3) = — 25 is a local minimum.

Example 14. Find the local minima or local maxima of the function
fix, y) == x*— ¥ + 2x + 2y + 16.

Sol. 1:—2x+2:0Dx:1
Ox
U =-2y+2=00y=1
ay
Now, oo y) = 18 - {(x = 12 + (y - 1)) ()

Since (x = 1) 2 0 and (y — 1)* 2 0, from (i) we get f(x, y) < 18 for all values of x and y.
Hence f(1, 1) = 18 is a local maxima.

EXERCISE 2.3

1. Discuss the maximum values of u, where

a a
U = 2a%xy = 3ax%y — ay’ + X%y + xy’ [Ans. Y E}

2. Find the points (x, y) where the function u = xy (1 — x - y) is maximum or minimum.
[Ans. Maxima at x = l, Y= l}

3 3

3. Find the extrema of f (x, y) = (x* + y?) e+ 22,
[Ans. minima at (0, 0) minimum value = 0 and at (-1, 0) min. value = ¢*,

1
saddle point (_E , 0)].
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If the perimeter of a triangle is constant prove that the area of this triangle is maximum
when the triangle is equilateral.

[Hint: 2s=a+ b+ c, A= [s(s—a)(s—b)(s—c) ]

2s
[Ans. Maximum when a= b = ¢ :?]

Show that the rectangular solid of maximum volume that can be inscribed in a sphere is
a cube.

[Hint: V = xyz, diagonal of cubic = Jx?+y?+z%> =d 0 z= [d*-x*-y* so
Veay J& -2y }

Find the shortest distance from origin to the surface xyz* = 2. [Ans. 2]
In a plane triangle ABC find the maximum value of cos A cos B cos C. [Ans. 1/8]

Discuss the maximum or minimum values of u given by u = x% (1 — x — y).
[Ans. Maximum at x =0, y = 1/3]

Find the maximum and minimum values of u = 6xy + (47 — x — y) (4x + 3y).
[Ans. Max. value of u = 3384]

Discuss the maxima and minima of the function

f(x, y) = cos x, cos y cos (x + ) (LLP.T.LL, 2007)
Divide 24 into three parts such that the continued product of the first, square of the
second and the cube of the third may be maximum. [Ans. 4, 8§, 12]
Examine for extreme values: u (x, y) = x* + y* + 6x + 12. [Ans. Min. value = 3]

2.4

LAGRANGE'S* METHOD OF UNDETERMINED MULTIPLIERS

Let @ (x, y, z) is a function of three independent variables, where x, y, z are related by a known
constraint g(x, y, z) = 0

Thus the problem is Extrema of

u = flx, y, z) (i)
Subject to gxyz=0 ...(if)
: : of of O
For stationary point o @ =% - 0
Y s Y Y
O af = o dx + ay dy + e dz =0 .. (1)
0
From (ii) dg = % dx + Z—idy N a—f dz =0 (i)
Multiplying eqn. (iv) by A and adding to (iii), we obtain
EIRCINEREAMIERT AP "
Oox  0Ox oy dy 0z 0z

*Joseph Louis Lagrange (1736-1813).
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Since x, y, z are independent variables

o .59

It ' S .

O 6x+ ax 0 ...(0i)
of ., 0g .
ay"')‘ay =0 ...(0ii)
of  , 0g
—+)\— =
pe 32 0 ...(viii)

On solving (ii), (vi), (vii) and (viii), we can find x, y, z and A for which f (x, y, z) has maximum

or minimum.

Notes: 1. The Lagrange's method of undetermined multiplier's introduces an additional unknown

constant A known as Lagrange's multiplier.

and

and

or

ie.,

2. Nature of stationary points cannot be determined by Lagranges method.

Example 1. Determine the maxima and minima of x? + y*> + z* when ax* + by*> + cz* = 1.

Sol. Let f,y z)=x2+y"+ 2 (D)
g, y,z) = ax®+ b+ cz2-1=0 ...(i0)
, of Ll of
From (i) ax - 2x, dy = 2y, 3 = 2z
) 0g % og
From (ii) 3 2ax, dy = 2by, 2 - 2cz.
Now from Lagrange's equations, we get
g_‘_)\tlg =2x+AN.2ax =00 2x(1+M)=00 x(1+ M) =0 ...(iii)
ox  0x
L + )\% =00 2y+A-2by=00 2y 1+ Ab)=00 y(1+ Ab) =0 ..(iv)
dy Oy
Z—f + )\g—g =00 224N -2z=00 221+ A)=00 z(1+Ab)=0 ..(v)
z z

Multiplying these equations by x, y, z respectively and adding, we get
PA+M+12PA+A)+ 221+ A)=0
P+ 1P+ 2+ N@x*+by*+ cz?) =0 ...(v1)
Using (i) and (ii) in above equation, we get
f+A=00A=-Ff
Putting A = - f in equations (iii), (iv) and (v), we get

x(1-fa) =0y (A-f)=0,z(01-f)=0
O 1-fa =0,1-f=0,1-f=0
111 . .
f = AR These give the max. and min. values of f.
a c

Example 2. Find the extreme value of x? + y* + z?, given that ax + by + cz = p.

(U.P.T.U., 2007)
Sol. Let u=x+y+ z2 (D)
Given ax + by + cz = p. ()
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or
or

or

or

or

For max. or min. from (i), we have
du = 2xdx + 2y dy + 2z dz = 0.
Also from (ii), adx+ bdy+ cdz=0.
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...(iii)
...(iv)

Multiplying (iv) by A and adding in (iii), we get (x dx + y dy + zdz) + A (a dx + b dy + c dz)

Equating the coefficients of dx, dy and dz to zero, we get
xX+M =0y+AN=0,z+A=0
These are Lagrange's equations.
Multiplying these by x, y, z respectively and adding, we get
xX(x+M)+yy+A)+z(z+A)=0
P+ P+ +AN@ax+by+cz)=0
u+Ap =0 or A=—-u/p.
O From (v), we get

=
|
VR
ANY
‘a|§
N——
I
o
<
|
7 N\
<
‘a‘:
N—
I
N
|
VR
o
= |2
I
o

(@+ b*+ ) [Z) =por x= 7u2+zr2]+c2
Similarly, y = uz-l-llj76+c2' = %
These give the minimum value of u.
Hence minimum value of u is
o a2p? . b2p? . c2p?
@+ +c2)? (A2 +R)E (a2 4B +ch)?
) (@ +b2 +A)p? p?
(a% + D% +c%)?2 (a% +D% +c?)
2 2 2

. : . y
Example 3. Find the maximum and minimum values of — +<+— where —+-5+
a c a

b4

=1land Ix + my + nz = 0.

and

2 2 2
Sol. Let u = x—4+y—4+z—4
a* b ¢
Given x2+y2+22 1
1V T, T T =
2 2
Ix+my+mnz =0

..(v)

...(0i)

2
222
b*
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From (i), (i1) and (iii), we get

a%)dﬁ( )dy+(c )dz _ (i0)
(izjdx ( )dy+(c )dz 0 - (©)

and ldx+ mdy+ndz=0 ...(vi)
Multiplying (v) and (vi) by A, A, and adding, we get

X Ax y y z Az
(—4+a—2+)\zljdx+ (b4 bl +)\2m)dy+ (C—4+C—2+)\271 dz =0

a

Equating to zero the coefficients of dx, dy and dz, we get

x | Ax v ANy z Az

St A =0 4+ —=+A,m =0, —+—+)\n 0 ji
42 2 P 2 2m P A2 2 ...(0ii)

These are Lagrange’s equations.
Multiplying these by x, y, z and adding, we get

ﬁ+y_2+i A ﬁ+y72+i )\ 1 —
At + A 2 + (Ix+ my+nz)=0

¢
or u+ A (1)+ A, (0) =0, using (i), (i) and (iii)
or u+A =0or A\ =-u
O From (vii), we have

X ux u z uz
-5t Al =, l——y+)\2m =0, ——C—2+)\2n =0

at a bt b? c*
or x(1-au) = -la* A\, y (1~ bu)=-mb* A\, z(1 - ctu) =- ncA,
-la*\, -mb*\, -nc*,
T X = , = , zZ =
© 1-a’u Y 1-b*u 1-c%u
Substituting these values in (iii), we get
I*a* m?*b*  n?ct
1-a®u 1-bu 1-c*u
or SPar(1-bPu)(1-ctu)y=0
or SPat b - P+ Au+1=0
or u? (ZPa*h*c®) — u {ZPa* (0 + )} + ZPa* = 0
2o 1 1
or a2’ (Pa® + m?b* + n’c®)u?® — a’b’c® 12l°a _2+b_2 u+ 2Pa*=0
c
NI 22 vim? cn?
242 21,2 242 2 —
or (Pa* + m®* + nc?) u? - l(c—2+b—2j u+ b2c2+c2u2+u2b2 =0,

which gives the max. and min. values of u.

Example 4. Find the minimum value of x* + y* + z*> when yz + zx + xy = 34>
Sol. Let u= x>+ y*> + 2? (D)
Given yz + zx + xy = 3a% (i)
For max. or min. from (i), we have

du = 2xdx + 2y dy + 2zdz =0 .. (i)
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Also from (ii), (y dz + z dy) + (zdx + xdz) + (x dy + y dx) =0
z+ydx+(x+2)dy+ Y+ x)dz=0. ...(iv)
Multiplying equation (iv), by A and adding in (iii), we get
[x+A@E+yldx+y+Ax+2]dy+[z+ A+ x]dz=0
Equating the coefficients of dx, dy, dz to zero, we get
X+Az+y)=0,y+A(x+2)=0,z+A(x+y)=0 ..(0)
These are Lagrange’s equations
Multiplying these by x, y, z respectively and adding, we get
Cr A+l + [P+ Ay (x+ 2]+ [Z2+ Az Y+ x)]=0

or @+ 1yP+2)+2 N (xy+yz+zx)= 0
u
or u+2N3a%>)=0 or A= ——.
6a”
u(z+y) u(x+z) u(y +x)
O From (v), we get x = , Y= ,Z=
8 6a> Y 64> 64>
X y z _u
or — = = =—
z+Y  x+z x+ty 6a
or —6a*x + uy + uz =0, ux — 6a%y + uz =0, ux + uy — 6a*z =0

Eliminating x, v, z, we get

—6a° u u
u —6a° u | =0, which gives the max. and min. values of u.
u u —6a°

—6a>  u+6a® u+6a°

or u ~6a’-u 0 | =0, C -C-CC,~C,-C,
u 0 —6a® —u
-6a> 1 1 62> 1 1
or u+6a?2| u -1 0] =0o0r(u+6a?2 | u -1 0/=0,R, - R -R,
w 0 -1 0 1 -1
or (u + 6a*? [- 62> — u(-1-1)] = 0 | Expand with respect to first column
or (u + 6a%)?* [- 6a* + 2u] =0 or u = — 6a% 34> But u cannot be equal to — 64% since sum

of three squares (viz. X2, 1%, z%) from (i), cannot be negative. Hence u = 34* gives max. or min. value
of u.

Example 5. Find the minimum distance from the point (1, 2, 0) to the cone z* = x* + y~
(U.P.T.U., 2006)
Sol. Let (x, y, z) be any point on the cone then distance from the point (1, 2, 0) is
D> = (x-1+ (y-27+ (z - 0)?
Let u = (x-12+ @y -2>+ 2 (D)
Subject to  x*+ 2 -z = 0 ...(i0)
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for minimum, from (i) and (ii), we get
du (x-1dx + (y-2)dy + zdz = 0 ...(iii)
xdx + ydy — zdz = 0 ...(iv)

Multiplying equation (iv) by A and adding in (iii), we get
(x = Ddx + (y — 2)dy + zdz + N (xdx + ydy — zdz) = 0

O x@Q+MN)-1Lde+{y@+AN)-2dy+{z(1-AN}dz=0
O x1+AMN)-1=0,y(1+AN-2=0,z(1-MN=0
O L _ 2 A=1
X = 1+)\/ y_ 1+)\/ - (v)
O X = BRI . =1
T1e1 27T 14 T
Putting the value of x and y in equation (ii), we get
1 5 J5
- —_ 2: 2:* = —_—
4+1 z 00 z 4Dz + >
Hence, the minimum distance from the point (1, 2, 0) is
1 .V , (V5Y 1., 5 10
2 = |—-1 - 2 = —+1l+= = —
D [2 )+(1 2) +(2 1 1 1
D* = > O D= °
or =3 =7

Example 6. Show that the rectangular solid of maximum volume that can be inscribed in

a sphere is a cube. (U.P.T.U., 2003)
Sol. Let the length, breadth and height of solid are A7
I = 2x i
b =2 y 1y
h =2z R :
0 Volume of the solid V = Ibh = 2x-2y-2z A i
= 1 \) _______ = -
O V = 8xyz () 0 3
Equation of the sphere R.
K+ yr+ 22 = R j rad
O X+ P+ 2-R =0 ...(ii) ke
For maximum differentiating (i), (i), we get Fig. 2.8
dV = 8yzdx + 8xzdy + 8xydz = 0 .. (i)
and 2xdx + 2ydy + 2zdz = 0 ...(1v)

Multiplying (iv) by A and adding in (iii), we get
8yzdx + 8xzdy + 8xydz + N (2xdx + 2ydy + 2zdz) = 0
O @Ax + 8yz)dx + Ay + 8xz)dy + (2Az + 8xy)dz = 0
Equating the coefficient of dx, dy and dz to zero, we get
O A x=-4yz, \y = —4xz, A\z = — 4xy .(v)
These are Lagrange’s equations
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Multiplying equation (v) by x, y, z respectively, we get
Ax? = — 4xyz, ANy = — dxyz, A\z? = — 4xyz

From these, we get

Ax? = A2 = AZ2
O o= yr= 2z
O X =Yy=2z

Thus, the rectangular solid is a cube. Proved.
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Example 7. Use the method of Lagrange's multiplier to find the volume of the largest

2

rectangular parallelopiped that can be inscribed in the ellipsoid 2 +
Sol. Let I = 2x
b =2y
h =2z
O V = 8xyz

and

and

2 2 2
x—z + y—z +Z—2 -1=0
a- b° ¢
For largest volume, from (i) and (ii), we get
dV = yzdx + xz.dy + xy-dz = 0

x y z
—dx+-=dy+—dz =0
a’ b? Y c?

Now, equation (iii) + A x equation (iv), we get

A A A
(yz + a—zx)dx+(xz+ bfzy)dy+(xy+ C7 z)dz =0

O yz+a—2x:0, xz+b%y:0, xy+c)\7220
Multiplying (v) with x, y, z respectively and adding then, we get
3 |:ﬁ +y_2 + i:|
xyz + A JEIMPC I =0
O 3xyz + A = 0 (using ii)
O A = -3xyz
Putting the value of A in any one of equation (v), we get

2
yz—Bxyz‘aiz =00 yz (1—%) =0

3 a

O 1- e =00 x= Nek
b c

Similarly, y = ﬁ, z = ﬁ

abc
Hence, the largest volume V =8 . —=10
& 33

Yy

7+7:1'

b2

ZZ

C2

(U.P.T.U., 2002, 2000)
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Example 8. Determine the point on the paraboloid z = x*> + y* which is closest to the point

6, 4).

Sol. Let (x, y, z) be any point on paraboloid nearest to the point (3, — 6, 4)

D D = J(x-3) +(y +6)* +(z —4)°
O D> = (x =3+ (y + 6) + (z — 4)*
Let u = (x-3+(y+ 6+ (z -4y

Subject to  x*+ y*-z = 0

For minimum distance, differentiating (i) and (i), we get

and

or

du = 2(x-3)dx +2(y +6)dy + 2z -4)dz=0

2xdx + 2ydy — dz = 0

Now, equation (iii) + A x (iv), we get
2xQ+MN-6dx+ {2y 1+ N +12) dy +{2z-A-8) dz=0
O x1+A)-3=0y1+AN)+6=0,2z-A+8) =0
6 __ (+8)
1+A YT T NPT T
Putting the values of x, y, z in equation (ii), we get

O x=

9 36 (\+8)
TS R TS A S

45 (A+8)
a2 0
0 NV-A+12A+8) =0
0 A+ 1N +17A-82 = 0
0 A =2

Hence x=1y=-22z=>5

Example 9. Find the maximum and minimum distances from the origin to the curve

3x% + 4xy + 6y* = 140.
Sol. Let (x, y) be any point on the curve
O distance from (0, 0) is given by
D? = x* + y* = u (say)
Subject to  3x? + 4xy + 6y* — 140 = 0
For maximum and minimum from (i) and (i), we get
du = 2xdx + 2ydy = 0
6xdx + 4dx y + dxdy+ 12ydy = 0
Now, equation (iii) + A x (iv), we get
{x 2+ 6A) +4yA} dx + {y (2 + 127) + 4xA}dy = 0
O 2x+ A(6x +4y) = 0
2+ AN (12y + 4x) = 0
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Multiplying the above equations by x, y respectively and adding, we get

2 (* + y*) + 2N (3x* + 4xy + 6%

g 2u + 2\ (140)

(using (i) and (i)
u

T 140
Putting the value of A in eqns. (v) and (vi), we get

O A=

u
2x - 140 6x +4y) = 00 (140 - 3u)x — 2uy =0
and 2y - % (12y + 4x) = 00 - 2ux + (140 - 6u)y = 0

This system has non-trivial solution if

140 -3u —2u

2u  (140-6u) =
0 (140 — 3u) (140 — 6u) — 41> = 0
0 1412 — 1260u + (140)2 = 0
u*> —90u — 1400 = 0
(1 = 70) (u —20) = 0

0 u = 70, 20

Thus, the maximum and minimum distances are

0, 0. | AsD=u

Example 10. A wire of length b is cut into two parts which are bent in the form of a square
and circle respectively. Find the least value of the sum of the areas so found.

Sol. Let part of square = x

and part of circle = y O x+y =10
X
O side of square = Z’
radius of circle = = |As 210 = y
21
¢ _ X
area of square = ——
2 2
area of circle = v__ ¥
41 4mn
Here, let u = sum of areas = ﬁ + ny (1)
' - © 16 4m
Subjectto b=x+y U x+y-b=0 (7))

For minimum from (i) and (i), we get

du

X y
—dx+-—dy =0
3 X o v (i)
and dx+dy =0 ...(iv)
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or

Now, (iii) + A x (iv), we get
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xdx  ydy
7+7 =
g tom t Adx+dy) =0
X ¥
—+Ajdx+|=—+Ady =
. (8 ) g (21‘[ ) Y 0
X y
0 3 0, o 0
O x = -8\ y=-2m\
Putting x and v in equation (ii), we get
-8\ -2mA =b 0 A=- b
8+2m
21
Thus x:—8)\:8—b,y:—2n)\:
8+2T 8+2m
0 The least value of areas is, from (i)
2 2
W LY
16 4m
e 40P
©16(8+2m)%  4m(8+27)>
AU I
4(Ti+4)2 Am+a)

Example 11. Find the dimension of rectangular box of maximum capacity whose surface
area is given when (a) box is open at the top (b) box is closed.

Sol. Let the length, breadth and height of box are x, y, z respectively.

So volume V = xyz

There will be two surface area one for open and one for closed box

O nxy + 2yz + 2zx = S (say)
or gx, y, 2)
Here n =1,

n

= nxy +2yz+2zx-5=0
when the box is open on the top

= 2, when the box is closed.

The Lagrange’s equations are
a_V + A a_g
Ox 0x
a_V + A a_g
dy
a_v + A a_g
0z 0z

=yz+ ANny +2z) =0

= xz+ AMnx +2z2) =0

= xy+ M2y +2x) =0

Multiplying (iv), (v), (vi) by x, y, z respectively and adding, we get

3xyz + N [2(nxy + 2yz + 2zx)]= 0

3V+ A2S] =0

OaA

v
2§

(U.P.T.U., 2008)

()

...(if)
...(iii)

...(vid)
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Putting value of A from (vii) in (iv), (v) and (vi), we get

3V 3xyz
z —— (my +2z) =0 O z ——2= (ny +2z) =0
vz~ (y+22) 2 - (ny + 2z)
or nxy + 2xz = 2—; .(viii)
2
Similarly nxy + 2yz = ?S .(ix)
2
2z + 2zx = ?S (%)
From (viii) and (ix), we get
X =1y w(x0)
and from (ix), (x), we get
ny _ nx g
ny =2z 0 z= —%=-"2 X
y ) (i)
Putting (xi) and (xii) in equation (i7), we have
nx'x+2-x-ﬂ+2-n—2x-xzs O 3nx*=S
or x2 = i
3n
(a) When box is open n =1
S
O x2 = g O x= 3
. . S 1S
Hence, the dimensions of the open box are x = y = 3 and z = 23

(b) When box is closed n =2 [ xzzg 0 x:\/g

Hence, the dimensions of the closed box are

x:y:\/g and z:\/g-
EXERCISE 2.4

1. Find the maximum and minimum distances of the point (3, 4, 12) from the sphere,
¥+yr+ =1 (U.p.T.U., 2001) [Ans. D =12, D = 14}
2. Find the maximum and minimum distances from the origin to the curve
x* + 4dxy + 6y* = 140. [U.P.T.U. (C.O.), 2003] [Ans. D . =45706, D = 21.6589}
3. The temperature T at any point (x, y, z) in space is T = 400 xyz>. Find the highest tem-
perature at the surface of a sphere x* + 1> + 2> = 1. [Ans. T = 50}
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10.

11.

12.

13.

14.

15.
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Find the maxima and minima of x*> + 1> + z? subject to the conditions : ax* + by* + cz

12 m* n* |
ns. + + =0
{ (au-1) (bu-1) (cu-1) |

=1, Ix + my + nz = 0.

Find the maximum value of u = x”y%z” when the variables x, y, z are subject to the

Y ()Y ]
condition ax + by + cz=p + q + 1. Ans. u = () (b) ()
a c) |

A rectangular box, which is open at the top has a capacity of 256 cubic feet. Determine
the dimensions of the box such that the least material is required for the construction of
the box. Use Lagrange's method of multipliers to obtain the solution.
[Ans. length = breadth = 8, height = 4’}
. .. . Lo 1 1
Find the minimum value of x* + y* + z? subject to condition —+—+—=0.
x

y z

[Ans. Minimum value = 27}

Determine the point in the plane 3x — 4y + 5z = 50 nearest to the origin.

|Ans. (3, - 4, 5)
Find the length and breadth of a rectangle of maximum area that can be inscribed in the
v 1= 22 |

ellipse 4x* + 9y = 36. Ans. [ = — b= /2, area =12

Divide 24 into three parts such that the continued product of the first square of the
second and the cube of the third may be maximum.

[Ans. 4, 8, 12, maximum value = 4-82-123J
Find the volume of the largest rectangular parallelopiped that can be inscribed in the
ellipsoid of revolution 4x* + 4y* + 9z* = 36. [Ans. Maximum volume = 16 /3 ]
Using the Lagrange's method of multipliers, find the largest product of the numbers x,
yand z when x> + 12 + 22 = 9. [Ans.?)\/g]
A torpedo has the shape of a cylinder with conical ends. For given surface area, show

2
that the dimensions which give maximum value are [ = h = N where [ is the length
of the cylinder, r is the radius and # is the altitude of cone.

Find the dimensions of a rectangular box, with open top of given capacity (volume) such
that the sheet metal (surface area) required is least.

[Ans. x=y=2z=QV)3 V= VolumeJ
Find the maximum and minimum values of ,/x* +y> when 13x? — 10xy + 133> = 72.

[Ans. Maximum = 3, minimum = 2}
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16. A tent of given volume has a square base of side 22 and has its four sides of height b
vertical and is surmounted by a pyramid of height /. Find the values of 2 and b in terms
of h so that the canvas required for its construction be minimum.

1 h
[Hint: V = 4a°b + 5(4a2)h, S =8ab + 4a~Jg>+h?;a= %h, b= E]'

17. If x and y satisfy the relation ax* + by? = ab, prove that the extreme values of function
u = x*+ xy + y* are given by the roots of the equation 4(u — a) (u — b) = ab.
18. Find the maximum value of x"y"z? when x + y + z = a.

I:Ans. am+n+b. mm.nn_pp/(m + 1+ p)m+ n+ p}

19. Find minimum distance from the point (1, 2, 2) to the sphere x> + 1> + z*> = 30.[Ans. 3}
20. Determine the perpendicular distance of the point (a, b, ¢) from the plane Ix + my + nz

.. . la+mb +nc
Ans. Minimum distance = —————
I +m? +n?

OBJECTIVE TYPE QUESTIONS

A. Pick the correct answer of the choices given below:

=0 by the Lagrange’s method.

u, v

0
1. The Jacobian B y; for the function u = e* sin y, v = (x + log sin y) is (U.P.T.U., 2008)
@) 1 @) 0
(iii) sin x sin y — xy cos x cos y  (iv) L
x

o(u,
2. The Jacobian (x,v) for the function u = 3x + 5y, v = 4x — 3y is
o(x, y)
(1) 29 (i) xy
(iii) x* y* — i (iv) - 29
) o(x,y,z) |
3.Ifx=rcos 8, y=rsin 6,z= Z, then ————= is
o(r,6,2)
(i) 2r (i) ¥»-5
5 .
(i) » () r
4. f u= xsin y, v=y sin x, then O(u, v) is
o(x, )
(1) sin x sin y (i1) sin x sin y — xy cos x cos Yy

(iif) cos x cos y — xy sin y (iv) O
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5. fu=3x+2y-zov=x-y+z w=x+ 2y —z then | (u, v, w) is

(@) 5
(i) - 2

@) 0
(iv) xy + 3x°

6. If in the area of an ellipse if a two per cent error is made in measuring the major and
minor axis then the percentage error in area is

(@) 2% (i) 3%

(iii) 5% (iv) 4%
7. The value of (1.05)>® is

(1) 2.35 (i) 1.25

@#ii) 1.15 (iv) 0.57

8. If an error of 2% is made in measuring the sides of a rectangle, then what is the
percentage of error in calculating its area?

() 1%
(iii) 4%

(i) 2%
(iv) 8%

9. The relation among relative error of quotient, relative errors of dividend and the divi-
sor (Take x = dividend, y = divisor, z = quotient) is

d
(i) %:@4.1
z x oy
d
i) Ll
z x 0y

(i0)

(iv)

@<@+2d7y
z X y
dz _dx _dy
z x oy

10. If u = x> + y*> + 6x + 12 then the stationary point is

(@) -3,0
(iii) (- 2, 6)

(i) (-3,5)
() (5, 6)

11. The extreme values of f(x, y) = x> + 2y on the circle x> + y> = 1 are

(l) fmax = 2’ fm'm =1
(lll) fmax = 7’ fm'm ==9

(ZZ) fmax = 0’ fm'm =-2
(7v) None of these

12. If u = x* + 2x%y — x> + 3y? then rt — s is equal to

(i) 24 (i1) 36
(iii) — 58 (iv) 14
B. Fill in the blanks:
1. Ifu=u(rs),v=0v(s)and r=17r(x, y), s=s (x, y) then g S —
o(x,y)

o(x,

2. If x=rcos 6, y=rsin 6 then (x.5)
o(r,0)

3. 1If 1-y) then 2049)
Mu=x(1-y),v=x n =

Y) v=xythe 3(x,y)

ou,0) ox,y)
" o(x,y) o(wv)
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C. Indicate True or False for the following statements:

1. (i) The functions 1 and v are said to be functionally independent if their Jacobian is not
equal to zero.

(i) If f, (u, v, x, y) = 0 and f, (u, v, x, y) = 0 then u, v are said to be implicit functions.

(iii) m functions of n variables are always functionally dependent when m > n.

Axy)

=7r2-2r+ 1.
3(,0) T r+

(iv) If x =1 cos 6, y = rsin O then

L dx .
2. (i) — represents relative error.
X

(ii) If fla, b) < fla + h, b + k) then f(a, b) is a maximum value.
(iit) If fla, b) > fla + h, b + k) then f(a, b) is a minimum value.

(iv) A point where function is neither maximum nor minimum is called saddle point.
3. (i) Nature of stationary points cannot be determined by Lagrange’s method.

(if) Solving f, = 0 and f, = 0 for stationary point.
(iif) Extremum is a point which is either a maximum or minimum.

(iv) Extrema occur only at stationary points. However, stationary points need not be
extrema.

D. Match the Following:

1. (i) Max™ (@) rt—s>=0 (U.P.T.U., 2008)
(71) Min™ (b)y rt-s*<0
(iii) Saddle point (c)rt-s2>0,r>0
(iv) Failure case drt-s>>0,r<0
2. (i) & or dx (a4) Local maximum
() & or ax (b) Absolute error
X X
(i) 100 x £ (c) Relative error
X

(iv) f(x, y) < fa, b) (d) Percentage error
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ANSWERS TO OBJECTIVE TYPE QUESTIONS

A. Pick the correct answer:

1. (i) 2. (iv) 3. (iv)
4. (ii) 5. (iii) 6. (v)
7. (ifi) 8. (ifi) 9. (iv)
10. (i) 11. (i) 12. (i)
B. Fill in the blanks:
9w,0) g_a(r,s) 2. r 3. x
o(r,s) o(x,y)
4. 1
C. True or False:
1.0 T @ T @) T (iv) F
2.0) T @) F (iii) F (o) T
3.0) T @ T @) T (o) T

D. Match the following:
1.(0) - (@) @) - () (i) - (b) () - (a)
2. () - (b) (i) ~ (c) (iii) ~ (d) () ~ (a)
ada
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Matrices

KXl INTRODUCTION

The term matrix was apparently coined by sylvester about 1850, but introduced first by Cayley
in 1860. In this unit, we focus on matrix theory itself which theory will enable us to obtain
additional important results regarding the solution of systems of linear algebraic equations.

One way to view matrix theory is to think in terms of a parallel with function theory. In
mathematics, we first study numbers—the points on a real number axis. Then we study functions,
which are mappings or transformations, from one real axis to another. For example, f (x) = x?
maps the point x = 2, say on x-axis to the point f = 4 on f or y-axis. Just as functions act upon
numbers, we shall see that matrices act upon vectors and are mappings from one vector space to

another.

KN DEFINITION OF MATRIX

A matrix is a collection of numbers arranged in the form of a rectangular array. These numbers
known as elements or entries are enclosed in brackets [ ] or () or | |.

Therefore a matrix A may be expressed as

a1 ap 1n

an app o Ay .
A= |7 } . . ..(i)

Am1 A2 Ann

The horizontal lines are called rows and vertical lines are called columns. The order of
matrix A is m x n and is said to be a rectangular matrix.

3.1.1 Notation

Elements of matrix are located by the double subscript ij where i denotes the row and j the
column. In view of subscript notation in (1), one also writes

A= [aij], where i=1,2, ..,mand j=1,2, .. n

151
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KV TYPES OF MATRICES

There are following types of matrices:

(a) Rectangular matrix: A matrix in which the number of rows and columns are not equal,

1 2 5
ie, (m # n) is called a rectangular matrix, eg., [3 9 J .
2x3

(b) Square matrix: A matrix in which the number of rows and columns are equal, i.e.,

5 2 1
(m = n) is called a square matrix, eg., |3 1 0
0 1 2 3x3

(c) Row matrix: A matrix which has only single row and any number of columns is called
a row matrix, eg., [1 2 0 5], ,

(d) Column matrix: A matrix which has only single column and any number of rows,

ie., (m x 1) order is called column matrix, e.g.,

a o N =

4x1

(e) Null matrix or zero matrix: Any m x n matrix is called a null matrix if each of its

elements is zero and is denoted by O, . , or simply by O simply, e.g., [8 8 8}

(f) Diagonal matrix: A square matrix A = [a;] is called diagonal matrix, if all the elements
except principal diagonal are zero. Thus, for diagonal matrix a; #0, i=jand a; =0, i%j, eg.,

1 0 O
0 2 0
0 0 5

(g) Scalar matrix: Any diagonal matrix in which all its diagonal elements are equal to a
scalar, say (K) is called a scalar matrix

5 0 0
Thus, 0 5 0
0 0 5
ie., A = [aij]n « n is a scalar matrix if
o {0 wheni # j
J K wheni =j

(h) Identity matrix (or unit matrix): Any diagonal matrix is called an identity matrix,
if each of its diagonal elements is unity. Thus a matrix A = {a}, , , is called identity matrix iff

0, i#j
a; = { , / .. An identity matrix of order n is denoted by I or I, .
L, = "
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1 0 0 0
Thus, I, =10 1 0 0
0 0 0 1

(i) Symmetric matrix: A square matrix A = [aij]n « n 18 said to be symmetric matrix if its
(i, pth element is equal to (j, i)th element. Thus matrix A is said to be symmetric matrix if

aij = aji 0ij.

1 3 —4
e. g , _3 2 _5
-4 5 3

(j) Skew symmetric matrix: A sqaure matrix A = [aij] is said to be skew symmetric if

aij =- aji 0i,j.

But for diagonal elements a; = — a; 0 2a; =0 0O a; = 0. This proves that every leading
diagonal element of a skew symmetric matrix is zero.
0 2 5
Thus, -2 0 3|is a skew symmetric matrix.
5 3 0

(k) Triangular matrix: If every element above or below the leading diagonal of a square
matrix is zero, the matrix is called a triangular matrix. It has the following two forms:

(i) Upper triangular matrix: A square matrix in which all the elements below the leading
diagonal are zero i.e., a; =0; i> jis called an upper triangular matrix.

2 3 1
e.g., 0 5 2
0 0 4

(ii) Lower triangular matrix: A square matrix in which all the elements above the leading
diagonal are zero i.c., a; = 0; i < jis called a lower triangular matrix.

5 0 0
e.g., 3 2 0
6 3 1

() Transpose of a matrix: The matrix is obtained by interchange the rows and columns of
a given matrix A, is called the transpose of A and is denoted by A’ or AT eg.,

2 1 5

3.5 6 3 2 1

If A= |1 2 3 0|, then A' = 5 3 o
1 2 1 6 0 1

(m) Conjugate of a matrix: The matrix obtained by replacing each element by its conjugate
complex number of a given matrix A, is called the conjugate of A and is denoted by A.

) 1+2i —4i _ 1-2i 4i
Thus, if A = 3 e then A = 6 149
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(n) Tranjugate or conjugate transpose of a matrix: The conjugate of a transposed matrix
A or transpose of a conjugate matrix A is called a tranjugate matrix of A and is denoted by A"
2+ 3i —5i . 2-3i 6
=6 1-aif TAE| 5 14y

(0) Hermitian matrix: A square matrix A = [a;] is said to be “Hermitian matrix” if its
conjugate transpose matrix A* is equal to itself ie., A* = A.

Thus, if

Thus A = [a;] is hermitian matrix if a; = aji Oiand J- Hence for diagonal elements, a;; = aii
ie., every leading diagonal element in a hermitian matrix is wholly real.

1 3+i i
e.g. 3-i 2 5
= -5i 0

(p) Skew hermitian matrix: Any square matrix A = [aij] is said to be a skew hermitian
matrix if A*=- A

Thus A is skew hermitian if a; = -a i i g
For diagonal elements a, = —g; Oa.+ g5 =0
If a; = x+ 1y
and i = X— 1y
then a;+a; = x+iy+x —iy=2x
or x=0

Hence all the diagonal elements of a skew hermitian matrix are either zero or pure imaginary.
i 3+i 4+5i
eg., | -3+i 0 2i
-4+5  2i 0
(q) Nilpotent matrix: A square matrix A is said to be nilpotent of index p if p is the least
positive integer such that A? = 0. Thus, a square matrix A is said to be nilpotent of index 2, if

0 0
A2 = 0 eg., L 0} is a nilpotent matrix
) 0 0]|0 O 0 0
As AW =1 o] |t o0 0]=0

(r) Idempotent matrix: A square matrix A is said to be periodic of period p if p is the least
positive integer such that AP*1 = A. If p = 1 so that A% = A, then A is called idempotent. Thus a
square matrix A is said to be “idempotent” (or of period 1)

if A% = A

e.g.

S
Il
—
S =
)
[I—



MATRICES 155

(s) Involutory matrix: A square matrix A is said to be involutory if A% = I, I being the
identity matrix.

1021010 1 0
e.g. A:01,A=0101=01:I

(t) Orthogonal matrix: A square matrix A is said to be an orthogonal matrix, if
AA=AA =1
(u) Unitary matrix: A square matrix A is said to be unitary matrix if AA* = A*A = L
(U.P.T.U., 2001, 2005)

KN OPERATIONS ON MATRICES

3.3.1 Scalar Multiple of a Matrix

Consider a matrix A = [a;],, , .- Let k be any scalar belonging to a field over which A is defined.
The scalar multiple of k and A, denoted by kA, is defined as
kA = [kaij]m X 1
i.e., each element of A is multiplied by k.
If k = -1, then (-1) A = [—aij]
(-1) A is denoted by —A and is called the negative of matrix A.
-A is also called “additive inverse of A”.

: L 2 13 203 3 6
Thus, if A= 4 'then?’A:{_m 4[3} |3 12

3.3.2 Addition of Matrices

Any two matrices can be added if they are of the same order.
If A = [aij]mx W B = [bij]mx n then A + B = [”ij + bij]mx "

2 5 5 4 7 1
3 1|~ B = ) ol then A + B = 5 1
3.3.3 Subtraction of Matrices

Any two matrices can be subtracted if they are of the same order.
If A = [aij]mx W B = [bl]]m % then A - B = [‘lij_ bl]]

e.g. Let A

mxn

3.3.4 Properties of Addition of Matrices

() Commulative law

A+B =B+ A
(ii) Associative law

A+B)+C =A+ B+ 0

(i17) Each matrix has an additive inverse
(iv) Cancellation law

A+B=A+C0O B=C
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3.3.5 Multiplication of Matrices
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The product AB of two matrices A and B is only possible if the number of columns of A = number
of rows of B. In the product AB, A is called the ‘prefactor’ and B is called the ‘post factor’.

an

e.g., Let A = 4y
AB _‘111

- lan

aip
ax

aip
ax»

a3

A3 |

a3
a3

3.3.6 Properties of Multiplication of Matrices

(i) Associative law: (AB) C = A (BC)
(i) Distributive law: A(B + C) = AB + AC.

ayybyy +agpbyy +ag3by

| 421011 +anbyy +ay305

bll b12
b21 b22
b31 b32
b12
b22
bs

ayybyy +ayybyy +aq3bs

A1b1y +ayybyy +ay3b3,

KRN TRACE OF MATRIX

If A =[]

l] Vl'>< n
of the matrix, hence

trace of A = Za--

1
e.g., A=10

be a square matrix, then the sum of its diagonal elements is defined as the trace

3|, thetraceof A=1+2+(-2)=1.

KRN PROPERTIES OF TRANSPOSE

(@) (A)y = A

(i) (KA) = KA', K being scalar
(i) (A+ B = A+ B

(iv) (AB) = B'A'.

K1l PROPERTIES OF CONJUGATE MATRICES

5
Il
x|

+B,

’TE
= o
o
SIS
o

A, K being a scalar,
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Example 1. Show that every square matrix can be uniquely expresses as the sum of a
symmetric and a skew symmetric matrix.

Sol. Let A be any square matrix

A+ A)+ A-A"

1
2

A+ A Q= (A-A"), we get

+
@)
N |-

1

[(A+AY] = 5 [A"f(A')'}
A+ A)= P

[(A

>
|

1wy
= 5 - @

-Q

N NN 'UN\H N |-

5 (A= 4=

P,Q"=-Q

Hence P is symmetric and Q is skew symmetric.

This shows that a square matrix A is expressible as a sum of a symmetric and skew symmetric

Evidently A

Taking P

Now P’
and Q

O P’
matrix.

Deduction: To prove that this representation is unique, let if possible A = R + S be another
representation of A, where R is symmetric and S is skew symmetric,

O R
Now A
O A
O A’
O A+ A
Also A-A
Thus R

R,S'=-5

R+ S
(R+S80A=R+¢S
R-S|AsR =R, S =-§

R+S+R-S=2RorR== (A+A)=P

N NI

R+S-(R-S5=25o0r S=
P,S=Q

(A-A)=Q

This proves that the representation is unique.

Example 2. Every square matrix can be uniquely expressed as P + iQ, where P and Q are

hermitian.

Sol. Let A be square matrix. Evidently

A

Taking

%(A+A*)+%(A—A[b

1 o AL oa s

2(A+A)+z{2i(A A)}

1 o+ l *

E(A+A)'Q: o (A - A¥), we get

P+ iQ (D)
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so that P*
Q*
Thus p*
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%

o] -
r
i

] (3] - =

P, Q*=Q 0O P and Q are hermitian.

(A*+ ATy = = (A*+ A)= P,

N | =

(A= 4)=Q

In this event (i) proves that A is expressible as P + iQQ where P and Q are hermitian.

Deduction: To prove that this representation is unique, let if possible. A = R + iS be another
representation where R and S are hermitian so that R* = R, §* = §

A*
A+ A*

or R

O S
Finally, R

(R + iS)* = R* + iS*= R + (-)S = R - iS
(R + iS) + (R - iS) = 2R

1
5 A+ An=P

(R + iS) - (R - iS) = 2iS
o (A+A49=0
PS=0.

Hence the representation is unique.

Example 3. If A is unitary matrix, show that A’ is also unitary.

2
2
1

Sol. AA*

(AA*)*

0 (A% A*

AA*

(AA®)

(A% A

O (A)* - A
Hence, A’ is a unitary matrix.

1 2

Example 4. If A= |2 1

2 2

Sol. Here A2

and 4A

A*A =1
(A*Ay=TI*=1(I*= ]
A* (AN =1
A*A=1
(A*A) = (1)
A" (A%
A (A =
Proved.

|As (A%)*=A

1
1
show that A? — 4A — 5] = 0.

[1+4+4 2+2+4 2+4+2 8 8

9
2+2+4 4+1+4 4+2+2| = |8 9
|2+4+2 4+2+2 4+4+] 8

1 2 2
42 1 2
2 2 1

4 8 8
=8 4 8
8 8 4
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(9 8 8 4 8 8 5 0 0
a A2 _4A-5] = |8 9 8| -|8 4 8| |0 5 0
8 8 9 8 8 4 0 0 5
[9-9 8-8 8-8 0 0 0
= |8-8 9-9 8-8| =|0 0 O| =0. Proved.
18-8 8-8 9-9 0 0 0
Example5.1f A= | that ak = |1 P2 = e itive int
Xample 5. = rove tha = P emg an Osl1tive Imteger.
P 1 | P K 1-9K gany p 8
3 4
Sol. Let A = 1 -1 and K be any positive integer
X [1+2K -4K
To prove AN = , we see that
| K 1-2K
) (3 —4] 1+20 40
A=A =1, 41 = 1 1-2n

This proves that result is true for K = 1

) (3 4] [3 -4
Now Ac = _1 _1_ 1 -1l =
[1+22 42
= 2 1-22

This proves that the result is true for K = 2.
Let us suppose that the result is true for K = n, so that

|-[ 3

Now,

AVl

A+l An A

[1+2n - 4n

| n 1-2n|"
[1+2n -4n[3 -4
| n 1-2n||1 -1
[3+6n—4n
3n+1-2n

—4(n+1)
1-2(n+1)

-4 -8n +4n 1+2(n+1)
—4n-1+2n| ~ n+1

This proves that the result is true for K= n + 1, if it is true for K = n.

Also, we have shown that the result is true for K = 1, 2. Hence by mathematical induction

the required result follows.

Example 6. Find the nature of the following matrices
A+ A%, AA* and A - A*

(U.PT.U., 2001)

A*= A
(AAx)*
(A - A

Sol.

and

—

Hermitian matrix, (A + A** = A* + A = Hermitian
(A*)*A* = A-A* O Hermitian matrix.
A* — (A¥)* = A*— A = - (A - A¥) O skew symmetric matrix.
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. a+ly —B+id| . . .
Example 7. Show that the matrix A = . .| is a unitary matrix if
B+id o—iy
o2+ B+ P+ &P =1. (U.PT.U., 2005)
a+iy —B+id a—iy PB-id
Sol.A:{B_'_.a . }DA: { . .
0 a-—iy —B-id a+iy
But for unitary matrix AA* =1
a+iy —B+id||a—-iy P-id 10
. B+id a—iy ||-B—id a+iy| = [0 1
a+y? +p2 +8° af —iad +iBy + yd- ap—i By+i ad- &
af —iPy +i0d+ yd— af—iad+iPy- By B2 +5% +a% +y?

o3

a +p2 +y? +d 0 10
|:| 0 az +BZ +y2 +62 = 0 1

0 a 2+ B+ y+ & =1 Proved.
1 1 1+1
Example 8. Prove that the matrix ﬁ 1—i —1 | is unitary. (U.PT.U., 2001)
Sol. Let A 11 e
o e T B-i -1
" 1171 1+7]
C o J3|1-i 1]
A 1 [ 1 1+i] 1] 1 1+1
A = — X —
J3|1-i 1] J3|1-i -1

1[ 1+ A+)-(+)]_1[3 0] _[1 0]_,
:3{(1-1')-(1-1') (1+1)+1 }‘3{0 3}{0 1}‘

Therefore, A is a unitary matrix.
0 1+2i
-1+2i 0

(I- N) (I + N)! is a unitary matrix where I is an identity matrix. (U.PT.U., 2000)
Sol. A square matrix A is said to be unitary if A*A = I.

1 0 0 1+2] [ 1 -1-2
Now I-N =g 1|7 |aa+2i o |Tl1-20 1

Example 9. Define a unitary matrix. If N = { } is a matrix, then show that
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and I+ N =
[T+ NI =
Let A =
O Ay
Ay =
O B =
O Adj A =
and I+ N1 =
Now I-N)(I+ N1 =
O C* =
O C*C =

Example 10. Show that A =

-1

Sol. Here A2 =

Here A is nilpotent of index 2.

_{0

1 0 0 1+2f 1 1424
+ =
0 1] |a+2 0 142 1
1-(-1-4)=6
1 1+2i
1420 1
=L Ap=-(-1+2)=1-2i
(12 =-1-2i, Ay =1
1 1-2i) [ 1 12
-2 1 [P T 1o 1

1

-1-2i
1-2i 1

|

-1-2i
1

A@(L+N):BE:{

|

-1-2i
1

1
1-2i

|

2-4i
-4

-1-2
1

Adi(I+N) _1
[T+ NI 6

1
1-2i

|

1
6
} = C (say)

|

2+4i
-4

-4
—2+4i

|

2+4i
-4

-4
—2+4i

|

2
2
2

-4
2-4i

2-4i
-4

1
36

|

Hence Proved.

}z

1 —

I.

1
1

3
3
-3

is nilpotent of index 2.

(1
1
-1

2
2
-2

3
3
3

1
-1

2
-2

3
3

[ 1+2-3
1+2-3
|-1-2+3

2+4-6
2+4-6
—2-4+6

3+6-9| |0
3+6-9|=|0

0
0
-3-6+9| |0 O
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and

Example 11. If A =

Sol.

Example 12. If ¢ is defined as [ + A +

e
Sol. A?
Similarly, A3
0 e

[xyz] B

ABC

AB

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

a h g
h b fL,C=|Y| then find out ABC.
§ f ¢
a h g
[xyz]{h b fl= [ax + hy + gz hx + by + fz gx + fy + cz]
§ f ¢
x
AB)C=lax +hy + gz hx +by + fz gx +fy +cz] | Y
z

[(ax + hy + gz)x + (hx + by + f2)y + z(gx + fy + cz)]
[ax? + by? + cz% + 2fy + 2zx + 2hxy].

2 3
— +..., show that
EME "
cos hx sin hx X x
x| , where A = .
sin hx cos hx X X
xooxlfx x| |2w? 2x2_2x211
x oxllx x| |22 22| 1 1
1 1
22B | swyB=l.
22x3 B, A* = 23x* B, ... etc
2 43
4+
1+ A+ |_2 |_3 .....
2sz 22x°B
I+ xB + |_ |_ F o |As A = xB
3
1 21+(2x)B+(Ti) B+(|2i) B+.... ]
B 3 3
9 +0x +(Zx) (2x) . 0 +2x +(2x) (Zx) .
1 | 3 | 3
5 3 3
2 042y +(2x) (2x) . 5 40y +(Zx) (Zx) N
12 38 12 3
— 1 X X 1 X X
Lle™+1 ™1 . 5(6 +e™) 5(6 —e”)
21e® -1 ¥ +1 1 X _ - Lixy
_ He-e) Leree)
Jcoshx  sin hx
e’ . . Hence Proved.
_smhx cos hx
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KA SINGULAR AND NON-SINGULAR MATRICES

A square matrix A is said to be singular, if |Al = 0.1If |Al#0, then A is called a non-singular
matrix or a regular matrix. (U.PT.U., 2008)

KRB ADJOINT OF A SQUARE MATRIX

Adjoint of A is obtained by first replacing each element of A by its cofactor in Al and then
taking transpose of the new matrix or by first taking transpose of A and then replacing each
element by its cofactor in the determinant of A.

41 A a3 a1 dip Ag3
Let A = |8y Gy Ay | then |A|= Ay Ay g
1431 43 Aa33 a3z Az Adz3

The cofactors of A in | Al are as follows:

A = Ay dps A = Ay dps AL = ay dp
1 — 12 — 7443 =
Az Az Az dszs az  dzp
A = _ Ay O3 A = 4y A3 A = ap Adp
21 = s Ay = s A3 =—
Az Az Az dszs az  dzp
A = O3 Ao = ;. A3 Ao = ap Adp
31 = s Azp =— s A3z =
Ay Ay 21 A3 ayp  dp
Ay Ay Ag Ay Ay Ay
| Az Ap A Az Ay Ag

3.8.1 Properties of Adjoint
If A= [aij] is a square matrix of order n then

(i) adj A" = (adj A)' (i) adj A* = (adj A)* (iii) adjoint of a symmetric (Hermitian) matrix is
symmetric (Hermitian).

KRN INVERSE OF A MATRIX (RECIPROCAL)

Consider only square matrices.
Inverse of a n-square matrix A is denoted by A™! and is defined as follows:
AATl = ATTA =1
adj A
4]

where I is 1 x n unit matrix or Al =

3.9.1 Properties of Inverse
(i) Inverse of A exists only if |Al #0 i.e., A is non-singular.

(if) The inverse of a matrix is unique. If B and C are two inverses of the same matrix A
then (CA) B= C (AB), IB = Cl i.e.,, B = C, so inverse is unique.



164 A TEXTBOOK OF ENGINEERING MATHEMATICS—I

(i) Inverse of a product is the product of inverses in the reverse order i.., (AB)™ = B!
A7l since (AB) (B A1) = A (BB Al = AIA1 = AA =L
(iv) For a diagonal matrix D with d; as diagonal elements, D! is a diagonal matrix with
1

reciprocal 7 as the diagonal elements.
122

(v) Transportation and inverse are commutative i.e.,
(AHT = (A7), taking transpose of AA™ = A1A =1
(AT AT = AT AN = [T = [ je,
(AT is the inverse of AT or (A )T = (AT)L.
(vi) (A=A
Taking inverse of (AA™) = I,
(AA)T = (A A1 = [1= [= AAL. Thus, A = (AL

Example 13. Find the inverse of matrix A, where

-1 1 2
A=|3 -1 1|
-1 3 4
Sol. Here we find A Aqpeeenen. cofactors of A as follow:
A =‘_1 1‘:-714 3 Y L min=-134 I
11 3 4 7 2 1 4 rM3T 1 3
1 2 - -1 1
Azl—-‘3 ‘:—(4—6):2,/122:‘_1 4‘:—4+2:—2,A23:— 1 3 =2
1 -1 2 11
Ap=|, 1| =1+2=8Ap=—|  [|=-(C1-0=7Ay= , |=1-3=22
(-7 -13 10 7 2 3
Let B=| 2 -2 2|0adji& B)= |-13 -2 7||A|=10
| 3 7 =2 10 2 -2
_ -7 2 3] [0 o2 03
oat=2A_1 40 5 slolus - om)|.
|A] 10

10 2 2 1 oz -0z

Example 14. If A and B are n-rowed orthogonal (unitary) matrices, then AB and BA are also
orthogonal (unitary).

Sol. (i) Let A and B be n-rowed orthogonal matrices
then A'A = AA =1and BB=BB' =1

To prove AB and BA are orthogonal we have
(AB) (AB) = (BA") (AB)=B' (AAA)B=BIB=BB =1
(BA) (BA) = (A'B") (BA)=A" (BB)A=AIA=AA=1

Thus (AB) (AB) = I and (BA) (BA)=1

This 0 AB and BA are orthogonal.

(ii) Let A and B be unitary, then A*A = AA* =1 and B*B = BB* = I

To prove AB and BA are unitary complete the proof yourself.
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EXERCISE 3.1

1. Find the values of p, q, 1, s, t and u if
1 2 -3 2 P q
A= 3 4 o B=| 1
5 6 4 3 tu
[

1

o N = o o

1

U=t 2 °| find3a-4p Ans. |2 1%
I 5/77l0 a1 3] AT o1 3

4. ¥ A= |2 3 1|, show that 6A% + 25A — 42] = 0.

1 3 2] [T 410 [2 1 a1 2
5. ¥A=[2 1 -3/B={2 1 1 1/C=3 2 -1 -
4 3 4] |1 212 [2 5 41 0

Show that (i) AB = AC, (ii) (B + C) A = BA + CA.

a
0 —tanE
6. If A= a prove that
tanE 0

cosd  —sin 0(}

I+A:(I—A){

sin o cosa

7. Find the product of the matrices

2 -1 0
2 1 2 1 0 4 1 1 3
= = Ans.
A L 11 1}’ P25 1 0 { L 3H
1 3 2

8. If A =

{cosor sin o
a

. }, then show that
—sina  cosd

na’

(Ag)" = {

where 7 is any positive integer. Also prove that A; and Ag commute and that A, Ag
= Ay, p- Also prove that Ay A = L.

cos na sin 1o
—sinnd  cos na
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10.

11.

12.

13.

14.

15.

16.

17.

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

CIfFA= {0 1}, and B = [%}, find BA and AB if they exist.

2
|:Ans. AB = {5}; BA does not exist}

3 4
IfA 11B—212f'dAB'
= /B=, , 4| fin (AB)".
2 0
10 3 4
Hence verify that (AB)' = B'A". Ans. (AB) =11 3 2
22 6 4
2 2 4
Show that the matrix A= |-1 3 4| is idempotent.
1 2 3
. (1 2 2
Show that the matrix A= —|2 1 -2] is orthogonal.
2 2 1
P s i 1[1+i i-1] .
rove that the matrix A = E_1+i 1-il unitary.
243 1-i 2+i
Express 3 4-5i 5 as sum of hermitian and skew hermitian matrices.
1 1+i 2+2i
. -4 4-i 4 . 6i 2-i 2i
Ans.E 4+i 8 10 +E 2-i  -10i O
St 2 4 ~1+i 2i 4i
1 2 3
Show that | 1 2 3| is nilpotent.
-1 2 3

Express given matrix A as sum of a symmetric and skew symmetric matrices.

6 6 7 0o 2
Ans.|6 2 5(+|2 0 =2
7 5 1 2 2 0

|
N

6 8 5
A=14 2 3
1 7 1

0 O
-1 0 O
2 1 0
3 3 -1

Show that A = is involutory.

N oy
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18. Find the inverse of the matrix A.

cosa  sina |’ 5 cos O —sin a
19. Prove th . = sec 20 . |
/ DUE UL sina cosd —sina  cosd

20. If wis one the imaginary cube roots of unity and if

1 1 1 . 1 1 1
A=1|1 ®° w |, then show that A~ =§ 1 w |
1 o o 1 o o

KNI EL EMENTARY ROW AND COLUMN TRANSFORMATIONS

The following transformations on a given matrix are defined as elementary transformations:
(i) Inter-change of any two rows (columns).
(if) Multiplication of any row (column) by any non-zero scalar k.

(iif) Addition to one row (column) of another row (column) multiplied by any non-zero
scalar.

We will use the following notations to represent the elementary row (column)
operations:

(@) R i (C ) or R; & R (C; - C) is used for the inter-change of ith and jth rows (columns).

(b) R (K) [C; (K)] or R - KR; (C - KC;) will denote the multiplication of the elements of
the ith row (column) by a non—zero scalar K.

(o) R ( ) [C;; i (K)] or R; - R;+ KR; (C; - C; + KC)) is used for addition to the elements of
ith row (column) the elements of ]th row (column) mult1pl1ed by the constant K.
3.10.1 Elementary Matrices
The square matrices obtained from an identity or unit matrix by any single elementary
transformation (i), (if) or (iii) are called “elementary matrices”.
3.10.2 Properties of Elementary Transformations

(i) Every elementary row (column) transformation on a matrix can be effected by pre-post
multiplication by the corresponding elementary matrix of an appropriate order.

(if) The inverse of an elementary matrix is an elementary matrix.

3.10.3 Equivalent Matrices

Two matrices A and B are said to be equivalent, denoted by A ~ B, if one matrix say A can be
obtained from B by the application of elementary transformations.

3.10.4 Properties of Equivalent Matrices

(i) If A and B are equivalent matrices, then there exist non-singular matrices R and C such
that B = RAC.



168 A TEXTBOOK OF ENGINEERING MATHEMATICS—I
(if) Every non-singular square matrix can be expressed as the product of elementary
matrices.

(i) If there exist a finite system of elementary matrices R;, R,,...., R, such that (R.. R,
R)) A =Iand A is non-singular, than A™ = (R, .. R, R)) L.

METHOD OF FINDING INVERSE OF A NON-SINGULAR MATRIX
BY ELEMENTARY TRANSFORMATIONS

The property III gives a method of finding the inverse of a non-singular matrix A.

In this method, we write A = IA. Apply row transformations successively till A of L.H.S.
becomes identity matrix I. Therefore, A reduces to I, I reduces to ALl

01 2 2
11 2 3
Example 1. Find the inverse of A =
2 2 2 3
2 3 3 3
Sol. Let A= 1A
0 1 2 2] [1 0 0 O]
O 1 12 3_1010 OA
2 2 2 3 0 010
2 3 3 3 (0 0 0 1}
R, = R,
1 1 2 3] [0 1 0 0
01 2 2 1 0 0 OA
2 2237100 10
2 3 3 3 (0 0 0 1]

Applyirg R3 N R3 - 2Ry, Ry - R, - 2R;, we get

1 1 2 3 01 00
01 2 2 1 0 O OA
00 =2 3 [0 210
01 14 3 [0 =201
Applying R, —» R, + R;, we have
11 2 3 0 1 0 0
01 0 - 1 =2 1 0
00 2 3 |o =2 1 oA
01 -1 3 0 =2 0 1
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Applying R; - R; - R,, R, - R, - R,, we have

1.0 2 4 -1 3 1 0
01 0 4 1 2 10
0 0 2 3|70 2 10
o0 -1 2 -1 0 -1 1

Applying R, - R, + R3, R, - 2R, - R3, we get
10 0 1] [-1 1 0 O]
010 -1 |1 =2 1 0 A
00 -2 -3 |0 =2 1 0
00 0 -1} |2 2 3 2
Applying R, - Ry + R, R, - R, - R, Ry - Ry - 3R,
10 0 0] [3 3 3 2
01 0 O 3 4 4 =2 4
00 -2 0| |6 8 10 -6
10 0 0 -1] 2 2 3 2
. 1 .
Applying R, - — E R;, R, - (- 1) R,, we obtain
1 000 3 3 3 2
0100 3 4 4 =2
0010 |3 4 5 3"
0001 2 2 3 2
3 3 3 2
- 41 3 4 4 2
ence =13 4 5 3
2 2 3 2
Example 2. Find by the elementary row transformation inverse of the matrix.
012
123 (U.PT.U., 2000, 2003)
311
0 1 ol
Sol. Let A=11 2 3
3 1 1
Now A=1IA
01 2] [1 0 0
O 1 2 3|]=|0 1 0|A
3 1 1] |0 0 1]
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Applying R; « R,, we get

R, - 3R,

N |-

Therefore,

Example 3. Find the inverse of the foll

Sol. Let

1

2

1

W o

_ =N
N W

0 -]

Al=

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

[0 0

1 0 0/A

0 0 1

0 1 0

1 0 0]|A

0 3 1

2 1 0

1 0 0|A
15 3 1

get

(12 -1/2 1/2]
-4 3 -1|A
| 5 -3 1|
(12 -12 1/2
-4 3 -1|A
152 -3/2 1/2]
(12 -12  1/2]
-4 3 -1
152 -3/2 1/2]
3 3 4

2 -3 4.

0 -1 1

IA

(1 0 0

0 1 0]|A

0 0 1

(1 -1 0

0 1 O0lA

0 0 1

owing matrix employing elementary transformations:

[U.P.T.U. (C.0.), 2002]
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R, - R, - 2R,
1 0 o] [1
0 3 4|=1|=2
0 -1 1] |0
Ry - 3Ry - R,
(1 0o o] [1
0 0 -1 |2
R, — R, + 4R,
1 0o o] [1
0 3 0|=]6
0o 0 -1 |2
R, - - 3 R,, Ry - (= 1) R,;, we obtain
1 0 0] [1
01 0|=|=2
0 0 1 |2
[ 1
Hence Al=|-2
| -2
Example 4. Find the inverse of the matrix
-1 3 3 -1
1 1 -1 0
A=19o 5 2 3
-1 1 0 1
Sol. Let A=1A
-1 3 3 -] [1 0
0 1 1 -1 0 0 1
2 5 2 3| |00
-1 1 0 1 10 0
Applying R, — R, + R, Ry - Ry + 2R, R
-1 3 3 -] [1
o 2 2 -1 1
0 -11 8 -5| |2
0 4 3 2] -1

S O = O

S = O O

171
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R, - - % R,
PN [ O G
_l 2 2 A
0o -11 8 -5 2 0 1 0
0 4 3 2| |4 0 0 1
Ry - Ry + 11Ry, R, — R, - 4R,
-1 3 3 -] 11 0 0 0
0 1 -1 12| |12 -2 0 0
0 0 B3 V2| |-72 -11/2 1 0 A
100 1 0 1 2 0 1
Ry « R,
1 3 3 4] [T 0 00
0 1 4 12| |-Y2 -y2 0 0
o 0o 1 oY 2 0 14
7 11
o o 3 12 |7 —— b O
R, - 2R,
-1 -3 3 -1] [ 1 0 0 0
0 1 -1 1/2| |[-12 -12 0 0
0 0 1 0| |1 2 0 1
0 0 -6 1 |7 11 2 0
Applying R, —» R, + 6R;, we get
-1 3 3 -7 [1 0 0 0
0 1 1 2] -2 -2 0 ol
0 0 1 0 1 2 0 1
0 0 o0 1] |4 1 2 6
R, - R, + R,
1 33 17 [1 0 0 0
0 1 0 1/2/ |12 2 0 1|
0 0 1 0 1 2 0 1
0 0 0 1] [-1 1 2 6
RZ - RZ_ % R4
1 3 3 4] [1 0 0 0
0 1 0 0 1 1 1 =2
0o 0 1 ol |1 2 0 1/°
0 0 0 1] |4 1 2 6
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Applying R; — Ry + 3R,, we get

<1 0 3 -] 4 3 3 -6
0 1 0 O 1 1 -1 =2
001 0/=|1 2 0 1|4
10 00 1] |[-1 1 2 6
Applying R; - R; — 3R;, we obtain
(<1 0 0 1] [1 3 3 9]
0 1 0 O 1 1 -1 =2
0 01 0" |1 2 0 1 A
10 00 1] |-1 1 2 6]
Applying R; - R, + R,
-1 0 0 0] [O =2 <1 -3
0 1 0 O 1 -1 =2
0 0 1 0" 2 o0 1|4
0 00 1] [-1 1 2 6
In the last, we apply R; - (-1) R,
10 0 0] [O 2 1 3
01 0 O 1 1 -1 =2
001071 20 14
0 00 1 |[-1 1 2 6
([0 2 1 3
Therefore Al = ez
2 0 1
11 2 6

1 21
A= 13 2 3|
112
Sol. Since A=1A
1 2 1] [1 0 0
3 2 3/=(0 1 0lA
1 1 2 [0 01

Applying R, — R, - 3R, Ry — Ry — R, we get

1 2 1] [1 0 0
0 4 0|=[83 1 0]|A
0 -1 1 -1 0 1

173
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Applying R, — —iRZ , we get

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

1 2 1] [1 0 0
0 1 0/=[34 -14 0|A
0 -1 1| |-1 0 1
Applying R; » Ry + R,, R; - R; - 2R,, we have
1 o 1] [-y2 12 o0
0 1 0/=|34 -1/4 0]|A
0 0 1 [-1/4 -14 1
Now applying R; - R; - R;, we get
1 0o o] [-14 34 -1
0 1 0/=|34 -14 0]A
0 0 1| |-1/4 -1/4 1
-14 34 -1
Hence Al=134 -14 0|
-1y/4 -4 1

EXERCISE 3.2

1. Find the inverse of the following matrices:

1 -1 0 2 20— -17]
0 1 1 -1 A | 2 1
201 2 1| 2 3 1 o
3 2 1 6 3 -1 0 1)
T A
N Ans. |20 50 30
3 3 8 9 3 20|
14 2 12 4 6
3. 11 3 -3l Ans. — (-5 -1 -3
2 4 4 = = =
2408 ;203 2192 _2664/55 _;825
3 6 Ans. - / /
4|, - 1 2 65 2/5
5w 2 2 35 /5 |
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(1 2 =1
5. -1 1 21|
12 -1 1
(4 1 1
6. 12 0 -1
11 -1 3
i -1 2]
7.2 0 2
-1 0 1)
[1 2 3 1]
13 32
8. 12 4 3 3
11 1 1]
2 6 -2 -3
5 -13 4 -7
%11 4 1 2
0 1 0 1
[0 1 3]
10. |1 2 3|
13 1 1)
2 1 2]
11. |2 2 1|
12 2]
(1 2 =2
12. |-1 3 0|
0 2 1

. 3
Ans. —| 5
14
-1
-1
Ans. |7
—2
0 1/4
Ans. |-1 (3/4)i
0 1/4
1 —2
P 1 —2
ns 0 1
-2 3
2 1
o 1 0
ns. 4
-1 0
1
Ans. — (-8
5
2
Ans. —|-3
3
3
Ans. |1
2

1 5
3 -1
5 3
2 1]
11 6
3 -
-1/2
(1/2)
1/2 |
1 07]
2 -3
1 1
2 3
0 17|
2
3 1
2 2]
1 17
6 -2
3 1)
2 -3
2 9
3 2
2 6]l
1 2
2 5

3.12

RANK OF A MATRIX

A positive number 1 is said to be the rank of matrix A if matrix A satisfies the following conditions.

(i) There exists at least one non-zero minor of order r.

(if) Every minor of order (r + 1) and higher, if any, vanishes.
The rank of matrix A is denoted by p(A) or r (A).

The rank of a matrix or a linear map is the dimension of the image of the matrix or the linear

map corresponding to the number of linearly independent rows or columns of the matrix or to

the number of non-zero singular values of the map.
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Result: (7) Rank of A and A’ is same.

(b) For a rectangular matrix A of order m x n, rank of A < min (m, n) i.e,, rank cannot be
exceed the smaller of m and n.

Minor of A matrix. The determinant corresponding to any r x r submatrix of m x n matrix.

A is called a minor of order r of the matrix A of order m x n.

2 3
1 2

3 5
2 3

2
1

are all minors of order 2 of A.

7 7

E le. If A 2300 h
xample. =11 9 3,ten

3.12.1 Normal Form

The normal form of matrix A of rank r is one of the forms

s g o

where [ is an identity matrix of order r. This form can be obtained by the application of both
elementary row and column operations on any given matrix A.

3.12.2 Procedure to Obtain Normal Form
Consider A =] A I

mxn mxm “tmoxn nxn

Apply elementary row operations on A and on the prefactor I, . and apply elementary
column operations on A and on the postfactor I, ., such that A on the L.H.S. reduces to normal
form. Then I, . reducesto P, and I, reducesto Q resulting in N = PAQ.

Here P and Q are non-singular matrices. Thus for any matrix of rank r, there exist non-
singular matrices P and Q such that
I. 0
PAQ =N = { 4 }

0 0

nxn

3.12.3 Echelon Form

A matrix A = [aij] is an echelon matrix or is said to be in echelon form, if the number of zeros
preceding the first non-zero entry (known as distinguished elements) of a row increases row by
row until only zero rows remain.

In row reduced echelon matrix, the distinguished elements are unity and are the only
non-zero entry in their respective columns.

“The number of non-zero rows in an Echelon form is the rank”.

Example 1. Find the rank of matrix

2 3 2 4
3 21 2
3 2 3 4f (U.PT.U., 2006)
2 4 0 5
2 3 =2

Sol. Let A =

(O8]

L

—
T = N
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R1 N R1 + R4, R2 - Rz_ R3, we get

o 7 2 9
0 4 2 2
A0 2 s
2 4 0 5]
Ry - Ry + Ry
[0 7 =2 9]
0 4 2 2
T |1 6 3
2 4 0 |
Ry « Ry
(1 6 3 9]
0o 4 2 2
o7 2 9
2 4 0 5]
R, - R, + 2R,
1 6 3 9
0 4 2 2
Y700 7 2 9
0 16 6 23
-4 2 2
Now, Al = |7 =2 -9 (Expanded w.r. to first column)
16 6 23
= —4 (46 -54) + 2 (161 — 144) 2 (42 + 32)
= 400 + 34 — 148 = 286
a Al £ 0
Thus there is a non-singular minor of order 4.
Hence p(A) = 4.
Example 2. Find the rank of matrix A by echelon form.
2 3 -1 -1
1 -1 2 4
A= 3 1 3 —of (U.PT.U., 2005)
6 3 0 -7

Sol. Applying R; - R, we get
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R, - Ry - 2R, Ry -~ Ry - 3R, R, — R, - 6R,

1 a4 2 4
05 3 7
A~1o 4 9 10
0 9 12 17

4 9
Applying Ry — Ry~ = Ry Ry — Ry~ = Ry we get

1 -1 =2 4]

0 5 3 7
1o 0 335 22/5
0 0 335 22/5

In the last, we apply R, - R, - R;, we get

1 -1 =2 4]

0 5 3 7
A=1o o 335 25
o 0o o0 0 |

Here the number of non-zero rows = 3
Therefore p(A) = 3

Example 3. Find the rank of following matrix:

3 4 5 6 7
4 5 6 7 8
A= |5 6 7 8 9|
10 11 12 13 14
15 16 17 18 16

Sol. Applying R; - R; - R, and then again R; - - R;
1 1 1 1 1]

5 6 7 8
A~1|5 6 7 8 9
10 11 12 13 14

15 16 17 18 16

R, — R, - 4R, Ry ~ Ry - 5R,, R, — R, - 10R,, Ry - R, — 15R,

1

1
o O O O -
_ = = =
N N N DN -
W W W W -
N
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Applying Ry — Ry— Ry, R, — R, — Ry, Ry — Rs— R,, we get

1 1 1 11
01 2 3 4
A~10 0 0 0 O
0 00 00O
0 0 0 0 0]
Here number of non-zero rows = 2
Therefore p(A) = 2.
Example 4. Reduce the matrix A to its normal form, where
01 3 -
1 0
A = 31 0 2 and hence find the rank of A.
1 1 2 0

Sol. Applying R; « R,, we have

10 1 1
) 0 1 3 -
131 0 2
11 2 0
Ry - Ry—3R, R, - R, - R,
M1 0 1 17
0 1 3 -
“lo 1 B3 4
01 3 -1
Ry » Ry— Ry, R, — R, R,
M1 0 1 17
0 1 3 -
“1lo0o 0 o0
0 0 0 0
Cy ~ C3—C,C, - Cy—C
M 0 0 0]
0 1 3 -
A ~
00 0 O
0 0 0 0




180

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

C; - G +3C, Cy » C4+ C,, we get
10

A ~

o O O O

0
0 1 0| [I, 0
00 0{0 0}
00 0
Hence p (A) = 2.

Example 5. Reduce the matrix A to its normal form, when

1 2 -1 4
2 4 3 4
A = .
1 2 3 4
-1 2 6 -7

Hence, find the rank of A.

1 2 4 4
2 4 3 4
Sol. A = 1 > 3 4
) 7
Applying R, ~ R, = 2R, Ry - Ry— R, R, - R, + R,
M1 2 1 4
00 5 -4
oo 4 o0
00 5 -3
Applying C, ~ C, = 2C,, C; » C3+ C, C, - C, — 4C,
1 0 0 0]
o0 s
00 4 0
00 5 3
Cy - C,
1 0 0 0]
050 -4
“lo 40 0
0 5 0 3
4
Ry~ Ry~ = Ry Ry = Ry~ R,
100 0
050 -4
1o 0 0 165
00 0 1

(U.PT.U., 2001, 2004)
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G = Gy
1 0 0 0]
0 5 0
"o 0 165 0
0o 0 1 0
R, -~ R, + 4R,
1 0 0 0]
05 0 0
"o 0 165 0
0o 0 1 0
. 16 1 5
Applying R, - R, - = R, then R, - s Ryand R, — = Ry
100 0
01 0 0/ [l 0
“loo 10 {0 o}
00 0 0
p(A) =3

Example 6. Find the non-singular matrices P and Q such that the normal form of A is PAQ
where

1 3 6 -1
A= |1 4 5 1 . Hence, find its rank.
1.5 4 3],
Sol. Here we consider
A3><4213x3'A3x4'I4x4 As Amxn:Imxm'Amxn'Inxn
1 3 6 -1 1 0 b o 00
145 1, =]o 1 ola 0 1 0 0
1 5 4 3 0 0 0 1 0
0 0 0 1
Applying R, - R, - R;, Ry - Ry - R (pre), we get
1 0 0 0
1 3 6 -1 1 0 0 1 0 0
01 -1 2(=1]-1 1 0|A 0 0 1 0
0 2 2 4 -1 0 1 0 0 0 1
Ry - Ry = 2R, (pre)
1 0 0 O
s 6 - L N R T
01 1 2(=1|-1 1 0|A 00 1 0
0 0 0 O 1 =21 00 0 1
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Applying C, - C, -3C;, C; - C3-6C;, C; - C, + C; (post), we get

1 3 -6 1
1 0 0 1 0 0 1 0 o0
1 4 2f=|-1 1 OXAO 0 1 0
00 0 0of [T 21 1y 5 o 4
Cy; - G5+ Gy, G - C4 = 2C, (post)

1 3 9 7
1 0 0 0 1 0 0 0 1 o
01 0 0/=|-11 OXAO 1 0
0000 L1 =1 15 o o 1

Therefore, I, = N = PAQ, where
1 3 9 7
oo o1 1 =2
P= 10,
=21 0 0 0 1

and Rank of A = 2.

Example 7. Find non-singular matrices P and Q such that PAQ is the normal form where

1 -1 2 -1
A= 14 2 -1 2
2 2 =20 3 x4
Sol. Here we consider
A3><4213x3'A3x4'I4x4 As Amxn:ImxmAmxnInxn
1
1 -1 2 - 1 0 (1) 8 8
4 2 1 2| = 1 0[|A
5 o » 0 0 0 1 0O 0 1 0
0O 0 0 1
Applying R, - R, —4R;, R, - R, - 2R, (pre), we get
1 1 2 1 1 0 O 1o 00
0 _6 9 _6 = 4 1 OAO 100
0 4 6 2 . _2 0 1 0 0 1.0
0O 0 0 1

Applying C, - C, + Cj, C3 — C3 - 2C,, C, — C, + C; (post)

11 21
Lo oo 1o 01 0 O
06 9 6/=|41 0A 00 1 0
0 4 6 2 2 0 1 00 0 1
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1
R2 — 5 RZ’ R3 — E R3 (pre)
1
1 0 0 O 1 0 0 0
0 2 3 2|=1|-43 13 0]A 0
0 2 3 1 -1 0 1/2 0
Ry —» Ry - R, (pre)
1 0 0 !
AR B L
N “ |13 3 0
0 0 0 -1 1/3 /3 1/2 0
C; o C, (post)
10 0 O 1 0 0
0 2 2 3| - |-43 1/3 0 A
00 -1 0 /3  -1/3 12
3
Cy - CG-GC,C - Cy + ) C, (post)
1 0 0 O 1 0 0
0 2 0 0 =1|-43 1/3 0 |A
00 - 0 /3 -1/3 1/2
. 1
Applying Ry — 5 Ry Ry = (=1) Ry (pre)
1 0 0 O 1 0 0
0 1 0 0| =|-2/3 1/6 0 |A
0 01 0 -1/3 13 -1/2
0 I, = PAQ
1 0 0
Therefore, P = [-2/3 1/6 0 |,Q
-1/3 13 -1/2
And p(A) = 3.

Note: In such problems other Ans. is possible.

O O ==

S O = =

[ e e
O O ==
—_ O O =

O O ==

o O O

O O = =

O O = =

183
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Example 8. Find the rank of

6 1 3 8
16 4 12 15
A=l5 3 3 3
4 2 6 -1
Sol. Applying C; - C,, C5 - % Cy
1T 6 1 8
4 16 4 15
A~13 5 1 3
2 4 2 4
By C, — C, - 2C,, C; — C5 - C,, we have
1 4 0 8]
4 8 0 15
T3 a1 2 4
2 0 0 -
By R, — R, - 2R,
1 4 0 8]
2 0 0 -1
13 1 2 4
2 0 0 -1
Ry - Ry— R, Ry - R, — R,, we get
1 4 0 8
2 0 0 -
"1 a4 =2 5
0o 0 0 0

0 IAl =0 i.e., minor of order 4 = 0
Next, we consider a minor of order 3

1 4 0
O 2 0 0/ =10-0-4(-4-0+0=16%0
1 -1 =2
O p (A = 3
Example 9. Find the value of a such that the rank of A is 3, where
11 -10
4 4 31
A=l. 2 2 af
9 9 a 3
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1 1 -1 0
4 4 3 1
Sol. A = i 2 2 2
9 9 a4 3

Applying R, — R, — 4R, Ry — Ry — 2R;, R, — R, — 9R,, we have

1 1 -1 0

0o 0 1 1

A~ 0 0 4 2

|0 0 a+9 3

Again Ry — Ry — 4R, R, - R, - 3R,

1 1 -1 0]

0o 0 1 1

“la-2 0 0 =2

0 0 a+6 0

R, - R,

o
(R

—

—_

0 a+6 0
-2 0 0 =2

Cases: (i) If a =2, |Al =1.08. (-2) =0, rank of A = 3.
(i) If a = — 6, no. of non-zero rows is 3, rank of A = 3.

Example 10. For which value of ‘b’ the rank of the matrix.

1 5 4
A=10 3 2|is2 (U.P.T.U., 2008)
b 13 10

Sol. Since the rank of matrix A is 2 so the minor of 3rd order must be zero ie., |Al =0.

1 5 4

Thus 0 3 2| =0
b 13 10

(30 -26)—5(0-2b) +4 (0-3b) = 0

O 4 + 10b - 12b 00 4-2b=0
Hence b =2
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Find the rank of the following matrix by reducing normal form:

_ 1 2 =3 9]
bz -3 1 0 -1 1
4 1 2 1
Ly 1 1 of (UPTU, 2001) 2.3 -1 1 -1 [Ans. 4]
-1 1 0 9
1 2 0 1 E 0 9
[Ans. p(A) = 3]
1 2 3 (9 7 3 6
3. |1 4 2 [Ans. 2] 4. (5 -1 4 1 [Ans. 3]
2 6 5 6 8 2 4
1 2 -1 3 [0 0 0 00
4 1 2 1 0123 4
5013 1 1 af [Ans. 3] 6. g 5 3 4 1/ [Ans. 3]
1 2 0 1 03 412
_ (U.PT.U. special exam., 2001) ]
[1 2 3 4 5] _
23456 12 =2
713 4 5 6 7 [Ans. 3] 8. |1 2 1 [Ans. 3]
456 7 8 -0
1 2 1 0]
3 2 1 2 11 2
o |2 =2 9 [Ans. 3] 10. |1 2 3| [Ans. 2]
5 6 3 2 0 -1 -1
11 3 -1 -3
Find the rank of the following matrix.
(12 22 32 42 2 1 3 4
2 a2 42 2 03 4 1
11. §2 22 :2 ZZ' [Ans. 3] 12. |, 5 7 s [Ans. 3]
4> 52 6> 7° 2 5 11 6
I §
02 2 1 -5 L 28
B. |y 5 3 o 1 [Ans. 4] 14. (2 3 1 [Ans. 3]
01 2 1 -6 312
1 2 -1 4 [0 i —i
15. |2 4 3 5| [Ans. 2] 16. |-t 0 —i [Ans. 3]
-1 2 6 -7 -3 1 0
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[3 -1 -2 0 2 3
17. |6 2 -4\ [Ans. 2] 18. |0 4 6| [Ans. 1]
13 1 -2 0 6 9
[1 2 31 4 2 3
19. |2 4 6 2| [Ans. 2] 20. |8 4 6 [Ans. 1]
1 232 2 -1 -15
Find the Echelon form of the following matrix and hence find the rank.
(1 2 3 [1 2 -5
21. |2 -1 2| [Ans. 3] 22. |4 1 -6| [Ans. 2]
3 1 2 |6 3 —4
(3 4 5 6 7] b 3 1
4 5 6 7 8 . 4 "2 ;L
23. [° 6 7 8 9| [Ans. 2] 24. |5 1 5 | [Ans. 3]
10 11 12 13 14 6 3 0 7
|15 16 17 18 19| . -
(5 6 7 8 2 -1 3 -1
6 7 8 9 1 2 -3 -1
25. |11 12 13 14| [Ans. 3] 2e6. 1 0 1 11/ [Ans. 3]
|16 17 18 19 0o 1 1 -1
_ 0 1 3 -2
5 3 14 4 04 1 3
27. |10 1T 2 1| [Ans. 3] 28. 15 5 o 1| [Ans. 2]
11 -1 2 0 05 3 4

29. Determine the non-singular matrices P and Q such that PAQ is in the normal form for

A. Hence find the rank of A.

3 2 -1 5
A=|5 1 4 -=2|
1 4 11 -19
0 0 1
Ans. P = (1) /3 -5/3
P -1/3  1/6

1 417

0o 17
Q =

0 0

0 0

9]
217
-1
7 rank =2
0

1

31 |

(otl_ler forms are also possible)
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2 1 -3 -6
30. A=13 3 1 2} (U.PT.UL, 2002)
1 1 1 2
1 -1 4 0
00 1 0 1 -5
Ans. P = :% (1) % ,Q= 0 o 1 - and rank =3
14 28 28 0 0 0 1
1 1 2 1 0 0 1 -1 -1
3. A=|1 2 3| Ans.P=|-1 1 0/,Q=|0 1 -1
0 -1 -1 -1 1 1 0 0 1
- 1 13 —4/3 1
1 2 3 =2 1 0 0 3
3. A=|2 2 1 3| |Ams.P=|2 1 o0|Q=|0 -V6 =36 76 rank=2
3 0 4 1 4 0 0 1 0
- 0 0 0 1

SYSTEM OF LINEAR EQUATIONS (NON-HOMOGENEOUS)

Let us consider the following system of m linear equations in 7 unknowns x;, x,, ..., X,;

Ay Xq +ayy Xp +.. +ay, X, =Dy
:b2
- ()

Auq Xy ¥, Xy +.... +a,,, x, =b,

n

Ay X1 gy Xy +.oo +ay, X,

In matrix notation these equations can be put in the form

AX = B ..(ii)
P
a a veee 4
21 ) 0
where A =
_aml A T
X1 by
X b
2 2
X = “land B=| !
_xn bn
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Augmented matrixx The augmented matrix [A: B] or A of system (i) is obtained by
augmenting A by the column B.

ay Ay @, b
ie., A-[a:B=|™ ™ 7 L b
uml um2 umn : bn
3.13.1 Conditions for Solution of Linear Equations [U.P.T.U., (C.O.), 2003]

Consistent: If the ranks of A and augmented matrix [A : B] are equal, then the system is said to
be consistent otherwise inconsistent. There are following conditions for exist the solution of any
system of linear equations :

() If p(A) = p[A: B] = r = n (where n is the number of variables) then the system has a
unique solution.

(i) If p(A) = p[A: B]=r< n.
then the system has infinitely many solutions in terms of remaining # — * unknowns which are
arbitrary.

If n—- r =1 (then solution is one variable independent solution and let equal to K).
n - r = 2 (then solution is two variable independent solution and let variables equal to K;, and
K,) and so on.

Trivial solution: It is a solution where all X; are zero ie., X=X .= x, = 0.

Example 1. Check the consistency of the following system of linear nonhomogeneous
equations and find the solution, if exists: (U.PT.U., 2007)

7x) + 2x, + 3x3 = 16
2x; + 1x, + 5x3 = 25
X+ 3x2 + 4x3 = 13.

7 2 3 X, 16
Sol. Here, A= 12 11 5,X=|x,[,B=|25
1 3 4 X 13

7 2 3 1 16

I
N
=
6)]
3

The augmented matrix  [A : B] :
1 3 4 : 13
Applying R; « R, we get

[A:Bl ~ |2 11 5 : 25

Again R, - R, - 2R, Ry - Ry - 7R,

0 -19 -25 : -75
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19
Ry - Ry + = R,
1 3 4 = 13
~10 5 -3 = -1
0 o 12,
5 5
O p (A =p[A:B]=3
O r = n =3. 0 The system is consistent.
The given system has a unique solution.
Now from AX = B
1 3 4 x| 13
s am| ]
0 0 = X; 5
X1 +3x, +4x;3 | 13
O 5x2 - 3X3 = -1
-182 -394
5 2 ] Ls
O x; + 3x, + 4x; = 13
5x, = 3x3 = -1
182 394
_x3 = —
5 5
On solving these equations, we get the final solution
- SO (S
O TR T

Example 2. Test the consistency of following system of linear equations and hence find the

solution.
dx, - x, = 12
—x1+5x2—2x3 =0
- 2x, +4x; = -8

4 -1 0 : 12
Sol. The augmented matrix [A: B]= [-1 5 -2 : 0

Applying R; - R,, we get

[A:Bl ~ |4 -1 0 i 12

(U.PT.U., 2005)
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R, - R, + 4R,
-1 5 2 0
~ 10 19 -8 12
0 2 4 -8
2
Ry - =Ry, Ry - Ry + 1—9 R,,
1 5 2 0
~ |0 19 -8 12
0 0 60 -128
19 19
0 p(A) =p[A:B]=3
ie., r = n = 3 (The system is consistent).
Hence, there is a unique solution
-1 5 2| [xy 0
0 0 19 -8||x,| = | 12
60 -128
0 0 E XS 19
O X, = 5%, + 2x; = 0 (1)
19x, — 8x; = 12 ..(ii)
60x -12
00x; _ 128 ...(iid)
19 19
32
0 Xy = —1—5
putting the value of x; in equation (ii), we get
19x, - 8 (—QJ =12
15
2 7
O 19x, = 12—ﬁ=——6
15 15
: S I
15%19 15
and putting the values of x;, x, in equation (i), we get
4 2
o )
15 15
20 64
xy+ —-— =0
15 15
44
0 X1— - = 0
15
O X, = 44
15
44 4 32
Hence, X = _,%=—--_and x3= ——.
15 15 15



192 A TEXTBOOK OF ENGINEERING MATHEMATICS—I

Example 3. Solve
2x; = 2x, + 4x3 +3x, =
xl—x2+2x3+2x4 =
2x1—2x2+x3+2x4 =

N W O O

Xp— Xy + Xy =
Sol. The augmented matrix is

= NN W
N W & O

2
1
[A:B] = 5
1

|
—
S = N

N W O &

00 0 -1:-3
00 3 -2:-9
00 2 -1 4

R, - (1) Ry Ry » (-1) Ry, R, ~ (-1) R,

1 -1 2 2 6]
0 0 013
“1o 0 3 2 !9
0 0 2 1 i 4
Ry - Ry- R,
1 -1 2 2 6]
0 0 0 1 3
1o 0 1 1 5
0 0 21 4]
Ry - R,
1 -1 2 2 6]
0 0 1 1 5
1o 0 0 1 3
0 0 21 4]
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R, - R,

S O O =
o
SN~ DN
—_ = =N
W = g O

R, - Ry - 2R,

o O O
o
S O = N
|
—_
|
(@)
o O O
S O = N
—_ = =N

Ry - R;— Ryand then R, - (-1) Ry

S O O =
o

S O~ N

o~ =~ N

W N U &

p(A) =3and p[A:B]=40 pA) Zp[ A: B].
So the given system is inconsistent and therefore it has no solution.

Hence,

Example 4. Investigate for what values of A, [ the equations
X+y+z2=6x+2y+3z=10, x +2y+ Az=
have (i) no solution (ii) a unique solution (iif) an infinity of solutions.

Sol. The augmented matrix

1 1 6
[A:B]=1|1 2 3 10
12 A :q
R, = R,— Ry, Ry - R;- R,
(1 1 6
~ |0 2 4
10 A-1 H-6
Ry - Ry- R,
11 1 6
~ |0 2 4
0 0 A=3 : u-10

(i) For no solution p (A) # p [A; B] it is only possible when A = 3.

193

5
(Ry » —R;)
6

(U.PT.U., 2001)
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(if) For unique solution p (A) = p [A : B]itis only possible when A =3 #0 i.e.,, A # 3 and
p# 10.

(iif) For infinite number of solutions p (A) = p [A: B] = r < n it is only possible when
A =3and p = 10.
Example 5. Show that the equations
X+y+z=6
X +2y+3z=14
x +4y + 7z =30
are consistent and solve them.

Sol. The augmented matrix is

11 : 6
[A:B] =11 2 3 : 14
11 4 7 : 30|
Ry, - R,- R, Ry - R;- R,
(111 6]
~ |0 2 8
10 3 6 : 24|
Ry — Ry - 3R,
(111 % 6
~10 1 2 : 8
000 :0
Hence, p(A) = p[A:B]=2
ie., r=2<3m=3)
O n—r = 3 -2 =1 (one variable independent solution).

The system is consistent and have infinitely solutions.

Now AX = B
11 1|]|x 6
O 01 2|yl =18
0 0 0]|z 0
X+y+z =26 ()
y+2z =8 ...(i0)
Let z =k
Putting z = k in (ii), we get
y+2k =80 y=8-2k

From (i) x+8-2k+k=60x=k-2
Therefore, x =k -2, y =8 -2k and z =k. Ans.
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Example 6. Solve
3r+3y+2z =1
r+2y =4
10y + 3z = -2
2xr-3y-2z =25
Sol. The augmented matrix is

3 3 2 1
1 2 0 4
A8 =15 19 3 )
2 3 -1 5
R, & R, ) '
2 0 47
3 3 1
“lo 10 3 )
2 3 - 5]
R, — R, - 3R, R, — R, - 2R,
2 0 4
0 3 2 1
“lo 10 3 )
0o 7 - -3
10 7
R3 —>R3 + ?sz R4—> R4— ERZ
M 2 0 4 ]
0 -3 2 1
“ o 0 § . ﬂ
3 3
0 0 ﬂ : @
I 3 3 |
3 3
R3—>2—9R3,R4—> ER‘l ]
1 2 0 4
o 32 1
0 0 1 4
0o o0 -1 4
R, = R, + R,
1 2 0 4
0 -3 2 1
“lo o0 1 4
0 0 0 0
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= pA) =plA:B]=3
r = 3 = n = number of variables.

Hence, the system is consistent and has unique solution.

Now, AX =
1 2 0

O 11 e
o o 1/|Y]~

0o 0 ol
= X+ 2y =
-3y + 2z =
z =

()

- 11 (i)

-4

...(iii)

On solving (i) and (ii), we get x =2,y = 1. Hence, x =2,y =1 and z = - 4.

Example 7. Apply the matrix method to solve the system of equations

x+2y-z =3
3x-y+2z =1
2x -2y +3z = 2
x-y+z=-1 [U.P.T.U., 2003; U.P.T.U. (C.O.), 2003]
Sol. The augmented matrix is
1 2 -1 3]
[A:B] = 3 -1 2 1
12 203 2
11 -1 1 -1
R, - R,-3R;, R; - Ry - 2R, R, - R, - R,
1 2 -1 3]
0 -7 5 -8
0 -6 5 —4
o 3 2 —4 |
6 3
Ry — R, - 7R2, R, >R, - 7R2
[1 2 -1 3]
0o -7 5 -8
o0 2. 0D
~ 7 7
0 o0 -»L _2
L 7 7
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1
R, - R, + =R

4 17 5%
1 2 -1 3
0 -7 5 -8
~ 5 20
0o 0 = —
7 7
0 0 O 0
= p(A) = p [A: B] =3 = number of variables.
Hence, the system is consistent and has a unique solution.
Now, AX = B
1 2 -1 3
0 7 5[|* ;S
= 501Y| = |22
0 0 =11z 7
0 0 O 0
= xX+2y-z =3 (1)
-7y +5z = -8 (i)
5 20
7z= 7 >z= 4

From (i) and (ii), we get, x = -1,y =4
= x=-1y=42z=4

Rl SYSTEM OF HOMOGENEOUS EQUATIONS

If in the set of equations (1) of (3.13), b, = b; = ... = b, = 0, the set of equation is said to be
homogeneous.

Result 1:If r = n, i.e., the rank of coefficient matrix is equal to the number of variables, then
there is always a trivial solution (x; = x, = ... = x, = 0).

Result 2:If r < n, i.e., the rank of coefficient matrix is smaller than the number of variables,
then there exist a non-trivial solution.

Result 3:For non-trivial solution always Al = 0.
Example 8. Solve the following system of homogeneous equations:
x+2y+3z =0
3x+4y +4z =0

7x + 10y + 12z = 0
1 2 3
Sol. Here, A=13 4 4

7 10 12
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1 2 3
~ -2 -8
0 4 -9
R, = R, - 2R,
1 2 3]
A~|0 -2 5
0 0 1]

This shows rank (A) = 3 = number of unknowns. Hence, the given system has a trivial
solution ie., x =y =z = 0.

Example 9. Solve

x+y-2z+3w =0
x-2y+z-w =20
4x+y-5z2+8w =0
5x -7y +2z-w =0
Sol. The coefficient matrix A is
1 1 -2 3
A= 1 2 1 -1
4 1 -5 8
15 7 2 -1
R, - R, - R, R; = R; - 4R,, Ry = R; - 5R,
1 1 2 3
0 3 3 4
"o 3 3 -4
0 -12 12 -16
R, - R, - R, R, = R, - 4R,
1 1 -2 3
0 -3 3 4
o0 0 0
10 0 0 0

= p (A) =2 <4 (n = 4), so there exist a non-trivial solution.

Now, AX =B
1 1 -2 3[x 0
:0—3 3 4lly| |0
0O 0 0 oO0llz| o
0 0 0 O0f|w 0
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= xX+y-2z+3w =0 ..(1)
-3y +3z-4w =0 (i)
Choose z = k;, w = k,, then from (ii) and (i), we get

4
-3y + 3k, -4k, =0 =y =k - 7k

3%
4 5
and x+k1—§k2—2k1+3k2=0:x=k1—§k2.

where k; and k, are arbitrary constants.

Example 10. Find the value of A such that the following equations have unique solution.

M+2y-2z2-1=0,4x+2Ay-2z-2=0,6x+6y+Az-3=0 (U.P.T.U., 2003)
Sol. We have
M+2y-2z =1
dx + 20y -z = 2
6x + 6y + Az =
The coefficient matrix A is
A 2 2
A=(4 2n -1
6 6 A
For unique solution Al # 0
A 2 2
4 2 1| =X +11A-30=0
6 6 A
= A=2) (A2 +20L+15) #0 = A = 2.

Example 11. Determine b such that the system of homogeneous equations (U.P.T.U., 2008)
2x+y+2z =0
x+y+3z =0
4x + 3y +bz = 0
has (i) trivial solution and (ii) non-trivial solution.
Sol. (i) For trivial solution, Al # 0

2
Al = |1
4

= 20B-9-(b-12)+23-4) = 0
= 2b-18-b+12-2 # 0=>b-8%0=b=8.

(ii) For non-trivial solution, |A| =0
= b-8=0=0b=8.
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RN GAUSSIAN ELIMINATION METHOD

Gaussian elimination method is an exact method which solves a given system of equations in n
unknowns by transforming the coefficient matrix into an upper triangular matrix and then solve

for the unknowns by back substitution.

Example 12. Solve the system of equations:
2x; + 3x, + x5 = 9
X, + 2x, +3x, = 6
3x; +x, + 2x; = 8
by Gaussian elimination method.
Sol. The augmented matrix is:

2 3 1
[A:B] =|1 2
3 1 2
R, & R, )
1 2
~l2 3 1
3 1
R, > R, - 2R, Ry = R, = 3R,
1 2 3
~10 -1 -5
0 -5 -7
R, - R, - 5R, )
1 2 3
~ -1 -5
0 0 18

which is upper triangular form

18x, =5 = x; =

18
and X, +2x, + 3x; =6
- X, —5x; == 3
g 25
From (if) x2+1—8=3:x2=3—1—8=—
again from (i), we have
5 3
X, + 2 x 18 +3XE = 6:>x1+E =6
73 35
= x1=6_1_8=1_8
35 29
Hence, X, = 1—8,x2: 1_8 and Xy = =5

(U.P.T.UL., 2006)
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Example 13. Solve by Gaussian elimination method
10x; = 7x, + 3x5 + 5x, = 6

3= 4y =

3x; + x, + 4x, + 11x,

- 6x; + 8x, — x

5
2
7

5x; = 9x, = 2x, + 4x,

Sol. The augmented matrix is

10 -7 3 5

[A: B]

(€8]

—_

=~

—

—
NN O O

Ry, < R,
10 -7 3 5 6
3 1 4 11 2
~ | -6 -1 4 5
5 -9 =2 4 7
3 6 1
R, - R, - 1—0R1, R3 - R3 + 1—0R1, R, — R, - ERl
10 -7 3 5 6]
o 3L 3 11
10 10 2 5
S
5 5 5
o 41 _7 3 4
L 2 2 2 J
10 5 2
R2 - ﬁRZ' R3 - 1—9R2, R3 - _ﬁR3
[10 -7 3 5 : 6 ]
0 1 1 % : i
31 31
o 1 = 2 . B
19 19 19
0 1 — 3 : il
L 11 11 11 |
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R, —> R, -R, R, > R, - R,

[10 -7 3
0 1
0 0 —E
19
0 0 —i
L 11
19 11
R, — —1—5 R, R, — _ZR‘l
100 -7 3
0 1 1
0 0 1
0 0 1
R, > R, - R4
100 -7 3
0 1 1
0 0 1
0 0 0

95
31
1960
589
1138
341

392
93

569
62

5

95
31

392
93
923
186

A TEXTBOOK OF ENGINEERING MATHEMATICS—I

1295
589

270
—

Hence, the coefficient matrix is an upper triangular form

923 923

%JQ}: %:‘»x[l:l
392 259 392 259
Bt g T T3 BT o3 T T s
| M3 el
or BT T3 T 93 93 "~
95 2 % 2
and x2+x3+ﬁx4:ﬁ:>x2_7+ﬁ:ﬁ
12 2 2 12 14
= 27731731 7% 7T 31 31 31

Again 10x, — 7x, + 3x, + 5x, = 6

= 10x, -7x4+3x(-7)+5x1=6=10x, -28-21+5=6
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= 10x,-44=6=10x, =50 = x, =5
Therefore, x, =5, x, =4, x, =-7 and x, = 1.

3.15.1 Gauss-Jordan Elimination Method

Apply elementary row operations on both A and B such that A reduces to the normal form. Then
the solution is obtained.

Example 14. Solve by Gauss-Jordan elimination method:
2x, + x, + 3x, = 1

Il
—_

4xl + 4x2 + 7x3

Il
@

2xl + 5x2 + 9x3

213 1
4 7|, B=11
259 3

o~

Sol. Here A =

. Augmented matrix

[A:B] = |4 47

R, > R,- 2R, R, - R, - R,

R, = R, - 2R,

— N
— NN w

| w

= NP |G
N |
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5 1
Rl—)Rl—ZR3,R2—)R2—ER3
1 0 0 : —l
2
~{01 0 : -1
001 : 1
Hence, the matrix A is in normal form
1
xl=—§,x2=—1,x3=1.

Example 15. Solve by Gauss-Jordan elimination method:
2x, + 5x, + 2x, - 3x, = 3
3x, + 6x, + 5x, + 2x, = 2
dx, + 5x, + 14x, + 14x, = 11
5x, + 10x, + 8x, + 4x, = 4

2 5 2 3 : 3
Sol. [a:p = |36 2> 2:2
45 14 14 : 11
51 8 4 : 4

R, > R,-R,R, > R,-R, R, >R, - R

2

R, < R, R2<—>R3

R,>R,-R,R, >R, -R,R — R, -2R

0 514 17 : 17

R, - R, - R, then R, - - R, R, = R, - 4R,, then again R, — -R,, R, = R, - 5R,, then also
again R, = -R,

15 -6 -10 : -7]
01 -1 -5 : 1
00 -5 5 :-10
00 9 8 : 22
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1
R, - - —R3, then R, - R, - 9R,

5
15 -6 -10 : -7
01 -1 -5 1
“loo 1 -1 : 2
00 0 1 4
1{,}—)1{,}+R4,R2—>R2+5R4,Rl+R1+10R4
15 -6 0 : 33
01-10:21
“l0010: 6
00 0 1: 4
R, > R,+ R, R, > R, +6R,
1 5 0 0 69
0100 : 27
“loo 10 : 2
0 0 01 4
R, > R, - 5R,
100 0 : —66
0100: 27
“l0o010: 6
0001: 4

Hence, the coefficient matrix is in normal form
xl:—66,x2:27,x3:6andx4:4.
Example 16. Find the values of A for which the equations
3x+y-Az=04x-2y-3z2=0;2  +4y +Az=0
have a non-trivial solution. Obtain the most general solutions in each case.
Sol. The coefficient matrix is

3 1 A
A=14 2 3
2 4 A
for non-trivial solution |4 =0
3 1 A
Al = |4 -2 3| =0=3(2A+12)-(4rL+60)-A(16+41) =0
2v 4 A

= — 6L+ 36 — 10 — 161 — 422
= —40* — 32\ + 36

0
0=A+8L-9=0
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= M+IA-A-9=0=>A-1DHA+9 =0
= A=1 -9
Case LIf A =1,
3 1 -1
A=14 2 -3
2 4 1
4 2
RZ_)RZ_gRl’RS_)RS_gRl
3 -1
oy 0 s
05
0o — 2
L 3 3
R, - R, + R,
3 1 -1
I
3 3
10 0 0
This shows p (A) =2 <3 (n = 3)
~Let z=k
10y 5z k
3 3 =0 :>2y+k—0:>y——2
k
and 3x+y-z=20 :>3x—§—k:0:>x:§. Ans.
CaseII.If A =-9
3 1 9
A=14 2 -3
-18 4 -9
Solve itself like case I.
I
SR N

EXERCISE 3.4

Examine whether the following systems of equations are consistent. If consistent solve.

1. X+y+z =206
2x + 3y -2z = 2

5x +y +2z = 13 (U.P.T.U., 2000) [Ans. x =1,y =2, z = 3]
28 3x +3y +2z =1
xX+2y =4
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10y + 3z

2x — 3y — z

B 5%, 4 2%, = %
3x, —x, + 2x

2x, — 2x, + 3x

X, - X, + X,

4. X+y+z
X+ 2y + 3z

y+ 2z

5. 5x + 3y + 7z
3x + 26y + 2z
7x + 2y + 10z

6. —x1+x2+2x3

33{1 = 5%, ¥ &,
— X, + 3x, + 4x,

3
3 =
3

N — W O |

AN U O B O

i~
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[Ans. x =2,y =1and z = — 4]

(UP.T.U., 2002) [Ans. x, = -1, x, = 4, x, = 4]

[Ans. inconsistent; no solution]

[Ans. x = (7 - 6k)/11, y = B + k)/11, z = K]

[Ans. x, =1, x,=-1, x, = 2]

7. Find the values of a and b for which the system has (i) no solution, (i7) unique solution
and (iif) infinitely many solution.
2x + 3y + 5z = 9

7x + 3y — 2z
2x + 3y + az

8
b

(@) a=5"b#9
Ans. (ii) a # 5, b any value
(71) a=5">b=9

8. Discuss the solutions of the system of equations for all values of A.

X+y+z=2,2x+y-2z2=2, Ax+y +4z=2.

[Ans. Unique solution if A # 0; infinite number of solutions if A = 0]

9. X+y+z
X+ 2y + 3z
X+ 4y + 7z

10. 2x -y + z
3x +y — 5z
X+y+z

Solve the following homogeneous equations:

6

14
30

7

13

5

11. x+2y+3z =0

2x +y + 3z
3x + 2y + z

12. xX+y+ 3z
X—Yy+z

X -2y

X—y+z

118, X+ 2y + 3z
3x + 4y + 4z

7x + 10y + 12z

0

S O O O O o o O

[Ans. x =k -2,y =8 -2k z =k

[Ans. x =4,y =1,z = 0]

[Ans. x =y =z = 0]

[Ans. x = - 2k, y = —k, z = k]

[Ans. x =y =z = 0]
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14.

1l

16.

17.

18.

19.

20.
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dx+2y+z+3w = 0
6x +3y +4z +7w = 0
2x+y+w =0 [Ans. x =k, y=-2k —k,z=~-k, w=k)]
For what values of A the given equations will have a non-trivial solution.
X+2y+3z = A
2x + 3y +z = A
3x+y+2z =Ny [Ans. A = 6]
Find the value of ‘@’ so that the following system of homogeneous equations have exactly
2 linearly independent solutions.
ax, —x,—x, =0
-x tax,-x, =0
-x,—-x,+ax, =0 [Ans. a = — 1]
Apply the test of rank to examine if the following equations are consistent:
2x -y +3z = 8
4
3x+y—-4z =0

- X+2y+z

and if consistent, find the complete solution. [Ans. x = y = z = 2]

Show that the equations

-2x+y +2z

X-2y +2z
xX+y-2z =c¢
have no solutions unless a + b + ¢ = 0, in which case they have infinitely many solutions.

Find their solutionsa =1, b =1 and ¢ = - 2. [Ans. x =k-1,y=k-1,z =k]
Show that the system of equations x + 2y —2w =0,2x -y -w=0,x + 2y —w =0. 4x
-y + 3z — w = 0 do not have a non-trivial solution.

Show that the homogeneous system of equations x + 1 cos Y+ z cos B =0, x cos Y+ i +

z cos o =0, x cos B + y cos y + z = 0, has non-trivial solution if oo + B + v = 0.

Solve the following system of equations by Gaussian elimination method:

21.

222,

288

% 2y =y = 8
2x, - 2x, + 3x, = 2
3x, —x, +2x, = 1
X, -x+x, =-1 [Ans. x, =1, x, =4, x, = 4]
2x, +x, +x, = 10
3x, + 2x, + 3x, = 18
x, +4x, + 9x, = 16 [Ans.x1:7,x2:—9,x3:5]
2x, + x, + 4x, = 12
8x, — 3x, + 2x, = 20
4x, + 11x, — x, = 33 [Ans. x, =3, x,=2, x, = 1]
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24. 5%, 4x2 -Xx, = -5
x1+x2—6x3 = —12
3x1 -X,-X, = 4
25. 2x, + x, + 2x, + x, = 6
6xl - 6x2 + 6x3 + 12x4 = 36
4x1 + 3x2 + 3x3 - 3x4 = -1
2%, + 2x, —x, + x, = 10
26. le - 7x2 + 4x3 =

3

- 3xl + 8x2 + 5x3 =

9
x1+9x2—6x =1
6

Solve by Gauss-Jordan method:

278 x-3y—-8z =-10
3x+y =4

2x + 5y + 6z = 13
28. xX+y+z =26

2x + 3y — 2z = 2

5 + y + 2z = 13

29. 3x+y+2z =3
2x -3y -z = -3

X+2y+z =4

30. 4x + 3y + 3z = - 2
x+z =0

dx +4y + 3z = - 3

209
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[Ans. x, =2,x,=1,x,=-1, x, = 3]

[Ans. x, =4, x,=1, x, = 2]

[Ans. x =y =z = 1]
[Ans. x =1,y =2,z = 3]
[Ans. x =1,y =2,2z=-1]

[Ans. x=1,y=1,2z=-1]

31. Test the consistency and solve 2x — 3y + 7z = 5, 3x + y — 3z = 13, 2x + 19y — 47z = 32.

Solve the following system by any method:

32. 2x + 6y +7z = 0
6x + 20y -6z = -3

6y — 18z = -1

8 dx -y + 6z = 16

x—-4y -3z = - 16
2x + 7y + 12z = 48
5 -5y +3z = 0

34. 2%, AF 3y A B, Ak, = 5
X +x,—3x, —4x, = -1

3x, + 6x, - 2x, +x, = 8

2x, + 2x, + 2x, — 3x, = 2

35. Sx + 3y + 7z = 4
3x + 26y + 2z = 9

7x + 2y + 11z = 5

[Ans. Inconsistent]

[Ans. Inconsistent]

[Ans x—_—9k+E —_—6k+E z—k}
S T e YT et
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m LINEAR DEPENDENCE OF VECTORS

The set of vectors* (row or column matrices) X,, X, ... X is said to be linearly dependent if there

exist scalars a,, a,,... a, not all zero such that

aX +aX +..+aX =0 [O is null matrix]

3.16.1 Linear Independence of Vectors

If the set of vectors is not linearly dependent then it is said to be linearly independent.

i.e., if every relation of the type
aX +aX, +.+aX =0

= a,=a,=..=a, = 0.

Example 1. Show that the vectors (3, 1, - 4), (2, 2, — 3) and (0, — 4, 1) are linearly dependent.

Sol.Let X, =(3,1,-4), X,=(2,2,-3), X, = (0, - 4, 1)

Now, aX +aX,+aX, = O llinear dependence
a,3,1,-4) +a,(2,2,-3)+a,(0,-4,1) =(0,0,0)

= (Ba, + 2a,, a, + 2a, - 4a,, — 4a, - 3a, + a,) = (0, 0, 0)

= 3a, +2a,=0,a, +2a,-4a,=0,-4a, - 3a, +a,=0

The system of equations is homogeneous.
Now the coefficient matrix is

3 2 0
A = 1 2 -4
|- 4 -3 1_
R, < R,
_ > 4]
~ 2 0
__ _3 .
R,— R, - 3R, R, > R, + 4R,
1 2 -4
~ -4 12
| 5 -15
1 1
R2 - _ZRZ' R3 - gR3
(1 2 4
~ |0 -3
_0 -3

* An ordered set of n numbers belonging to a field F and denoted by X = [x,, x,, ...

an n-dimensional vector over F.

x,] or

X1

is called
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R, > R, - R,

1 2 4
~ 101 3

00 O
= p(A) =2 and n =3
Let a, =k

and a,-3a, =0=a,-3k=0=a,=3k

Again a +2a,-4a, =0 =a, +6k-4k=0=a =-2k
Therefore, a, = -2k, a,=3k a, =k

Hence, a,, a, and a, cannot be zero otherwise there is a trivial solution which is impossible.
So the vectors X, X, and X, are linearly dependent and the relation is
- 2kX, + 3kX, + kX, = O

= 2X, -3X,- X, = 0.
Example 2. Find the value of A for which the vectors (1, -2, A), (2, -1, 5) and (3, - 5, 7A) are
linearly dependent. (U.P.T.U., 20006)
Sol. Let X, =(1,-2,}), X, =(2,-1,5), X, =(3,-5,7))
Now aX +aX, +aX =0 | For linear dependence
= a(1,-2M+a,2-1,5 +a,(3 -5 71 =(0,0,0)
= a, +2a,+3a, =0
-2a, -a,-5, =0 (D)
M, + 5a, + 7ha, = 0

The system is homogeneous

.. For non-trivial solution* Al =0

1 2 3
= Al = |2 -1 5|=0
A5 7A

(-7A+25) -2 (-14L +50) + 3 (=10 +A) = 0
—7A+25+18A-30+3A=0

5
4L -5=0= A= 1—4

Example 3. Show that the vectors [0, 1, — 2], [1, - 1, 1] [1, 2, 1] form a linearly independent
set.

Sol. Let X, =[0,1,-2], X, =[1,-1,1] X, =[1, 2, 1]
Also suppose a X, + a,X, + a, X, = O
= a [0,1,-2]+a,[1,-1,1] +4a,[1,2,1] =0
= f{a,+a,a -a,+2a,-2a +a,+a]=1[0,0,0]
= a,+a, =0

a,—a,+2a, =0

* For linear dependence the solution must be non-trivial otherwise it will be linear independence.
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-2a, +a,+a, =0
[0 1 1]
Now A=|1 -12
2 1 1
R < R, ) '
(1 -1 2]
A -~ 0 1 1
2 1 1
R, - R, + 2R, ) '
(1 -1 2]
-0 1 1
0 -1 5
R, > R, + R, i i
[1 -1 2]
~10 1 1|=pA)=3
_0 0 .
1 -1 2y [0
Now 0 1 1fa| - |0
0 0 6|a; 10
= a,—a,+2a, =0
a,+a, =0
a, =0
= a,=a,=a, =0

All a,, a, and a, are zero. Therefore, they are linearly independent.
Example 4. Examine the vectors
X =110 X,=1[313] X,=1[53,3]
are linearly dependent.

1 3 5
Sol. Here X = |1, X, =|1],X, = |3
0] 3 13
Now aX +aX, +aX, = O
1 (3 5] (07
= m|l|+ay|1|+a3 3| =

aq +3a, +5a5 |

0
0
o] (3] [3] |o
0
0
0

a;+a,+3a
= 1 2 3 —

0+ 3a, +3az | |
= a, + 3a, + 5a, =

a, +a, + 3a3
0.a, + 3a, + 3a,

Il
S O O g
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1 35
A=1]113
0 3 3
R, = R, - R,
(1 3 5
A~ |0 2 2
0 3 3
3
R3 - R3 + ERZ
1 3 5
~ 10 =2 =2
0 0 0
Here p(A) =2 but n =3 so let a, = k.
1 3 5]y 0
and 0 -2 2| |a| - |0
0 0 0] |a; 0
a, +3a, +5a, =0 ..(0)
a,+a, =0 ()

= a,+k=a, = -k
From (i) a, + 3 (-k) + 5k = 0 = a, = 2k
Since all a, a, a,are not zero.
Therefore, they are linearly dependent
And the relation is
2kX, - kX, + kX, = O
= 2X, - X, + X, = O.
Example 5. Show that the vectors [2, 3, 1, -1], [2, 3, 1, — 2], [4, 6, 2, — 3] are linearly
independent.
Sol. Consider the relation a X, + a,X, + a,X, = O
= al2,3,1,-1+4a,[2,3,1,-2] +a,[4,6,2,-3] =0
= 2a, + 2a, + 4a, = 0
3a, + 3a, + 6a, =
a, +a,+ 2a, =

a, + 2{12 + 3{13 =

0
0
0
A[

2 2 4 122
33 6 113
11 3okl 15 54
122 2 2 4
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R, R, -R,R,—» R, -3R, R— R, - 2R,

1 2 2 1 2
0 -1 1 0 -1 1
“ o _3 O,R3—>R3—3R2,R4—>R4—2R2~ 00 3
0 20 0 0 -2
2
R, - R, —§R3
1 2 2
0 - = p(A)=3and n =3
00 -3~ PYT )
0 0 O
.. The system has a trivial solution
Hence, a, =a,=a,=0

i.e., they are linearly independent.

EXERCISE 3.5

1. Examine the following vectors for linear dependence and find the relation if it exists.
X, =01,24),X,=(2,-1,3),X,=0,1,2), X, = (3,7, 2). (U.P.T.U., 2002)
[Ans. Linearly dependent, 9X, — 12X, + 5X, - 5X, = 0]

2. Show the vectors X, = [1,2,1], X, =[2, 1, 4], X, = [4, 5, 6] and X, = [1, 8, - 3] are linearly
independent?

3. Show that the vectors [1, 2, 3], [3, 2, 1] , [1, — 6, — 5] are linearly dependent.
4. If the vectors (0, 1, a), (1, a, 1), (a, 1, 0) are linearly dependent, then find the value of a.

[Ans.a=0,,/2,- 21
5. Examine for linear dependence [1, 0, 2, 1], [3, 1, 2, 1] [4, 6, 2, — 4], [-6. 0, — 3, —4] and find
the relation between them, if possible.

[Ans. Linear dependent and the relation is 2X| - 6X, + X, — 2X, = 0]
6. Show that the vectors X, = [2, 7, - i]. X, = [2{, -1, 1], X, = [1, 2, 3] are linearly dependent.
7. 16X, =[1,1,2], X,=1[2,-1, - 6], X, = [13, 4, - 4] prove that 7X, + 3X, - X, = 0.

8. Show that the vectors [3, 1, — 4], [2, 2, — 3] form a linearly independent set but [3, 1, — 4],
[2,2, - 3] and [0, — 4, 1] are linearly dependent.

KAV EIGEN VALUES AND EIGEN VECTORS

Introduction: At the start of 20th century, Hilbert studied the eigen values. He was the first to use
the German word eigen to denote eigen value and eigen vectors in 1904. The word eigen mean—
own characteristic or individual.

More formally in a vector space, a vector function A (matrix) defined if each vector X of vector
space, there corresponds a unique vector Y = AX. So here we consider a linear transform Y = AX
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transforms X into a scalar multiple of itself say A so AX = AX which is called Eigen value equation.

In this section, we study the problem
AX =X ..(i0)

where A is a n x n matrix, X is an unknown n x 1 vector and A is an unknown scalar. From equation
(i) it can be understand that AX is a scalar multiple of X say AX. Geometrically each vector on the
line through the origin determined by X gets mapped back onto the same line under multiplication
by A.

Geometrical representation: The eigen value equation
means that under the transformation, a eigen vector experi- X
ence only changes in magnitude and sign. The direction of
AX is the same as that of X. Wp-=----------"5%

Here A acts to stretch the vector X, not change its
direction. So X is an given vector of A. 1Y

The eigen value determines the amount, the eigen vector
is scaled under the linear transformation. For example, the X
eigen value A = 2 means that the eigen vector is doubled in
length and point in the same direction. The eigen value A =
1, means that the eigen vector is unchanged, while an eigen
value A = — 1 means that the eigen vector is reversed in
direction. Fig. 3.1

0 X

Thus, the eigen value A is simply the amount of “stretches” or “shrinks” to which a vector
is subjected when transformed by A.

3.17.1 Characteristic Equation (U.P.T.U., 2007)
If we re-express (i) as AX = AMX (where I is an identity matrix).
or AX-AX = O

= (A-ADX = O (7))

Which is homogeneous system of n equations in the n variables x,, x, ... x. The system (ii)
must have non-trivial solutions otherwise X = 0 (which is impossible).

.. For non-trivial solution the coefficient matrix (A — Al) will be singular
= [A-AIl =0 ...(i17) |singular matrix Al =0

Expansion of the determinant gives an algebraic equation in A, known as the “characteristic
equation” of A. The determinant | A — All is called characteristic polynomial of A.

3.17.2 Characteristic Roots or Eigen Values [U.P.T.U (C.0O.), 2003, 2007]

The roots of characteristic equation are called characteristic roots or eigen values.

3.17.3 Eigen Vectors [U.P.T.U. (C.O.), 2003, 2007]

The corresponding non-zero vector X is called characteristic eigen vector.

Notes: 1. If there is one linearly independent solution and two eigen values are same then there
will be same eigen vectors of both eigen values.
2. If there is two linearly independent solution and two eigen values are same then there
will be different eigen vectors of each eigen value.
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3.17.4 Properties of Eigen Values and Eigen Vectors
1. If A is real, its eigen values are real or complex conjugate in pairs.
2. Determinant of A = product of eigen values of A.
3. A and AT has same eigen values.

4. A7 exists iff 0 is not an eigen value of A, eigen values of A™ are l, i,....,i .
A Ao Ay
(u.p.T.U., 2008)

5. Eigen vector cannot correspond to two distinct characteristic values.

6. Eigen values of diagonal, upper triangular or lower triangular matrices are the principal
diagonal elements.

7. KA (scalar multiples) has eigen values KA.
8. A" has eigen values A"
9. Two vectors X and Y are said to be orthogonal if X'Y = YX = 0. (U.P.T.U., 2008)

Theorem 1. The latent roots of a Hermitian matrix are all real [U.P.T.U. (C.0O.), 2003]
Proof. We have AX = X (D)
To prove that A is a real number, we have to prove A = A
From (i)
XHAX) = X* (AX) = X*AX = AX*X
- (X*AXY = (AX* X)* = X*A*X = 3 X*X, (X** = X)
= X*AX = A X*X (A*=A)
= XAX = 3 X*X = AX*X = j X*X
= (A— A1) X*X = 0= A=A Proved.

Theorem 2. The latent roots of a skew-Hermitian matrix are either zero or purely imaginary.
[U.P.T.U. (C.0O.), 2003]

Proof. Let A be a skew-Hermitian matrix so that A* = — A.

Now we are to prove that A = 0 or purely imaginary number

Here (iA)* = | A* = —iA* = —i(-A) = iA (As A* = -A)
Hence, iA is a Hermitian matrix.
Let A be an eigen value relative to the eigen vector X of A, then
AX = X ..(0)
= IAX = iAX = (iA)X = (iMX
= i\ is an eigen root relative to the vector X of Hermitian matrix iA.
= i\ is a real number, for eigen values of a Hermitian matrix are all real.
= A =0 or purely imaginary number. Proved.

Theorem 3. The characteristic roots of a unitary matrix are of unit modulus.

[U.P.T.U. Special Exam., 2001]
Proof. Let A be unitary matrix so that A*A = L.
We have AX = X (1)
To prove Al =1
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From (i), we have

(AXy* = (AX)* = X*A* = ) X* ..(if)
Pre-multiplying (i) by (ii),
(X*A*) (AX) = (A X*) (AX)
= X* (A*A)X = AAX*X
= XX = IM?X*X = (1- IA12) X*X =0

=1-IA°=0= IA*=1o0r IAl = 1. Proved.

Theorem 4. Prove that the product of all eigen values of A is equal to the determinant (A).
(U.P.T.U., 2004)

Proof. We have AX =AIX = (A-A) X=0

For non-trivial solution 1A — AIl =0

ap — A ap e My

Ay Oy el — A

= 1" N+ N BN 2 b, = 0
= A-X2)RA-1)..(A=-r)=0
putting A = 0, we get
[Al = A, A, A, ... A . Proved.
Theorem 5. The latent roots of real symmetric matrix are all real.
Proof. Let A be a real symmetric matrix so that

A = A A=A
The A*=(A)" = A’ = A or A* = A, meaning thereby, A is a Hermitian matrix. Hence, the
latent roots of A are all real, by Theorem 1.

Theorem 6. The characteristic roots of an idempotent matrix are either zero or unity.
Proof. Let A be idempotent matrix so that A> = A.

Let AX = X ..(0)
premultiplying by A on equation (i), we get
AAX) = ARX) = MAX)
= (AAX = MAX) = A2X =AM X or AX = VX (As A2 = A)
= X = X
= M-MNX =0=2AM-1=0 (As X #0)
= A = 0, 1. Proved.
Example 1. Show that 0 is a characteristic root of a matrix if the matrix is singular.
(U.P.T.U., 2008)
Sol. The characteristic equation is
[A-AIl =0
or Al =AlIl =0
As IAl = 0 (singular matrix)
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0=AIlIl=0=A=0
Conversely, if A = 0 then |A| = 0. Proved.

1 22
Example 2. Find the characteristic equation of the matrix | 0 2 1|. Also find the eigen
-1 2 2
values and eigen vectors of this matrix. (U.P.T.U., 2006)
(1 2 2]
Sol. Let A=10 2 1
-1 2 2]
(1 2 2] 100 1-» 2
Now, A-M =10 2 1|{-2]0 1 0= 0 2-12 1
-1 2 2] 001 -1 2 2-A
*. Characteristic equation is |A - AIl =0
1-» 2 2
= 0 2-% 1 | =0=01-n{2-02-2}-200+13+2(0+(2-A)} =0
-1 2 2-A
- A=A (WP—dh+2)—2+4-21L=0
= M—4A+2 -0 +40-20+2-21L=0
= A—BAM +8h-4=0
= MA-1)-4r(A-1)+4(A-1)=0
= A-1) (A -4r+4)=0

Hence, A =1, 2, 2. These are eigen values of A.
Now, we consider the relation
AX = A X = AX = MX
= (A-ADX =0 ()
Taking A = 1, from (1), we get

-1 2 2 7[xy
0 2-1 1 ||x]| -
1 2 2-1||x;

[0 2] [x]
= 0 1 1||x| =0
-1 2 1] |x3]
R, < R,
1 2 17[x]
~10 11 Xy =0
_O 2_ _x3_
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and

R, = R, - 2R, R, = (- 1) R,

1 2 -1][x

~10 1 1]|x

00 0 X3
= X, = 2x2 - X,
X, + X,
Let x, =k then x, = - k

x, +2k-k=0=x =~k

0

0
0

2k

Xl
Taking A = 2, from (1), we get
-1 2 2] [x]
0 0 1f|x
-1 20 | X3 |
R, & R,
-1 2 2] [x]
~-1 2 0] |x
0 0 1_ _X3_
R, > R,-R, R, - -R,
1 2 2] [x]
~10 0 2| |x
0 0 1] |x3]
1
R, — 5 R, and then R, — R, - R, we get
1 -2 2| [x
~10 0 1] |x
0 0 0] |[x3
Here the solution is one variable linearly independent.
= X, = 2x, - x,
x3
Let x, = k then x, -2k -0=0
= X,
Hence, X

219
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Thus only one eigen vector X, corresponds to the repeated eigen value A = 2.
Hence the eigen values are 1, 2, 2

1 2
eigen vectors X =-kl1| X,=X,=k 1
-1 0
2
or X, = X, =X, =1
-1 0

Example 3. Find the eigen values and eigen vectors of the matrix
211
A=1121
0 01
Sol. The characteristic equation is |A - All =0

2-2 1 1
= 1 2-2 1 | =0-HA-D)A-3=0
0 0 1-a

Thus A =1, 1, 3 are the eigen values of A.
Now, we consider the relation (A - A)X =0

For A =3,
11 17[n &
1 -1 1| |x| =0 [et X=|x,
0 0 -2||x3
X3

Applying R, — R, + R, then R, — -R, on coefficient matrix, we get

1 -1 -1 1y
~10 0 2| |x| =0
0 0 -2] |x;

. 1
Again R, —> R, + R, R, = 7R

2
1 -1 -1 bel
~10 0 1 X| =0
0 0 O X3

= x, -x,-x, =0
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r=2,n=3
=0 por=1
Suppose x, = k, then x, = k
k 1 1
Here, X = lk|=k|1l]|or|1
0 0 0
For A =1
11 1] [x]
1 1 1||x,| =0
10 0 0f|x;
R, = R, - R,
1 1 1] [x]
~10 0 Of|x| =0
10 0 0f|x;

Herer=1,n=3=>n-r=3-1=2.
.. There is two variables linearly independent solution

Let x,=k,x, = k,and x + x, + x, =0
= x +k +k =0=x=-(k +k)
~(ky +k,)
= X, = ky
ky

Since the vectors are linearly independent so, we choose k, and k, as follows:

(a) If we suppose x, = k, = 0, x, = k, (any arbitrary)

—k, 1 1
Then X,=|0|=-ky|0]or|0

(b) If we suppose x, = k, (any arbitrary) and x, = k, = 0
—k; 1 1
Then X, = |k | ==k |-1|or -1
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Hence the eigen values are A =1, 2, 2

1 1 1
Eigen vectors are X = k|1 Xy=-ky| Of Xz= —kq|-1
0 -1 0
1 1 1
or Xl_ 1,'X2= 0,X3=—1
0 -1 0
Example 4. Find the eigen values and eigen-vectors of matrix
314
A=10 2 6]. [U.P.T.U., 2004 (C.0O.), 2002]
0 05
Sol. The characteristic equation is A -AIl =0
3-2 1 4
= 0 2-2 6| = G-M{2-1)(5-1)}-0+0=0
0 0 5-2
. A=2235
Now, we consider the relation (A - Al) X =0 (D)
For A =2,
3-2 1 41 x]