A. Theoretical Fundamentals of Airborne Gravimetry, Parts I and II (Monday, 23 May 2016)
I. Introduction - Airborne Gravity Data Acquisition
II. Elemental Review of Physical Geodesy
III. Basic Theory of Moving-Base Scalar Gravimetry
IV. Overview of Airborne Gravimetry Systems
B. Theoretical Fundamentals of Gravity Gradiometry and Inertial Gravimetry (Thursday, 26 May 2016)
V. Theoretical Fundamentals of Inertial Gravimetry
VI. Theoretical Fundamentals of Airborne Gradiometry

I. Introduction - Airborne Gravity Data Acquisition

- A very brief history of airborne gravimetry
- Why airborne gravimetry?

A Brief History of Airborne Gravimetry

- Natural evolution of successes in $1^{\text {st }}$ half of $20^{\text {th }}$ century with ocean-bottom, submarine, and shipboard gravimeters operating in dynamic environments
- airborne systems promised rapid, if not highly accurate, regional gravity maps for exploration reconnaissance and military geodetic applications
- Special challenges
- critical errors are functions of speed and speed-squared
- difficulty in accurate altitude \& vertical acceleration determination
- trade accuracy for acquisition speed
- 1958: First fixed-wing airborne gravimetry test (Thompson and LaCoste 1960)
- 5-10 minute average, 10 mgal accuracy
- high altitude, 6-9 km
- Further tests by exploration concerns
- LaCoste \& Romberg, Austin TX
- Gravity Meter Exploration Co., Houston, TX
- 10 mGal accuracy, $\mathbf{3}$ minute averages (Nettleton et al. 1960)

First Airborne Gravity Test - Air Force Geophysics Lab

 1958

Instruction Manual LaCoste Romberg Model "S" Air-Sea Dynamic Gravity Meter, 2002; with permission

- The first LaCoste-Romberg
- KC-135 jet tanker Model "S" Air-Sea Gravimeter
- Doppler navigation system - elevation above mean sea level determined from the tracking range data
- flights over an Askania camera tracking range at Edwards Air Force Base

First Successful Helicopter Airborne Gravimetry Test 1965

- Carson Services, Inc. (Carson Helicopter)
- gimbal-suspended LaCoste and Romberg Sea gravimeter
- 5 mGal accuracy, hovering at 15 m altitude (Gumert 1998)
- Navy sponsored
- Further tests and development by exploration companies
- principally, Carson Services throughout the 1960s and 1970s

Rapid Development with Advent of GPS (1980s and 1990s)

- Naval Research Laboratory
- John Brozena
- National Survey and Cadastre of Denmark (DKM) - Rene Forsberg
- Academia (in collaboration with industry and government)
- University of Calgary (K.P. Schwarz)
- University FAF Munich (G. Hein)
- Swiss Federal Institute of Technology (E.E. Klingele)

Olesen (2003)

Twin-Otter Aircraft

- Lamont-Doherty Earth (Geological) Observatory (R. Bell)
- Industry ...

The Need for Global Gravity Data

- Gravity data until the early 1960s were obtained primarily by point measurements on land and along some ship tracks.
- map of data archive of 1963 (Kaula 1963)

1990s - More Data, Still Many Gaps

- Greater uniformity, but only at relatively low resolution
- map of terrestrial $1^{\circ} \times 1^{\circ}$ anomaly archive of 1990 (Rapp and Pavlis 1990)

Fig. 3. Location of $45,1261^{\circ} \times 1^{\circ}$ free-air anomalies in the OSU July 1989 file excluding geophysically predicted values.

Why Airborne Gravimetry?

Satellite Resolution vs Mission Duration and Integration Time

- Satellite-derived gravitational models are limited in spatial resolution because of high inherent satellite speed
- Only airborne gravimetry yields higher resolution efficiently

Gravity Resolution vs Accuracy Requirements in Geophysics

Satellite Gravimetry/Gradiometry Airborne Gravimetry/Gradiometry

Geodetic Motivation

GNSS and Geopotential

- Traditional height reference surface: equipotential surface (geoid)
- needed for determining and monitoring the flow of water, from flood control to sea level rise
- replace arduous spirit leveling with GNSS: $\quad H=h-N$

II. Elemental Review of Physical Geodesy

- Gravitational potential, gravity
- Normal gravity
- Disturbing potential, gravity anomaly, deflection of the vertical
- Geoid determination aspects

Basic Definitions

- Gravitational potential, V
- due to mass attraction
- gravitational acceleration: $\boldsymbol{g}=\nabla V$
- Centrifugal "potential", ϕ
- due to Earth's rotation
- centrifugal acceleration: $\boldsymbol{a}_{\text {cent }}=\nabla \phi$

- Gravity potential, $W=V+\phi$
- gravity acceleration: $\quad \overline{\boldsymbol{g}}=\boldsymbol{g}+\boldsymbol{a}_{\text {cent }}$

Physical geodesy makes the distinction between gravitation and gravity, especially in terrestrial gravimetry

Normal Gravitational Potential

- Mathematically simple potential and boundary
- approximates Earth's potential and geoid to about 5 ppm
- approximates Earth's gravity to about 50 ppm
- rotates with the Earth

Normal Gravity Potential

- Expressed as spherical harmonic series in spherical coordinates

$$
\begin{aligned}
U(r, \theta) & =V(r, \theta)+\phi(r, \theta) \\
& =\frac{G M}{a} \sum_{n=0}^{\infty}\left(\frac{a}{r}\right)^{2 n+1} C_{2 n}^{N} P_{2 n}(\cos \theta)+\frac{1}{2} \omega_{e}^{2} r^{2} \sin ^{2} \theta
\end{aligned}
$$

- closed expression exists in ellipsoidal coordinates
- $C_{2 n}^{N}$ depends on only 4 parameters: $\omega_{e}, C_{2}^{N}, a, G M$
- (e.g., WGS84 parameters)
- Normal gravity vector: $\gamma=\nabla U$

$$
\begin{aligned}
& \omega_{e}=7.292115 \times 10^{-5} \mathrm{rad} / \mathrm{s} \\
& C_{2}^{N}=-0.484166774985 \times 10^{-3} \\
& a=6378137 . \mathrm{m} \\
& G M=3.986004418 \times 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

Gravity Disturbance and Anomaly

- Disturbing potential: $\quad T=W-U \quad$ ($W=$ total gravity potential)
- Gravity disturbance vector: $\delta \boldsymbol{g}=\nabla W-\nabla U=\boldsymbol{g}-\gamma$
- gravity disturbance: $\quad \delta g=|g|-|\gamma|$
- in n-frame (North-East-Down): $\quad \delta \boldsymbol{g}^{n}=\left(\begin{array}{c}g_{N}-\gamma_{N} \\ g_{E} \\ g_{D}-\gamma_{D}\end{array}\right) \approx\left(\begin{array}{c}g_{N} \\ g_{E} \\ g_{D}-\gamma_{D}\end{array}\right)$
${ }^{\circ}$ near Earth's surface, $\gamma_{\mathrm{N}} \approx 0$
- Gravity anomaly vector: $\Delta \boldsymbol{g}_{P}=\nabla W_{P}-\nabla U_{Q}=\boldsymbol{g}_{P}-\gamma_{Q}$
- P and Q are points on the ellipsoid normal such that $W_{P}=U_{Q}$
- gravity anomaly: $\quad \Delta g_{P}=\left|g_{P}\right|-\left|\gamma_{Q}\right|$

Deflection of the Vertical

$\xi=$ north deflection
$\eta=$ east deflection
$\nabla T=\delta \boldsymbol{g}^{n} \approx\left(\begin{array}{c}-\xi g \\ -\eta g \\ \delta g\end{array}\right) \approx\left(\begin{array}{c}g_{N} \\ g_{E} \\ g_{D}-\gamma_{D}\end{array}\right)$

- linear approximation
- signs agree with convention of astronomic deflection of the vertical

Geoid Determination

- Bruns's Formula: $\quad N_{P_{0}}=\frac{1}{\gamma_{Q_{0}}} T_{P_{0}}+N_{0} \quad$ where N_{0} is a height datum offset
- Boundary-value Problem: $\quad \nabla^{2} T=0$ above geoid (by assumption)

$$
\begin{gathered}
\Delta g_{P^{\prime}}, \Delta g_{P_{a}^{\prime}} \\
+
\end{gathered}
$$

gravity reductions

$$
\begin{gathered}
\| \\
\Delta g_{P_{0}^{\prime}}
\end{gathered}
$$

- Stokes's formula

$$
N_{P_{0}}=N_{0}+\frac{R}{4 \pi \gamma_{Q_{0}}} \iint_{\Omega} \Delta g_{P_{0}} S\left(\psi_{P_{0}, P_{0}}\right) d \Omega
$$

+
gravity redu
$\|$
$\Delta g_{P_{0}^{\prime}}$

Details

- Gravity reductions to satisfy the boundary-value conditions
- re-distribution of topographic mass; consequent indirect effect
- downward continuation (various methods)
- Ellipsoidal corrections
- account for spherical approximation of geoid, boundary condition
- Include existing spherical harmonic model (satellite-derived)
- remove-compute-restore techniques
- Back to Motivation
- use airborne gravimetry to improve spatial resolution of data (boundary values) - few km to 200 km wavelengths

III. Basic Theory of Moving-Base Scalar Gravimetry

- Fundamental laws of physics and the gravimetry equation
- Coordinate frames
- Mechanizations and methods of scalar gravimetry
- Rudimentary error analyses

Fundamental Physical Laws

- Moving-Base Gravimetry and Gradiometry are based on 3 fundamental laws in physics
- Newton's Second Law of Motion
- Newton's Law of Gravitation

Issac Newton 1643-1727

- Einstein's Equivalence Principle
- Laws are expressed in an inertial frame
- General Relativistic effects are not yet needed

Albert Einstein 1879-1955

- however, the interpretation of space in the theory of general relativity is used to distinguish between applied and gravitational forces

Inertial Frame

notation convention:

- axis identified by number
- superscript identifies frame
- The realization of a system of coordinates that does not rotate (and is in free-fall, e.g., Earth-centered)
- Modern definition: fixed to quasars - which exhibit no relative motion on celestial sphere
- International Celestial Reference Frame (ICRF) based on coordinates of 295 stable quasars

Newton's Second Law of Motion

- Time-rate of change of linear momentum equals applied force, F

$$
\frac{d}{d t}\left(m_{i} \dot{\boldsymbol{x}}\right)=\boldsymbol{F}
$$

$-m_{i}$ is the inertial mass of the test body

$$
\left(m_{i}=\text { constant } \rightarrow m_{i} \ddot{\boldsymbol{x}}=\boldsymbol{F}\right)
$$

- In the presence of a gravitational field, this law must be modified:

$$
m_{i} \ddot{\boldsymbol{x}}=\boldsymbol{F}+\boldsymbol{F}_{g}
$$

- F_{g} is a force associated with the gravitational acceleration due to a field (or space curvature) generated by all masses in the universe, relative to the freely-falling frame (Earth's mass and tidal effects due to moon, sun, etc.)
- action forces, \boldsymbol{F}, and gravitational forces, $F_{\boldsymbol{g}}$, are fundamentally different

Newton's Law of Gravitation

- Gravitational force vector

$$
\boldsymbol{F}_{g}=G \frac{M m_{g}}{\ell^{2}} \boldsymbol{n}=m_{g} \boldsymbol{g}
$$

- $G=$ Newton's gravitational constant
- g = gravitational acceleration due to M
- m_{g} is the gravitational mass of the test body
- it's easier to work with field potential, V

$$
\boldsymbol{g}=\nabla V \quad V=G M / \ell
$$

- Many mass points
- law of superposition:
- mass continuum:

$$
\begin{aligned}
V_{P} & =G \sum_{j} \frac{M_{j}}{\ell_{j}} \\
V_{P} & =G \int_{M} \frac{d M}{\ell}
\end{aligned}
$$

Equivalence Principle (1)

- A. Einstein (1907): No experiment performed in a closed system can distinguish between an accelerated reference frame or a reference frame at rest in a uniform gravitational field.
- consequence: inertial mass equals gravitational mass

$$
m_{i}=m_{g}=m
$$

- Experimental evidence has not been able to dispute this assumption
- violation of the principle may lead to new theories that unify gravitational and other forces
- proposed French Space Agency mission, MICROSCOPE*, aims to push the sensitivity by many orders of magnitude

TESTS OF THE
WEAK EQUIVALENCE PRINCIPLE

YEAR OF EXPERIMENT Micro-satellite to Observe the Equivalence Principle); Berge et al. (2015) http://arxiv.org/abs/1501.01644

Equivalence Principle (2)

- Equation of motion in the inertial frame

$$
\ddot{\boldsymbol{x}}^{i}=\frac{\boldsymbol{F}^{i}}{m}+\boldsymbol{g}^{i}
$$

- $\ddot{\boldsymbol{x}}=\frac{d^{2} x}{d t^{2}}, \underset{\text { kinematic acceleration }}{\text { vector of total }}$
$\circ \frac{\boldsymbol{F}^{i}}{m}=\boldsymbol{a}^{i}, \begin{aligned} & \text { specific force, or the } \\ & \begin{array}{l}\text { acceleration resulting from } \\ \text { an action force, e.g., thrust } \\ \text { of a rocket }\end{array}\end{aligned}$ of a rocket

$$
\ddot{\boldsymbol{x}}^{i}=a^{i}+\boldsymbol{g}^{i}
$$

$$
|\boldsymbol{a}| \leq|\boldsymbol{g}| \Rightarrow \text { no lift-off ! }
$$

What Does an Accelerometer Sense?

gravitational field, g no applied acceleration

accelerometer indicates: 0
gravitational field, g applied acceleration, a

- Accelerometer does not sense gravitation, only acceleration due to action force (including reaction forces!)

What Does Accelerometer (or Gravimeter) on Rocket Sense?

Static Gravimetry - Special Case

- Assume non-rotating Earth (for simplicity) $\quad g=\ddot{\boldsymbol{x}}-a$
- Relative (spring) gravimeter: $\ddot{\boldsymbol{x}}=\mathbf{0} \Rightarrow a=-\boldsymbol{g}$
- it is an accelerometer that senses specific force, a
- with sensitive axis along plumb line, a is the reaction force
 of Earth's surface that keeps the gravimeter from falling
- Absolute (ballistic) gravimeter: $a=0 \Rightarrow \ddot{\boldsymbol{x}}=\boldsymbol{g}$
- it tracks a test mass in vacuum (zero spring force)
- indirectly, it senses the reaction force that keeps the reference from falling
- All operational moving-base gravimeters are relative
 sensors

Basic Equation for Moving-Base Gravimetry

- In the inertial frame:

$$
\boldsymbol{g}^{i}=\ddot{\boldsymbol{x}}^{i}-\boldsymbol{a}^{i}
$$

- Because:
- specific forces are measured in a non-inertial frame attached to a rotating body (vehicle)
- specific forces and kinematic accelerations refer to different measurement points of the instrument-carrying vehicle
- generally, gravitation is desired in a local, Earth-fixed frame
- Need to introduce:
- coordinate frames
- rotations and lever-arm effects

- Get more complicated expressions for gravimetry equation

Two Possible Approaches to Determine g(1)

- For concepts, consider inertial frame for simplicity: $\ddot{\boldsymbol{x}}^{i}=\boldsymbol{a}^{i}+\boldsymbol{g}^{i}$
- Position (Tracking) Method to determine the unknown: g
- Integrate equations of motion

$$
\boldsymbol{x}^{i}(t)=\boldsymbol{x}^{i}\left(t_{0}\right)+\dot{\boldsymbol{x}}^{i}\left(t_{0}\right)\left(t-t_{0}\right)+\int_{t_{0}}^{t}\left(t-t^{\prime}\right)\left(\boldsymbol{a}^{i}\left(t^{\prime}\right)+\boldsymbol{g}^{i}\left(t^{\prime}\right)\right) d t^{\prime}
$$

- Positions, x : from tracking system, like GPS or other GNSS
- Specific forces, a: from accelerometer
- method is used for geopotential determination with satellite tracking, and was used also with ground-based inertial positioning systems
- Advantage: do not need to differentiate \boldsymbol{x} to get $\ddot{\boldsymbol{x}}$
- Disadvantage: g must be modeled in some way to perform the integration (e.g., spherical harmonics in satellite tracking, with statistical constraint)
- Not used for scalar airborne gravimetry due to vertical instability of integral - but can be (is) used for horizontal components of gravity!

Two Possible Approaches to Determine g(2)

- Accelerometry Method to determine the unknown: g

$$
\boldsymbol{g}^{i}=\ddot{\boldsymbol{x}}^{i}-\boldsymbol{a}^{i}
$$

- Specific force, a : from accelerometer
- Kinematic acceleration, \ddot{x} : by differentiating position from tracking system, like GPS (GNSS)
- Advantage: g does not need to be modeled
- Disadvantage: positions are processed with two numerical differentiations ${ }^{\circ}$ advanced numerical techniques \rightarrow may be less serious than gravity modeling problem
- Either position method or accelerometry method requires two independent sensor systems
- Tracking system
- Accelerometer (gravimeter)
- Gravimetry accuracy depends equally on the precision of both systems

The Challenge of Airborne Gravimetry

- Both systems measure large signals e.g., ($> \pm 10000 \mathrm{mGal})$
- Desired gravity disturbance is orders of magnitude smaller
- signal-to-noise ratio may be very small, depending on system accuracies
- e.g., INS/GPS system - data from University of Calgary, 1996

- IMU accelerations
- GPS accelerations (offset)

Subtract and filter

Coordinate Frames

- Other coordinate frames
- rotating with respect to inertial frame,
- may have different origin point,
- have different form of Newton's law of motion,
- all defined by three mutually orthogonal, usually right-handed axes (Cartesian coordinates).
- Specific frames to be considered:
- navigation frame: frame in which navigation equations are formulated; usually identified with local North-East-Down (NED) directions (n-frame).
- Earth-centered-Earth-fixed frame: frame with origin at Earth's center of mass and axes defined by conventional pole and Greenwich meridian (Cartesian or geodetic coordinates) (e-frame).

Earth-Centered-Earth-Fixed Coordinates

- Cartesian coordinate vector in e-frame: $\boldsymbol{x}^{e}=\left(\begin{array}{lll}x_{1}^{e} & x_{2}^{e} & x_{3}^{e}\end{array}\right)^{\mathrm{T}}$
- Geodetic coordinates, latitude, longitude, height: ϕ, λ, h
- refer to a particular ellipsoid (assume geocentric) with semi-major axis, a, and first eccentricity, e
- are orthogonal curvilinear e-frame coordinates

Transforming Between Cartesian \& Geodetic Coordinates

$$
\begin{aligned}
& x_{1}^{e}=(N+h) \cos \phi \cos \lambda \\
& x_{2}^{e}=(N+h) \cos \phi \sin \lambda
\end{aligned}
$$

$$
\phi=\tan ^{-1}\left(\frac{x_{3}^{e}}{\sqrt{\left(x_{1}^{e}\right)^{2}+\left(x_{2}^{e}\right)^{2}}}\left(1+\frac{e^{2} N \sin \phi}{x_{3}^{e}}\right)\right)
$$

$$
\lambda=\tan ^{-1}\left(x_{2}^{e} / x_{1}^{e}\right)
$$

$$
x_{3}^{e}=\left(N\left(1-e^{2}\right)+h\right) \sin \phi
$$

$$
h=\sqrt{\left(x_{1}^{e}\right)^{2}+\left(x_{2}^{e}\right)^{2}} \cos \phi+x_{3}^{e} \sin \phi-a^{2} / N
$$

- radius of curvature in prime vertical:

$$
N=\frac{a}{\sqrt{1-e^{2} \sin ^{2} \phi}}
$$

- radius of curvature in meridian:

$$
M=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi\right)^{3 / 2}}
$$

- Cartesian and geodetic coordinates may be used interchangeably

Rotations and Angular Rates Between Frames

- Assume common origin for frames
- $\mathbf{C}_{t}^{s}=$ matrix that rotates coordinates from t-frame to s-frame
- vector, $\boldsymbol{x}: \quad \boldsymbol{x}^{s}=\mathbf{C}_{t}^{s} \boldsymbol{x}^{t}$
- matrix, $A: \quad \mathbf{A}^{s}=\mathbf{C}_{t}^{s} \mathbf{A}^{t} \mathbf{C}_{s}^{t}$
$-\mathbf{C}_{t}^{s}$ is orthogonal: $\mathbf{C}_{s}^{t} \equiv\left(\mathbf{C}_{t}^{s}\right)^{-1}=\left(\mathbf{C}_{t}^{s}\right)^{\mathrm{T}}$
- $\omega_{s t}^{t}=$ angular rate vector of t-frame relative to s-frame; components in t-frame
- Let $\boldsymbol{\omega}_{s t}^{t}=\left(\begin{array}{l}\omega_{1} \\ \omega_{2} \\ \omega_{3}\end{array}\right) \quad$ then $\left[\boldsymbol{\omega}_{s t}^{t} \times\right] \equiv \boldsymbol{\Omega}_{s t}^{t}=\left(\begin{array}{ccc}0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0\end{array}\right)$
- cross-product is same as multiplication by skew-symmetric matrix
- Time-derivative: $\dot{\mathbf{C}}_{t}^{s}=\mathbf{C}_{t}^{s}\left[\boldsymbol{\omega}_{s t}^{t} \times\right]=\mathbf{C}_{t}^{s} \boldsymbol{\Omega}_{s t}^{t}$

Earth-Fixed vs. Inertial Frames

- Transformation of coordinates between i-frame and e-frame is just a rotation about the 3 -axis

$$
\begin{aligned}
& \boldsymbol{x}^{i}=\mathbf{C}_{e}^{i} \boldsymbol{x}^{e} \Rightarrow \quad \ddot{\boldsymbol{x}}^{i}=\ddot{\mathbf{C}}_{e}^{i} \boldsymbol{x}^{e}+2 \dot{\mathbf{C}}_{e}^{i} \dot{\boldsymbol{x}}^{e}+\mathbf{C}_{e}^{i} \ddot{\boldsymbol{x}}^{e} \\
& \boldsymbol{\omega}_{i e}^{e}=\left(\begin{array}{lll}
0^{*} & 0^{*} & \omega_{E}
\end{array}\right)^{\mathrm{T}} \\
& \omega_{E}=\text { Earth's rotation rate } \\
& \mathbf{0}^{*}=\begin{array}{c}
\text { neglect rates of polar motion and } \\
\text { precession/nutation }
\end{array} \\
& 1^{i} \\
& d \omega_{i e}^{e} / d t=\mathbf{0} \\
& \ddot{\boldsymbol{x}}^{i}=\mathbf{C}_{e}^{i}\left(\boldsymbol{\Omega}_{i e}^{e} \mathbf{\Omega}_{i e}^{e}+\dot{\boldsymbol{\Omega}}_{i e}^{e}\right) \boldsymbol{x}^{e}+2 \mathbf{C}_{e}^{i} \mathbf{\Omega}_{i e}^{e} \dot{\boldsymbol{x}}^{e}+\mathbf{C}_{e}^{i} \ddot{\boldsymbol{x}}^{e}
\end{aligned}
$$

- Extract centrifugal acceleration from other kinematic accelerations

$$
\begin{aligned}
\mathbf{C}_{i}^{e} \ddot{\boldsymbol{x}} & =\boldsymbol{\Omega}_{i e}^{e} \boldsymbol{\Omega}_{i e}^{e} \boldsymbol{x}^{e}+2 \boldsymbol{\Omega}_{i e}^{e} \dot{\boldsymbol{x}}^{e}+\ddot{\boldsymbol{x}}^{e}=\boldsymbol{a}^{e}+\boldsymbol{g}^{e} \\
& =-\boldsymbol{a}_{\mathrm{cent}}^{e}+\boldsymbol{q}^{e} \quad \leftarrow \text { defines } \boldsymbol{q} \quad \Rightarrow \quad \overline{\boldsymbol{g}}^{e}=\boldsymbol{q}^{e}-\boldsymbol{a}^{e}
\end{aligned}
$$

Navigation Frame

- Usually, north-east-down (NED)-frame, or n-frame
- moves with the vehicle - not used for coordinates of the vehicle
- used as reference for velocity and orientation of the vehicle; and, gravity
- Alternative: vertical along plumb line, n '-frame
- conventional reference for terrestrial gravity
- no "horizontal" gravity components

Body Frame

- Axes are defined by principal axes of the vehicle: forward (1), to-the-right (2), and through-the-floor (3)

- Gravimeter (G) measurements are made either:
- in the \boldsymbol{b}-frame - strapdown system; gyro data provide orientation
- in the \boldsymbol{n}-, \boldsymbol{n}^{\prime}-frames - platform is stabilized using IMUs*

Moving-Base Gravimetry - Strapdown Mechanization

Gravitational Vector $\longleftarrow \boldsymbol{g}^{n}=\mathbf{C}_{i}^{n}\left(\ddot{\boldsymbol{x}}^{i}-\mathbf{C}_{b}^{i} \boldsymbol{a}^{b}\right)$ in n-frame
in i-frame
transformation from inertial frame to \boldsymbol{n}-frame

\boldsymbol{a}^{b} - inertial accelerations measured by accelerometers in body frame
$\ddot{\boldsymbol{x}}^{i}$ - kinematic accelerations obtained from GNSS-derived positions, \boldsymbol{x}, in \boldsymbol{i}-frame

$$
\mathbf{C}_{i}^{n}=\left(\begin{array}{ccc}
-\sin \phi \cos \left(\lambda+\omega_{E} t\right) & -\sin \phi \sin \left(\lambda+\omega_{E} t\right) & \cos \phi \\
-\sin \left(\lambda+\omega_{E} t\right) & \cos \left(\lambda+\omega_{E} t\right) & 0 \\
-\cos \phi \cos \left(\lambda+\omega_{E} t\right) & -\cos \phi \sin \left(\lambda+\omega_{E} t\right) & -\sin \phi
\end{array}\right)
$$

- transformation obtained from GNSS-derived positions, ϕ, λ
- lever-arm effects are assumed to be applied

Moving-Base Gravimetry - Stabilized Mechanization

Gravitational Vector in n-frame

- Inertial accelerations, a^{p}, from accelerometers in platform frame
- Mechanizations
- two-axis damped platform - level (n '-frame) alignment using gyro-driven gimballed platform in the short term and mean zero output of horizontal accelerometers in the long term - adequate for benign dynamics
- Schuler-tuned inertial stabilized platform - alignment to n-frame based on inertial /GNSS navigation solution and gyro-driven platform stabilization \circ ideally, $\mathbf{C}_{p}^{n}=\mathbf{I}$; but note, n-frame differs from n^{\prime}-frame by deflection of the vertical - better for more dynamic environments

Two-Axis Stabilized Platform

- Schematic for one axis
- gryoscope maintains direction in space, and commands torque motor to correct deviation of platform orientation due to non-level vehicle

- horizontal accelerometer, through processor, ensures that gryoscope reference direction is precessed to account for Earth rotation and curvature
- zero acceleration implies level orientation (without horizontal specific forces!)
- ad hoc damping of platform by processor
- corrects gyro drift, but is subject to accelerometer bias
- Schuler-tuned three-axis stabilization: more accurate IMUs and n frame stabilization (using navigation solution velocity in n-frame)

Scalar Moving-Base Gravimetry

- Determine the magnitude of gravity - the plumb line component
- consistent with ground-based measurement (recall gravimeter is leveled)
- gravitation vector: $\boldsymbol{g}^{n}=\mathbf{C}_{i}^{n} \ddot{\boldsymbol{x}}^{i}-\mathbf{C}_{b}^{n} \boldsymbol{a}^{b}=\left(-\boldsymbol{a}_{\mathrm{cent}}^{n}+\boldsymbol{q}^{n}\right)-\boldsymbol{a}^{n}$
- gravity vector:

$$
\overline{\boldsymbol{g}}^{n}=\boldsymbol{g}^{n}+\boldsymbol{a}_{\mathrm{cent}}^{n}
$$

$$
\overline{\boldsymbol{g}}^{n}=\boldsymbol{q}^{n}-\boldsymbol{a}^{n}
$$

GNSS $\boldsymbol{\rightarrow} \boldsymbol{q}^{\boldsymbol{n}}$

- this holds in any frame! e.g., $\overline{\boldsymbol{g}}^{n^{\prime}}=\boldsymbol{q}^{n^{\prime}}-\boldsymbol{a}^{n^{\prime}}$
- note: straight and level flight $\rightarrow\left|\boldsymbol{q}^{n}\right| \square\left|\boldsymbol{a}^{n}\right|$
- thus: $\bar{g}=\left|\overline{\boldsymbol{g}}^{n}\right|$, but note: $\bar{g} \neq \bar{g}_{3}^{n}$
- n-frame mechanization does not account for the deflection of the vertical
- since n^{\prime}-frame is aligned to plumb line, $\bar{g}=\bar{g}_{3}^{n^{\prime}}$
along plumb line
deflection of the vertical
(DOV)

Unconstrained Scalar Gravimetry

- One Option: $\bar{g}=\left|\overline{\boldsymbol{g}}^{n}\right|=\left|\boldsymbol{q}^{n}-\boldsymbol{a}^{n}\right|$
- unconstrained in the sense that the frame for vectors is arbitrary (n-frame is used for illustration)
- also known as strapdown inertial scalar gravimetry (SISG)
$\circ \boldsymbol{q}^{n}=\mathbf{C}_{i}^{n} \ddot{\boldsymbol{x}}^{i}+\boldsymbol{a}_{\mathrm{cent}}^{n} \quad$ obtained exclusively from GNSS
- $\boldsymbol{a}^{n}=\mathbf{C}_{b}^{n} \boldsymbol{a}^{b} \quad$ requires orientation of b-frame (relative to n-frame)
- Requires comparable accuracy in all accelerometers and precision gyros if platform is arbitrary (e.g., strapdown)
- Calgary group demonstrated good results (e.g., Glennie and Schwarz 1999); see also (Czompo and Ferguson 1995)

Rotation-Invariant Scalar Gravimetry (RISG)

- Another option to get \bar{g} : based on total specific force from gravimeter and orthogonal accelerometers

$$
a^{2}=\left(a_{1}^{p}\right)^{2}+\left(a_{2}^{p}\right)^{2}+\left(a_{3}^{p}\right)^{2} \quad\left(=\left(a_{1}^{n^{\prime}}\right)^{2}+\left(a_{2}^{n^{\prime}}\right)^{2}+\left(a_{3}^{n^{\prime}}\right)^{2}\right)
$$

- Then

$$
\begin{aligned}
a_{3}^{n^{\prime}} & =\sqrt{a^{2}-\left(a_{1}^{n^{\prime}}\right)^{2}-\left(a_{2}^{n^{\prime}}\right)^{2}} \\
& =\sqrt{a^{2}-\left(q_{1}^{n^{\prime}}-\bar{g}_{1}^{n^{\prime}}\right)^{2}-\left(q_{2}^{n^{\prime}}-\bar{g}_{2}^{n^{\prime}}\right)^{2}} \\
& =\sqrt{a^{2}-\left(q_{1}^{n^{\prime}}\right)^{2}-\left(q_{2}^{n^{\prime}}\right)^{2} \quad \text { since } \quad \bar{g}_{1}^{n^{\prime}}=0=\bar{g}_{2}^{n^{\prime}}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{g} \equiv \bar{g}_{3}^{n^{\prime}} \approx q_{3}^{n}-\sqrt{a^{2}-\left(q_{1}^{n}\right)^{2}-\left(q_{2}^{n}\right)^{2}} \quad \text { neglecting } \\
& \text { orientation is not specifically needed for } a^{2}
\end{aligned}
$$

- however, errors in $\boldsymbol{q}^{\boldsymbol{n}}$, being squared, tend to bias the result (Olesen 2003)

RISG Approach in More Detail (1)

- Define Earth-fixed velocity vector in the n-frame

$$
\boldsymbol{v}^{n}=\mathbf{C}_{e}^{n} \dot{\boldsymbol{x}}^{e}=\left(\begin{array}{c}
v_{N} \\
v_{E} \\
v_{D}
\end{array}\right)=\left(\begin{array}{c}
\dot{\phi}(M+h) \\
\dot{\lambda}(N+h) \cos \phi \\
-\dot{h}
\end{array}\right) \quad \mathbf{C}_{e}^{n}=\left(\begin{array}{ccc}
-\sin \phi \cos \lambda & -\sin \phi \sin \lambda & \cos \phi \\
-\sin \lambda & \cos \lambda & 0 \\
-\cos \phi \cos \lambda & -\cos \phi \sin \lambda & -\sin \phi
\end{array}\right)
$$

- It can be shown (Appendix A) that

$$
\boldsymbol{q}^{n}=\frac{d \boldsymbol{v}^{n}}{d t}+\left(\begin{array}{ll}
\left.\boldsymbol{\Omega}_{i e}^{n}+\boldsymbol{\Omega}_{i n}^{n}\right) \boldsymbol{v}^{n} & \boldsymbol{\Omega}_{i e}^{n}+\boldsymbol{\Omega}_{i n}^{n}=
\end{array}\left(\begin{array}{ccc}
0 & \left(\dot{\lambda}+2 \omega_{e}\right) \sin \phi & -\dot{\phi} \\
-\left(\dot{\lambda}+2 \omega_{e}\right) \sin \phi & 0 & -\left(\dot{\lambda}+2 \omega_{e}\right) \cos \phi \\
\dot{\phi} & \left(\dot{\lambda}+2 \omega_{e}\right) \cos \phi & 0
\end{array}\right)\right.
$$

- Thus, strictly from GNSS, the third component is

$$
q_{3}^{n}=-\ddot{h}+2 \omega_{e} v_{E} \cos \phi+\frac{v_{N}^{2}}{M+h}+\frac{v_{E}^{2}}{N+h}
$$

RISG Approach in More Detail (2)

- Inertial acceleration includes tilt error if platform is not level

$$
a_{3}^{n^{\prime}}=\left(\mathbf{C}_{p}^{n^{\prime}} \boldsymbol{a}^{p}\right)_{3}=a_{3}^{p}-\delta a_{\text {tilt }} \quad\left(=\sqrt{a^{2}-\left(q_{1}^{n^{\prime}}\right)^{2}-\left(q_{2}^{n^{\prime}}\right)^{2}}\right)
$$

- Kinematic acceleration (from GNSS) includes neglect of DOV

$$
q_{3}^{n^{\prime}}=\left(\mathbf{C}_{n}^{n^{\prime}} \boldsymbol{q}^{n}\right)_{3}=q_{3}^{n}-\delta q_{\mathrm{Dov}}
$$

- Third component of $\overline{\boldsymbol{g}}^{n^{\prime}}=\boldsymbol{q}^{\boldsymbol{n}^{\prime}}-\boldsymbol{a}^{n^{\prime}}$, along plumb line,

$$
\bar{g}=-a_{\substack{p \\ \vdots \\ \text { gravimeter }}}^{\ddot{h}}+\underbrace{2 \omega_{E} v_{E} \cos \phi+\frac{v_{N}^{2}}{M+h}+\frac{v_{E}^{2}}{(N+h)}}_{\delta g_{\text {Eätuös }}}+\delta a_{\text {tilt }}-\delta q_{\mathrm{Dov}}
$$

Eötvös Effect

- Exact in n-frame (note: $v_{N, E}$ at altitude!)

$$
\delta g_{\text {Eätvös }}=2 \omega_{E} v_{E} \cos \phi+\frac{v_{N}^{2}}{M+h}+\frac{v_{E}^{2}}{(N+h)}
$$

- Approximations

- spherical:
$\delta g_{\text {Eötvös }} \approx 2 \omega_{E} v_{E} \cos \phi+\frac{v^{2}}{R+h}$
- first-order ellipsoidal (Harlan 1968):

$$
\delta g_{\text {Ë̈tuös }} \approx \frac{v^{2}}{a}\left(1+\frac{h}{a}-f\left(1-\cos ^{2} \phi\left(3-2 \sin ^{2} \alpha\right)\right)\right)+2 v \omega_{E} \sin \alpha \cos \phi\left(1+\frac{h}{a}\right)+O\left(f^{2}\right)
$$

$a=$ ellipsoid semi-major axis; $\alpha=$ azimuth; $\boldsymbol{v}=$ ground speed!

DOV Error in Kinematic Acceleration

- DOV components define the small angles between the n and n^{\prime}-frames

$$
\mathbf{C}_{n}^{n^{\prime}}=\mathbf{R}_{1}(-\eta) \mathbf{R}_{2}(\xi)=\left(\begin{array}{ccc}
1 & 0 & -\xi \\
0 & 1 & -\eta \\
\xi & \eta & 1
\end{array}\right)
$$

- ignore rotation about 3-axis
- DOV error

$$
\delta q_{\mathrm{Dov}}=q_{3}^{n}-\left(\mathbf{C}_{n}^{n^{\prime}} \boldsymbol{q}^{n}\right)_{3}=-\xi q_{1}^{n}-\eta q_{2}^{n}
$$

- Assume $\operatorname{rms}($ DOV $)=10 \operatorname{arcsec}, q_{1,2}=\mathbf{1 0}^{\mathbf{4}} \mathbf{~ m G a l}$
$\operatorname{rms}\left(\delta q_{\text {Dov }}\right)=0.7 \mathrm{mGal}$
- This error is correctable, e.g., using EGM2008 deflection model

Tilt Error (1)

- One way to compute tilt error (p. 3.27)

$$
\delta a_{\text {tilt }}=a_{3}^{p}-\sqrt{a^{2}-\left(q_{1}^{n}\right)^{2}-\left(q_{2}^{n}\right)^{2}} \quad \text { (neglecting DOV) }
$$

- random errors in q_{1}^{n}, q_{2}^{n} are squared and can cause bias (rectification error)
- Better model for the tilt error (Olesen 2003)
- define orientation angles, v, χ, α
- assume v, χ are small; α is arbitrary

$$
\mathbf{C}_{p}^{n} \approx\left(\begin{array}{ccc}
\cos \alpha & -\sin \alpha & \chi \cos \alpha+v \sin \alpha \\
\sin \alpha & \cos \alpha & \chi \sin \alpha-v \cos \alpha \\
-\chi & v & 1
\end{array}\right)
$$

- thus, approximate platform stabilization is required!

Tilt Error (2)

- From $\overline{\boldsymbol{g}}^{n}=\boldsymbol{q}^{n}-\mathbf{C}_{p}^{n} \boldsymbol{a}^{p}$,

$$
\binom{\bar{g}_{1}^{n}}{\bar{g}_{2}^{n}}=\binom{q_{1}^{n}-a_{1}^{p} \cos \alpha+a_{2}^{p} \sin \alpha-(\chi \cos \alpha+v \sin \alpha) a_{3}^{p}}{q_{2}^{n}-a_{1}^{p} \sin \alpha-a_{2}^{p} \cos \alpha-(\chi \sin \alpha-v \cos \alpha) a_{3}^{p}}
$$

- If $\bar{g}_{1}^{n}=0=\bar{g}_{2}^{n} \quad$ (neglecting DOV is second-order effect on tilt error)

$$
\begin{aligned}
& \chi=\frac{1}{a_{3}^{p}}\left(q_{1}^{n} \cos \alpha+q_{2}^{n} \sin \alpha-a_{1}^{p}\right) \\
& v=\frac{1}{a_{3}^{p}}\left(q_{1}^{n} \sin \alpha-q_{2}^{n} \cos \alpha+a_{2}^{p}\right)
\end{aligned}
$$

Tilt angles are computed from accelerometers, GNSS, and azimuth

- Third component of $\delta \boldsymbol{a}_{\text {tilt }}=\boldsymbol{a}^{p}-\mathbf{C}_{p}^{n} \boldsymbol{a}^{p}$

$$
\delta a_{\text {tilt }} \approx a_{1}^{p} \chi-a_{2}^{p} v \quad \text { (first-order approximation) }
$$

Tilt Error (3)

- Tilt error can be written as
$\delta a_{\mathrm{tilt}} \approx \frac{q_{1}^{w}-a_{1}^{p}}{a_{3}^{p}} a_{1}^{p}+\frac{q_{2}^{w}-a_{2}^{p}}{a_{3}^{p}} a_{2}^{p}$

$$
\begin{aligned}
& q_{1}^{w}=q_{1}^{n} \cos \alpha+q_{2}^{n} \sin \alpha \\
& q_{2}^{w}=-q_{1}^{n} \sin \alpha+q_{2}^{n} \cos \alpha
\end{aligned}
$$

- where q_{1}^{w}, q_{2}^{w} are kinematic accelerations in the "wander-azimuth" frame
- Taking differentials of the specific force components,

$$
\delta\left(\delta a_{\text {tilt }}\right)=\frac{\left(q_{1}^{w}-a_{1}^{p}\right)-a_{1}^{p}}{a_{3}^{p}} \delta a_{1}^{p}+\frac{\left(q_{2}^{w}-a_{2}^{p}\right)-a_{2}^{p}}{a_{3}^{p}} \delta a_{2}^{p}-\frac{\left(q_{1}^{w}-a_{1}^{p}\right) a_{1}^{p}+\left(q_{2}^{w}-a_{2}^{p}\right) a_{2}^{p}}{\left(a_{3}^{p}\right)^{2}} \delta a_{3}^{p}
$$

- Assume $\left(q_{1,2}^{w}-a_{1,2}^{p}\right)=a_{3}^{p} \cdot O(v, \chi) \square 10^{4} \mathrm{mGal}, a_{3}^{p} \approx 10^{6} \mathrm{mGal}, a_{1,2}^{p}=O\left(10^{4} \mathrm{mGal}\right)$
- error in vertical accelerometer (gravimeter) is second-order for tilt correction
- error in horizontal accels. can be 100 worse than tilt correction accuracy
- In practice, tilt correction is subjected to appropriate filters; see (Olesen 2003)

Lever-Arm Effect

- Apply to kinematic acceleration derived from GNSS tracking
- assume gravimeter is at center of mass of vehicle
- In the inertial frame: $\boldsymbol{x}_{\text {antenna }}^{i}=\boldsymbol{x}_{\text {gravimeter }}^{i}+\boldsymbol{b}^{i}$
- where $\boldsymbol{b}^{i}=\mathbf{C}_{b}^{i} \boldsymbol{b}^{b}, \quad \boldsymbol{b}^{b}=$ fixed antenna offset relative to gravimeter

$$
\mathbf{C}_{b}^{i}-\text { obtained from gyro data }
$$

- Numerical differentiation: $\ddot{\boldsymbol{x}}_{\text {gravimeter }}^{i}=\frac{d^{2}}{d t^{2}}\left(\boldsymbol{x}_{\text {annenna }}^{i}-\boldsymbol{b}^{i}\right)$
- extract relevant component in particular frame
- n-frame: vertical component of $\mathbf{C}_{i}^{n} \ddot{\boldsymbol{x}}_{\text {gravimeter }}^{i} \rightarrow \ddot{h}$

Scalar Gravimetry Equation

- Final equation for the gravity anomaly at altitude point, P_{a}^{\prime}

$$
\Delta g_{P_{a}^{\prime}}=f-\ddot{\mathrm{h}}+\delta g_{\text {Eätuös }}+\delta a_{\text {tilt }}-\delta q_{\mathrm{Dov}}-\gamma_{Q_{a}^{\prime}}-\left(f_{0}-g_{0}\right)
$$

- where $f=-a_{3}^{p}$ is the gravity meter reading
- where $\gamma_{Q_{a}^{\prime}}$ is normal gravity at the normal height of P_{a}^{\prime} above the ellipsoid
- where $f_{0}-g_{0}$ is the initial offset of the gravimeter reading from true gravity
- gravimeter measurement, f, includes various inherent instrument corrections
- tilt error depends on accuracy of platform accelerometers
- exact and sufficiently approximate formulas exist for normal gravity at Q_{a}^{\prime}
- accuracy in \ddot{h} must be commensurate with gravimeter accuracy

IV. Overview of Airborne Gravimetry Systems

- LaCoste/Romberg sea-air gravimeters
- Other Airborne gravimeters

Airborne Gravimeters

- Instrumentation overview of scalar airborne gravimetry
- LaCoste-Romberg instruments dominate the field
- many other instrument types in operation or being tested
- All gravimeters are single-axis accelerometers
- mechanical spring accelerometers (vertical spring, horizontal beam)
- manual or automatic (force-rebalance) nulling
- torsion wire (horizontal beam, no nulling)
- electromagnetic spring (force-rebalance)
- vibrating string accelerometers

Lucien J.B. LaCoste (1908-1995)

"The gravity meters Lucien B. LaCoste invented revolutionized geodesy and gave scientists the ability to precisely measure variations in Earth's gravity from land, water, and space" J.C. Harrison (1996)*

- Inventor
- Scientist
- Teacher
- Entrepreneur
*https://web.archive.org/web/20080527061634/http://www.agu.org/sci_soc/lacoste.html
Earth in Space Vol. 8, No. 9, May 1996, pp. 12-13. © 1996 American Geophysical Union;
see also (Harrison 1995).

LaCoste-Romberg Air-Sea Model S Gravimeter

- Beam is in equilibrium if torque(spring) $=$ torque $(\boldsymbol{m g})$
$k\left(\ell-\ell_{0}\right) b \sin \beta=m g a \sin \alpha$
- law of sines: $\ell \sin \beta=d \sin \alpha$
- zero-length spring: $\ell_{0}=0$
$\Rightarrow \quad k b d=m g a$
- independent of $\alpha \rightarrow$ equilibrium at any beam position for a given g
- independent of $\ell \rightarrow$ no change in spring length could accommodate a change in g

- From (Valliant 1992):

infinite sensitivity

\rightarrow measure beam velocity!

(Inherent) Cross-Coupling Effect

- Horizontal accelerations couple into the vertical movement of horizontal beam gravimeters that are not nulled
- total torque on beam due to external accelerations:

$$
T=m a(\ddot{x} \sin \theta+(g+\ddot{z}) \cos \theta)
$$

- it can be shown (LaCoste and Harrison 1961) that the cross-coupling error is

$$
\varepsilon=\frac{1}{2} \ddot{X}_{1} \theta_{1} \cos \psi
$$

where $\ddot{\chi}_{1}, \theta_{1}$ are amplitudes of components of \ddot{x} and θ, respectively, that have the same period and phase difference, ψ

- e.g., $\theta_{1}=1^{\circ}, \quad \ddot{X}_{1}=0.1 \mathrm{~m} / \mathrm{s}^{2} \Rightarrow \varepsilon=90 \mathrm{mGal}$
- There is no cross-coupling effect for
- force-rebalance gravimeters
- vertical-spring gravimeters

LaCoste-Romberg Model S Sensor and Platform

Interior Side View

Stabilized Platform

Outer Frame

From: Instruction Manual, LaCoste and Romberg Model "S" Air-Sea Dynamic Gravimeter, 1998; with permission

LaCoste/Romberg TAGS-6

(Turn-key Airborne Gravity System)

http://www.microglacoste.com/tags-6.php

SPECIFICATIONS

COMPONENT	VARIABLE	SPECIFICATIONS
SENSOR	WORLDWIDE RANGE: DYNAMIC RANGE: DRIFT: TEMPERATURE SETPOINT:	20,000 milliCal $\pm 500,000$ milliCal 3 milliGal per month or less 45° to $65^{\circ} \mathrm{C}$
STABILIZED PLATFORM	PLATFORM PITCH: PLATFORM ROLL: CONTROL: Period Damping	± 25 degrees ± 35 degrees 4 to 4.5 Minutes 0.707 of critical
CONTROL SYSTEM	RECORDING RATE: SERIAL OUTPUT: ADDITIONALI/O:	$\begin{array}{\|l\|} \hline 20 \mathrm{~Hz} \\ \text { RS-232 } \\ \text { Sensor Temperature } \end{array}$
SYSTEM PERFORMANCE	DYNAMIC RANGE: STATIC REPEATABILITY: DYNAMIC REPEATABILITY:	$\begin{aligned} & 25,000,000 \\ & 0.02 \text { milliGal in } 2 \text { min } \\ & 0.75 \text { milliGal in } 2 \mathrm{~min} \end{aligned}$
MISCELLANEOUS	OPERATING TEMPERATURE: STORAGE TEMPERATURE: POWER EQUIPMENTS: DIMENSIONS:	5° to $50^{\circ} \mathrm{C}$ -10° to $50^{\circ} \mathrm{C}$ $75 W$ @ $27^{\circ} \mathrm{C}$ Nominal 300W Peak $80-265 \mathrm{VAC}, 47-63 \mathrm{~Hz}$ $58.4 \times 53.3 \times 55.9 \mathrm{~cm}$ (not including electronics)

BGM-3 Gravimeter

- Bell Aerospace (now Lockheed Martin)
- Model XI pendulous force-rebalance accelerometer
- current needed to keep test mass in null position is proportional to acceleration

Fugro \rightarrow WHOI

https://www.unols.org/sites/default/files/Gravimeter_Kinsey.pdf

(Seiff and Knight 1992); see also (Bell and Watts 1986)

Two BGM-3 gravimeters installed on the USCG ship Healy

Sea Gravimeter KSS31, Bodenseewerk Geosystem GmbH

- Gravity sensor based on Askania vertical-spring gravimeter
- Federal Institute for Geosciences and Natural Resources (BGR)

- force rebalance feedback system

- highly damped output, ~ 3 minute average
- sensor on a gyro-stabilized platform
- also used for fixed wing and helicopter gravimetry

Heyde, J. (2010)

-http://www.bgr.bund.de/DE/Themen/MarineRohstoffforschung/Meeresforschung/Geraete/Gravimeter/gravimeter_inhalt.html
-http://www.bgr.bund.de/EN/Themen/GG_Geophysik/Aerogeophysik/Aerogravimetrie/aerogravimetrie_node_en.html

Chekan-A Gravimeter

- Air-Sea gravimeter; CSRI* Elektropribor, St. Petersburg, Russia

- gravity sensed by deflection of pendulum hinged on quartz torsion wire in viscous fluid
- pendulum deflection: $0.3-1.5$ " $/ \mathrm{mGal}$; e.g., $\pm \mathbf{1}^{\circ} \rightarrow \pm 10$ Gal total range ($0.36 \mathrm{\prime} \mathrm{\prime} / \mathrm{mGal}$)
- cross-coupling effect minimized by double-beam reverted pendulums
- evolutionary modifications: Chekan AM, "Shelf" (Krasnov et al. 2014)

*Central Scientific \& Research Institute

(Stelkens-Kobsch 2005)

Airborne Gravimetry on Airship Platform

Airship AU-30

Relative gravimeter Chekan in a cabin of AU
(http://rosaerosystems.com/airships/obj17)

- test flight January 2014
- reported in IAG Commission 2 Travaux 2015

Airborne Gravimeter GT-2A

- Gravimeter system designed by Gravimetric Technologies (Russia)

- vertical accelerometer of axial design with a test mass on spring suspension
- photoelectric position pickup
- moving-coil force feedback transducer
- three-axis gyro-stabilized platform
- large dynamic range

Measurement range	$9.75 \mathrm{to} 9.85 \mathrm{~m} / \mathrm{sec}^{2}$
Dynamic range	$>+/-1,000 \mathrm{Gals}$
Drift per day (corrected)	$<0.1 \mathrm{mGals}$
RMS error in gravity anomaly estimation	
(static mode up to 12 hours on bench)	
RMS error	$0.6 \mathrm{mGals}(+/-1 \mathrm{LSD} *)$
Attitude limits	
roll	
pitch	$+/-45^{\circ}$
Operating temp	$+/-45^{\circ}$
Power	
operating	$+5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
standby	150 W at 27 Vdc
Weight (with base)	50 W at 27 Vdc
Dimensions console	153.5 kg
Dimensions base	$400 \times 400 \times 600 \mathrm{~mm}$
Service life	$600 \times 300 \mathrm{~mm}$
Error in gravity anomaly estimation (RMS)	
0.01 Hz cut-off	$0.6 \mathrm{mGals}(+/-1 \mathrm{LSD} *)$
*Least Significant Digit	
Specifications subject to change	

http://eongeosciences.com/wp-content/uploads/2015/01/GT_2A.pdf (Canadian Micro Gravity)

Sander Geophysics Ltd. AirGrav System

- "Purpose-built" airborne gravimeter designed for airborne environment, not modified sea gravimeter
- Honeywell inertial navigation grade accelerometers (Annecchione et al. 2006, Sinkiewicz et al. 1997)
- Schuler-tuned (three axis) inertially stabilized platform
- three-accelerometer system; vertical accelerometer used as gravimeter
- advertize gravimetry on topography-draped profiles
- demonstrated success in vector gravimetry
- comparison tests over Canadian Rockies between AirGrav and GT-1A
(Studinger et al. 2008)

http://www.sgl.com/news/Sander\ Geophysics\ -\ Antarctica.pdf

