

- A. Theoretical Fundamentals of Airborne Gravimetry, Parts I and II (Monday, 23 May 2016)
 - I. Introduction Airborne Gravity Data Acquisition
 - **II. Elemental Review of Physical Geodesy**
 - **III. Basic Theory of Moving-Base Scalar Gravimetry**
 - **IV. Overview of Airborne Gravimetry Systems**
- **B.** Theoretical Fundamentals of Gravity Gradiometry and Inertial Gravimetry (Thursday, 26 May 2016)
 - V. Theoretical Fundamentals of Inertial Gravimetry
 - VI. Theoretical Fundamentals of Airborne Gradiometry

Christopher Jekeli Division of Geodetic Science School of Earth Sciences Ohio State University e-mail: jekeli.1@osu.edu

I. Introduction - Airborne Gravity Data Acquisition

- A very brief history of airborne gravimetry
- Why airborne gravimetry?

A Brief History of Airborne Gravimetry

- Natural evolution of successes in 1st half of 20th century with ocean-bottom, submarine, and shipboard gravimeters operating in dynamic environments
 - airborne systems promised rapid, if not highly accurate, regional gravity maps for exploration reconnaissance and military geodetic applications
- Special challenges
 - critical errors are functions of speed and speed-squared
 - difficulty in accurate altitude & vertical acceleration determination
 - trade accuracy for acquisition speed
- 1958: First fixed-wing airborne gravimetry test (Thompson and LaCoste 1960)
 - 5-10 minute average, 10 mgal accuracy
 - high altitude, 6-9 km
- Further tests by exploration concerns
 - LaCoste & Romberg, Austin TX
 - Gravity Meter Exploration Co., Houston, TX
 - 10 mGal accuracy, 3 minute averages (Nettleton et al. 1960)

First Airborne Gravity Test – Air Force Geophysics Lab 1958

Instruction Manual LaCoste Romberg Model "S" Air-Sea Dynamic Gravity Meter, 2002; with permission

• The first LaCoste-Romberg Model "S" Air-Sea Gravimeter

- KC-135 jet tanker
- Doppler navigation system elevation above mean sea level determined from the tracking range data
- flights over an Askania camera tracking range at Edwards Air Force Base

First Successful Helicopter Airborne Gravimetry Test 1965

- Carson Services, Inc. (Carson Helicopter)
 - gimbal-suspended LaCoste and Romberg Sea gravimeter
 - 5 mGal accuracy, hovering at 15 m altitude (Gumert 1998)
 - Navy sponsored
- Further tests and development by exploration companies
 - principally, Carson Services throughout the 1960s and 1970s

Rapid Development with Advent of GPS (1980s and 1990s)

- Naval Research Laboratory – John Brozena
- National Survey and Cadastre of Denmark (DKM) – Rene Forsberg
- Academia (in collaboration with industry and government)
 - University of Calgary (K.P. Schwarz)
 - University FAF Munich (G. Hein)
 - Swiss Federal Institute of Technology (E.E. Klingele)
 - Lamont-Doherty Earth (Geological) Observatory (R. Bell)

Twin-Otter Aircraft

• Industry ...

The Need for Global Gravity Data

• Gravity data until the early 1960s were obtained primarily by point measurements on land and along some ship tracks.

- map of data archive of 1963 (Kaula 1963)

1990s – More Data, Still Many Gaps

- Greater uniformity, but only at relatively low resolution
 - map of terrestrial 1°×1° anomaly archive of 1990 (Rapp and Pavlis 1990)

Why Airborne Gravimetry?

Satellite Resolution vs Mission Duration and Integration Time

- Satellite-derived gravitational models are limited in spatial resolution because of high inherent satellite speed
- Only airborne gravimetry yields higher resolution efficiently

Gravity Resolution vs Accuracy Requirements in Geophysics

Satellite Gravimetry/Gradiometry Airborne Gravimetry/Gradiometry

Geodetic Motivation

http://www.fourwinds10.net/resources/uploads/images/missouri%20river%20flooding(1).jpg

GNSS and Geopotential

- Traditional height reference surface: equipotential surface (geoid)
 - needed for determining and monitoring the flow of water, from flood control to sea level rise
 - replace arduous spirit leveling with GNSS: H = h N

II. Elemental Review of Physical Geodesy

- Gravitational potential, gravity
- Normal gravity
- Disturbing potential, gravity anomaly, deflection of the vertical
- Geoid determination aspects

Basic Definitions

- Gravitational potential, V
 - due to mass attraction
 - gravitational acceleration: $g = \nabla V$
- Centrifugal "potential", ϕ
 - due to Earth's rotation
 - centrifugal acceleration: $a_{cent} = \nabla \phi$

- gravity acceleration: $\overline{g} = g + a_{cent}$

Physical geodesy makes the distinction between gravitation and gravity, especially in terrestrial gravimetry

Normal Gravitational Potential

- Mathematically simple potential and boundary
 - approximates Earth's potential and geoid to about 5 ppm
 - approximates Earth's gravity to about 50 ppm
 - rotates with the Earth

Normal Gravity Potential

• Expressed as spherical harmonic series in spherical coordinates

$$U(r,\theta) = V(r,\theta) + \phi(r,\theta)$$
$$= \frac{GM}{a} \sum_{n=0}^{\infty} \left(\frac{a}{r}\right)^{2n+1} C_{2n}^{N} P_{2n}(\cos\theta) + \frac{1}{2}\omega_e^2 r^2 \sin^2\theta$$

- closed expression exists in ellipsoidal coordinates
- C_{2n}^N depends on only 4 parameters: ω_e, C_2^N, a, GM - (e.g., WGS84 parameters)
- Normal gravity vector: $\gamma = \nabla U$

$$\omega_e = 7.292115 \times 10^{-5} \text{ rad/s}$$

 $C_2^N = -0.484166774985 \times 10^{-3}$
 $a = 6378137. \text{ m}$
 $GM = 3.986004418 \times 10^{14} \text{ m}^3/\text{s}^2$

Gravity Disturbance and Anomaly

- **Disturbing potential**: T = W U (*W* = total gravity potential)
- Gravity disturbance vector: $\delta g = \nabla W \nabla U = g \gamma$
 - gravity disturbance: $\delta g = |\mathbf{g}| |\boldsymbol{\gamma}|$
 - in *n*-frame (North-East-Down):

 \circ due to symmetry, $\gamma_{\rm E} = 0$

• near Earth's surface, $\gamma_{\rm N} \approx 0$

- Gravity anomaly vector: $\Delta g_P = \nabla W_P \nabla U_Q = g_P \gamma_Q$
 - -P and Q are points on the ellipsoid normal such that $W_P = U_Q$
 - gravity anomaly: $\Delta g_P = |\mathbf{g}_P| |\mathbf{\gamma}_Q|$

 $\delta \boldsymbol{g}^{n} = \begin{pmatrix} g_{N} - \gamma_{N} \\ g_{E} \\ g_{D} - \gamma_{D} \end{pmatrix} \approx \begin{pmatrix} g_{N} \\ g_{E} \\ g_{D} - \gamma_{D} \end{pmatrix}$

Deflection of the Vertical

 ξ = north deflection

 η = east deflection

$$\boldsymbol{\nabla}T = \delta \boldsymbol{g}^{n} \approx \begin{pmatrix} -\xi g \\ -\eta g \\ \delta g \end{pmatrix} \approx \begin{pmatrix} g_{N} \\ g_{E} \\ g_{D} - \gamma_{D} \end{pmatrix}$$

- linear approximation
- signs agree with convention of astronomic deflection of the vertical

Geoid Determination

• Bruns's Formula: $N_{P_0} = \frac{1}{\gamma_{Q_0}} T_{P_0} + N_0$ where N_0 is a height datum offset

• **Boundary-value Problem:** $\nabla^2 T = 0$ above geoid (by assumption)

Stokes's formula

$$N_{P_0} = N_0 + \frac{R}{4\pi\gamma_{Q_0}} \iint_{\Omega} \Delta g_{P_0'} S\left(\psi_{P_0, P_0'}\right) d\Omega$$

 N_{P_0}

 P_0

 $\Delta g_{P'_0}$

p'

 \mathcal{Q}_0

topographic

surface

geoid

ellipsoid

Details

- Gravity reductions to satisfy the boundary-value conditions
 - re-distribution of topographic mass; consequent indirect effect
 - downward continuation (various methods)
- Ellipsoidal corrections
 - account for spherical approximation of geoid, boundary condition
- Include existing spherical harmonic model (satellite-derived)
 - remove-compute-restore techniques
- Back to Motivation
 - use airborne gravimetry to improve spatial resolution of data (boundary values) – few km to 200 km wavelengths

III. Basic Theory of Moving-Base Scalar Gravimetry

- Fundamental laws of physics and the gravimetry equation
- Coordinate frames
- Mechanizations and methods of scalar gravimetry
- Rudimentary error analyses

Fundamental Physical Laws

- Moving-Base Gravimetry and Gradiometry are based on 3 fundamental laws in physics
 - -Newton's Second Law of Motion
 - -Newton's Law of Gravitation
 - Einstein's Equivalence Principle
- Laws are expressed in an inertial frame

Issac Newton 1643 - 1727

Albert Einstein 1879 – 1955

- General Relativistic effects are not yet needed
 - however, the interpretation of space in the theory of general relativity is used to distinguish between applied and gravitational forces

Inertial Frame

notation convention:

- axis identified by number
- superscript identifies frame

- The realization of a system of coordinates that does not rotate (and is in free-fall, e.g., Earth-centered)
- Modern definition: fixed to quasars which exhibit no relative motion on celestial sphere
- International Celestial Reference Frame (ICRF) based on coordinates of 295 stable quasars

Newton's Second Law of Motion

• Time-rate of change of linear momentum equals applied force, F

$$\frac{d}{dt}(m_i \dot{x}) = F \qquad \qquad F \longrightarrow m_i \\ \xrightarrow{} x$$

 $-m_i$ is the inertial mass of the test body

 $(m_i = \text{constant} \rightarrow m_i \ddot{\mathbf{x}} = \mathbf{F})$

• In the presence of a gravitational field, this law must be modified:

$$m_i \ddot{\mathbf{x}} = \mathbf{F} + \mathbf{F}_g$$

- $-F_g$ is a force associated with the gravitational acceleration due to a field (or space curvature) generated by all masses in the universe, relative to the freely-falling frame (Earth's mass and tidal effects due to moon, sun, etc.)
- action forces, F, and gravitational forces, F_g , are fundamentally different

Newton's Law of Gravitation

Gravitational force vector

$$\boldsymbol{F}_g = G \frac{Mm_g}{\ell^2} \boldsymbol{n} = m_g \boldsymbol{g}$$

- -G = Newton's gravitational constant
- -g = gravitational acceleration due to M
- $-m_g$ is the gravitational mass of the test body
- it's easier to work with field potential, V

$$g = \nabla V$$
 $V = GM/\ell$

- Many mass points
 - law of superposition:

mass continuum:

 $V_P = G \sum_{i} \frac{M_j}{\ell_i}$

attracting

dM

mass

unit vecto

Equivalence Principle (1)

- A. Einstein (1907): No experiment performed in a closed system can distinguish between an accelerated reference frame or a reference frame at rest in a uniform gravitational field.
 - consequence: inertial mass equals gravitational mass

$$m_i = m_g = m$$

- Experimental evidence has not been able to dispute this assumption
 - violation of the principle may lead to new theories that unify gravitational and other forces
 - proposed French Space Agency mission, MICROSCOPE*, aims to push the sensitivity by many orders of magnitude

* Micro-Satellite à traînée Compensée pour l'Observation du Principe d'Equivalence (Drag Compensated Micro-satellite to Observe the Equivalence Principle); Berge et al. (2015) http://arxiv.org/abs/1501.01644

Equivalence Principle (2)

• Equation of motion in the inertial frame

$$\ddot{\boldsymbol{x}}^i = \frac{\boldsymbol{F}^i}{m} + \boldsymbol{g}^i$$

• $\ddot{x} = \frac{d^2 x}{dt^2}$, vector of total kinematic acceleration

• $\frac{F^{i}}{m} = a^{i}$, specific force, or the acceleration resulting from an action force; e.g., thrust of a rocket

$$\vec{x}^i = a^i + g^i$$

 $|a| \leq |g| \implies$ no lift-off !

What Does an Accelerometer Sense?

• Accelerometer does *not* sense gravitation, only acceleration due to action force (including *reaction* forces!)

What Does Accelerometer (or Gravimeter) on Rocket Sense?

Airborne Gravity for Geodesy Summer School, 23-27 May 2016 Theoretical Fundamentals of Airborne Gravimetry, C. Jekeli, OSU 3.9

Static Gravimetry – Special Case

- Assume non-rotating Earth (for simplicity) $g = \ddot{x} a$
- Relative (spring) gravimeter: $\ddot{x} = 0 \implies a = -g$
 - it is an accelerometer that senses specific force, a
 - with sensitive axis along plumb line, *a* is the reaction force of Earth's surface that keeps the gravimeter from falling
- Absolute (ballistic) gravimeter: $a = 0 \implies \ddot{x} = g$
 - it tracks a test mass in vacuum (zero spring force)
 - indirectly, it senses the reaction force that keeps the reference from falling
- All operational moving-base gravimeters are relative sensors

Basic Equation for Moving-Base Gravimetry

• In the inertial frame:

$$\mathbf{g}^{i} = \mathbf{\ddot{x}}^{i} - \mathbf{a}^{i}$$

- Because:
 - specific forces are measured in a non-inertial frame attached to a rotating body (vehicle)
 - specific forces and kinematic accelerations refer to different measurement points of the instrument-carrying vehicle
 - generally, gravitation is desired in a local, Earth-fixed frame
- Need to introduce:
 - coordinate frames
 - rotations and lever-arm effects
- Get more complicated expressions for gravimetry equation

Two Possible Approaches to Determine g(1)

- For concepts, consider inertial frame for simplicity: $\ddot{x}^i = a^i + g^i$
- Position (Tracking) Method to determine the unknown: g
 - Integrate equations of motion

$$\boldsymbol{x}^{i}(t) = \boldsymbol{x}^{i}(t_{0}) + \dot{\boldsymbol{x}}^{i}(t_{0})(t-t_{0}) + \int_{t_{0}}^{t} (t-t')(\boldsymbol{a}^{i}(t') + \boldsymbol{g}^{i}(t'))dt'$$

- **Positions**, *x*: from tracking system, like GPS or other GNSS
- Specific forces, *a*: from accelerometer
- method is used for geopotential determination with satellite tracking, and was used also with ground-based inertial positioning systems
- Advantage: do not need to differentiate x to get \ddot{x}
- Disadvantage: g must be modeled in some way to perform the integration (e.g., spherical harmonics in satellite tracking, with statistical constraint)
- Not used for scalar airborne gravimetry due to vertical instability of integral
 - but can be (is) used for horizontal components of gravity!

Two Possible Approaches to Determine *g***(2)**

• Accelerometry Method to determine the unknown: g

$$g^i = \ddot{x}^i - a^i$$

- **Specific force**, *a* : from accelerometer
- Kinematic acceleration, x : by differentiating position from tracking system, like GPS (GNSS)
- Advantage: g does not need to be modeled
- Disadvantage: positions are processed with two numerical differentiations

 \circ advanced numerical techniques \rightarrow may be less serious than gravity modeling problem

- Either position method or accelerometry method requires two independent sensor systems
 - Tracking system
 - Accelerometer (gravimeter)
 - Gravimetry accuracy depends equally on the precision of both systems

The Challenge of Airborne Gravimetry

- Both systems measure large signals e.g., (> ± 10000 mGal)
- Desired gravity disturbance is orders of magnitude smaller
 - signal-to-noise ratio may be very small, depending on system accuracies
- e.g., INS/GPS system data from University of Calgary, 1996

Coordinate Frames

- Other coordinate frames
 - rotating with respect to inertial frame,
 - may have different origin point,
 - have different form of Newton's law of motion,
 - all defined by three mutually orthogonal, usually right-handed axes (Cartesian coordinates).
- Specific frames to be considered:
 - navigation frame: frame in which navigation equations are formulated; usually identified with local North-East-Down (NED) directions (*n*-frame).
 - Earth-centered-Earth-fixed frame: frame with origin at Earth's center of mass and axes defined by conventional pole and Greenwich meridian (Cartesian or geodetic coordinates) (*e*-frame).

Earth-Centered-Earth-Fixed Coordinates

- Cartesian coordinate vector in *e*-frame: $\mathbf{x}^e = \begin{pmatrix} x_1^e & x_2^e & x_3^e \end{pmatrix}^T$
- Geodetic coordinates, latitude, longitude, height: ϕ, λ, h

Transforming Between Cartesian & Geodetic Coordinates

$$x_{1}^{e} = (N+h)\cos\phi\cos\lambda \qquad \phi = \tan^{-1}\left(\frac{x_{3}^{e}}{\sqrt{\left(x_{1}^{e}\right)^{2} + \left(x_{2}^{e}\right)^{2}}}\left(1 + \frac{e^{2}N\sin\phi}{x_{3}^{e}}\right)\right)$$

$$x_{2}^{e} = (N+h)\cos\phi\sin\lambda \qquad \lambda = \tan^{-1}\left(x_{2}^{e}/x_{1}^{e}\right)$$

$$x_{3}^{e} = \left(N\left(1 - e^{2}\right) + h\right)\sin\phi \qquad h = \sqrt{\left(x_{1}^{e}\right)^{2} + \left(x_{2}^{e}\right)^{2}}\cos\phi + x_{3}^{e}\sin\phi - a^{2}/N$$
meridian plane
$$radius \text{ of curvature in prime vertical:}$$

$$N = \frac{a}{\sqrt{1 - e^{2}\sin^{2}\phi}}$$

$$radius \text{ of curvature in meridian:}$$

$$M = \frac{a\left(1 - e^{2}\right)}{\left(1 - e^{2}\sin^{2}\phi\right)^{3/2}}$$

• Cartesian and geodetic coordinates may be used interchangeably

Rotations and Angular Rates Between Frames

- Assume common origin for frames
- C_t^s = matrix that rotates coordinates from *t*-frame to *s*-frame
 - vector, \boldsymbol{x} : $\boldsymbol{x}^s = \boldsymbol{C}_t^s \boldsymbol{x}^t$
 - matrix, A: $\mathbf{A}^s = \mathbf{C}_t^s \mathbf{A}^t \mathbf{C}_s^t$

-
$$\mathbf{C}_{t}^{s}$$
 is orthogonal: $\mathbf{C}_{s}^{t} \equiv \left(\mathbf{C}_{t}^{s}\right)^{-1} = \left(\mathbf{C}_{t}^{s}\right)^{\mathrm{T}}$

• ω_{st}^t = angular rate vector of *t*-frame relative to *s*-frame; components in *t*-frame

• Let
$$\boldsymbol{\omega}_{st}^{t} = \begin{pmatrix} \boldsymbol{\omega}_{1} \\ \boldsymbol{\omega}_{2} \\ \boldsymbol{\omega}_{3} \end{pmatrix}$$
 then $\begin{bmatrix} \boldsymbol{\omega}_{st}^{t} \times \end{bmatrix} \equiv \boldsymbol{\Omega}_{st}^{t} = \begin{pmatrix} 0 & -\boldsymbol{\omega}_{3} & \boldsymbol{\omega}_{2} \\ \boldsymbol{\omega}_{3} & 0 & -\boldsymbol{\omega}_{1} \\ -\boldsymbol{\omega}_{2} & \boldsymbol{\omega}_{1} & 0 \end{pmatrix}$

- cross-product is same as multiplication by skew-symmetric matrix

• Time-derivative: $\dot{\mathbf{C}}_{t}^{s} = \mathbf{C}_{t}^{s} \left[\boldsymbol{\omega}_{st}^{t} \times \right] = \mathbf{C}_{t}^{s} \boldsymbol{\Omega}_{st}^{t}$

Earth-Fixed vs. Inertial Frames

 $3^{i,e}$

 $\omega_E t$

 1^{l}

 $\downarrow \omega_E$

1 e

a_{cent}

• Transformation of coordinates between *i*-frame and *e*-frame is just a rotation about the 3-axis

$$\mathbf{x}^{i} = \mathbf{C}_{e}^{i} \mathbf{x}^{e} \implies \ddot{\mathbf{x}}^{i} = \ddot{\mathbf{C}}_{e}^{i} \mathbf{x}^{e} + 2\dot{\mathbf{C}}_{e}^{i} \dot{\mathbf{x}}^{e} + \mathbf{C}_{e}^{i} \ddot{\mathbf{x}}^{e}$$

$$\boldsymbol{\omega}_{ie}^{e} = \begin{pmatrix} 0^{*} & 0^{*} & \boldsymbol{\omega}_{E} \end{pmatrix}^{\mathrm{T}}$$

 ω_E = Earth's rotation rate

0^{*} = neglect rates of polar motion and precession/nutation

$$d\boldsymbol{\omega}_{ie}^{e}/dt = \mathbf{0}$$

$$\ddot{\boldsymbol{x}}^{i} = \mathbf{C}_{e}^{i} \left(\boldsymbol{\Omega}_{ie}^{e} \boldsymbol{\Omega}_{ie}^{e} + \dot{\boldsymbol{\Omega}}_{ie}^{e} \right) \boldsymbol{x}^{e} + 2\mathbf{C}_{e}^{i} \boldsymbol{\Omega}_{ie}^{e} \dot{\boldsymbol{x}}^{e} + \mathbf{C}_{e}^{i} \ddot{\boldsymbol{x}}^{e}$$

• Extract centrifugal acceleration from other kinematic accelerations

$$C_{i}^{e}\ddot{x}^{i} = \Omega_{ie}^{e}\Omega_{ie}^{e}x^{e} + 2\Omega_{ie}^{e}\dot{x}^{e} + \ddot{x}^{e} = a^{e} + g^{e}$$
$$= -a_{cent}^{e} + q^{e} \qquad \leftarrow \text{ defines } q \qquad \Rightarrow \quad \overline{g}^{e} = q^{e} - a^{e}$$

Navigation Frame

- Usually, north-east-down (NED)-frame, or *n*-frame
 - moves with the vehicle not used for coordinates of the vehicle
 - used as reference for velocity and orientation of the vehicle; and, gravity
- Alternative: vertical along plumb line, *n'*-frame

Body Frame

• Axes are defined by principal axes of the vehicle: forward (1), to-the-right (2), and through-the-floor (3)

- Gravimeter (G) measurements are made either:
 - in the *b*-frame strapdown system; gyro data provide orientation
 - in the *n*-, *n'*-frames platform is stabilized using IMUs^{*}

* inertial measurement units

Moving-Base Gravimetry – Strapdown Mechanization

 a^{b} – inertial accelerations measured by accelerometers in body frame

 \ddot{x}^i – kinematic accelerations obtained from GNSS-derived positions, x, in *i*-frame

$$\mathbf{C}_{i}^{n} = \begin{pmatrix} -\sin\phi\cos\left(\lambda + \omega_{E}t\right) & -\sin\phi\sin\left(\lambda + \omega_{E}t\right) & \cos\phi \\ -\sin\left(\lambda + \omega_{E}t\right) & \cos\left(\lambda + \omega_{E}t\right) & 0 \\ -\cos\phi\cos\left(\lambda + \omega_{E}t\right) & -\cos\phi\sin\left(\lambda + \omega_{E}t\right) & -\sin\phi \end{pmatrix}$$

- transformation obtained from GNSS-derived positions, ϕ , λ

- lever-arm effects are assumed to be applied

Moving-Base Gravimetry – Stabilized Mechanization

- Inertial accelerations, *a^p*, from accelerometers in platform frame
- Mechanizations
 - two-axis damped platform level (n'-frame) alignment using gyro-driven gimballed platform in the short term and mean zero output of horizontal accelerometers in the long term

adequate for benign dynamics

- Schuler-tuned inertial stabilized platform alignment to *n*-frame based on inertial /GNSS navigation solution and gyro-driven platform stabilization
 - ideally, $C_p^n = I$; but note, *n*-frame differs from *n'*-frame by deflection of the vertical

better for more dynamic environments

- horizontal accelerometer, through processor, ensures that gryoscope reference direction is precessed to account for Earth rotation and curvature
 - zero acceleration implies level orientation (without horizontal specific forces!)
 - ad hoc damping of platform by processor
 - corrects gyro drift, but is subject to accelerometer bias

• Schuler-tuned three-axis stabilization: more accurate IMUs and *n*-frame stabilization (using navigation solution velocity in *n*-frame)

Scalar Moving-Base Gravimetry

- Determine the magnitude of gravity the plumb line component
 - consistent with ground-based measurement (recall gravimeter is leveled)

Unconstrained Scalar Gravimetry

- One Option: $\overline{g} = \left| \overline{g}^n \right| = \left| q^n a^n \right|$
 - **unconstrained** in the sense that the frame for vectors is arbitrary (*n*-frame is used for illustration)
 - also known as strapdown inertial scalar gravimetry (SISG)
 - $q^n = \mathbf{C}_i^n \ddot{\mathbf{x}}^i + a_{\text{cent}}^n$ obtained exclusively from GNSS
 - $a^n = C_b^n a^b$ requires orientation of *b*-frame (relative to *n*-frame)
- Requires comparable accuracy in all accelerometers and precision gyros if platform is arbitrary (e.g., strapdown)
- Calgary group demonstrated good results (e.g., Glennie and Schwarz 1999); see also (Czompo and Ferguson 1995)

Rotation-Invariant Scalar Gravimetry (RISG)

• Another option to get \overline{g} : based on total specific force from gravimeter and orthogonal accelerometers

$$a^{2} = (a_{1}^{p})^{2} + (a_{2}^{p})^{2} + (a_{3}^{p})^{2} \quad \left(=(a_{1}^{n'})^{2} + (a_{2}^{n'})^{2} + (a_{3}^{n'})^{2}\right)$$

• Then $a_{3}^{n'} = \sqrt{a^{2} - (a_{1}^{n'})^{2} - (a_{2}^{n'})^{2}}$
 $= \sqrt{a^{2} - (q_{1}^{n'} - \overline{g}_{1}^{n'})^{2} - (q_{2}^{n'} - \overline{g}_{2}^{n'})^{2}}$
 $= \sqrt{a^{2} - (q_{1}^{n'})^{2} - (q_{2}^{n'})^{2}}$ since $\overline{g}_{1}^{n'} = 0 = \overline{g}_{2}^{n'}$
 $\overline{g} = \overline{g}_{3}^{n'} \approx q_{3}^{n} - \sqrt{a^{2} - (q_{1}^{n})^{2} - (q_{2}^{n})^{2}}$ neglecting the DOV, $q^{n'} =$

• Platform orientation is not specifically needed for a^2

- however, errors in q^n , being squared, tend to bias the result (Olesen 2003)

 q^n

RISG Approach in More Detail (1)

• Define Earth-fixed velocity vector in the *n*-frame

$$\boldsymbol{v}^{n} = \mathbf{C}_{e}^{n} \dot{\boldsymbol{x}}^{e} = \begin{pmatrix} v_{N} \\ v_{E} \\ v_{D} \end{pmatrix} = \begin{pmatrix} \dot{\phi}(M+h) \\ \dot{\lambda}(N+h)\cos\phi \\ -\dot{h} \end{pmatrix} \qquad \mathbf{C}_{e}^{n} = \begin{pmatrix} -\sin\phi\cos\lambda & -\sin\phi\sin\lambda & \cos\phi \\ -\sin\phi\cos\lambda & 0 \\ -\cos\phi\cos\lambda & -\cos\phi\sin\lambda & -\sin\phi \end{pmatrix}$$

• It can be shown (Appendix A) that

$$\boldsymbol{q}^{n} = \frac{d\boldsymbol{v}^{n}}{dt} + \left(\boldsymbol{\Omega}_{ie}^{n} + \boldsymbol{\Omega}_{in}^{n}\right)\boldsymbol{v}^{n} \qquad \boldsymbol{\Omega}_{ie}^{n} + \boldsymbol{\Omega}_{in}^{n} = \begin{pmatrix} 0 & \left(\dot{\lambda} + 2\omega_{e}\right)\sin\phi & -\dot{\phi} \\ -\left(\dot{\lambda} + 2\omega_{e}\right)\sin\phi & 0 & -\left(\dot{\lambda} + 2\omega_{e}\right)\cos\phi \\ \dot{\phi} & \left(\dot{\lambda} + 2\omega_{e}\right)\cos\phi & 0 \end{pmatrix}$$

• Thus, strictly from GNSS, the third component is

$$q_3^n = -\ddot{h} + 2\omega_e v_E \cos\phi + \frac{v_N^2}{M+h} + \frac{v_E^2}{N+h}$$

RISG Approach in More Detail (2)

• Inertial acceleration includes tilt error if platform is not level

$$a_{3}^{n'} = \left(\mathbf{C}_{p}^{n'} \boldsymbol{a}^{p}\right)_{3} = a_{3}^{p} - \delta a_{\text{tilt}} \quad \left(=\sqrt{a^{2} - \left(q_{1}^{n'}\right)^{2} - \left(q_{2}^{n'}\right)^{2}}\right)$$

• Kinematic acceleration (from GNSS) includes neglect of DOV

$$q_3^{n'} = \left(\mathbf{C}_n^{n'} \boldsymbol{q}^n\right)_3 = q_3^n - \delta q_{\text{DOV}}$$

• Third component of $\overline{g}^{n'} = q^{n'} - a^{n'}$, along plumb line,

$$\overline{g} = -a_3^p - \ddot{h} + 2\omega_E v_E \cos\phi + \frac{v_N^2}{M+h} + \frac{v_E^2}{(N+h)} + \delta a_{\text{tilt}} - \delta q_{\text{DOV}}$$
gravimeter
$$\delta g_{\text{Eötvös}}$$

Eötvös Effect

• Exact in *n*-frame (note: $v_{N,E}$ at altitude!)

a = ellipsoid semi-major axis; α = azimuth; *v* = ground speed!

DOV Error in Kinematic Acceleration

• DOV components define the small angles between the *n*and *n'*-frames

- Assume rms(DOV) = 10 arcsec, $q_{1,2} = 10^4$ mGal rms $(\delta q_{DOV}) = 0.7$ mGal
- This error is correctable, e.g., using EGM2008 deflection model

Tilt Error (1)

• One way to compute tilt error (p. 3.27)

$$\delta a_{\text{tilt}} = a_3^p - \sqrt{a^2 - (q_1^n)^2 - (q_2^n)^2} \qquad \text{(neglecting DOV)}$$

- random errors in q_1^n, q_2^n are squared and can cause bias (rectification error)
- Better model for the tilt error (Olesen 2003)

- thus, approximate platform stabilization is required!

Tilt Error (2)

• From $\overline{g}^n = q^n - \mathbf{C}_p^n a^p$,

$$\begin{pmatrix} \overline{g}_1^n \\ \overline{g}_2^n \end{pmatrix} = \begin{pmatrix} q_1^n - a_1^p \cos \alpha + a_2^p \sin \alpha - (\chi \cos \alpha + v \sin \alpha) a_3^p \\ q_2^n - a_1^p \sin \alpha - a_2^p \cos \alpha - (\chi \sin \alpha - v \cos \alpha) a_3^p \end{pmatrix}$$

• If $\overline{g}_1^n = 0 = \overline{g}_2^n$ (neglecting DOV is second-order effect on tilt error)

$$\chi = \frac{1}{a_3^p} \left(q_1^n \cos \alpha + q_2^n \sin \alpha - a_1^p \right)$$

$$v = \frac{1}{a_3^p} \left(q_1^n \sin \alpha - q_2^n \cos \alpha + a_2^p \right)$$

Tilt angles are **computed** from accelerometers, GNSS, and azimuth

• Third component of $\delta a_{tilt} = a^p - C_p^n a^p$

 $\delta a_{\text{tilt}} \approx a_1^p \chi - a_2^p v$ (first-order approximation)

Tilt Error (3)

• Tilt error can be written as

- where q_1^w, q_2^w are kinematic accelerations in the "wander-azimuth" frame

• Taking differentials of the specific force components,

$$\delta(\delta a_{\text{tilt}}) = \frac{\left(q_1^w - a_1^p\right) - a_1^p}{a_3^p} \delta a_1^p + \frac{\left(q_2^w - a_2^p\right) - a_2^p}{a_3^p} \delta a_2^p - \frac{\left(q_1^w - a_1^p\right)a_1^p + \left(q_2^w - a_2^p\right)a_2^p}{\left(a_3^p\right)^2} \delta a_3^p$$

• Assume $(q_{1,2}^w - a_{1,2}^p) = a_3^p \cdot O(v,\chi) \square 10^4 \text{ mGal}, a_3^p \approx 10^6 \text{ mGal}, a_{1,2}^p = O(10^4 \text{ mGal})$

- error in vertical accelerometer (gravimeter) is second-order for tilt correction
- error in horizontal accels. can be 100 worse than tilt correction accuracy

• In practice, tilt correction is subjected to appropriate filters; see (Olesen 2003)

Lever-Arm Effect

- Apply to kinematic acceleration derived from GNSS tracking
 - assume gravimeter is at center of mass of vehicle
- In the inertial frame: $x_{antenna}^i = x_{gravimeter}^i + b^i$

- where $\boldsymbol{b}^i = \mathbf{C}_b^i \boldsymbol{b}^b$, $\boldsymbol{b}^b =$ fixed antenna offset relative to gravimeter

 \mathbf{C}_{b}^{i} – obtained from gyro data

• Numerical differentiation: $\ddot{x}_{\text{gravimeter}}^{i} = \frac{d^{2}}{dt^{2}} \left(x_{\text{antenna}}^{i} - b^{i} \right)$

- extract relevant component in particular frame

• *n*-frame: vertical component of
$$\mathbf{C}_i^n \ddot{\mathbf{x}}_{\text{gravimeter}}^i \rightarrow \ddot{h}$$

Scalar Gravimetry Equation

• Final equation for the gravity anomaly at altitude point, P'_a

$$\Delta g_{P'_a} = f - \ddot{h} + \delta g_{\text{E\"otv\"os}} + \delta a_{\text{tilt}} - \delta q_{\text{DOV}} - \gamma_{Q'_a} - (f_0 - g_0)$$

- where $f = -a_3^p$ is the gravity meter reading
- where $\gamma_{Q'_a}$ is normal gravity at the normal height of P'_a above the ellipsoid
- where $f_0 g_0$ is the initial offset of the gravimeter reading from true gravity
- gravimeter measurement, f, includes various inherent instrument corrections
- tilt error depends on accuracy of platform accelerometers
- exact and sufficiently approximate formulas exist for normal gravity at Q'_a
- accuracy in \ddot{h} must be commensurate with gravimeter accuracy

IV. Overview of Airborne Gravimetry Systems

- LaCoste/Romberg sea-air gravimeters
- Other Airborne gravimeters

Airborne Gravimeters

- Instrumentation overview of scalar airborne gravimetry
 - LaCoste-Romberg instruments dominate the field
 - many other instrument types in operation or being tested
- All gravimeters are single-axis accelerometers
 - mechanical spring accelerometers (vertical spring, horizontal beam)
 - manual or automatic (force-rebalance) nulling
 - torsion wire (horizontal beam, no nulling)
 - electromagnetic spring (force-rebalance)
 - vibrating string accelerometers

Lucien J.B. LaCoste (1908-1995)

"The gravity meters Lucien B. LaCoste invented revolutionized geodesy and gave scientists the ability to precisely measure variations in Earth's gravity from land, water, and space" J.C. Harrison (1996)*

- Inventor
- Scientist
- Teacher
- Entrepreneur

At University of Texas, Austin

*https://web.archive.org/web/20080527061634/http://www.agu.org/sci_soc/lacoste.html *Earth in Space Vol. 8, No. 9, May 1996, pp. 12-13.* © *1996 American Geophysical Union*; see also (Harrison 1995).

LaCoste-Romberg Air-Sea Model S Gravimeter

- Beam is in equilibrium if torque(spring) = torque(mg)
 - $k(\ell \ell_0)b\sin\beta = mga\sin\alpha$
 - law of sines: $l \sin \beta = d \sin \alpha$
 - zero-length spring: $\ell_0 = 0$
 - $\Rightarrow kbd = mga$
 - independent of $\alpha \rightarrow$ equilibrium at any beam position for a given g
 - independent of $\ell \rightarrow$ no change in spring length could accommodate a change in g
- From (Valliant 1992):

finite sensitivity

exactly vertical

infinite sensitivity

→ measure beam velocity!

mg

(Inherent) Cross-Coupling Effect

- Horizontal accelerations couple into the vertical movement of horizontal beam gravimeters that are not nulled
 - total torque on beam due to external accelerations:

 $T = ma(\ddot{x}\sin\theta + (g + \ddot{z})\cos\theta)$

 it can be shown (LaCoste and Harrison 1961) that the cross-coupling error is

$$\varepsilon = \frac{1}{2}\ddot{x}_1\theta_1\cos\psi$$

where \ddot{x}_1, θ_1 are amplitudes of components of \ddot{x} and θ , respectively, that have the same period and phase difference, ψ

- e.g., $\theta_1 = 1^\circ$, $\ddot{x}_1 = 0.1 \text{ m/s}^2 \implies \varepsilon = 90 \text{ mGal}$
- There is no cross-coupling effect for
 - force-rebalance gravimeters
 - vertical-spring gravimeters

LaCoste-Romberg Model S Sensor and Platform

Interior Side View

Stabilized Platform

Outer Frame

view of top lid

From: Instruction Manual, LaCoste and Romberg Model "S" Air-Sea Dynamic Gravimeter, 1998; with permission

Airborne Gravity for Geodesy Summer School, 23-27 May 2016

Overview of Airborne Gravimetry Systems, C. Jekeli, OSU

LaCoste/Romberg TAGS-6

(Turn-key Airborne Gravity System)

http://www.microglacoste.com/tags-6.php

COMPONENT	VARIABLE	SPECIFICATIONS
SENSOR	WORLDWIDE RANGE: DYNAMIC RANGE: DRIFT: TEMPERATURE SETPOINT:	20,000 milliGal ±500,000 milliGal 3 milliGal per month or less 45° to 65°C
STABILIZED PLATFORM	PLATFORM PITCH: PLATFORM ROLL: CONTROL: Period Damping	± 25 degrees ± 35 degrees 4 to 4.5 Minutes 0.707 of critical
CONTROL SYSTEM	RECORDING RATE: SERIAL OUTPUT: ADDITIONAL I/O:	20 Hz RS-232 Sensor Temperature
SYSTEM PERFORMANCE	DYNAMIC RANGE: STATIC REPEATABILITY: DYNAMIC REPEATABILITY:	25,000,000 0.02 milliGal in 2 min 0.75 milliGal in 2 min
MISCELLANEOUS	OPERATING TEMPERATURE: STORAGE TEMPERATURE: POWER EQUIPMENTS: DIMENSIONS:	5° to 50°C -10° to 50°C 75W @ 27°C Nominal 300W Peak 80-265VAC, 47 – 63Hz 58.4 x 53.3 x 55.9 cm (not including electronics)

BGM-3 Gravimeter

- Bell Aerospace (now Lockheed Martin)
 - Model XI pendulous force-rebalance accelerometer
 - current needed to keep test mass in null position is proportional to acceleration

Fugro **→** WHOI

https://www.unols.org/sites/default/files/Gravimeter_Kinsey.pdf

(Seiff and Knight 1992); see also (Bell and Watts 1986)

Two BGM-3 gravimeters installed on the USCG ship *Healy*

Airborne Gravity for Geodesy Summer School , 23-27 May 2016 Overvie

Overview of Airborne Gravimetry Systems, C. Jekeli, OSU

Sea Gravimeter KSS31, Bodenseewerk Geosystem GmbH

capacitive

transducer

spring

tube

- Gravity sensor based on Askania vertical-spring gravimeter
 - Federal Institute for Geosciences and Natural Resources (BGR)
 - force rebalance feedback system
 - highly damped output, ~ 3 minute average
 - sensor on a gyro-stabilized platform
 - also used for fixed wing and helicopter gravimetry

 $\label{eq:http://www.bgr.bund.de/DE/Themen/MarineRohstoffforschung/Meeresforschung/Geraete/Gravimeter/gravimeter_inhalt.html \\ \http://www.bgr.bund.de/EN/Themen/GG_Geophysik/Aerogeophysik/Aerogravimetrie/aerogravimetrie_node_en.html \\ \http://www.bgr.bund.de/EN/Themen/GG_Geophysik/Aerogeophysik/Aerogravimetrie/aero$

Chekan-A Gravimeter

• Air-Sea gravimeter; CSRI* Elektropribor, St. Petersburg, Russia

- gravity sensed by deflection of pendulum hinged on quartz torsion wire in viscous fluid
- pendulum deflection: 0.3–1.5 "/mGal; e.g., $\pm 1^{\circ} \rightarrow \pm 10$ Gal total range (0.36 "/mGal)
- cross-coupling effect minimized by double-beam reverted pendulums
- evolutionary modifications: Chekan AM, "Shelf" (Krasnov et al. 2014)

http://www.gravionic.com/gravimetry.html Diode CCD CCD Installation in test aircraft Lens Pendulum mirror Window Unit Quartz torsion Pendulum lever DQES housing Proof mass Damping liquid Torsion wires (Stelkens-Kobsch 2005) (Krasnov et al. 2008) **Ouartz** frames (Hinze et al. 2013)

Airborne Gravity for Geodesy Summer School, 23-27 May 2016

*Central Scientific & Research Institute

Airborne Gravimetry on Airship Platform

(http://rosaerosystems.com/airships/obj17)

Relative gravimeter Chekan in a cabin of AU

- test flight January 2014

- reported in IAG Commission 2 Travaux 2015

Airborne Gravimeter GT-2A

- Gravimeter system designed by Gravimetric Technologies (Russia)
 - vertical accelerometer of axial design with a test mass on spring suspension
 - photoelectric position pickup
 - moving-coil force feedback transducer
 - three-axis gyro-stabilized platform

(Gabell et al. 2004)

– large dynamic range

Measurement range	9.75 to 9.85 m/sec ²	
Dynamic range	>+/-1,000 Gals	
Drift per day (corrected)	< 0.1 mGals	
RMS error in gravity anomaly estimation		
(static mode up to 12 hours on bench)		
RMS error	0.6 mGals (+/-1LSD*)	
Attitude limits		
roll	+/- 45°	
pitch	+/- 45°	
Operating temp	+5℃ to +50℃	
Power		
operating	150 W at 27Vdc	
standby	50 W at 27Vdc	
Weight (with base)	153.5 kg	
Dimensions console	400 x 400 x 600 mm	
Dimensions base	600 x 300 mm	
Service life	30,000 hours	
Error in gravity anomaly estimation (RMS)		
0.01 Hz cut-off	0.6 mGals (+/-1 LSD*)	
*Least Significant Digit Specifications subject to change		

http://eongeosciences.com/wp-content/uploads/2015/01/GT_2A.pdf (Canadian Micro Gravity)

Sander Geophysics Ltd. AirGrav System

- "Purpose-built" airborne gravimeter designed for airborne environment, not modified sea gravimeter
 - Honeywell inertial navigation grade accelerometers (Annecchione et al. 2006, Sinkiewicz et al. 1997)
 - Schuler-tuned (three axis) inertially stabilized platform
 - three-accelerometer system; vertical accelerometer used as gravimeter
 - advertize gravimetry on topography-draped profiles
 - demonstrated success in vector gravimetry
 - comparison tests over Canadian Rockies between AirGrav and GT-1A (Studinger et al. 2008)

http://www.sgl.com/news/Sander%20Geophysics%20-%20Antarctica.pdf