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Abstract—With the increasing capability of computers, 
engineers have designed vehicles to perform ever more 
complex tasks. Whether fully automated, as with robotic 
space probes, or partially automated in conjunction with a 
crew, vehicles have become both more complex and more 
capable. To manage this complexity, designers have 
developed increasingly sophisticated vehicle management 
systems (VMS) to manage vehicle internal states, and to 
operate in its external environment. While often effective, 
design of VMSs has often been on an ad hoc basis. Using 
insights from information theory, complexity theory, and 
artificial intelligence, this paper develops a theoretical 
framework in which to understand the nature of VMSs. The 
theory defines the interaction of VMS functions and 
provides a mathematical formulation to assess the 
complexity of different VMS configurations.12 
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INTRODUCTION 
Vehicle Management Systems (VMS) have become 
increasingly important over time in space missions, due 
both to the demands for increased flexibility and capability 
of these missions, and the supply of increasingly capable 
computing systems to provide this improved functionality. 
VMSs include the management of uncertainties in vehicle 
state, which is the vehicle portion of System Health 
Management (SHM), and the management and control of 
vehicle components to achieve external goals, which we will 
term “System Operations Management” (SOM). SHM and 
SOM functions can be allocated to humans or machines, 
whether on the ground or on-board. To the extent these are 
allocated to the vehicle’s machines (as opposed to crew), 
these are part of the Vehicle Management System. The 
increasing complexity of the tasks that space systems are 
asked to accomplish, and the software and operational 
procedures necessary to accomplish them, have made VMSs 
a necessity for exploration missions. This paper investigates 
the underlying needs and functionality of Vehicle 
Management Systems, so as to better understand, and 
ultimately to better design them. 

To do this, we shall draw upon ideas from information 
theory and system health management theory. Since VMSs 
necessarily use information to manage complex systems, 
information theory provide important insights. System 
Health Management theory has evolved to handle internal 
uncertainties, and we extend its ideas to deal with external 
uncertainties with Systems Operations Management. 
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FLEXIBILITY TO MANAGE UNCERTAINTY 
Flexibility is required to support many spaceflight missions 
whether scientific, human exploration, or military. Scientific 
missions value flexibility due to the uncertainties of the 
targets of their investigations. If the target of investigation 
was fully understood, then there would be no reason for 
scientific studies. Given the unknowns about the object(s) 
being investigated, the scientific spacecraft investigating 
these objects need the ability to adjust their operational 
plans and modes to uncertainties and to any discoveries 
made. Human flight missions often require flexibility to 
handle changes in their technical environments (such as 
problems in integrating two systems in an International 
Space Station build sequence), or to the vagaries of human 
behavior in system operation. Military missions require the 
flexibility to take advantage of targets of opportunity or 
unanticipated enemy behaviors. 

Since the late 1950s and early 1960s, when most missions 
featured pre-set and unchangeable operational sequences, 
designers have built increasing flexibility into spacecraft. 
Making this possible are advances in computing and 
communications technologies, which allow for re-
programming of the spacecraft’s computers to accomplish 
new tasks or to change the order or parameters of existing 
tasks. As an example, the Magellan spacecraft, launched in 
1989, featured a dual redundant system that included 128 
kilobytes of command and data handling memory, 32 
kilobytes of attitude control memory, and a 1 kilobyte read-
only memory. While seemingly very limited by today’s 
standards, changes to parameters and flight software were 
common and necessary to enable the mission. Current 
spacecraft often have memories on the order of tens 
megabytes, and NASA’s Constellation program anticipates 
gigabytes of memory for data storage. 

While these increased capabilities provide greatly improved 
operational flexibility, and hence maximize a system’s 
inherent utility, it comes at the price of (among other things) 
complexity. The software required to achieve changing 
goals and manage its own internal complexity is much 
larger than in the past, with greater diversity of tasks, all of 
which increase the probability of internal software faults 
and increasing the flight software’s costs. Despite these 
drawbacks, the ability to maximize a system’s capabilities 
has been an irresistible attraction, and system complexity 
has increased apace. 

Vehicle management systems exist to manage the resulting 
complexity. We define vehicle management systems as 
“onboard systems that manage a vehicle’s internal 
capabilities to accomplish the mission goals.” This 
encompasses several functions. Management of internal 
states requires accurate assessment and tracking of the 
vehicle’s internal hardware and software states. It also 
requires mechanisms to implement state changes and 
functions to accomplish mission goals, whether through 
onboard sequence commands, ground operator commands, 

or crew commands (in the case of crewed systems). Finally, 
vehicle management systems must have mechanisms to 
assess and interact with the external environment. Generally 
(though not always), the purpose of a vehicle is “outward-
directed”, to move from one location to another, to sense the 
external environment, and to interact with that environment 
in a variety of ways. In cases like the International Space 
Station, the system is also “inward-directed,” to interaction 
with on-board experiments and life support systems. The 
system must interact with these physically internal 
experiments in essentially the same manner as with the 
external environment. 

Management of internal systems ultimately means assessing 
and managing the health of a vehicle’s components, and 
then using these components to achieve some goal. 
Maintenance of internal health is a pre-requisite to 
achieving any goal. To do this, many vehicles have 
algorithms for fault detection, isolation and response 
(FDIR). Many also monitor the performance of components 
and subsystems to detect degradations, leading to crew or 
ground operator actions to replace or switch out 
components, modify future system actions and modes to 
minimize further degradation, prior to any full-fledged 
failure. Prediction of future failure, whether by humans or 
machines, is “prognostics.” All of these actions, whether 
flight or ground-based, are part of the vehicle’s health 
management system. That portion which resides on board is 
a subset of the vehicle management system. 

As vehicles have become more complicated, the number of 
internal states to be monitored, tracked, and controlled has 
greatly increased, which is one of the major reasons for the 
evolution of VMSs. The increase in number of states 
implies a corresponding increase in mechanisms to monitor 
the health of system components, which in turn are 
integrated by the VMS into an overall vehicle state. These 
can be sensors to track temperatures, pressures, currents, 
and such, or software algorithms to create and store 
software information that describes its internal states. In 
general, the ability to change vehicle states has been 
implemented through ground and crew commanding 
capabilities, and in cases where these cannot be assured, 
through autonomous FDIR. Responses in general, whether 
on-board or off-board, are managed through the VMS. By 
this, we mean that some responses to change vehicle states 
originate from the crew or ground operators, but are 
mediated through the VMS to actually change the on-board 
state. 

External uncertainties are the other driver of VMSs. The 
Mars Exploration Rovers Spirit and Opportunity provide 
good examples of the kinds of external complexities that 
require sophisticated responses, particularly in navigating 
the system in its local environment (around rocks, steep 
slopes, etc.), and deciding which instruments are best used 
to interact with specific environmental features such as 
rocks or soil. Other systems also interact with their external 
environments, though often in simpler ways. In the case of 
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Mars rovers, or future Constellation missions with humans 
and machines interacting on the Moon, the external 
environment is incompletely characterized, and thus the 
actions of the vehicles doing the “exploring” cannot be fully 
pre-programmed. The incompleteness of our knowledge of 
the environment external to the vehicle requires 
sophisticated real time or near-real-time interactions 
between system (meaning crew and ground operators) and 
the environment to be explored or observed. 

To the extent that the vehicle itself is required to 
autonomously interact with or move around in this semi-
unknown environment, a vehicle management system is the 
mechanism for performing these actions. Now and for the 
foreseeable future, these activities are either not automated 
or semi-automated, with responses made automatically 
based on limited information input. A vehicle with no on-
board intelligence whatsoever would be virtually impossible 
to operate, or at best extraordinarily slow. The movements 
of the Mars rovers are tracked in a few meters per day, so as 
to be sure that the machines do not put themselves into 
situations in which they can no longer perform their tasks. 
One of the major objectives for future systems is to increase 
system autonomy so that planetary rovers can autonomously 
move around various obstacles to a target location in terms 
of kilometers per day in rough terrain. This would greatly 
increase the scientific potential of such systems. To do it 
requires a vehicle management system capable of far more 
sophisticated behaviors than those currently available. 

For a vehicle management system to be effective, the 
increased complexity of having a VMS must outweigh the 
complexity of the subsystems and components that it 
manages. To date, there are few effective measures of this 
complexity, but information theory provides some insights 
into how this might be assessed. 

APPLICATION OF INFORMATION THEORY 
VMS is concerned with managing the total vehicle state in 
response to both external environment and internal system 
conditions. This requires the vehicle state to be represented 
within the VMS to form a basis of decisions to maintain 
human life and mission objectives. Interestingly, it also 
requires an estimate of external state, at least to the degree 
necessary for the vehicle to interact with it. Information 
theory provides the basic definitions to determine the 
information necessary to represent the total vehicle and 
external state. The goal is to reduce the uncertainty 
(entropy) of this state estimate to provide for efficient and 
accurate solutions. For the purposes of this analysis, we will 
focus only on the vehicle state, though the calculation of the 
external state would be similar. 

For a vehicle, assume that V is the Vehicle State, where, V 
= v1, v2, …, vn.  (n Vehicle States). The uncertainty of the 
Vehicle State, V, is represented by the entropy of the state 
information: 

∑−=
n

n2n )p(v)logp(v)(VH , 

where p(vn) is the probability that the vehicle is in state vn). 
[3] 

Assume vehicle states are distinguishable, and so can be 
represented uniquely. Then, the absolute minimum number 
of bits (b) to represent V is b = H(V), the information 
entropy of the vehicle states. To keep the vehicle state 
representation manageable, the number of bits is desired to 
be minimal. [3] 

The information entropy increases with the uncertainty of 
state, the information provided with each state variable. If 
all states have equal probability, then the entropy is a 
maximum when the uncertainty of the state is a maximum. 
[1] As the state becomes known, then uncertainty and 
entropy reduces. 

Entropy of the total vehicle state can be found by 
calculating the entropy of the individual vehicle systems. 
For a vehicle with n total states, and a uniform distribution 
of these states, the entropy can be found as a summation of 
the individual subsystem entropies (with bi  = an individual 
state) weighted by the probability of a given state value, 
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Thus, the vehicle entropy can be directly calculated from the 
subsystem entropies. As knowledge of the subsystems 
increases, the uncertainty and the associated entropy 
decrease. This simple model assumes that the subsystems 
are defined independently, which is not true for a space 
vehicle. The relationships between the subsystems influence 
other subsystem states such as thermal conditions or 
electrical power. Standard design practice for vehicles treats 
subsystems as independent with relationships at defined 
interfaces. Therefore, an assumption of independence can be 
maintained with an interaction term added to the summation 
as to correct for the subsystem interactions. This interaction 
term requires definition to determine the magnitude of effect 
on the entropy, but is assumed small for this theoretical 
treatment. We also assume uniformity of probability 
distributions for this first-order analytical treatment, but 
further work should assess the impact of non-uniform 
distributions. 
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Information theory also provides insight into distributed 
versus centralized VMS architectures. The Data Processing 
Inequality [3] indicates that communication paths and 
processing nodes should be minimized and is given by: 

):():()( YVHCVHVH ≥≥  

where  C := State after communication 
 Y := Final output state after processing 

This forms a Markov Chain which shows the information 
content is reduced (uncertainty increases) with each 
communication and processing path. This is due to 
uncertainty being added due to noise, interference, and error 
(environment induced, coding errors, electrical failures, etc). 
Thus the information initially provided does not include any 
information on these uncertain states and the knowledge of 
the subsystem is reduced by the increased uncertainty due to 
the increased communication and processing of the data. 
This must be balanced with considerations of information 
density and information processing time. Information 
density is the amount of information required to represent 
the complete state of the vehicle. The amount of data can be 
quite large for complex systems and grows as the 
complexity of the vehicle systems increases. 

Lost information is in the form of bit flips or lost bits (b = e 
≠ 0,1) due to noise. The Error Entropy H(pe) can be 
calculated based on the probability of error occurrence. [3] 
The Error Entropy grows with the Vehicle State space: 

)|()1log()( YVHVppH ee ≥−+  

The entropy for the VMS System Management Loop can be 
calculated as: 

):():(Pr):():():():()( 12 MSHCSHSHDSHPSHCSHSH ≥≥≥≥≥≥  

where  S is the System state 
M is the measured state 
P is the calculated performance state 
D is the calculated diagnostic state 
Pr is the calculated prognostic state 
C1 is the communicated state from measurement to 
performance 
C2 is the final communicated state 

This assumes that each state is not conditioning but is 
determining unique portions of the state information. No 
communication-induced information entropy has been 
accounted for between performance, diagnostics, and 
prognostics (i.e. no entropy between algorithms on the same 
machine). The inequality above shows that if one ignores 
the added uncertainties due to added communication paths 
and data, the certainty of the knowledge about the system 
state improves, and hence the system entropy decreases with 
each processing step, as each processing step is intended to 
collate and make consistent data about the system state. 

Information theory provides guidance on the partitioning of 
the management functions. To minimize the entropy of the 
vehicle state requires a minimum number of communication 
channels and processing nodes. However, these goals are 
not always compatible. A centralized computing system 
minimizes the processing nodes, but may increase the 
uncertainty of the communication channels and increase 
entropy. This is due to the dependency of communication 
entropy on the distance of the communication. Free space 
(e.g. radio frequency) or guided (e.g. electrical wire or 
optical fiber) communication signal to noise ratios are 
dependent on communication distance as the power 
decreases (and hence noise and entropy increases) with 
distance. Thus, subsystems requiring long communication 
lines have higher entropy. At the other extreme is a totally 
distributed system where all processing is done at the lowest 
possible level. 

When considering the number of interconnects between 
nodes, this may maximize entropy for both processing and 
communications. Processing entropy increases with the 
number of processors. Communications entropy increased 
with the number of communication lines. Distributed 
systems can reduce the communication distance of most 
individual inter-node connections, but necessarily increases 
the number of communication lines. Minimizing entropy 
requires a few processing nodes that minimize both the 
processing and the communications between nodes. 
Assuming that processing can be reduced by distributing the 
processing while minimizing the communications between 
nodes implies a central vehicle management computer 
connected to a few system control nodes, as this architecture 
should minimize communication entropy while keeping 
processing entropy low. If the number of distributed nodes 
is small, then the increase in communication lines is 
relatively small compared with the number of lines 
interconnecting the distributed nodes to the 
sensors/effectors. However, the communication line 
distances are substantially reduced such that the small 
increase in communication lines (which increases 
communications entropy) is more than compensated by the 
reduction in communication distances (which reduces 
entropy). Each distributed processing node calculates the 
state of a given subsystem. Thus, the vehicle computer can 
calculate the vehicle state by summing the state of each 
subsystem and including entropy for the communication and 
processing functions. For any given subsystem in this 
architecture, a two tier processing uncertainty is present: 
subsystem processor and vehicle processor. Communication 
uncertainty is also kept to two levels: sensor to subsystem 
processor and subsystem processor to vehicle processor. 

Another factor that affects vehicle processor partitioning is 
information density. Information density affects processing 
latency as well as processing resources such as memory. As 
the density increases, the processing resources required to 
process the information to determine the current state 
increases. Assuming processing speeds are fixed, then 
increased information means longer processing latencies. 
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This tends to move systems toward distributed processing 
solutions to reduce the amount of information processed by 
an individual processing node and therefore allowing state 
computations to occur in parallel, hence reducing overall 
processing latency. 

Communication latency also adds to overall processing 
latency. As with information density, implementing a 
distributed system also tends to lower processing latency. In 
a centralized system, long physical communication paths 
and short communication paths all converge on the 
centralized system, often 
forcing many 
communications onto single 
serial paths. Distribution 
allows communications to 
occur on parallel paths, 
reducing message path 
congestion and consequent 
slow-downs that increase 
communication latency. 

Distributed processing and 
communication also tends to 
decrease signal path lengths, 
which in itself decreases 
information entropy in 
comparison to long signal 
paths. It is well-known in 
signal processing that bit 
error rates increase with path 
lengths, thus increasing 
entropy. To minimize the 
added noise, and hence the 
added uncertainties and 
potential system states (new 
states with erroneous bit-
flips), distribution of processing nodes allows for processing 
nearer to the original signal sources, decreasing the number 
of errors, and hence entropy due to signal noise. 

Finally distribution of processing may itself decrease 
entropy. Distribution means that each processing node 
processes less information (a lower information density). 
This implies (if designed properly) less complex processing 
capabilities, which introduce less entropy into the system 
than nodes that process higher information densities. Since 
complexity tends to increase in a non-linear and potentially 
exponential manner with information density, reduction of 
information density at any one processing node should 
decrease overall system complexity and hence entropy. Put 
another way, a distributed system should lower system 
entropy insofar as information density is never too large at a 
given processing site, as compared to a more centralized 
architecture with higher information densities per 
processing node. 

A balance can be seen between processing entropy, 
information density, communication entropy, and 

communication latency. A system that balances the number 
of processing nodes with information density on each node 
provides low entropy and therefore an efficient processing 
system. Similarly, a system with minimal communication 
paths minimizes both communication entropy and latency. 
Figure 1 illustrates a conceptual VMS architecture based on 
this assessment. 

 

Figure 1:  VMS Conceptual Architecture 

Intuitively, modestly distributed architectures appear to 
provide the most efficient calculation of the vehicle state for 
a complex spacecraft. This is because compared to a 
centralized system, the lower information density per 
processing node, combined with the decreased system 
latency and communication entropy through shorter path 
lengths, should outweigh the entropy increase due to the 
increased number of paths. A massively distributed 
processing system is likely to have a higher entropy due to 
the massively higher number of communication paths, 
whose collective entropy increase outweighs the 
progressively more modest improvements due to shortened 
communication paths and lower processing densities per 
node. Proof (or disproof) of this contention requires 
quantification of the various factors involved. 

Information theory provides a framework in which to assess 
different VMS architectures in terms of physical attributes. 
These include the length of communication links, the 
number of sensing and computing nodes, the amount of 
processing performed at each node, and also the number of 
algorithms required at each node. This does not exhaust the 
design space. We must also discuss the functions that must 
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be performed in each node, which then drive the 
requirements for the physical properties that information 
theory allows us to assess. The next section assesses these 
functions. 

VMS FUNCTIONAL ARCHITECTURE 
Vehicle Management Systems, as described in the first 
section of this paper, manage the internal health of the 
vehicle so as to ensure the vehicle components can perform 
properly, and the use of the vehicle components to perform 
some goal with respect to its external environment. We use 
the term “external” in the generalized sense of interaction 
with things external to the system itself, which could 
include experiments physically internal to the system, but 
functionally exterior, such as on the International Space 
Station. Crewmembers are, in this sense, “external” to the 
vehicle, though they are “internal” to the mission. We will 
consider crewmembers to be external to the vehicle 
management system, since by definition they are not part of 
the vehicle, but rather interface with the vehicle, though in a 
more direct manner than ground operators, for example. 

Vehicle autonomy simply means the internalization of 
functions necessary to achieve mission goals, where the 
vehicle is part of a larger system (including crewmembers 
and ground operators) that is intended to achieve a mission. 
From a functional view, it is important to understand the 
functions necessary to achieve mission goals. It is then a 
system design trade based on cost, technology maturity, 
schedule, and performance factors to determine which goals 
are best achieved through allocation of functions to the 
vehicle as opposed to crewmembers, ground operators, or 
other machines outside of the vehicle in question. 

As more functions are allocated to the vehicle (making it 
more autonomous), then the vehicle entropy will increase 
along with the complexity, which is represented by the 
increase in the number of possible vehicle states. It is 
important to recognize that the total system entropy may be 
unchanged in this allocation of functions to the vehicle, 
because the system entropy includes the entropy of the 
crewmembers and the ground operators! The fact that we 
allocate functions to the vehicle merely makes more of this 
actual total entropy (number of possible system states) 
visible, since calculation of “human-produced” system 
states has never been attempted or even considered, to the 
authors’ knowledge. Put another way, if the system includes 
humans, the humans contribute to the total number of 
possible system states, as well as to the uncertainties about 
those states. 

System health management (SHM) deals with the functions 
of monitoring and managing the health of complex human 
machine systems. A theory of system health management 
has been described elsewhere [2], and thus will not be 
described in depth here. However, some aspects of this 
theory are of relevance, in particular the description and 
relationship of the SHM’s operational functions. 

 

Figure 2: System Health Management Operational 
Functions 

Essentially, during system operations, the health 
management system must contain faults and their 
symptoms, monitor system states, determine whether these 
states are normal or anomalous, isolate their location, 
determine their causes, respond to the fault, recover from 
the fault’s effects and return to normal operation, and then 
prevent their future occurrence. The health management 
system also monitors degradations and predicts future 
problems so as to prevent them from occurring. The 
functions are connected a characteristic control loop, since 
these functions must occur continuously through the life of 
the system in performance of its mission. They can be 
allocated to machines or to humans. 

In our context, SHM is one of the two major functions of a 
VMS. As defined above, the other is System Operations 
Management (SOM), which is the management and control 
of vehicle components to achieve external goals. This too 
occurs in a characteristic control loop, and for the same 
reasons as SHM functions---use of the vehicle to achieve 
mission goals is a continuous process that requires ongoing 
adjustment throughout the mission. Both SHM and SOM 
functions can be allocated to humans or machines, whether 
on the ground or on-board. When allocated to the vehicle’s 
machines (as opposed to crew), these are part of the Vehicle 
Management System. 
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Figure 3: System Operations Management Operational 
Functions 

SOM functions assume that vehicle components are healthy, 
or at least are being managed by other system functions. The 
SOM loop begins with acquisition of data about the external 
environment, converting that into a usable “external state” 
and then comparing that state with the system’s expectations 
about that state. When the actual environment matches 
expectations, then the vehicle can perform as per its original 
plan. If the external environment does not match 
expectations, then the differences must be isolated and 
assessed so that a new plan can be created and then 
executed. There are also situations in which the information 
about the external environment is incomplete or uncertain, 
but may well have been planned. For example, the Voyager 
project understood quite well that the vehicle would capture 
information about the external environment (Jupiter, Saturn, 
Uranus, Neptune, etc.) that was simply unknown before. 
This was known ahead of time, and plans were created 
accordingly, but these had to be adjusted to account for the 
discovery of new moons, rings, and other targets of interest. 
Typically the comparisons of the external state with 
expectations about the external state, along with all of the 
resolution of differences and creation of new plans, have 
been done by mission operators, and in crewed missions, 
with the crew. Gathering of data and execution of plans 
typically are heavily automated for space missions, but 
could include human (ground or crew) activities. For crewed 
missions, the crew is typically involved in significant ways 
in the execution of plans, for the simple reason that the 
missions were planned from the start to require significant 
human involvement. However, automation of functions is 
often beneficial when it can be accomplished, leaving the 
crew to deal with those functions that require their 
participation. 

Comparison of the figures for SHM and SOM show that the 
management of internal and external vehicle functions is 
very similar. The vehicle must acquire data about its internal 
and external environments, compare with expected or 
desired states, make decisions about how to respond to those 
differences, and based on the available resources, execute 
the appropriate actions. Humans or machines can perform 
these actions, but over time, the desire to lower long-term 
operational costs drives decisions to allocate more and more 
of these functions to machines, and hence to more capable 
and complex Vehicle Management Systems. 

CONCLUSION 
Vehicle Management Systems are an important and growing 
facet of space systems, but have received relatively little 
theoretical attention. As with many other aspects of 
engineering, VMS’s have been developed in practice, with 
the theory lagging. However, the complexity of these 
systems, and of the systems they manage, is beginning to 
tax “cut and try” methodologies. Space system designers 
and operators need a theoretical framework to cope with 
these increasingly sophisticated systems. 

Both quantitative and qualitative approaches are appropriate 
to this theoretical task. The complexity of VMSs, which can 
be estimated by calculating the entropy of vehicle and 
external states, is a significant issue that needs to be 
addressed through appropriate architectural design, as well 
as more typical verification and validation approaches. This 
provides insight into appropriate physical decomposition of 
a VMS. Functional approaches help designers and operators 
properly decompose VMSs into logical classifications, 
which greatly aid architectural division, as well as 
operational decision-making, whether by humans or 
machines. This paper provides a starting point from which 
other engineers can expand these ideas to better understand 
and design these complex and critical systems. 
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