
A Thermodynamic Entropy Based Approach for Prognosis and 

Health Management  

Anahita Imanian
1
, Mohammad Modarres

2
  

1,2
University of Maryland, Department of Mechanical Engineering, Center for Risk and Reliability, College Park, Maryland, 

20742, USA 

aimanian@umd.edu 

modarres@umd.edu 

 
ABSTRACT 

Data-driven stochastic and probabilistic methods that 

underlie reliability prediction and structural integrity 

assessment remain unchanged for decades. This paper 

provides a method to explain the Prognostics and Health 

Management (PHM) in terms of fundamental concepts of 

science within the irreversible thermodynamic framework. 

The common definition of damage, which is widely used to 

measure the reduction of reliability over time, is based on 

observable markers of damage at different geometric scales. 

Observable markers are typically based on evidences of any 

change in the physical or spatial properties or the materials, 

and exclude unobservable and highly localized damages. 

Thermodynamically, all forms of damage share a common 

characteristic: “energy dissipation”. Energy dissipation is a 

fundamental measure of irreversibility that within the 

context of non-equilibrium thermodynamics is quantified by 

“entropy generation”. The definition of damage in the 

context of thermodynamics allows for incorporation of all 

underlying dissipative processes including unobservable 

markers of damage. Using a theorem relating entropy 

generation to energy dissipation associated with damage 

producing failure mechanisms, this paper presents an 

approach that formally describes and measures the resulting 

damage.  

Having developed the approach to derive the damage over 

time, one could assess the health of structures and 

components subject to known degradation processes. This 

paper presents a prognostic approach on the basis of 

thermodynamically derived cumulative damage, whereby 

the thermodynamic entropy, as a broad measure of damage, 

is assessed.  

 

1. INTRODUCTION 

The definition of damage due to the physical mechanisms 

varies at different geometric and scales. For example, the 

definition of fatigue damage can vary from nano-scale 

through the macro-scale. At the atomic level the grain 

boundary is a likely location where atoms are more loosely 

packed. At the micro-scale damage is the accumulation of 

micro-stresses in the neighborhood of cracks. At the meso-

scale level, damage might be defined as growth and 

coalescence of micro-cracks to meso-cracks. However, 

measuring damage is subject to the physically measurable 

variables (i.e., observable marker) when dealing with 

specific failure mechanisms. For example, in the fatigue 

mechanism material density, change of hardness, module of 

elasticity, accumulated number of cycles-to-failure, and 

crack length may be used as “observable markers” that 

measure the damage. Therefore, defining a consistent and 

broad definition of damage is necessary and plausible. To 

reach this goal, we elaborate on the concept of material 

damage within the thermodynamic framework. 

Thermodynamically, all forms of damage share a common 

characteristic, which is the dissipation of energy. In 

thermodynamics, dissipation of energy is the basic measure 

of irreversibility, which is the main feature of the 

degradation processes in materials (Tang & Basaran, 2003). 

Chemical reactions, release of heat, diffusion of materials, 

plastic deformation, and other means of energy production 

involve dissipative processes. In turn, dissipation of energy 

can be quantified by the entropy generation within the 

context of irreversible thermodynamics. Therefore, 

dissipation (or equivalently entropy generation) can be 

considered as a substitute for characterization of damage. 

We consider this characterization of damage highly general, 

consistent and scalable. 

The common practice in damage analysis and prediction of 

structural life and integrity is based on the traditional 

generic handbook-based reliability prediction methods, data 

driven prognostics approaches and Physics-of-Failure (PoF) 
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methods. The traditional generic handbook-based reliability 

prediction methods such as those advocated in MIL-HDBK-

217F (U. S. Department of Defence, 1965), Telcordia SR-

332 (Telcordia Technologies, 2001), and FIDES (FIDES 

Guidance Issue, 2004) rely on the analysis of field data 

(with incoherent operating and environmental conditions), 

with the assumption that the failure rates are constant. 

Numerous studies have shown that these methods cause 

misleading and inaccurate results and can lead to poor 

design and incorrect reliability prediction and operating 

decisions (IEEE Standard 1413, 1998; IEEE Standard 

1413.1, 2002). The PoF models (Manson, 1996; Norris & 

Landzberg, 1969; Bayerer, Hermann, T. Licht, Lutz, & 

Feller, 2008; Shi & Mahadevan, 2001; Harlow & Wei, 

1998) are more rigorous in terms of employing the specific 

knowledge of products, such as failure mechanism, material 

properties, loading profile and geometry. However, such 

empirical methods are limited to simple failure mechanisms 

and are hard to model when multiple competing and 

common cause failure mechanisms are involved. Finally, the 

data driven methods such as neural networks (Byington, 

Watson, & Edwards, 2004), decision tree classifiers 

(Schwabacher & Goebel, 2007) and Bayesian techniques 

(Bhangu, Bentley, Stone, & Bingham, 2005) do not capture 

the difference between failure modes and mechanisms, 

although they can obtain the complex relationship and 

degradation trend in the data without the need for the 

particular product characteristics such as degradation 

mechanism or material properties. Moreover, these methods 

require rich historical knowledge of materials and structural 

degradation behavior that may not always be available.  

In this paper, we introduce an entropy-based prognostic 

approach to predict the Remaining Useful Life (RUL) of 

components and structures. This approach is based on the 

second law of thermodynamics and defines entropy as a 

more consistent measure of damage. As compared to other 

existing PoF or fusion prognostics methods (Held, Jacob, 

Nicoletti, Scacco, & Poech, 1999; Ciappa, 2002; Cheng & 

Pecht, 2009), this approach captures the effect of multiple 

failure mechanisms
1
, more effectively. Moreover, the results 

of entropy approach are favorably used in fracture 

mechanics, fatigue damage analysis (Bryant, Khonsari, & 

Ling, 2008; Tang & Basaran, 2003) and tribological 

processes such as friction and wear (Amiri & Khonsari, 

2010; Nosonovsky & Bhushan, 2009). Furthermore, it is a 

powerful technique to study the synergistic effects arising 

                                                           
1
 Particularly, in contrast with the empirically-based PoF 

approach which considers only the most predominant failure 

mechanisms, the definition of damage in the context of the 

entropic approach allows for the incorporation of all 

underlying dissipative processes. For example, in the case of 

corrosion-fatigue, both stress and electrochemical affinity of 

the oxidation-reduction electrode reaction (Me⇔Me
z+

+ze) 

of a metal are considered. 

from interaction of multiple processes (Amiri & Khonsari, 

2010). 

The remainder of this paper is organized as follows. Section 

2 describes our construction of the entropy model. Section 3 

describes an entropic based framework for prognosis. 

Section 4 provides a case study which explores the 

application of the proposed prognostics framework, and 

section 5 offers concluding remarks. 

2. TOTAL ENTROPY PRODUCED IN A SYSTEM 

Consistent with the second law of thermodynamics, entropy 

does not obey a conservation law. Therefore, it is essential 

to relate the entropy not only to the entropy crossing the 

boundary between the system and its surroundings, but also 

to the entropy produced by the processes taking place inside 

the system. Processes occurring inside the system may be 

reversible or irreversible. Reversible processes inside a 

system may lead to the transfer of the entropy from one part 

of the system to other parts of the interior, but do not 

generate entropy. Irreversible processes inside a system, 

however, result in generation of the entropy, and hence in 

computing the entropy they must be taken into account. 

Using the second law of thermodynamic, it is possible to 

express the variation of total entropy flow per unit volume, 

    in the form of 

              (1)  

where,   is defined for a domain   by means of specific 

entropy,    per unit mass as   ∫     
 

, and the super 

scribes   and   represent the reversible and irreversible part 

of the entropy, respectively. The term      is the entropy 

supplied to the system by its surroundings through transfer 

of mass and heat (e.g., in an open system where wear and 

corrosion mechanisms occur). The rate of exchanged 

entropy is obtained as 

 
   

  
  ∫        

 

 (2)  

where,    is a vector of the total entropy flow per unit area,  

crossing the boundary between the system and its 

surroundings, and    is a normal vector. Similarly,     is 

the entropy produced inside of the system, which can be 

obtained from Eq. 3  

 
   

  
 ∫    

 

 (3)  

where,   is the entropy generation per unit volume per unit 

time. The second law of thermodynamics states that     

must be zero for reversible transformations and positive 

(     ) for irreversible transformations of the system.  

The balance equation for entropy shown in Eq. 4 can be 

derived using the conservation of energy and balance 

equation for the mass. 

 
  

  
       (4)  
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This gives us an explicit expression for total entropy in 

terms of reversible and irreversible processes as (De Groot 

& Mazor, 1962; Kondepudi & Prigogine, 1998)  

  

  
    (

   ∑           
 
   

 
) 

 
 

  
          

   ( 
  

 
)  

 

 
    ̇

 
 

 
    

       
 

 
    

           

(5)  

where, T is the temperature,    the chemical potential,     

the heat flux,    the diffusion flow,    any fluxes resulting 

from external fields (magnetic and electrical) such as 

electrical current,    the chemical reaction rate,   the stress 

tensor,   ̇ the plastic strain rate tensor,         
       the 

chemical affinity or chemical reaction potential difference, 

  the potential of the external field such as electrical 

potential difference, and    the coupling constant. External 

forces may be resulted from different factors including 

electrical field, magnetic field, gravity field, etc., where the 

corresponding fluxes are electrical current, magnetic current 

and velocity. For example, in the case of an electric field, 

      is the electric potential,       
     , the 

current density and       , where   is the Faraday 

constant and    is the number of ions. Each term in Eq. 5 is 

derived from the various mechanisms involved, which 

define the macroscopic state of the complete system.  

By comparing Eq. 5 with Eq. 4 we can make the 

identifications as 

    
   ∑           

 
   

 
 (6)  
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(7)  

where, Eq. 6 shows the entropy flux resulted from heat and 

material exchange. Eq. 7 represents the total energy 

dissipation terms from the system that from left to the right 

include heat conduction energy, diffusion energy, 

mechanical energy, chemical energy, and external force 

energy. Eq. 7 is fundamental to non-equilibrium 

thermodynamics, and represents the entropy generation   as 

the bilinear form of forces and fluxes as 

 σ =         (  )   (i, j=1,…, n) (8)  

It is through this form that the contribution from the 

applicable thermodynamic forces and fluxes are expressed. 

When multiple failure mechanisms are involved in a 

degradation process such as corrosion fatigue, summing the 

contributions of the mechanical and electrochemical 

processes, one can write the total entropy generation for 

combined effect of plastic deformation and anodic and 

catholic dissolution as: 

        ̇   ̃      (9)  

where  ̃ is the electrochemical potential losses (over-

potential) (Imanian & Modarres, 2014). Additionally, using 

forces and fluxes enables one to take into account complex 

loading scenarios and operating conditions in computing 

entropy produced in degradation processes. 

3. RUL PREDICTION USING ENTROPY AS AN INDEX OF 

DAMAGE 

It was stated earlier that damage caused through a 

degradation process could be viewed as the consequence of 

dissipation of energies that can be measured and expressed 

by entropy such that: 

Damage   Entropy 

In the earlier discussion in this paper it was shown (Eq. 5) 

that one could express the total entropy per unit time per 

unit volume for individual dissipation processes resulting 

from the corresponding failure mechanisms.  Therefore, the 

evolution trend of the damage,  , is obtained from 

     ∫                  
 

 

 (10)  

where,     is the monotonically increasing cumulative 

damage starting at time t from a theoretically zero value or 

practically some initial damage value. In this study, the 

evaluation of damage is performed relative to the initial 

damage value. The initial damage can be calculated using 

the correlation between the rate of damage and damage at 

different stage of degradation (Liakat & Khonsari, 2014).  

When   reaches a predefined (often subjective) level of 

endurance, it may be assumed that beyond that point the 

component or structure will fail. It is worth to note that 

failure in this context is the point when an item becomes 

effectively nonfunctional (but possibly still operational) – 

i.e., failure happens when the item is no longer meeting its 

functionality requirements (e.g., acceptable performance 

level or endurance limit such as a given level of 

thermodynamic efficiency). The rate of entropy or damage 

can vary according to the type of degradation. However, 

damage in the system mounts up over time. For example, in 

the case of fatigue crack closure, while the crack as an 

observable marker of damage disappears, causing damage 

rate decrease, the damage accumulation keeps rising as 

unobservable markers of damage such as loading 

asymmetry, hardening properties, residual stresses and 

loading ratio increase (Romaniv, Nikiforchin, & Andrusiv, 

1983). 

 

Material, environmental, operational and other types of 

variability in degradation forces impose uncertainties on the 
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cumulative damage,  . Existence of any uncertainties about 

the parameters and independent variables in this 

thermodynamic-based damage model leads to a time-to-

failure distribution. Imanian et al. showed how such a 

distribution and corresponding reliability function can be 

derived from the thermodynamic laws rather than estimated 

from the observed time to failure histories (Imanian & 

Modarres, 2014). 

Currently, most of the health management of components 

and structures is based on reliability analysis and 

maintenance scheduling. However, in many cases this is 

neither sufficient nor efficient because each of these 

components can undergo different life cycles and hence 

different aging. Therefore, if maintenance or replacement is 

done solely based on reliability analysis, in most 

circumstances the components will either be abandoned 

before they have reached their end of life, or worse, they 

will fail before their scheduled replacement. 

Prognostics and health management modeling approaches 

are used to reduce the costs of the physics based 

propagation damage. The techniques included in the PHM 

provide warnings before failures happen; they also optimize 

the maintenance schedule, reduce life cycle cost of 

inspection, and improve qualification tests assisted in design 

and manufacturing. Prognostics and health management 

modeling methods are implemented through three stages of 

diagnostics, prognostics, and health management. 

Diagnostics techniques identify the operational states of a 

working component or a structure. These techniques use 

statistics features such as mean, standard deviation, 

Mahalanobis distance and Euclidean distance of a 

component’s degradation operating data (e.g. temperature, 

current, voltage, acoustic signals) to find out if the 

component is in a healthy condition or not regarding the 

feature’s level degradation (Schwabacher & Goebel, 2007; 

Bock, Brotherton, Grabill, Gass, & Keller, 2006; Fraser, 

Hengartner, Vixie, & Wohlberg, 2003). 

Prognostics methods provide information about the 

performance and RUL of components by modeling 

degradation propagation. These methods rely on the 

condition of the data which can roughly be divided into data 

driven based models and PoF based models. PoF based 

prognostics methods employ knowledge of products life 

cycle loading profile, failure mechanisms, geometry, and 

material properties. However, using PoF models is 

challenging because these methods are based on the 

interactions among multiple failure mechanisms which are 

not easy to analyze. Data driven based models are able to 

obtain the complex relationship and degradation trend in the 

data without the need for the particular product 

characteristics such as degradation mechanism or material 

properties (Amin, Byington, & Watson, 2005; Byington, 

Watson, & Edwards, 2004; Roemer, Ge, Liberson, Tandon, 

& Kim, 2005; Goebel, Saha, & Saxena, 2008). However, 

they cannot capture the difference between failure modes 

and mechanisms. 

Since entropy function includes all of the failure 

mechanisms’ dissipative energies when multiple competing 

and common cause failure mechanisms are involved, using 

it as a damage parameter for diagnosis and prognostics is 

more favorable in comparison with the PoF models and data 

driven models which merely rely on the most predominant 

failure mechanisms and the statistical analysis, respectively.  

What follows presents an entropy based prognostics method 

for RUL prediction. The proposed prognostics framework is 

depicted in Figure 1. 

 

Figure 1. RUL prediction by entropy based prognostic 

method. 

 

According to this framework the entropic base prognostics 

method can be implemented in four steps. First, the 

dissipative processes and associated data in the critical 

components under aging are determined. The identification 

of these processes and relevant parameters can be aided by 

failure modes, mechanisms, and effects analysis (FMMEA) 

which identifies the potential failure mechanisms for 

products, under certain environmental and operating 

conditions. The entropy as a parameter of damage which 

includes all the interactive failure mechanisms is quantified 

then. 

The second step is to extract the features of the monitored 

entropy data and compare them with the healthy baseline 

data features to detect anomalies. The traditional diagnostic 

approaches are mainly designed for stationary and known 

operating conditions. The problem of a fault diagnosis under 

fluctuating load and operating conditions has been 

successfully addressed by methods such as order tracking 

method (Stander & Heyns, 2005), instantaneous power 

spectrum statistical analysis (Bartelmus & Zimroz, 2009), 

and diagnosis algorithms such as clustering algorithms 

(Schwabacher & Goebel, 2007; Vapnik, 1995; He & Wang, 

2007).  

Because entropy as a parameter of degradation includes all 

observable damage markers (cracks, wear debris and pit 
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densities) and unobservable damages such as subsurface 

dislocations, slip and micro-cavities, definition of a single 

failure threshold might not be possible due to long stretch of 

damage measurement from nano-scale to macroscopic scale. 

In this case, the cumulative damage and alternatively 

entropy endurance level can be estimated through the 

measurement of certain observable damage markers. The 

correlation between the observable damage markers and 

entropy, justified by several studies (Naderi, Amiri, & 

Khonsari, 2010; Bryant, Khonsari, & Ling, 2008), enables 

the definition of failure threshold on the basis of observable 

markers.  In the other word, the damages grow, coalesce and 

eventually the weakest link among all coalesces damages 

manifests itself as an observable damage which causes 

failure.  

Additionally, records of the entropy data from historical 

data can be used to obtain the entropy to failure values. 

Entropy, as a thermodynamic state function is independent 

of the path to failure (loading values, frequency and 

geometry) and provides an overall constant failure criterion 

(Kondepudi & Prigogine, 1998; Bryant, Khonsari, & Ling, 

2008).  

The third step is to use an appropriate prognostics approach 

using entropy as an index of damage. Some of the 

conventional methods used for prognostics are artificial 

neural network (Byington, Watson, & Edwards, 2004; 

Amin, Byington, & Watson, 2005), fuzzy logic (Amiri & 

Khonsari, 2010), wavelet theory (Roemer, Ge, Liberson, 

Tandon, & Kim, 2005), support vector machine (Vapnik, 

1995), relevance vector machine (Tipping, 2000), Bayesian 

methods (like Kalman filter and Particle filter 

(Arulampalam, Maskell, Gordon, & Clapp, 2002)), time 

series analysis (Kumar & Pecht, 2007) and PoF based 

prognostics models. The application of these methods 

depends to the complexity of accumulated entropy signal 

from two extremes of periodic and purely random signal.  

The fourth and final step is RUL prediction. Remaining 

useful life is defined as the time when the entropy meets the 

failure criteria. There are different techniques for RUL 

estimation using data driven methods. For example one 

approach uses a pattern matching technique on data to 

estimate the RUL. Another strategy estimates the RUL 

indirectly by estimating damage trend, performing an 

appropriate extrapolation to the damage trend, and the 

calculation of RUL from the intersection of the extrapolated 

damage and the failure criteria (Schwabacher & Goebel, 

2007). In comparison with the end of life prediction from 

entropy trend, the conventional RUL prediction methods are 

based on a damage mechanism with different failure 

mechanisms. These various failure mechanisms with 

different failure criteria and parameters’ trends have various 

RULs which needs them to be prioritized accordingly 

(Cheng & Pecht, 2009).   

Generally speaking, using entropy as a damage parameter 

has various advantages. The entropy based prognostics 

method is capable of shortening the prognostics procedure 

by isolating the damage parameter to entropy which 

includes multiple degradation mechanisms. It offers a 

science based foundation for prognostic methods which 

could combine with the conventional data driven 

techniques, as compared to the methods suggested by 

previous studies such as fusion prognostic approach 

suggested by Cheng et al (Cheng & Pecht, 2009). 

Furthermore, it uses a constant failure threshold and 

suggests a straightforward process to predict RUL (Amiri & 

Khonsari, 2010). 

4. CASE STUDY 

The entropy based prognostics approach was employed to 

obtain the remaining useful life of the AL7075-T651 

coupons subjected to fatigue loading, using an MTS servo-

hydraulic uni-axial load frame, from Ontiveros et al. 

experimental results (Ontiveros, 2013). Geometries of the 

coupons used are shown in Figure 2. All tests were 

performed at peak stress of 248 MPa with load ratio of 0.1 

and frequency of 2Hz. Since the focus of Ontiveros et al. 

study was crack initiation, so most of experiments were 

stopped when, a crack was detected at the notch by visual 

inspection. 

 

Figure 2. Al7075-651 edge notch specimen. 

 

The formulation for entropy generation using Eq. 7 can be 

derived as 

   
    ̇

 
 

 

 
  ̇  

 

  
       (11)  

where,   is the elastic energy release rate and  ̇ is the 

damage rate variable.  

In Eq. 11, the first two terms can be captured directly from 

the hysteresis loop as depicted in Figure 3. In Figure 3, the 

largest area represents the energy dissipated due to plastic 

deformation.  The remaining portion represents the energy 

dissipation as a result of elastic damage which can be 

observed as degradation of the Young’s modulus (Lemaitre 

& Chaboche, 1990). 
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Figure 3. Hysteresis Energy (Reproduced from (Ontiveros, 

2013)). 

 

Results of Ontiveros et al. analysis showed that when 

compared to the plastic and elastic energy dissipations the 

fraction of the entropy generation due to heat conduction is 

considered to be negligible. Therefore, the third term does 

not take into account in the entropy calculation. 

The prognostic framework implemented in this study 

involves the measurement of parameters included in the Eq. 

11 and using the entropy as a parameter to be monitored. 

Specific Mahalanobis Distance (MD) is used as a diagnostic 

threshold which triggers the prediction. Once an anomaly is 

detected, the Particle Filter (PF) procedure is initiated for 

time to failure prognostic. The failure threshold in this 

approach is the mean of the failure threshold of the 3 

samples considered as training samples. 

4.1. Anomaly Detection 

To obtain the anomaly threshold for every entropy data 

point, the MD values are calculated based on the distance 

between healthy and anomalous data. Then, the calculated 

MD values are transformed into a normal distribution using 

the Box-Cox transformation method (Box & Cox, 1964). 

After that, a detection threshold is quantified upon the mean 

and standard deviation of the transformed healthy MD data. 

The calculations are repeated for every test data, and 

anomaly is marked for every test point which goes beyond 

the detection threshold.  

To implement the MD, entropy data are divided into two 

categories: (i) healthy data and (ii) test data. The 

observations between 4000 and 5500 cycles were classified 

as healthy data and the whole set of observations was 

considered as test data. The number of observations 

recorded for entropy parameter is denoted by  , where 

              is the values of entropy at cycle    Each 

individual observation of entropy data vector was 

normalized using the mean,    
̅̅ ̅̅ , and standard deviation,   , 

from the healthy entropy data using Eq. 12. 

    
     

̅̅ ̅̅̅

   

 (12)  

The MD values were computed by using Eq. 13.  

       
       (13)  

Where   is the correlation matrix which can be obtained by  

   
 

   
∑     

 

 

   

 (14)  

Since the healthy MD values were found to not follow a 

normal distribution, the Box-Cox power transformation was 

employed to convert the healthy MD values into a normal 

distribution. This transformation allows for the use of 

statistical mean to determine the healthy or unhealthy 

conditions of the data. The Box-Cox transformation is 

defined by Eq. 15, where       is the transformed vector, 

   is the original vector, and   the transformation 

parameter. 

       
     

 
                  

                        

(15)  

The mean and standard deviation of the transformed healthy 

values were used to define the threshold for anomaly 

detection as    
̅̅ ̅̅̅     . When a transformed test       

values (based on the Box-Cox transformation using 

parameter   learned from the healthy data) crosses this 

threshold, an anomaly was considered to have occurred. 

 

4.2. Particle Filter Prediction 

By choosing the entropy data as a feature of damage, 

Bayesian method can be used to update the parameters of 

the model and the age predictions. Bayesian approaches 

provide a general rigorous method for dynamic state 

estimation problems. The idea is to build a Probability 

Density Function (PDF) of the system states based on all 

available information. Particle Filter (PF) is a method for 

implementing a recursive Bayesian filter using Monte Carlo 

simulations. Particle Filter (PF) approximates the model 

parameters’ PDF by a set of particles sampled from the 

distribution and a set of associated weights denoting 

probability masses (Arulampalam, Maskell, Gordon, & 

Clapp, 2002). 

In particle filter method, the particles are generated and 

recursively updated by process model shown in Eq. 16, a 

measurement model depicted in Eq. 17 and an a priori 

estimate of the state PDF.  

  ⃗ 
    ( ⃗   

      ) (16)  

 

  ⃗      ⃗      (17)  

where,    and    are the system and measurement noises, 

respectively. Defining the model parameter vector at cycle   

as  ⃑  [            ] and damage level measurements as  

 ⃗  [             ], the particle filter is implemented by 

initiating the state of the system by a set of particles  ⃗ 
 , 

where           .  
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If  (  
   ⃗ 

 )} denotes a random measure that characterizes 

the posterior PDF,              (where {    
            , 

is a set of support points with associated weights {  
     

      }, normalized such that ∑   
   

  
   ) the posterior 

density at cycle   can be approximated as 

    ⃗     ⃗         
    

    ⃗     ⃗   
   (18)  

where,  ⃗    and  ⃗    are the set of all states and 

measurements up to cycle  . Sampling importance 

resampling is a commonly used algorithm to attribute 

importance weight,   
 , to each particle,  , 

   
  

 ( ⃗   | ⃗ 
 ) ( ⃗ 

 )

 ( ⃗ 
 | ⃗   )

 (19)  

The posterior PDF is then calculated by 

 

   
      

 
 ( ⃗ | ⃗ 

 ) ( ⃗ 
 | ⃗   

 )

 ( ⃗ 
 | ⃗ 

   ⃗   )
 (20)  

where the importance distribution  ( ⃗ 
 | ⃗ 

   ⃗⃗   ) is 

approximated by  ( ⃗ 
 | ⃗   

 ) (Arulampalam, Maskell, 

Gordon, & Clapp, 2002). 

4.3. Remaining Useful Life Prediction 

To tie in the aforementioned technique, namely PF 

approach, with the entropic based prognosis, the system 

model can be represented by a regression model, based on 

accumulated entropy values,   , from experimental data 

analysis 

        
     

 (21)  

which delivers a good fit for the entropy increment of Al 

specimens subjected to fatigue mechanism. Here,   is the 

cycle number, and    and    are the model parameters 

subjected to a Gaussian error as  

 

   
      

    
     

where:      
   (       

)  

 

   
      

    
      

where:     
           

  

(22)  

Given a series of measured entropy values,   , subjected to a 

Gaussian noise,          with zero mean and standard 

deviation      as 

 
  

     
     

    

where:            
(23)  

the PF technique enables the estimation of the model 

parameters (   and   ) where in the updating process,    

samples are used to approximate the posterior PDF. Each 

sample denotes a candidate for the model parameter vector 

 ⃗ 
      

    
 ,           , so the prediction of    

would have    possible trajectories with the corresponding 

importance weight   
 . The  th

 steps ahead prediction of 

each trajectory at cycle   is calculated by 

      
     

          
  (24)  

The estimated PDF of the entropy prediction can be 

obtained by 

 
               ∑   

         
  
   

    
         

(25)  

Since the failure threshold is defined as the mean of entropy 

to failure of training entropy data taken from 3 samples,    , 

the remaining useful life probability estimation,   
 , of the 

 th
 trajectory at cycle   can be obtained by solving the 

following equation 

        
      

       
  (26)  

The PDF of the RULs at cycle   can be approximated by  

             ∑   
        

   
      (27)  

4.4. Prognostics Results 

Using the MD approach, anomalies were identified when 

the transformed MD threshold of the test entropy data 

crosses the anomaly detection threshold. Once the anomaly 

was detected, the PF algorithm was initiated to predict RUL. 

The system model used for particle filter prediction follows 

Eq. 23. The initial values of the model parameters were 

obtained from the least square regression for each specimen, 

using the healthy interval of the data.  Figure 4 shows 

prediction results for specimen number 6. The yellow zone 

shows the shape of RUL probability density function 

estimation after anomaly criteria detected. 

 

 

Figure 4. Predicted failure distribution at the time of 

anomaly detection for specimen number 6. 

 

The same procedure applied to the 6 remaining specimens. 

The values for the mean of the predicted RULs and actual 

RULs are shown in Table 1. The error between mean of 

estimated RULs and actual RULs falls in the reasonable 

range of 4% to 18%. 
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Table 1. Comparisons of the actual and estimated RULs 

Sample no. RULactual(Cyc) Mean(RULestimated(Cyc)) Error 

1 2829 2635.5 7% 

2 3827 3563 7% 

3 11165 10696.5 4% 

4 1987 1621 18% 

5 1018 835.5 17% 

6 4792 4596 4% 

7 3604 3444 4% 

 

5. CONCLUSION 

This paper presents an effort to use a thermodynamic 

framework, using entropy generation as a measure of 

damage, to assess RUL of a component or structure. It 

introduces a unified measure of damage in terms of energy 

dissipations for multiple irreversible processes with 

reference to physically measurable quantities. As compared 

to other existing PoF, data driven, or fusion prognostics 

methods, entropic-damage models capture the effect of 

multiple competing and common-cause failure mechanisms. 

The RUL predicted by this method includes the effect of all 

failure mechanisms and unlike conventional RUL prediction 

methods, where various RULs correspond to different 

failure mechanisms, it provides a unified RUL. 

This paper also demonstrates a case study for 

implementation of an entropy-based prognostics method.  

Particle filter is applied to update the states of the model, 

reduce uncertainties and predict the RUL probability 

distribution function. The proposed method provides 

satisfactory RUL predictions. 

While the entropy method proves to be theoretically more 

relevant for reliability analysis, its advantages remain to be 

explored practically. One practice in this regard is the 

authors’ current project on introducing the entropy growth 

rate as a degradation parameter to the corrosion-fatigue 

mechanisms in materials.  
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