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[1] Sea ice is a very important indicator and an effective modulator of regional and global
climate change. Current remote sensing techniques provide an unprecedented opportunity
to monitor the cryosphere routinely with relatively high spatial and temporal resolutions.
In this paper, we introduce a thermodynamic model to estimate sea and lake ice thickness
with optical (visible, near‐infrared, and infrared) satellite data. Comparisons of nighttime ice
thickness retrievals to ice thickness measurements from upward looking submarine sonar
show that this thermodynamic model is capable of retrieving ice thickness up to 2.8 m. The
mean absolute error is 0.18 m for samples with a mean ice thickness of 1.62 m, i.e., an 11%
mean absolute error. Comparisons with in situ Canadian stations and moored upward
looking sonar measurements show similar results. Sensitivity studies indicate that the largest
errors come from uncertainties in surface albedo and downward solar radiation flux
estimates from satellite data, followed by uncertainties in snow depth and cloud fractional
coverage. Due to the relatively large uncertainties in current satellite retrievals of surface
albedo and surface downward shortwave radiation flux, the current model is not
recommended for use with daytime data. For nighttime data, the model is capable of
resolving regional and seasonal variations in ice thickness and is useful for climatological
analysis.
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1. Introduction

[2] Changes in sea ice significantly affect the exchanges
of momentum, heat, and mass between the sea and the
atmosphere. While sea ice extent is an important indicator
and effective modulator of regional and global climate
change, sea ice thickness is the more important parameter
from a thermodynamic perspective.
[3] There are some ice thickness data from submarine

Upward‐Looking Sonar (ULS) during various field cam-
paigns, for instance, the Scientific Ice Expeditions (SCICEX)
in 1996, 1997, and 1999 [National Snow and Ice Data
Center, 2006]. There are some in situ measurements of ice
thickness from the New Arctic Program initiated by the
Canadian Ice Service (CIS) starting in 2002, and sea ice
draft measurements from moored ULS instruments in the
Beaufort Gyre Observing System (BGOS). There are a few
studies on changes in sea ice thickness and volume, but they
are for specific locations over a limited time period, such as
the work by Rothrock et al. [2008] using the ice draft pro-
files from submarine transects. The amount of available ice
thickness data is insufficient for most large‐scale studies.

[4] Many numerical ocean‐sea ice‐atmosphere models
can, to large extent, simulate sea ice extent with sufficient
accuracy to capture its spatial and temporal distributions, as
demonstrated by the Intergovernmental Panel on Climate
Change Fourth Assessment Report (IPCC AR4) models
[Zhang and Walsh, 2006]. Only can few numerical ocean‐
sea ice‐atmosphere models simulate ice thickness distribu-
tion, notably, the Pan‐Arctic Ice‐Ocean Modeling and
Assimilation System (PIOMAS) developed by Zhang and
Rothrock [2003]. All the model simulations have relatively
low spatial resolution compared to satellite data.
[5] Accurate, consistent ice thickness data with high

spatial resolution are critical for a wide range of applications
including climate change detection, climate modeling, and
operational applications such as shipping and hazard miti-
gation. Satellite data provide an unprecedented opportunity
to monitor the cryosphere routinely with relatively high
spatial and temporal resolutions for both sea ice, and lake
and river ice.
[6] Spaceborne sensors, particularly passive microwave

radiometers and synthetic aperture radar, have been used
primarily to map ice extent and ice concentration, and to
monitor and study their trends [Comiso, 2002; Francis et al.,
2009; Francis and Hunter, 2007; Maslanik et al., 2007;
Drobot et al., 2008]. Some sea ice thickness data have been
estimated from satellite radar altimetry since 1993 [Laxon
et al., 2003], and will be estimated in the future from the
recently launched European Space Agency (ESA) CryoSat‐2
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mission (http://www.esa.int/esaLP/ESAOMH1VMOC_
LPcryosat_0.html). With the launch of the ICESat satellite
in January of 2003, sea ice thickness and volume estimation
methods were developed for use with elevation data from
ICESat’s laser altimeter [Kwok and Cunningham, 2008;
Kwok et al., 2009; Zwally et al., 2008].
[7] Can the longer‐term records of optical (visible,

near‐infrared, infrared) satellite data onboard polar orbiting
satellites be used to retrieve ice thickness? Since the first
launch of the U.S. National Oceanic and Atmospheric
Administration (NOAA) Television and InfraRed Observa-
tion Satellite (TIROS) series in 1962, the Advanced Very
High Resolution Radiometer (AVHRR) has been widely
used in many geophysical applications including the map-
ping of ice extent. Can optical satellite imagers such as the
AVHRR and Moderate Resolution Imaging Spectro-
radiometer (MODIS) also be used to estimate ice thickness?
Some work has been done in this field [cf. Yu and Rothrock,
1996]. However, those studies have been limited to case
studies of thin ice.
[8] This paper presents a model based on ice surface

energy budget to estimate sea and lake ice thickness with
optical satellite data. This model is capable of deriving ice
thickness up to 2.8 m under both clear‐ and cloudy‐sky
conditions with accuracy of greater than 80%. This paper is
organized as follows. Section 2 describes the physics of the
model with its three components: radiative, turbulent, and
conductive fluxes. Applications of the model using different
satellite data for ice thickness retrievals are given in section
3. Section 4 presents validation results of ice thickness re-
trievals using this model with submarine, station, and
mooring data in the Arctic. Quantitative analysis of the
uncertainties and sensitivities of our model is discussed in
section 5. Discussion and conclusions follow in section 6.

2. One‐Dimensional Thermodynamic Ice Model

[9] A slab model proposed by Maykut and Untersteiner
[1971] is used here as the basis for our One‐dimensional
Thermodynamic Ice Model (OTIM). The general equation
for energy conservation at the surface (ice or snow) is

1! !sð ÞFr ! I0 ! Fup
l þ Fdn

l þ Fs þ Fe þ Fc ¼ Fa ð1Þ

where as is the ice or snow covered surface shortwave
broadband albedo, Fr is the downward shortwave radiation
flux at the surface, I0 is the shortwave radiation flux passing
through the ice interior with ice slab transmittance i0, Fl

up is
the upward longwave radiation flux from the surface, Fl

dn is
the surface downward longwave radiation flux from the
atmosphere, Fs is the sensible heat flux at the surface, Fe is
the latent heat flux at the surface, Fc is the conductive heat
flux within the ice slab, and Fa is the residual heat flux that
could be caused by ice melting and/or heat horizontal
advection. Flux entering the surface is positive, and flux
leaving the surface is negative. By definition, in equation (1),
as, Fr, I0, Fl

up, Fl
dn should be always positive, Fs, Fe, and Fc

could be positive or negative, and Fa is usually assumed to be
zero in the absence of a phase change. The details of each term
will be addressed in sections 2.1 through 2.7.

2.1. Shortwave Radiation at the Surface and Through
the Ice
[10] The first term on the left‐hand side of equation (1),

(1 − as) Fr, is the net shortwave radiation flux at the surface.
The surface broadband albedo over entire solar spectrum, as,
is estimated [Grenfell, 1979] by

!s ¼ 1! A exp !Bhð Þ ! C exp !Dhð Þ ð2Þ

where A, B,C, andD are empirically derived coefficients, and
h is the ice thickness (hi) or snow depth (hs) in meter if snow is
present over the ice. The other relatively simple approaches to
determine ice and snow surface albedo include model simu-
lated constant values based on the ice and snow types as
discussed by Saloranta [2000], and the experimental and
observational values for a variety of snow and ice surface
conditions as discussed by Grenfell and Perovich [2004].
Equation (2) is chosen for surface albedo estimation is based
on the following considerations. (1) It is not constant but a
function of ice thickness, ice type, and snow depth. (2) The
coefficients A, B, C, and D are dependent on ice types and
snow depth, and different for clear‐ and cloudy‐sky condi-
tions that make it suitable for use with satellite data. (3) It is
relatively easy to improve the broadband albedo estimation
by adjusting A, B, C, and D values accordingly with more
updated validation results. The values of A, B, C, and D are
given by Grenfell [1979, Table 1]. The downward shortwave
radiation flux at the surface, Fr, can be either an input
parameter or parameterized with parameterization schemes
built into the OTIM. There are a number of parameterization
schemes estimating Fr under both clear‐ and cloudy‐sky
conditions for cold regions. Key et al. [1996] compared these
schemes for applications in high latitude, including clear‐sky
parameterization schemes from Shine and Henderson‐Sellers
[1985], Moritz [1978], and Bennett [1982], and cloudy‐sky
parameterization schemes from Shine [1984],Bennett [1982],
Jacobs [1978], Laevastu [1960], and Berliand [1960]. For
clear‐ and cloudy‐sky downward shortwave radiation fluxes
in the OTIM, the Shine [1984] schemes are used.
[11] The second term on the left‐hand side of equation (1),

I0 = i0 (1 − as)Fr, is the shortwave radiation flux passing
through the ice interior. i0 is the ice slab transmittance, i.e.,
the percentage of the shortwave radiation flux that pene-
trates the ice, which is estimated by the following parame-
terization scheme by Grenfell [1979]:

i0 ¼ A exp !Bhð Þ þ C exp !Dhð Þ ð3Þ

where A, B, C, and D are coefficients that are different from
those in equation (2), and h is the ice slab thickness in
meters.

2.2. Longwave Radiation at the Surface
[12] The third term on the left‐hand side of equation (1),

Fl
up, is the upward longwave radiation flux from the surface

to the atmosphere, which is estimated with

Fup
l ¼ ""T4

s ð4Þ

where " is the longwave emissivity of the ice or snow sur-
face, s is the Stefan‐Boltzman constant, and Ts is the surface
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skin temperature in K. For simplicity, an ice emissivity of
0.988 is used. Even though some pixels contain a small
portion of open water or snow, the error in emissivity from
improperly defining the surface type is small because snow
emissivity at a 0 degree look angle is 0.995, very close to
the value of 0.987 for ice and 0.988 for water [Rees,
1993].
[13] The fourth term on the left‐hand side of equation (1),

Fl
dn, is the surface downward longwave radiation flux from

the atmosphere. There are five potential clear‐sky parame-
terization schemes for estimating the downward longwave
radiation flux: Yu and Rothrock [1996], Efimova [1961],
Ohmura [1981], Maykut and Church [1973], and Andreas
and Ackley [1982]. There are also five potential cloudy‐
sky parameterization schemes: Yu and Rothrock [1996],
Jacobs [1978], Maykut and Church [1973], Zillman [1972],
and Schmetz and Raschke [1986]. Based on the Key et al.
[1996] study, the Efimova [1961] scheme is the most
accurate for clear‐sky conditions: Fl,clr

dn = s Ta
4 (0.746 +

0.0066 ea), where ea is the water vapor pressure (hPa) near
the surface, and Ta is the air temperature at 2 m above the
surface. For cloudy‐sky conditions, the Jacobs [1978]
scheme is the best estimator: Fl

dn = Fl,clr
dn (1 + 0.26C),

where C is fractional cloud cover. These two schemes are
used for estimating the downward longwave radiation flux
at the surface.

2.3. Surface Sensible Heat Flux
[14] The fifth term on the left‐hand side of equation (1),

Fs, is the surface sensible heat flux, which is calculated by
following formula:

Fs ¼ #aCpCsu Ta ! Tsð Þ ð5Þ

where ra is the air density (standard value of 1.275 kg m−3 at
0°C and 1000 hPa), Cp is the specific heat of wet air with
wet air specific humidity q, Cs is the bulk transfer coefficient
for sensible heat flux between the air and ice surface (Yu and
Rothrock [1996] use Cs = 0.003 for very thin ice, and
0.00175 for thick ice, 0.0023 for neutral stratification as
suggested by Lindsay [1998] in his energy balance model
for thick Arctic pack ice), u is the surface wind speed, Ta is
the near surface air temperature at 2 m above the ground,
and Ts is the surface skin temperature. The wet air density ra
is calculated using the gas law with surface air pressure Pa in
hPa, surface air virtual temperature Tv in K, and the gas
constant Rgas (287.1 J kg−1 K−1) by the formula #a ¼ 100Pa

RgasTv
,

where Tv = (1 + 0.608q)Ta and q is the wet air specific
humidity (kg/kg). The wet air specific heat is

Cp ¼ Cpd 1! qþ
Cpv

Cpd
q

! "
ð6Þ

where Cpv is the specific heat of water vapor at constant
pressure (1952 J K−1 kg−1) and Cpd is the specific heat of dry
air at constant pressure (1004.5 J K−1 kg−1), so Cp can
simply be written as Cp = 1004.5 · (1 + 0.9433q). The relative
humidity over the snow/ice is assumed to be 90%, if it is
unknown.

2.4. Surface Latent Heat Flux
[15] The sixth term on the left‐hand side of equation (1),

Fe, is the latent heat flux at the surface. It is calculated in the
OTIM with

Fe ¼ #a L Ce u wa ! wsað Þ ð7Þ

where ra is the air density, L is the latent heat of vapori-
zation (2.5 × 106 J kg−1) which should include the latent
heat fusion/melting (3.34 × 105 J kg−1) if the surface is
below freezing, Ce is the bulk transfer coefficient for latent
heat flux of evaporation, u is the surface wind speed, wa is
the air mixing ratio at 2 m above the ground, and wsa is the
mixing ratio at the surface. The mixing ratio is very close to
the specific humidity in magnitude, w = q/(1 − q) ffi q.
[16] The bulk transfer coefficient, Ce, for the latent heat

flux is a function of wind speed and/or air‐sea ice temper-
ature difference. It can be parameterized as described by
Bentamy et al. [2003] and used in this study by the formula
Ce = {a exp[b (u + c)] + d/u + 1} × 10−3, where a =
−0.146785, b = −0.292400, c = −2.206648, and d =
1.6112292. The Ce value ranges between 0.0015 and 0.0011
for wind speeds between 2 and 20 m s−1. Another parame-
terization scheme of Ce was developed by Kara et al. [2000]
for use in a general circulation model. They related Ce to both
surface wind speed and air‐sea ice temperature difference:

Ce ¼ Ce0 þ Ce1 Ts ! Tað Þ

Ce0 ¼ 0:994þ 0:061û! 0:001û2
# $

' 10!3

Ce1 ¼ !0:020þ 0:691 1=ûð Þ ! 0:871 1=ûð Þ2
h i

' 10!3

where the wind speed is limited to the interval û = max[3.0,
min(27.5, u)] to suppress the underestimation of the quadratic
fit when u > 27.5 m s−1.
[17] Because Cs is so close in value to Ce, a linear rela-

tionship between Ce and Cs is used rather than determining
Cs independently. The simplest representative linear for-
mulation is found to be Cs = 0.96Ce with a negligible
intercept (3.6 × 10−6) as reported by Kara et al. [2000]; we
use Cs = 0.98Ce in our model for air‐sea ice interface tur-
bulent heat transfer.

2.5. Conductive Heat Flux
[18] The seventh term on the left‐hand side of equation

(1), Fc, is the conductive heat flux for a two‐layer system
with one snow layer over an ice slab that can be written as

Fc ¼ $ Tf ! Ts
% &

ð8Þ

where g = (ki ks)/(ks hi + ki hs), Tf is the water freezing
temperature (degrees C) that can be derived from the sim-
plified relationship Tf = −0.055Sw, where Sw is the salinity of
seawater, assumed to be 31.0 parts per thousand (ppt) for the
Beaufort Sea and 32.5 ppt for the Greenland Sea, hs is the
snow depth, and hi is the ice thickness. ks is the conductivity
of snow which can be formulated by ks = 2.845 × 10−6rsnow2 +
2.7 × 10−4 · 2.0(Tsnow−233)/5 [Ebert and Curry, 1993] that is
used in this study, rsnow is the snow density ranging from
225 kg m−3 (new snow) to 450 kg m−3 (water‐soaked snow),
Tsnow is the snow temperature in K. ks can be further sim-
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plified as ks = 2.22362 × 10−5.655(rsnow)1.885 [Yen, 1981]. ki is
the conductivity of ice that is estimated by ki = k0 + bSi/(Ti −
273) [Untersteiner, 1964] that is adopted in this study, where
b = 0.13 W m−2 kg−1, k0 = 2.22(1 − 0.00159Ti) W m−1 K−1

that is the conductivity of pure ice [Curry andWebster, 1999].
Si is the sea ice salinity and Ti is the temperature within the ice
slab. Some experimental relationships between hs and hi, Ti
and Ts, Si and hi exist, as described in sections 2.6 and 2.7.
[19] It should point out that assuming linear vertical

temperature profile in the ice slab, which means that con-
ductive heat flux across the ice slab is uniform, may cause
error in the ice thickness estimation. According to the Zhang
and Rothrock’s [2001] simulations, the difference in the
annual mean ice thickness of 2.52 m between the three‐layer
model with nonlinear vertical temperature profile and the
zero‐layer model with linear vertical temperature profile is
0.07 m, or 3%. Based on their simulations, it is reasonable to
assume a linear vertical temperature profile in the ice slab,
i.e., conductive heat flux across the ice slab is uniform, in
our model for dealing with ice thickness less than 3 m.

2.6. Relationships Between Snow Depth and Ice
Thickness, Surface Temperature and Ice Temperature,
and Sea Ice Thickness and Sea Ice Salinity
[20] Doronin [1971] used the following relationship to

estimate snow depth as a function of ice thickness, which
was also used by Yu and Rothrock [1996]:

hs ¼ 0 for hi < 5 cm;

hs ¼ 0:05hi for 5 cm ( hi ( 20 cm;

hs ¼ 0:1hi for hi > 20 cm:

In the real world, snow accumulation over the ice may not
follow the simple relationship above. So if snow depth is
available, it should be input to the model.
[21] The ice temperature Ti is an important factor in the

ice conductivity calculation. It may be significantly different
from surface skin temperature that can be measured or
retrieved with remote sensed data when there is snow on the
ice. In general, we can obtain the surface skin temperature Ts
from satellite with optical data, but not Ti. Yu and Rothrock
[1996] suggested that assuming Ti equal to Ts can cause 5%
and 1% errors, when ice thickness is 5 cm and 100 cm,
respectively. The assumption that the two are equal may be
more valid during the night than the daytime when the
surface heating from the Sun increases the difference
between the skin (snow) and ice temperatures. Uncertainty
in Ti is one source of errors for the daytime retrieval of ice
thickness with the OTIM. However, the sensitivity study
described later shows that the error in Ti has a smaller effect
on the ice thickness derivation than other uncertainties as
like from snow depth and cloud fraction.
[22] There are at least three schemes for the relationship

between sea ice thickness hi and sea ice salinity Si. The Cox
and Weeks [1974] scheme is

Si ¼ 14:24þ 19:39hi for hi ( 0:4 m;

Si ¼ 7:88þ 1:59hi for hi > 0:4 m:

Jin et al. [1994] gave this relationship:

Si ¼ 7:0! 31:63hi for hi ( 0:3 m;

Si ¼ 8:0! 1:63hi for hi > 0:3 m:

Kovacs [1996] used this scheme:

Si ¼ 4:606þ 0:91603=hi for 0:10 m ( hi ( 2:0 m:

In the OTIM, we use Kovacs’ scheme to express the rela-
tionship between sea ice thickness and sea ice salinity.

2.7. Surface Air Temperature
[23] Surface air temperature Ta at 2 m height above the

ground is an essential parameter for the OTIM to estimate
the surface downward longwave radiation, sensible, and
latent heat fluxes. Numerical model forecasts generally do
not provide good estimates of the surface 2 m air tempera-
ture in the polar regions. Thus, if we assume that large‐scale
heat sources and sinks, e.g., “hot” leads and cold ice floes,
regulate the cold surface 2 m air temperature Ta, therefore Ta
should be close to the surface skin temperature Ts overall.
Here we assume that

Ta ¼ Ts þ %T ð9Þ

where Ts is the surface skin temperature from satellite
retrievals, and dT is a function of cloud amount. dT is about
2.2°C for clear‐sky conditions, and reduces to about 0.4°C for
overcast sky condition as implied by Persson et al. [2002].
Here we set dT = 2.2 − 1.8Cf, where Cf is the cloud amount
ranging from 0 to 1.

3. OTIM Applications With Satellite Data

[24] This section describes the applications of the OTIM
with satellite data to estimate ice thickness. While any
optical satellite data can be used, the applications with data
from NOAA’s AVHRR and NASA’s MODIS are detailed.
Case studies using data from the Spinning Enhanced Visible
and InfraRed Imager (SEVIRI) on the Meteosat Second
Generation (MSG) satellite, and from the Geostationary
Operational Environmental Satellite (GOES) have also been
performed, though the results are not presented here.
Regardless of the data source, satellite products required by
OTIM as inputs are cloud amount, surface skin temperature,
surface broadband albedo, and surface downward shortwave
radiation fluxes. The latter two are for daytime retrieval
only.
[25] The AVHRR Polar Pathfinder extended (APP‐x)

product suite used in this study [Wang and Key, 2003, 2005;
Wang et al., 2007; Fowler et al., 2007] can be found with its
product description at http://stratus.ssec.wisc.edu/projects/
app/app.html. Figure 1 gives an example of the OTIM
retrieved sea ice thickness from APP‐x data set on 21
February 2004 at 04:00am local solar time. For MODIS
data, MODIS cloud mask [Ackerman et al., 1998; Liu et al.,
2004] and surface skin temperature are used as inputs to the
OTIM. The MODIS and AVHRR ice surface skin temper-
ature for clear‐sky conditions is retrieved using a split‐
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window technique, where split window refers to brightness
temperature in the 11–12 mm atmospheric window. The
retrieval equation is

Ts ¼ aþ bT11 þ c T11 ! T12ð Þ þ d T11 ! T12ð Þ sec &! 1ð Þ½ * ð10Þ

where Ts is the estimated surface temperature (K), T11 and
T12 are the brightness temperatures (K) at 11 mm (MODIS
band 31, AVHRR band 4) and 12 mm (MODIS band 32,
AVHRR band 5) bands, and & is the sensor scan angle. More
details about this algorithm are given by Key [2002], Key
et al. [1997a], and Hall et al. [2004]. An example of
MODIS data application with the OTIM is given in Figure 2.

4. OTIM Validation

[26] To evaluate the performance and accuracy of the
OTIM, we validate the ice thickness retrievals using OTIM
with ice thickness from submarine cruises, meteorological
stations, mooring sites, and numerical model simulations.
The APP‐x data together with sea ice concentration from
Nimbus‐7 SMMR and DMSP SSM/I Passive Microwave
Data available at http://nsidc.org/data/nsidc‐0051.html
[Cavalieri et al., 2008] were used in the calculation of sea
ice thickness with OTIM. The pixel‐level sea ice concen-
tration was used to correct sea ice temperature by removing
open water temperature contribution from overall ice covered
pixel temperature.

4.1. Comparison With Submarine Sonar
Measurements
[27] The National Snow and Ice Data Center (NSIDC)

archives submarine Upward Looking Sonar (ULS) ice draft
(the thickness of the ice below the water line) profile data
collected by both U.S. Navy and U.K. Royal Navy sub-
marines in the Arctic Ocean. U.S. Navy guidance has stated
that previously classified, submarine‐collected ice draft data

may be declassified and released according to set guidelines.
Those guidelines include restrictions that positions of the
data must be rounded to the nearest 5 min of latitude and
longitude, and the date rounded to the nearest third of a
month. Due to the limitations enforced by those guidelines,
almost all the data are not suitable for ice thickness validation
due to the lack of accuracy in the submarine locations.
[28] The Scientific Ice Expeditions (SCICEX) used U.S.

Navy submarines for research. SCICEX data are not clas-
sified, and thus has precise location and date for all the
observations. In this work, we use all SCICEX 1996, 1997,
and 1999 ice draft data (hereinafter SCICEX 96, SCICEX
97, and SCICEX 99) taken along the submarine trajectories
as shown in Figure 3 because NSIDC obtained permission
to release them, which covers 13 September to 28 October
for SCICEX 96 data, 3 September to 2 October for SCICEX
97 data, and 3 April to 11 May for SCICEX 99 data. All
SCICEX data have two types of files, ice draft profiles and
derived statistics. Each ice draft file includes a header that
gives the date and two end points for the profile, followed
by a sequential list of ice drafts spaced at 1.0 m intervals that
comprise the bottomside sea‐ice roughness profile. Data in
each file fall along a straight‐line (great circle) track
between the two end points. The length of the profile in any
given file can be up to 50 km, but may be shorter if data
dropouts create gaps greater than 0.25 km, or if changes in
course cause deviations from a straight‐line track. Subma-
rine ice draft data were converted to ice thickness with a
multiplicative factor of 1.11, based onArchimedes’ buoyancy
principle. Each derived statistics file includes information on
ice draft characteristics such as keels, level ice, leads, unde-
formed, and deformed ice (refer to http://nsidc.org/data/
g01360.html).
[29] For each submarine track, ice thickness simulated

using the PIOMAS model [Zhang and Rothrock, 2003],
with grid size 25 km, was obtained. We are able to compare
ice thickness retrievals using OTIM with ice thickness

Figure 2. OTIM retrieved Arctic sea ice thickness from
MODIS Aqua data on 31 March 2006 under clear‐sky
conditions.

Figure 1. OTIM retrieved sea ice thickness (m) fromAPP‐x
data set on 21 February 2004 at 0400 local solar time under
all‐sky conditions.
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measured by submarines and the corresponding numerical
model simulations using PIOMAS. Only those submarine
track segments longer than 25 km are used in this com-
parison because the satellite product and numerical model
grid resolutions are 25 km. For each of the locations of
submarine track segments, mooring sites, and metrological
stations, the nearest valid pixel within a 3 by 3 pixel box
centered at the location from satellite and numerical model
data grids on the same date is used for the comparison. If no
valid pixel is found within that box from any one of the data
sources, in particular, from satellite data grid, the comparison
will not be done for that date at the location.
[30] Figure 4 shows comparisons in cumulative frequency

of sea ice thickness that were retrieved by OTIM with APP‐x
data, measured by submarines, and simulated by PIOMAS
model. Figure 5 shows the point‐to‐point comparisons
among them. Table 1 lists the comparison results between
OTIM and submarine measurements. The overall mean ice
thicknesses are 1.62 m and 1.64 m from all SCICEX data and
OTIM retrievals, respectively.
[31] The overall mean absolute bias (mean of the absolute

values of the differences) between the OTIM and submarine
data is 0.18 m, or less than 12% error in terms of true mean
ice thickness. The errors are 16% and 10% for 0.00–1.80 m
thick ice and 1.80–3.00 m thick ice, respectively. Many
factors contribute to the ice thickness differences between
the OTIM and submarine data: (1) The actual length of the
submarine track segments, and the minimum and maximum
ice draft values from the statistics of the submarine track
segments. (2) Incorrect cloud identification with satellite
data is one of the error sources of OTIM retrievals along
with other uncertainties in the retrievals of surface physical
parameters, e.g., surface temperature. (3) The submarines
made measurements along a line with a particular orienta-
tion, while the OTIM retrieved ice thickness is an area
average. (4) The designated snow depth of 0.20 m is not
applicable to all submarine track segments.

4.2. Comparison With Canadian Meteorological
Station Measurements
[32] The Canadian Ice Service (CIS) maintains archived

ice thickness and on‐ice snow depth measurements for
Canadian stations back as far as 1947 for the first established
stations in the Canadian Arctic (Eureka and Resolute). By the
beginning of 2002 most stations from the original ice thick-
ness program had stopped taking measurements. Fortunately,
due to an increasing interest in updating this historical data set
to support climate change studies, a new program was started
in the fall of 2002, called New Arctic Program (refer to http://
ice‐glaces.ec.gc.ca/App/WsvPageDsp.cfm?Lang=eng
&lnid=5&ScndLvl=no&ID=11703). The stations in this
program are listed in Table 2, and their data are used here for
OTIM validation.
[33] Most of the data in the current archive at the CIS have

been collected by the Atmospheric Environment Program of
Environment Canada, and some data are provided by other
organizations such as the St Lawrence Seaway Authority,
Trent University, and Queen’s University. Measurements
are taken at approximately the same location every year on a
weekly basis starting after freeze up when the ice is safe to
walk on, and continuing until breakup or when the ice be-
comes unsafe. Therefore, the measured ice thickness mini-

Figure 3. Submarine trajectories for (top) SCICEX 96,
(middle) 97, and (bottom) 99. Data with their starting and
ending places and dates are marked.
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Figure 4. Comparisons of the ice thickness cumulative dis-
tribution retrieved by OTIM with APP‐x data, simulated by
PIOMAS model, and calculated from (top) SCICEX 96,
(middle) SCICEX 97, and (bottom) SCICEX 99 data. Sub-
marine ice draft (mean and median only) was converted to
ice thickness by a factor of 1.11.

Figure 5. Comparisons of ice thickness values retrieved by
OTIM with APP‐x data, simulated by PIOMAS model, and
calculated from (top) SCICEX 96, (middle) SCICEX 97,
and (bottom) SCICEX 99 data along the submarine track
segments. Submarine ice draft (mean and median only)
was converted to ice thickness by a factor of 1.11.
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mum is 20 cm for almost all of the stations. The location of the
ice thickness measurement is selected close to shore, but over
a depth of water exceeding the maximum ice thickness. Ice
thickness is measured to the nearest centimeter using either a
special auger kit or a hot wire ice thickness gauge. Mea-
surements include additional information such as character of
ice surface, water features, and method of observations. The
comparison of the ice thickness between station measure-
ments and OTIM retrievals were done the same way as
that between submarine measurements and OTIM retrievals
that is explained in section 4.1.
[34] Figures 6 and 7 show the comparisons of the three

data sets, i.e., OTIM using APP‐x with station‐measured
snow depth, PIOMAS simulations, and station measure-
ments at Alert, as a cumulative frequency ice thickness
distribution and as point‐to‐point comparisons. Table 3
gives the statistical results of ice thickness from OTIM
and from Canadian stations when both of them have valid
ice thickness data and the stations have valid snow depth
data. The overall error is comparable to the error of OTIM
against submarine data, i.e., 18%. The differences between
the OTIM and stations tend to be large when there is ice
ridging, rafting, or hummocking at the stations. Besides the
error sources discussed in section 4.1, the differences can
also be caused by other factors, including point versus area
measurements and changing snow conditions over time.

4.3. Comparison With Moored ULS Measurements
[35] The Beaufort Gyre Exploration Project (BGEP)

provides ice draft data starting in 2003 from three sites in

the Beaufort Sea (http://www.whoi.edu/beaufortgyre/index.
html). Upward Looking Sonars (ULS) were deployed
beneath the Arctic ice pack as part of the Beaufort Gyre
Observing System (BGOS; http://www.whoi.edu/beaufortgyre)
bottom‐tethered moorings [Ostrom et al., 2004; Kemp et al.,
2005]. Over 15 million observations are acquired for every
mooring location in each year. Detailed ULS data processing
can be found at http://www.whoi.edu/beaufortgyre/data_
moorings_description.html. In this study, ice draft data from
2003 and 2004 at the three mooring sites are used because
APP‐x data are not available beyond 2004. Daily average
ice draft statistics data from the BGOS for 2003 to 2004
were used. The ice draft is converted to ice thickness by a
multiplying factor of 1.11, the same process as for subma-
rine ice draft data. Comparison between measurements from
moorings and retrievals using OTIM were done the same

Table 1. OTIM Retrieved Ice Thickness Validation Results
Against SCICEX 96, 97, and 99 Dataa

SCICEX Data
OTIM

Thickness
Mean
(m)

Bias
Mean
(m)

Bias Absolute
Mean
(m)

SCICEX 96 1.90 0.13 (6.8%) 0.19 (10.0%)
OTIM 2.03
SCICEX 97 1.17 0.01 (0.9%) 0.17 (14.5%)
OTIM 1.18
SCICEX 99 1.78 −0.06 (−3.4%) 0.17 (9.6%)
OTIM 1.72
All SCICEX Data 1.62 0.02 (1.2%) 0.18 (11.1%)
OTIM average 1.64

aThe percentage number in parentheses is the percent error in terms of
true mean ice thickness.

Table 2. Geographic Information for the New Arctic Program
Stations (Starting Fall 2002) for Ice Thickness and On‐Ice Snow
Depth Measurements

Station ID Station Name Start Date LAT LON

LT1 Alert LT1 16 Oct 2002 82.466667 −61.5
YLT Alert YLT 16 Oct 2002 82.500275 −61.716667
YCB Cambridge Bay YCB 7 Dec 2002 69.10833 −104.95
YZS Coral Harbour YZS 15 Nov 2002 64.119446 −82.741669
WEU Eureka WEU 11 Oct 2002 79.986115 −84.099998
YUX Hall Beach YUX 10 Nov 2002 68.765274 −80.791664
YEV Inuvik YEV 29 Nov 2002 68.35833 −132.26138
YFB Iqaluit YFB 4 Jan 2003 63.727779 −67.48333
YRB Resolute YRB 13 Dec 2002 74.676941 −93.131668
YZF Yellowknife YZF 29 Nov 2002 62.465556 −114.36556

Figure 6. Comparisons of ice thickness cumulative distri-
bution retrieved by OTIM with APP‐x data, simulated by
PIOMAS model, and measured at Alert.

Figure 7. Comparisons of ice thickness values retrieved by
OTIM with APPx data and station‐measured snow depth
data, measured at Alert, and simulated by PIOMAS model.
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way as that between submarine measurements and retrievals
using OTIM.
[36] Table 4 lists mooring site location information, time

period, and statistical comparison results. Figures 8 and 9
show the comparisons of the three data sets, i.e., OTIM
using APP‐x, PIOMAS simulations, and mooring mea-
surements at mooring site A, as a cumulative frequency of
ice thickness distribution and as point‐to‐point comparisons.
Table 4 also gives the statistical results of ice thickness from
OTIM and from moored ULS measurements for all three
sites when both of them have valid ice thickness data. The
overall error is comparable to the error of OTIM compared

to station measurements, i.e., 15%. All three comparisons
show very similar results with absolute errors less than 20%.

5. Model Uncertainty and Sensitivity

[37] Many factors affect the accuracy of the estimation of
ice thickness using the OTIM. Uncertainties in the input
variables will ultimately propagate to the ice thickness
estimation through the model parameterizations and physics.
Theoretically and mathematically, ice thickness is a function
of fluxes, surface albedo, and transmittance:

ĥi ¼ f !̂s; î0; F̂r; F̂
up
l ; F̂

dn
l ; F̂s; F̂e; F̂c; F̂a

' (
ð11Þ

where variables with carets “^” are the variables defined in
equation (1). In the OTIM we use parameterization schemes,
as described in previous sections, to calculate F̂ l

up, F̂ l
dn, F̂s,

F̂e, F̂c, all of which are functions of surface skin and air

Table 3. OTIM Retrieved Ice Thickness Validation Results
Against Station Measurements From 2002 to 2004a

Station Name
OTIM

Thickness
Mean
(m)

Bias
Mean
(m)

Bias Absolute
Mean
(m)

Alert LT1 1.03 0.05 (4.9%) 0.10 (9.7%)
OTIM 1.08
Alert YLT 1.03 0.04 (3.9%) 0.10 (9.7%)
OTIM 1.07
Cambridge Bay YCB 1.32 −0.12 (−9.1%) 0.22 (16.7%)
OTIM 1.20
Coral Harbour YZS 1.17 −0.19 (−16.2%) 0.20 (17.1%)
OTIM 0.98
Eureka WEU 1.30 −0.16 (12.3%) 0.22 (16.9%)
OTIM 1.14
Hall Beach YUX 1.78 −0.13 (−7.3%) 0.32 (18.0%)
OTIM 1.65
Inuvik YEV 0.95 −0.07 (−7.4%) 0.27 (28.4%)
OTIM 0.88
Iquluit YFB 1.23 −0.23 (−18.7%) 0.33 (26.8%)
OTIM 1.00
Resolute YRB 1.35 −0.22 (−16.3%) 0.29 (21.5%)
OTIM 1.13
Yellowknife YZF 1.15 −0.12 (−10.4%) 0.19 (16.5%)
OTIM 1.03
All station average 1.23 −0.11 (−8.9%) 0.22 (17.9%)
OTIM average 1.12

aThe percentage number in the parentheses is the percent error in terms
of true mean ice thickness.

Table 4. OTIM Retrieved Ice Thickness Validation Results
Against Moored ULS Measurements From 2003 to 2004a

Mooring Location OTIM

Thickness
Mean
(m)

Bias
Mean
(m)

Bias
Absolute Mean

(m)

Site A (75°0.499′N,
149°58.660′W)

1.04 −0.05 (−4.8%) 0.14 (13.5%)

OTIM 0.99
Site B (78°1.490′N,
149°49.203′W)

1.36 −0.15 (−11.0%) 0.22 (16.2%)

OTIM 1.22
Site C (76°59.232′N,
139°54.562′W)

1.54 −0.17 (−11.0%) 0.25 (16.2%)

OTIM 1.37
All mooring average 1.31 −0.12 (−9.2%) 0.20 (15.3%)
OTIM average 1.19

aThe percentage number in the brackets is the percent error in terms of
true mean ice thickness.

Figure 8. Comparisons of ice thickness cumulative distri-
bution retrieved by OTIM with APP‐x data, simulated by
PIOMASmodel, andmeasured by ULS at the mooring site A.

Figure 9. Comparisons of ice thickness values retrieved by
OTIM with APP‐x data, simulated by PIOMAS model, and
measured by ULS at the mooring site A.
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temperatures (Ts, Ta), surface air pressure (Pa), surface air
relative humidity (R), ice temperature (Ti), wind speed (U),
cloud amount (C), and snow depth (hs). Therefore ice
thickness is actually a function of those variables:

ĥi ¼ f !̂s; î0; F̂r; T̂ s; T̂ i; T̂ a; P̂a; R̂; Û ; Ĉ; ĥs; F̂a

' (
ð12Þ

[38] The true ice thickness hi is estimated from the true
values of all the controlling variables in equation (12). Let xi
represent the variables in equation (12) with true values, and
let x̂i represent those variables with estimated values, with
xi subscript i from 1 to 12 representing 12 variables in
equation (12). Thus if the uncertainties in the controlling
variables are independent and random, error (ĥi − hi) can be
expressed in terms of the uncertainties in the variables on
which it depends:

ĥi ! hi
' (

¼
X

x̂i ! xið Þ @hi
@xi

; ð13Þ

or the variance in the thickness error, as

"2
hi ¼

X
"2
xi

@hi
@xi

! "2

: ð14Þ

If, however, as discussed by Key et al. [1997b], the variables
are not independent, the covariances between them must be
considered. Data needed to estimate the covariance between
all pairs of variables are often not available. If the covariance
between pairs of variables is unknown, it can be shown
[Taylor, 1982] that the total uncertainty follow the rule that

"hi (
X

"xi
@hi
@xi

))))

)))): ð15Þ

[39] Tables 5 and 6 give estimates of the partial deriva-
tives needed in equations (13), (14), and (15), computed
using differences (Dhi/Dxi). Mathematically, if we know the
explicit functional relationship between ice thickness and all
its arguments, we could derive partial derivative analytically.

However, ice thickness varies nonlinearly with respect to the
parameters under investigation, which are parameterized
and/or implicitly involved in the ice thickness calculation, i.
e., no explicit functional relationship exists for the analytical
partial derivation. Therefore we use numerical method to
calculate partial derivatives. These partial derivatives rep-
resent the sensitivity of the ice thickness to uncertainties in
the controlling variables. The estimated uncertainties in the
controlling variables in equation (12), e.g., surface skin
temperature Ts, are now used to assess the accuracy of the
ice thickness estimation using satellite data products. Since
ice thickness varies nonlinearly with respect to the control-
ling variables, its sensitivity to uncertainties varies over the
range of the input controlling variables. Therefore, accuracy
in ice thickness is estimated for a reference ice thickness as
listed in Tables 5 and 6.
[40] To estimate shi, we need to first estimate the un-

certainties of all controlling variables in equation (12). Ac-
cording to Wang and Key’s [2005] study, for the satellite
retrieved surface broadband albedo as, the uncertainty
would be as large as 0.10 in absolute magnitude. Regarding
the ice slab transmittance i0, we use an absolute uncertainty
of 0.05 in this study, which is probably larger than actual
value. Satellite retrieved surface downward shortwave
radiation flux Fr can be biased high or low by 20% of the
actual value or 35 W m−2 as compared with in situ mea-
surements [Wang and Key, 2005]. Wang and Key [2005]
also estimated the uncertainties in satellite‐derived surface

Table 5. Sensitivity of Ice Thickness Estimation to the Uncertainties in the Controlling Variables for a Daytime
Case With Reference Ice Thickness of 1 ma

Name Reference Value Uncertainty (Dx) IceThk_Dh IceThk_Dh/Dx

Ts (K) 253.23 +2.000 −2.000 −0.235 +0.245 −0.117 −0.122
Ti (K) 253.23 +5.000 −5.000 −0.008 +0.008 −0.002 −0.002
hs (m) 0.20 +0.100 −0.100 −0.654 +0.654 −6.544 −6.544
R (%) 90.00 +9.000 −9.000 +0.024 −0.024 +0.003 +0.003
U (m/s) 5.00 +1.000 −1.000 +0.316 −0.208 +0.316 +0.208
Pa (hPa) 1000.00 +50.00 −50.00 +0.066 −0.063 +0.001 +0.001
as (0∼1) 0.85 +0.100 −0.100 −0.757 +2.195 −7.566 −21.953
Tr (0∼1) 0.05 +0.050 −0.050 −0.086 +0.092 −1.711 −1.848
Fr (w/m

2) 101.44 +20.288 −20.288 +0.395 −0.295 +0.019 +0.015
Fa (w/m

2) 0.00 +2.000 −2.000 −0.212 +0.260 −0.106 +0.130
C (0∼1) 0.50 +0.250 −0.250 +0.297 −0.639 +1.189 +2.555

aThe first column lists controlling variable names, the second column contains the reference values of the controlling
variables, the third column has the uncertainties of the controlling variables for positive and negative phases, the fourth
column gives the errors of the ice thickness estimation resulting from the uncertainties, and the fifth column is the
changing rates of ice thickness errors with respect to the controlling variable uncertainties.

Table 6. Same as Table 5 but for a Nighttime Case

Name
Reference
Value

Uncertainty
(Dx) IceThk_Dh IceThk_Dh/Dx

Ts (K) 241.09 +2.000 −2.000 −0.172 +0.179 −0.086 −0.090
Ti (K) 241.09 +5.000 −5.000 −0.008 +0.008 −0.002 −0.002
hs (m) 0.20 +0.100 −0.100 −0.667 +0.667 −6.666 −6.666
R (%) 90.00 +9.000 −9.000 +0.006 −0.006 +0.001 +0.001
U (m/s) 5.00 +1.0 −1.000 +0.166 −0.133 +0.166 +0.133
Pa (hPa) 1000.00 +50.00 −50.00 +0.043 −0.041 +0.001 +0.001
Fa (w/m

2) 0.00 +2.000 −2.000 −0.137 +0.155 −0.068 +0.078
C (0∼1) 0.50 +0.250 −0.250 +0.248 −0.476 +0.992 +1.903
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skin temperature Ts and cloud amount C with respect to the
Surface Heat Balance of the Arctic Ocean (SHEBA) ship
measurements [Maslanik et al., 2001], and these un-
certainties can be as large as 2 K and 0.25 in absolute
magnitude, respectively. We take 2 K as surface air tem-
perature Ta uncertainty. Since the surface may be covered
with a layer of snow, the ice slab temperature Ti may be
different from Ts. Assuming Ti equal to Ts may introduce
additional error in ice thickness estimation. We elect to
assign 5 K uncertainty in Ti to estimate its impact on the ice
thickness derivation since there is no information about the
difference between Ti and Ts, and satellite remote sensing
can only retrieve surface skin temperature Ts, not Ti.
[41] The uncertainties in surface air pressure and relative

humidity along with surface skin temperature will affect the
ice thickness estimation indirectly through the impact of
turbulent sensible and latent heat fluxes. A change of 50 hPa
surface air pressure may induce changing weather pattern,
we take 50 hPa as possible maximum uncertainty of surface
air pressure. An uncertainty of 10% in surface air relative
humidity is adopted in this work. The uncertainty in geo-
strophic wind UG could be 2 m s−1 as determined by the
buoy pressure field [Thorndike and Colony, 1982], and the
relationship U = 0.34UG gives the uncertainty in surface
wind speed U of 0.7 m s−1, we take 1 m s−1 as possible
actual uncertainty in this study. Snow on the ice directly
affects conductive heat flux, surface albedo, and the radia-
tive fluxes at the interface of the ice‐snow. Snow depth hs
plays a very important role, but accurate and spatially wide
covered measurements are usually not available coinciden-
tally in time and space with satellite observations, and may

change over time with wind and topography. It is difficult to
know the uncertainty in snow depth estimation, and we give
50% of the given snow depth as its uncertainty in general.
The last uncertainty source is the surface residual heat flux
Fa, which is associated with ice melting and possible hori-
zontal heat gain/loss. In the case of no melting and no
horizontal heat flux, Fa is zero, which is widely accepted by
many sea ice models if the surface temperature is below
freezing point. We set uncertainty of Fa 2 W m−2 as an
initial guess. The overall error in the ice thickness estimation
caused by the uncertainties in those controlling variables is
less than or equal to the summation of all errors from each
individual uncertainty source as mathematically described
by equation (15), because the opposite effects may cancel
each other.
[42] Tables 5 and 6 list the controlling variables, their

uncertainties, and impacts of the uncertainties for daytime
and nighttime cases. The results of this sensitivity study are
shown graphically in Figures 10 and 11 for the reference ice
thickness values of 0.3, 1.0, and 1.8 m with those expected
uncertainties in the controlling variables. The bars give the
overall ranges in the ice thickness estimation corresponding
to the uncertainties listed in the Tables 5 and 6. Plus signs in
Figures 10 and 11 are the ice thickness values for positive
uncertainties in the indicated variables; minus signs show
the changes in ice thickness for negative uncertainties in the
controlling variables.
[43] The largest error comes from the surface broadband

albedo as uncertainty, which can cause more than 200%
error in ice thickness estimation. Other error sources are
uncertainties in snow depth hs (65% daytime, 67% night-

Figure 10. Sensitivity of ice thickness to expected uncertainties in the controlling variables for a daytime
case with reference ice thicknesses of 0.3 (red), 1 (black), and 1.8 (blue) m.
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time), cloud amount C (64% daytime, 48% nighttime),
surface downward solar radiation flux Fr (40%), surface
wind speed U (32% daytime, 17% nighttime), surface
residual heat flux Fa (26% daytime, 16% nighttime), surface
ice/snow temperature Ts (25% daytime, 18% nighttime), ice
slab transmittance Tr (9%), surface air pressure Pa (6.6%
daytime, 4.3% nighttime), surface air relative humidity R
(2.4% daytime, 0.6% nighttime), and ice temperature Ti
(0.8% daytime and nighttime). Obviously, with current
retrieval accuracies of surface albedo and shortwave radia-
tion flux from satellite data, it is inappropriate to apply
OTIM to daytime data, as doing so may result in very large
error in the ice thickness estimation. The sensitivity study
also shows a larger error in ice thickness with daytime data
than with nighttime data for most of the controlling vari-
ables. We thus do not recommend the application of the
OTIM to daytime satellite data.
[44] Uncertainties also come from model design structure

and parameterization schemes such as the assumed linear
vertical temperature profile in the ice slab. Regarding the
flux parameterizations that are used in the OTIM, we
selected them based on Key et al.’s [1996] study on the
evaluation of the surface radiative flux parameterization
schemes used in different sea ice models. Tables 1–5 in their
paper listed errors in the fluxes from different parameteri-
zation schemes and their sensitivity to variations in Arctic
atmospheric variables such as aerosol, ozone, surface
albedo, and clouds. The shortwave and longwave flux
parameterization schemes with lower uncertainties have
been selected and integrated into OTIM. The evaluation of

the performance of those schemes associated with model
structural and parametric selections is beyond the scope of
this paper.

6. Conclusions

[45] Due to the uncertainties in the microphysical prop-
erties of ice and snow and the uncertainties in satellite‐
retrieved surface and atmospheric properties, the estimation
of ice thickness from space is challenging. Nevertheless,
satellite remote sensing offers an unprecedented opportunity
to monitor and estimate ice thickness routinely in a large
spatial domain with high spatial and temporal resolutions.
Here we described a One‐dimensional Thermodynamic Ice
Model, OTIM, based on the surface energy budget that can
instantaneously estimate sea and lake ice thickness with
products derived from optical satellite data. This model is
not tied to any particular satellite sensor, but instead uses
satellite‐derived products, generally from visible, near
infrared, and infrared imagers, as inputs, e.g., surface skin
temperature and cloud cover. Applying this model to
AVHRR, MODIS, and SEVIRI products demonstrated that
the OTIM performs relatively well with nighttime data, and
provides a solid foundation for the use of long‐term data
from NOAA polar orbiting satellites to generate historical
ice thickness records for cryosphere and climate change
studies. The model can be used for quantitative estimates of
ice thickness up to approximately 2.8 m with an correct
accuracy of over 80%.

Figure 11. Sensitivity of ice thickness to expected uncertainties in the controlling variables for a night-
time case with reference ice thicknesses of 0.3 (red), 1 (black), and 1.8 (blue) m.
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[46] Validation studies indicate that satellite‐derived
Arctic sea ice thickness using OTIM has a near‐zero mean
bias (0.02 m) and a mean absolute bias of 0.18 m when
compared to submarine upward looking sonar measure-
ments. The overall bias between ice thickness from the
OTIM retrievals and in situ station measurements is −0.11 m,
with a mean absolute bias of 0.22 m. Mean bias and mean
absolute bias between OTIM retrievals and moored ULS
measurements are −0.12 m and 0.20 m, respectively. The
estimation error comes from the uncertainties in satellite‐
derived products, model physics and parameterizations,
unknown ice and atmospheric properties, and the inexact
collocation of satellite and in situ measurements. It was
found that the error tends to be much larger where the ice
surface is not smooth, as in the presence of ice ridges,
hummocks, or melt ponds. This is not unexpected, as ice
dynamics are not included in the OTIM. Comparisons with
numerical model simulations demonstrate that the model
simulated ice thickness is generally overestimated, espe-
cially for relatively thin ice.
[47] In the presence of solar radiation, it is difficult to

solve the energy budget equation for ice thickness analyti-
cally due to the complex interaction of ice/snow physical
properties with solar radiation, which varies considerably
with changes in ice/snow clarity, density, chemicals
contained, salinity, particle size and shape, and structure.
The daytime retrieval is further complicated by inaccuracies
in satellite retrievals of surface albedo and the shortwave
radiation flux, and the Solar heating on the ice plays sig-
nificant role in the surface energy budget and makes the
residual heat flux not zero due to partial ice melting and
horizontal heat flux. We are now working on the parame-
terization of the surface residual heat flux as a function of
atmospheric and surface conditions, i.e., surface albedo,
wind, humidity, surface skin and air temperatures, ice
thickness, snow depth, cloud amount, and incoming solar
radiation flux and/or solar zenith angle, based on station
measurements. This way, we will have an OTIM surface
energy unbalanced model that will reliably retrieve ice
thickness with daytime data. At present, we do not recom-
mend the application of the current OTIM to daytime data.
[48] Applications of the OTIM to satellite data products,

in particular, NOAA polar orbiting satellites, will make it
possible to routinely monitor rapidly changing sea ice
concentration, extent, thickness, and volume, and will pro-
vide a better understanding of changes in the cryosphere and
climate.
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