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A Time-Dependent Probabilistic Seismic-Hazard Model for California

by Chris H. Cramer,* Mark D. Petersen,† Tianqing Cao,
Tousson R. Toppozada, and Michael Reichle

Abstract For the purpose of sensitivity testing and illuminating nonconsensus
components of time-dependent models, the California Department of Conservation,
Division of Mines and Geology (CDMG) has assembled a time-dependent version of
its statewide probabilistic seismic hazard (PSH) model for California. The model
incorporates available consensus information from within the earth-science com-
munity, except for a few faults or fault segments where consensus information is not
available. For these latter faults, published information has been incorporated into
the model. As in the 1996 CDMG/U.S. Geological Survey (USGS) model, the time-
dependent models incorporate three multisegment ruptures: a 1906, an 1857, and a
southern San Andreas earthquake. Sensitivity tests are presented to show the effect
on hazard and expected damage estimates of (1) intrinsic (aleatory) sigma, (2) mul-
tisegment (cascade) vs. independent segment (no cascade) ruptures, and (3) time-
dependence vs. time-independence. Results indicate that (1) differences in hazard
and expected damage estimates between time-dependent and independent models
increase with decreasing intrinsic sigma, (2) differences in hazard and expected dam-
age estimates between full cascading and not cascading are insensitive to intrinsic
sigma, (3) differences in hazard increase with increasing return period (decreasing
probability of occurrence), and (4) differences in moment-rate budgets increase with
decreasing intrinsic sigma and with the degree of cascading, but are within the ex-
pected uncertainty in PSH time-dependent modeling and do not always significantly
affect hazard and expected damage estimates.

Introduction

A time-dependent probabilistic seismic-hazard (PSH)
model is felt by some to be important in loss assessments
for insurance and risk management. In time-dependent mod-
els, the probability of earthquake occurrence increases with
the elapsed time since the last large or characteristic earth-
quake on a fault or fault segment. A characteristic earth-
quake for a fault is an earthquake that essentially ruptures
the entire area of the fault or fault segment. A time-depen-
dent model for a given fault is characterized by its recur-
rence-interval probability-density function (distribution of
times between large earthquakes), which often has a fixed
coefficient of variation (standard deviation divided by the
mean). This coefficient of variation (cov) can be used to
indicate whether a time-dependent model is quasiperiodic
(cov � 1) or clustered (cov � 1) (Wu et al., 1995). For some
faults, there is not enough information for time-dependent
modeling. We have modeled these faults using Poisson or

time-independent PSH models. In a Poisson model, the prob-
ability remains constant for any time period and has cov �
1, by definition.

For most faults, we do not have adequate information
to constrain time-dependent probabilities. However, for a
few faults for which we think we have adequate information
on time-dependent behavior, a time-dependent PSH model
may be better at identifying the short-term risks for eco-
nomic loss assessment. In California, time-dependent source
models using a log-normal recurrence interval distribution
have been developed and improved over the last decade, but
studies have generally focused on only a portion of the state.

The U.S. Geological Survey (USGS) first published
time-dependent conditional probabilities, and their support-
ing data, for the San Andreas fault system in California
(WGCEP88, 1988). WGCEP88 used the concept of a para-
metric sigma (rp) derived from the uncertainty in the esti-
mate of the mean-recurrence interval for a specific fault, and
an intrinsic sigma (ri) representing the standard deviation in
the natural log-normal distribution of recurrence intervals.
Intrinsic sigma represents the inherent randomness in recur-
rence intervals of characteristic earthquakes on a fault.

*Present address: U.S. Geological Survey, 3876 Central Ave., Suite 2,
Memphis, Tennessee 38152-3050.

†Present address: U.S. Geological Survey, P.O. Box 25046, MS-999,
Denver, Colorado 80225-0046.
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Figure 1. A map showing Type A faults from the
CDMG Poisson probabilistic seismic-hazard model.
Labeled features include CM, Cape Mendocino;
1906, 1857, and SSA, modeled multisegment rup-
tures for the 1906, 1857, and postulated southern San
Andreas earthquakes; R, Rodgers Creek fault; H,
Hayward fault; SJ, San Jacinto fault; E, Elsinore fault;
I, Imperial fault; LS, Laguna Salada fault; NC, Pn,
SC, P, Ch, Cz, and M, the North Coast, Peninsula,
Santa Cruz, Parkfield, Cholame, Carrizo, and Mojave
segments of the San Andreas fault; and SH and B, the
Superstition Hills and Borego Mountain segments of
the San Jacinto fault. The box feature labeled CG rep-
resents the dipping portion of the Gorda segment of
the Cascadia subduction zone that is also in the
CDMG Poisson model as a Type A fault.

WGCEP88 used ri � 0.21 in computing their conditional
probabilities. After the 1989 M 7.0 Loma Prieta earthquake,
the USGS updated the time-dependent probabilities and in-
formation for the San Francisco Bay area (WGCEP90,
1990). Litehiser et al. (1992) published a time-dependent
PSH model for the San Francisco Bay area and compared
time-dependent and time-independent results. Using an in-
trinsic sigma of 0.21, Litehiser et al. found significant dif-
ferences between time-dependent and Poisson maps at 10%
exceedence in 50 years. More recently, the Southern Cali-
fornia Earthquake Center (SCEC) published a time-depen-
dent PSH model for southern California (WGCEP94, 1995)
using an intrinsic sigma of 0.50 � 0.20 and found that 10%
exceedence in 50-year hazard estimates were not signifi-
cantly different from their Poisson model. WGCEP94 (1995)
also introduced the concept of cascading or combining con-
tiguous fault segments of a major fault into combinations of
multisegment rupture earthquakes, as well as single segment
rupture earthquakes.

CDMG’s responsibilities in reviewing loss assessments
affecting public policy led CDMG to develop a statewide
time-dependent PSH model based on available consensus in-
formation for the purpose of sensitivity testing and consen-
sus discussion. While this paper presents a time-dependent
model for California, the goal of this paper is to discuss the
consensus and nonconsensus aspects of time-dependent
modeling and show the sensitivity of the resulting hazard
maps to input parameters. In this article, sensitivity tests
show the impact of intrinsic sigma, the degree of cascading,
and time-dependence on hazard and expected damage esti-
mates in California, and on PSH model moment-rate budgets.

Model

The time-dependent PSH models used in this article
build on the consensus time-dependent information from the
three Working Groups on California Earthquake Probabili-
ties (WGCEP88, 1988; WGCEP90, 1990; WGCEP94,
1995) and on the consensus 1996 CDMG/USGS Poisson PSH
model for California (Petersen et al., 1996). The time-de-
pendent elements replace the Type A fault elements of the
1996 CDMG/USGS Poisson PSH model. These Type A faults
are shown in Figure 1. Fault geometry and segmentation are
the same as in the 1996 CDMG/USGS model. Note that there
are some differences between the northern San Andreas fault
PSH model of WGNCEP96 (1996) and that of Petersen et
al. (1996). This article uses the Petersen et al. (1996) model
as a standard of comparison and hence uses the cascading
and fault parameters for the northern San Andreas of Peter-
sen et al. in its time-dependent models.

Conditional probabilities were derived in a manner
similar to that used by Southern California Earthquake Cen-
ter (SCEC) (WGCEP94, 1995), with an important distinc-
tion. WGCEP94 (1995), in Appendix A, correctly identifies
that the log-normal probabilities should be computed using

the intrinsic (or aleatory) variability rlnT, which is the stan-
dard deviation of the natural logarithm of the random recur-
rence interval T, that is intrinsic sigma. Intrinsic sigma rep-
resents the observed aleatory (random) variability in the
log-normal variable T. In this article, conditional probabili-
ties have been derived only using intrinsic sigma (ri) for
rlnT. Previous working group reports used the square root of
the sum of the squares of both intrinsic and parametric
sigma. However, for this article, parameteric sigma repre-
sents an epistemic (knowledge or model) uncertainty and
intrinsic sigma is an aleatory (random) variability. Paramet-
ric sigma (rp) is the standard error in the estimate of the
mean of T and is related to intrinsic sigma by r �p

, where n is the number of recurrence intervals avail-r / (n)�i

able for estimating the mean-recurrence interval (Savage,
1991, equation 6).

For those few fault segments with a sequence of dated
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past characteristic earthquakes (Parkfield, Mojave, and the
Gorda segment of the Cascadia subduction zone in this ar-
ticle), the method of Savage (1991) provides estimates of
mean-recurrence interval and intrinsic sigma for calculating
conditional probabilities. A median-recurrence interval T̂ for
a sequence of n Ti can be calculated from ln T̂ � n�1 �
sum ln Ti, and its standard deviation can be calculated from

(Savage, 1991,2 2 2ˆr � r � sum{[ln (T /T)] }/(n � 1)i lnT i

equations 5 and 9). The mean recurrence interval T¢ is derived
from the median value T̂ by (Sav-2¢ ˆT � T � exp (r /2)lnT

age, 1991, equation 2; Benjamin and Cornell, 1970, equation
3.3.34). Note that although Savage (1991) provides a method
of calculating the standard error in the estimate of the mean-
recurrence interval (parametric sigma), it is not used in the
calculation of conditional probabilities (see previous para-
graph).

For the remaining time-dependent elements with only
one dated characteristic earthquake, conditional probabilities
are calculated from an estimate of mean-recurrence interval
and the mean value of WGCEP94 for intrinsic sigma (0.5).
Specifically, the mean-recurrence interval for a fault seg-
ment is estimated from the mean displacement (D) for its
characteristic earthquake divided by its mean slip rate (V).
Uncertainty in the mean-recurrence interval or parametric
uncertainty (rp) is calculated from the uncertainties in mean
displacement and mean slip rate (assuming that D and V are
normally distributed and there is no correlation between
them) using the approach of Benjamin and Cornell (1970,
p. 184). In this specific case for f (D,V) � ln T � ln (D/V),

2 2 2 2 2 2 2r � ( f/D) r � ( f/V) r � (r /D) � (r /V)P D V D V

where T � recurrence interval, D and rD are the mean and
standard deviation of a fault’s characteristic earthquake dis-
placement, and V and rv are the mean and standard deviation
of that fault’s slip rate. Note that rp is the epistemic uncer-
tainty in the estimate of the mean-recurrence interval, and it
should only be used in a logic-tree analysis to represent
possible model variability in the estimate of the mean-
recurrence interval.

The conditional probability for a fault segment is then
calculated from the exposure period (50 years in this article),
mean-recurrence interval, its intrinsic uncertainty, and the
elapsed time since the last major earthquake on the segment.
This is accomplished by integrating the log-normal proba-
bility density function (pdf) for a fault from the elapsed time
since the last earthquake to the elapsed time plus the expo-
sure period. The pdf, f T(t), for a log-normal distribution with
a median m̂ and intrinsic variability (standard deviation of
the natural logarithm of the recurrence interval) rlnT is

2 2f (t) � exp(�(ln(t/m̂) /(2r )) / (tr 2p)�T lnT lnT

(see Benjamin and Cornell, 1970, p. 265, equation 3.3.25
and WGCEP94, 1995, Appendix A, equation A1). Please
note that in this article we have, by definition, set rlnT �

ri! Intrinsic sigma is the actual variance (standard deviation)
of recurrence intervals about the mean-recurrence interval
determined from a dated sequence of earthquakes on a fault
or as a mean value from a set of ri’s from other faults around
the world. The latest consensus intrinsic sigma mean value
of 0.5 (WGCEP94, 1995) was applied to faults with only
one dated characteristic earthquake because (1) there is very
little data available for California (see Discussion section)
and (2) the goal of this article is to understand the sensitivity
of results to intrinsic sigma. In calculating the conditional
probability, the mean-recurrence interval is converted to the
median-recurrence interval using median � mean � exp

(see Benjamin and Cornell, 1970, p. 266, equation2(�r /2)lnT

3.3.34 and WGCEP94, 1995, Appendix A, equation A2).
Table 1 presents the information used to determine the

conditional probabilities for a time-dependent PSH model.
Conditional probabilities have been calculated using (1) slip
rates from the 1996 CDMG/USGS model, (2) displacements
from the WGCEP90 (1990) and WGCEP94 (1995) reports,
and (3) a mean-intrinsic sigma (ri) of 0.5 (WGCEP94, 1995)
throughout the state of California unless a fault specific
value is available. Table 1 also lists the mean recurrence
interval (T-bar), computed parametric uncertainty (rp), in-
trinsic sigma (ri) used, and the year of the last earthquake.
Note that the mean-recurrence intervals in Table 1 are de-
rived in a different manner than the Poisson mean-recurrence
intervals given in Appendix A of Petersen et al. (1996) and
hence can differ in some cases as shown in Table 1.

Other additional published information was required to
compute conditional probabilities for three faults in Table 1
(see footnotes). Sufficient displacement information was not
available in the WGCEP90 and WGCEP94 reports for the
Parkfield segment of the San Andreas, the Laguna Salada
fault, or the Gorda segment of the Cascadia subduction zone.
Mean-recurrence interval and uncertainty from Savage
(1991), displacement estimates from displacement vs. fault-
length relations of Wells and Coppersmith (1994), and
mean-recurrence interval and its standard deviation from the
paleoseismic tsunami interval data of Valentine et al. (1992)
were used in determining conditional probabilities for these
three faults. Additionally, the date of the last event on the
northern Hayward fault has been changed from the
WGCEP90 value based on Toppozada and Borchardt’s
(1998) conclusion that the 1836 event did not occur on the
northern Hayward fault.

The resulting 50-year-conditional probabilities for ri �
0.50 are listed in Table 2 along with Poisson 50-year prob-
abilities based on annual rates from Petersen et al. (1996).
Note that actual observed ris are held fixed for the Parkfield
(0.35), Mojave (0.77), and Gorda (0.43) segments (see foot-
notes to Table 1). A comparison of time-dependent and Pois-
son probabilities shows the effect on probabilities of the
time-dependent assumption for Type A faults. Generally, but
not always, time-dependence raises the probabilities except
for those segments and ruptures that have had earthquakes
recently (e.g., the Santa Cruz segment, the 1906 rupture, the
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Table 1
Time-dependent Fault Segments and their Slip Rates (mm/yr), Displacements (m), Recurrence Intervals (T-bar) (yrs), Parametric

Uncertainty (rp), Intrinsic Sigma (ri), and Year of Last Earthquake (LastEqk)*

Fault Segment Slip Rate Displacement T-bar � � rp ri LastEqk

San Andreas:
Coachella 25.00 � 5.00 4.00 � 3.00† 160## 189 87 .39† .50 1690
San Bernardino 24.00 � 6.00 3.50 � 1.00 146 67 46 .19 .50 1812
Mojave 30.00 � 7.00 4.50 � 1.50 135‡ 92 55 .26‡ .77‡ 1857
Carrizo 34.00 � 3.00 7.00 � 4.00 206 162 91 .29 .50 1857
Cholame 34.00 � 5.00 4.75 � 4.00 140 191 81 .43 .50 1857
Parkfield 34.00 � 5.00 0.75 � 0.12§ 22§ 8 5 .16§ .35§ 1966
Santa Cruz 14.00 � 3.00 1.60 � 0.60 114## 63 41 .22 .50 1989
Peninsula 17.00 � 3.00 2.60 � 1.00 153## 80 52 .21 .50 1906
North Coast 24.00 � 3.00 4.50 � 1.00 188## 56 43 .13 .50 1906

Imperial 20.00 � 5.00 1.20 � 0.80 60 61 30 .35 .50 1979
San Jacinto:

Superstition Hills 4.00 � 2.00 1.00 � 0.30 250 197 110 .29 .50 1987
Superstition Mtns 5.00 � 3.00 2.00 � 0.30 400## 343 185 .31 .50 1430
Borego Mtn 4.00 � 2.00 0.70 � 0.20 175 138 77 .29 .50 1968
Coyote Creek 4.00 � 2.00 0.70 � 0.30 175 164 85 .33 .50 1892
Anza 12.00 � 6.00 3.00 � 1.00 250 197 110 .29 .50 1750
San Jacinto Valley 12.00 � 6.00 1.00 � 0.20 83 59 35 .27 .50 1918
San Bernardino 12.00 � 6.00 1.20 � 0.30 100 75 43 .28 .50 1890

Laguna Salada 3.50 � 1.50 1.00 � 0.30� 286## 195 116 .26 .50 1892
Elsinore:

Coyote Mtn 4.00 � 2.00 2.50 � 0.50 625 448 261 .27 .50 1892
Julian 5.00 � 2.00 1.70 � 0.20 340 177 117 .21 .50 1892
Temecula 5.00 � 2.00 1.20 � 0.30 240 148 91 .24 .50 1818
Glen Ivy 5.00 � 2.00 1.60 � 0.40 320## 197 122 .24 .50 1910

Whittier 2.50 � 1.00 1.90 � 0.20 760## 397 261 .21 .50 650
Hayward:

Hayward-all# 9.00 � 1.00 1.50 � 1.00 167 163 82 .34 .50 �1776**
Hayward-S# 9.00 � 1.00 1.50 � 1.00 167 163 82 .34 .50 1868
Hayward-N# 9.00 � 1.00 1.50 � 1.00 167 163 82 .34 .50 �1776**

Rodgers Creek 9.00 � 2.00 2.00 � 1.00 222 159 93 .27 .50 �1808
Cascadia-Gorda 35.00 � 5.00 8.50 � 3.00†† 437‡‡ 141 107 .14‡‡ .43‡‡ 1700§§

*Listed uncertainties are 2r, except rp and ri . Slip rates are taken from Petersen (1996) and displacements and last earthquakes are taken from WGCEP90
(1990) and WGCEP94 (1995) unless otherwise indicated. rp is calculated from the standard deviations (rV and rD) of mean slip rate (mV) and mean
displacement (mD) using the formula rp � (see text). The uncertainties in T-bar are calculated using rp and are 2rp uncertainties.2 2(r /m ) � (r /m )� V V D D

##Indicated mean-recurrence intervals differ from Appendix A of Petersen et al. (1996) because displacement values were not used by Petersen et al.
in their Poisson methodology.

†WGCEP94 (1995) lists a 4.0 � 4.0 � 2.0 m displacement. But rp is calculated using a displacement 2r of 3.0m.
‡Mean-recurrence interval, intrinsic sigma, and parametric sigma calculated from the paleoseismic data of Sieh et al. (1989) using the method of Savage

(1991). Best-estimated dates of Sieh et al. of earthquake occurrence as listed in their Table 3 (p. 614) were used in the calculation.
§Displacements are not given by the Working Groups. Savage (1991) gives a median T of 20.9 and a ri of .35. T-bar was determined from Savage’s

median T, and rp was estimated from Savage’s Parkfield earthquake recurrence intervals listed in his Table 1 (p. 866). Because Savage’s is the most recent
Parkfield recurrence analysis, T-bar and rp based on his results are used to estimate the displacement given here.

�Displacement is estimated from Wells and Coppersmith’s (1994) average displacement equation for strike-slip faults using an M � 7 characteristic
earthquake. Uncertainty is arbitrary but similar to that of other San Jacinto and Elsinore segments.

#The Hayward fault model by Petersen et al (1996) is not a cascade model but a model that states that half the time the Hayward fault ruptures as
individual segments and half the time as a rupture of both segments together (see their pages 12 and A-2).

**Toppozada and Borchardt (1998) showed that the 1836 earthquake thought to be on the northern Hayward really occurred east of Monterey Bay. This
is a change since WGCEP90 (1990).

††Displacement is estimated from Wells and Coppersmith’s (1994) average displacement equation for all faulting types using an M � 8.3 characteristic
earthquake (the reverse faulting equation is too poorly constrained). Uncertainty is arbitrary but unimportant.

‡‡T-bar calculated from the given displacement and slip rate (243 years) does not match the seismic history and paleoseismicity of the Cascadia subduction
zone. Valentine et al. (1992) provide a sequence of paleotsunami dates that can be used to estimate a mean-recurrence interval, intrinsic sigma, and
parametric sigma via the method of Savage (1991).

§§Based on the recent Japanese tsunami results by Satake et al. (1996) and Washington and Oregon dendochronology by Jacoby et al. (1997).

Superstition Hills segment, the Borego Mtn. segment, etc.).
The effect of time-dependence on hazard is shown in the
Sensitivity Tests section below.

PSH estimates need to be made and combined for both

the time-dependent faults (Type A faults) and the Poisson
faults plus background seismicity (Type B & C faults plus
background areal sources) that make up the entire time-
dependent PSH model. This was done by calculating hazard
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Table 2
Rates and Probabilities for Preferred CDMG Poisson

and Time-Dependent PSH Models*

Fault Segment
or Cascade

Poisson
Annual Rate

Poisson 50-Year
Probability

Time-Dependent
50-Year Probability

San Andreas:
Southern Rupture 0.00454 0.203 0.471
Coachella 0.00000 0.000 0.000
San Bernardino 0.00231 0.109 0.076
1857 Rupture 0.00485 0.215 0.338
Mojave 0.00182 0.087 0.075
Carrizo 0.00000 0.000 0.000
Cholame 0.00229 0.108 0.269
Parkfield 0.04060 0.869 0.999
1906 Rupture 0.00476 0.212 0.151
Santa Cruz 0.00250 0.118 0.000
Peninsula 0.00250 0.118 0.307
North Coast 0.00000 0.000 0.171

Imperial: 0.01258 0.467 0.704
San Jacinto

Superstition Hills 0.00400 0.181 0.006
Superstition Mtns 0.00200 0.095 0.231
Borego Mtn 0.00571 0.248 0.098
Coyote Creek 0.00571 0.248 0.366
Anza 0.00400 0.181 0.328
San Jacinto Valley 0.01205 0.453 0.709
San Bernardino 0.10000 0.393 0.645

Laguna Salada 0.00297 0.138 0.134
Elsinore:

Coyote Mtn 0.00160 0.077 0.005
Julian 0.00294 0.137 0.080
Temecula 0.00417 0.188 0.308
Glen Ivy 0.00294 0.137 0.068

Whittier: 0.00156 0.075 0.128
Hayward:

Hayward-all (50%) 0.00300 0.139 0.269
Hayward-S (50%) 0.00300 0.139 0.242
Hayward-N (50%) 0.00300 0.139 0.269

Rodgers Creek: 0.00450 0.201 0.348
Cascadia:

Gorda (67%) 0.00445† 0.199 0.170
Full (33%) 0.00066 0.032 0.000

*The Poisson model rates are from Petersen et al. (1996). The time-
dependent model used ri � 0.50. All listed probabilities are for a 50-year
exposure time (starting in 1999) and all listed rates are annual rates. Only
the San Andreas has cascaded segments in these models in conformity with
Petersen et al. (i.e., southern, 1857, and 1906 ruptures, which incorporate
into one rupture the segments listed after their entry in the table). The
remaining entries are single-segment ruptures in these models, which in the
case of the San Andreas handles the remaining moment rate release left
over from the cascade portion of the model (see text for details).

†The CDMG/USGS Poisson model uses a floating M 8.3 rupture along
the Cascadia subduction zone with this Poisson annual rate; see Petersen
et al. (1996) or Frankel et al. (1996).

curves directly from 50-year probabilities. For the Poisson
elements of the model, annual rates of occurrence (k) were
converted to 50-year probabilities (P50) prior to hazard cal-
culations using P50 � 1 � e�kt, where t � 50 years.

Recently, Thatcher et al. (1997) examined fault dis-
placements for the 1906 rupture of the northern San Andreas
fault and reviewed the arguments about whether the 1989
Loma Prieta earthquake affected the conditional probability

of the Santa Cruz segment of the San Andreas fault. First,
Thatcher et al. indicate that fault displacements at depth in
1906 were up to two-times larger than the 1906 surface dis-
placements used by WGCEP90 (1990). They suggested that
30-year conditional probabilities for the northern San An-
dreas would be 5–10% lower and would have some impact
on hazard calculations. However, our results suggest that
such small changes in conditional probabilities would have
little impact on PSH calculations (see Table 2 and Sensitivity
Tests section)

The second point, which is of larger concern, is whether
the 1989 Loma Prieta earthquake reset the conditional prob-
ability clock on the Santa Cruz segment of the San Andreas
fault as assumed by WGCEP90, or not as suggested by
Thatcher et al. (1997). Not resetting the conditional proba-
bility clock would make the probability higher on the Santa
Cruz segment of the San Andreas fault. The PSH models
presented in this article have used the consensus values of
WGCEP90, but it is acknowledged that Thatcher et al.
(1997) could change that consensus in the near future.

Discussion

Nonconsensus Aspects

While most of the time-dependent PSH models pre-
sented in this article are based on consensus information for
California, consensus has not been reached on some aspects
incorporated into them, as described in Table 1. Also some
of the consensus values are seven years old and will be re-
vised by a 1999 working group on northern California earth-
quake probabilities. There are four areas where these time-
dependent models are potentially controversial: (1) the value
of intrinsic sigma, (2) segmentation and the amount of cas-
cading, (3) the selection of faults that are modeled with time-
dependence (e.g., the application of time-dependence on
fault segments that WGCEP94 treated with a Poisson
model), and (4) the assumption of a log-normal distribution
of recurrence intervals as opposed to other distributions such
as the Brownian Passage Time, Weibull, Gamma, etc. The
sensitivity of hazard to the use of alternative recurrence-
interval distributions is discussed by Ellsworth et al. (1999).
Ellsworth et al. find that it is not possible to discriminate
among candidate distributions because the existing world-
wide earthquake recurrence interval data are too limited in
number per sequence and uncertain in event dating. The re-
maining three aspects will be discussed in this section and
the results of sensitivity tests will be presented in the follow-
ing section of this article.

Intrinsic Sigma. Intrinsic sigma is the overall uncertainty
(standard deviation) in the natural logarithm of the recur-
rence intervals, and it describes how regularly or irregularly
characteristic earthquakes are expected to occur on any time-
dependent fault. An intrinsic sigma near zero indicates the
very regular occurrence of characteristic earthquakes such
as occurred on the Parkfield segment of the San Andreas
fault from 1857 to 1922 (Bakun and McEvilly, 1984). Note
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that the coefficient of variation (cov) of a log-normal distri-
bution, which is rT/mT (standard deviation of T over the
arithmetic mean of T), is related to it’s intrinsic variability
(intrinsic sigma) by (Benjamin and2 2r � ln(cov � 1)lnT T

Cornell, 1970, p. 266, equation 3.3.35).
Intrinsic sigma has been the subject of much discussion.

WGCEP88 (1988) and WGCEP90 (1990) used an intrinsic
sigma of 0.21 based on a worldwide set of cov’s for earth-
quake recurrence intervals on plate-boundary faults by Ni-
shenko and Buland (1987). Savage (1991) criticized the use
of such a small intrinsic sigma, which implies a small de-
viation in recurrence intervals between characteristic earth-
quakes from the mean-recurrence interval. Savage also
pointed out limitations in the use of a log-normal distribution
to model characteristic earthquake occurrences. WGCEP94
(1995) chose to use an intrinsic sigma of 0.50 � 0.20 in
southern California. And Ellsworth et al. (1999) found from
statistical tests that (1) the limited worldwide earthquake re-
currence interval data have a Brownian Passage Time model
(very similar to log-normal) shape factor (basically the cov
of the distribution) of 0.46 � 0.32, (2) the 35 recurrence
interval sequences examined are compatible with a shape
factor of 0.50, and (3) the 35 earthquake sequences had no
systematic differences when grouped by tectonic style.

Actual data on which to estimate intrinsic sigma in Cali-
fornia are sparse. Nishenko and Buland (1987) indicate a
cov of 0.33 for the Parkfield segment and 0.29 for Pallett
Creek paleoseismic data (Mojave segment), using a criterion
of at least four earthquake recurrence intervals on a fault
segment to estimate total variability. Savage (1991) indicates
a total variability of 0.35 for the Parkfield segment. Those
are all the published estimates of total variability values for
California and they are from the San Andreas, a major strike-
slip fault. In this article, an intrinsic sigma of 0.77 is obtained
from the mean values for the revised and larger Pallet Creek
paleoseismic data set of Sieh et al. (1989). The paleoseismic
data from tsunami deposits presented by Valentine et al.
(1992) for the southern end of the Cascadia subduction zone
suggest an intrinsic sigma of about 0.43 based on nine
weakly constrained recurrence intervals. This value is larger
than Nishenko and Buland’s values for subduction zones.

For this article and the purpose of sensitivity testing, the
WGCEP94 (1995) intrinsic sigma mean value of 0.50 was
adopted statewide unless fault-specific intrinsic sigma’s were
available. Although alternative interpretations for California
could be based on the few actual data for California (say an
intrinsic sigma of 0.35 for strike-slip faults and about 0.40 for
the Cascadia subduction zone), the small number of recur-
rence intervals in California sequences (�10), the arguments
of Savage (1992), and the analysis of Ellsworth et al. (1999)
suggest that a statewide intrinsic sigma of 0.5 is the most de-
fensible choice. The effect of varying intrinsic sigma is in-
vestigated in the following Sensitivity Tests section.

Cascading. Contiguous segments of a major fault can rup-
ture together producing a larger cascaded earthquake, as well

as rupture separately in smaller earthquakes. The 1857 earth-
quake on the San Andreas fault is an example of a multi-
segment rupture involving the Parkfield, Cholame, Carrizo,
and Mojave segments, and the 1966 Parkfield earthquake is
an example of a single-segment rupture. PSH models can
allow for multisegment, contiguous ruptures by cascading
modeled segments into larger earthquakes using slip rates,
recurrence rates, or conditional probabilities. This cascading
of segments into larger magnitude earthquakes affects the
moment-rate budget of the PSH model (sum of the products
of each earthquake’s seismic moment and annual rate of oc-
currence) and hence hazard by removing the need for a larger
number of moderate-sized earthquakes to balance the mo-
ment rate in the PSH model.

Different working groups have cascaded segments in
different ways. WGCEP94 (1995) chose to cascade seg-
ments for the San Andreas, San Jacinto, and Elsinore fault
systems in southern California, but also had an alternative
noncascade model. Cramer et al. (1996) showed no signifi-
cant difference in 10% probability of exceedence in 50-year
hazard between the WGCEP94 cascade and noncascade
models. Petersen et al. (1996) chose only to cascade those
segments of the San Andreas corresponding to the 1857 and
1906 ruptures plus a postulated southern San Andreas rup-
ture, and left any remaining moment rate on individual seg-
ments. The cascading approach of Petersen et al. (1996) was
adopted for this article.

Cascading of individual segments into longer ruptures
can be done in many ways. The extremes can be represented
as no cascading (moment rate on an individual segment is
released only by characteristic earthquakes on that segment)
and full cascading (moment rates for individual segments
are released by the longest multisegment ruptures with the
largest moment rates possible while avoiding the transfer of
moment rate from one segment to another). In full cascading
all potential combinations of contiguous segment ruptures
are considered and multisegment rupture rates are maxi-
mized. But moment-rate redistribution among the segments
being cascaded (that is, moment rate redistribution along the
fault) is not allowed in this definition of full cascading. Re-
distributing moment-rate release along a fault, by averaging
or other means, will cause larger changes in hazard than the
full cascading discussed in this article (see Cramer et al.,
1996, Figure 9). The cascading used by Petersen et al. (1996)
and in this article is a partial cascade between these extremes
but accounts for a majority of the moment rate of full cas-
cading. The effect of cascading on hazard and moment-rate
budget is investigated in the Sensitivity Tests section.

Cascading fault segments into a multisegment rupture
can be accomplished by slip rate, recurrence rate, or condi-
tional-probability cascading. Because all these approaches
are based on conserving moment rate for each cascaded seg-
ment, the hazard results are essentially the same. In this ar-
ticle, adjacent segments are cascaded using their conditional
probabilities. This is accomplished by using the following
relation between a given segment’s conditional probability
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Table 3
An Example of Cascading the Northern San Andreas in California using Conditional Probabilities (ri � 0.50) and Maximizing

the Rate of Occurrence of Multisegment Ruptures

Cascade or Segment i j Psi

1st Adjustment
1–(1–Psi)/(1–Pc1)

Partial Cascade
Pcj

2nd Adjustment
1–(1–Psi)/[(1–Pc1)(1–Pc2)]

Full Cascade
Pcj

1906 rupture 1 .15063 .15063
Penin/NCoast 2 .00000 .17144
Santa Cruz 1 3 .15063 1–(1–.15063)/(1–.15063) � .00000 .00000
Peninsula 2 4 .41159 1–(1–.41159)/(1–.15063) � .30723 1–(1–.41159)/(1–.15063)/(1–.17144) � .16389
North Coast 3 5 .29625 1–(1–.29625)/(1–.15063) � .17144 1–(1–.29625)/(1–.15063)/(1–.17144) � .00000

*Psi are the conditional probabilities for each individual segment i involved in the cascading process. Pcj are the probabilities for each rupture j of a set
of cascades that includes multisegment and single segment ruptures. The rate of occurrence of a multisegment rupture is maximized by transferring the
lowest, nonzero probability of the segments involved to the multisegment rupture and cascading the longest multisegment rupture first (the 1906 rupture
in this example).

(Psi) and the probabilities (Pcj) of that segment participating
in a set of multisegment and individual ruptures:

1 � Ps � P (1 � Pc ).i j j

Psi is known for each segment i, but there are many ways
of partitioning probability (moment rate) to a set of multi-
segment and individual ruptures. A further constraint on the
probability (moment rate) distribution among a set of multi-
segment and individual ruptures is required to obtain a
unique solution. As previously stated, in this article we have
maximized the probability (rate) of multisegment ruptures.
This is illustrated in Table 3.

Time-Dependence. A goal of this article is to examine the
effect time-dependence has on PSH values within California
compared to time-independence. WGCEP94 (1995) found
little difference in hazard between their preferred time-
dependent model and their alternative Poisson model.
WGCEP94 changed the Parkfield and Cholame segments of
the San Andreas and the Imperial fault from time-dependent
(WGCEP88, 1988) to Poisson segments, because of con-
cerns about noncharacteristic behavior or large uncertainties
in the data used to determine time-dependent behavior. The
Poisson model by Petersen et al. (1996) treated these three
fault segments as Type A faults (characteristic behavior
only). Petersen et al. also treated the Laguna Salada fault
and the Gorda segment of the Cascadia subduction zone as
Type A faults. For consistency and in order to make com-
parisons, the time-dependent PSH models of this paper re-
tain the Type A fault designations of Petersen et al., but with
all Type A faults characterized as time-dependent. The im-
pact of time-dependence versus time-independence on haz-
ard and moment rate budget is investigated further in the
following Sensitivity Tests section.

Sensitivity Tests

Sensitivity tests can show the impact of intrinsic sigma,
cascades vs. no cascades, and time-dependence vs. time-
independence on the results of PSH modeling. Comparisons

have been made at arbitrary probabilities of occurrence (P)
of 0.021, 0.0021, and 0.0002 (65%, 10%, and 1% probability
of exceedence in 50 years or return periods of 63, 475, and
4975 years, respectively). Additionally, expected damage
maps are compared after they are calculated using the entire
hazard curve as described in Cao et al. (1999) and using the
ATC-13 facility class 1 vulnerability relation for low-rise,
wood frame structures (Applied Technology Council, 1985).
Cao et al. compute expected annual damage by directly in-
tegrating over acceleration and intensity the conditional
probability density functions for peak-ground acceleration
(from a site’s hazard curve), intensity depending on accel-
eration (Trifunac and Brady, 1975), and damage depending
on intensity (Applied Technology Council, 1985). Compar-
isons are also made among moment-rate budgets for the
CDMG Poisson PSH model and the sensitivity test models.
For the sensitivity tests, comparisons have been made with
intrinsic sigma set to 0.2, 0.3, 0.4, and 0.5, because this is
the range where hazard and expected damage are most sen-
sitive to the value of intrinsic sigma. These comparisons
have been made by simply taking the ratio of alluvial PGA
values or expected damage estimates for two versions of the
PSH model that are identical except for the parameter of
interest.

Cascading. Figures 2–5 show the results for full cascading
vs. no cascading on the San Andreas fault in California (see
previous sections for meaning of full cascading). Each figure
shows the ratio where differences exceed 0.05 g or $0.50/
thousand from using four separate fixed values of intrinsic
sigma. Notice that intrinsic sigma has little influence on the
results in each figure. Going from Figure 2 to Figures 3 and
4, ratios in PGA between the indicated models change from
few areas with differences exceeding 10% at P � 0.021
(65% exceedence in 50 years), to larger areas at P � 0.0021
(10% exceedence in 50 years) and P � 0.0002 (1% exceed-
ence in 50 years). This increasing difference in PGA at
longer return periods (low probability of occurrence) is prob-
ably due to the magnification of small-modeling differences.
Ratios exceeding a 20% change in annual expected damage
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Figure 2. Maps of ratios of alluvial PGA hazard between time-dependent models
using full cascading and noncascading along the San Andreas fault system (see text for
definitions of cascading). Maps show ratios (full over no cascading) for 65% exceed-
ence in 50-year hazard (63 year return period) using different intrinsic sigmas: (a) 0.2,
(b) 0.3, (c) 0.4, and (d) 0.5.
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Figure 3. Same as Figure 2 except for a 10% exceedence in 50-year hazard (475-
year-return period).
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Figure 4. Same as Figure 2 except for a 1% exceedence in 50-year hazard (4975-
year-return period).
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Figure 5. Maps of ratios of expected-damage estimates from alluvial PGA hazard
curves between time-dependent models using full cascading and noncascading along
the San Andreas fault system (see text). The presentation is as in Figure 2.
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estimates (where differences exceed $0.50/thousand) also
effect very small portions of the state—mostly the Parkfield
area (Figure 5). Annual expected damage estimates are in-
fluenced more by earthquakes with higher probabilities of
occurrence (shorter return periods) (Petersen et al., 1997;
Cao et al., 1999).

The amount of cascading in the preferred PSH models
(time-dependent and Poisson) falls between the extremes of
full and no cascading used in Figures 2–5. Thus, differences
for either of the preferred PSH models and their respective
full or no cascaded versions would be less than that shown
in Figures 2–5.

Time-Dependence. Figures 6–9 show the sensitivity com-
parisons between various time-dependent PSH models pre-
sented in this article and the Petersen et al. (1996) Poisson
PSH model. The amount of cascading and the fault segmen-
tation have been held fixed between time-dependent and
Poisson models (with the exception of the Cascadia subduc-
tion zone) so that differences are only due to the use of time-
dependence on Type A faults, which are assumed to have
100% characteristic earthquake behavior. As in Figures 2–
5, Figures 6–9 show ratios where differences exceed 0.05 g
or $0.50/thousand for four separate fixed-values of intrinsic
sigma. As expected, PGA and expected-damage estimates
increase with decreasing intrinsic sigma. An intrinsic sigma
of 0.5 shows changes generally less than 20% in Figures 6d–
8d, except for the Cascadia subduction zone. An intrinsic
sigma of 0.2 shows changes greater than 20% in Figures 6a–
8a, usually within 20 km of the Type A faults. The compar-
ison for the Cascadia subduction zone is meaningless be-
cause it is influenced by the use of a more complex rupture
model in the Poisson PSH model, which is not amenable to
a time-dependent approach (see Frankel et al., 1996 and Pe-
tersen et al., 1996, for details) as opposed to a single rupture
model in the time-dependent PSH models of this article.

Focusing on the strike-slip Type A faults in California
shown in Figure 1 (i.e., south of Cape Mendocino), most
changes larger than 10% are generally within 20 km of these
faults in Figures 6–9. In Figures 6–9 the choice of intrinsic
sigma (ri) generally creates small areas where the change is
greater than 10% when ri � 0.4 and 0.5 and larger areas
where change is greater than 10% when ri � 0.2 and 0.3.
With decreasing probability of occurrence P (increasing re-
turn period) going from Figure 6 to Figure 7 to Figure 8, the
size of these areas initially increases from P � 0.0210 to
P � 0.0021 and than decreases from P � 0.0021 to P �
0.0002. This comes about because absolute differences in
PGA always increase with increasing return period but in
Figure 8 the absolute values in PGA have increased so much
that the ratio actually decreases. For expected damage and
PGA hazard at a probability of occurrence of 0.0021 (return
periods of 475 years) or less, differences due to time-depen-
dence vs. time-independence only become greater than 20%
for ri � 0.4 within 20 km of a Type A fault. But for ri �

0.50 differences are still generally less than 20% even at a
0.0002 probability of occurrence (4975-year-return period).

An illustration of how intrinsic sigma affects time-de-
pendent results is given in Figure 10. Figure 10 shows the
50-year-conditional probabilities for the North Coast seg-
ment of the San Andreas as a function of elapsed time since
the last earthquake for an intrinsic sigma of 0.21 and 0.50.
For comparison, the Poisson probability is also shown in
Figure 10. Generally, the conditional probability for an in-
trinsic sigma of 0.50 is closer to the fixed Poisson probability
than the conditional probability for an intrinsic sigma of
0.21. Also the conditional probability for an intrinsic sigma
of 0.50 rises above the Poisson probability level earlier in
the recurrence cycle than the conditional probability for an
intrinsic sigma of 0.21. This is because an intrinsic sigma of
0.50 indicates a characteristic earthquake-occurrence pattern
much closer to Poissonian behavior and an intrinsic sigma
of 0.21 indicates a characteristic earthquake-occurrence pat-
tern that is fairly regular in time.

Longer Period Ground Motions. The small variation in
alluvial PGA hazard between time-dependent and Poisson
PSH models and between previously discussed cascade and
noncascade PSH models does not hold for longer period
ground motions (1.0 second and greater). This is illustrated
in Figure 11 for alluvial spectral acceleration (Sa) at 2.0
seconds. Only the ri � 0.20 and 0.50 at 10% exceedence
in 50 year results are shown in Figure 11. The colored areas
(ratios in ground motion exceeding a 10%) in Figure 11 are
larger than the corresponding colored areas of Figures 3 and
7, indicating larger differences at 2-sec Sa.

Moment-Rate Budget. Time-dependence and cascading af-
fect the moment-rate budget of a PSH model. Both calcu-
lations start with the same basic long-term seismic-moment
rate in the model. Time-dependence mostly affects the short-
term rate of the large earthquakes via the choice of intrinsic
sigma (as illustrated in Figure 10) and hence the short-term
seismic-moment rate for a fault segment. On the other hand,
cascading mostly affects the magnitude of the earthquakes
included in the model and hence the seismic moment of
those earthquakes. This is demonstrated in Table 4, which
shows the short-term annual moment-rate budget for the
Type A faults from several PSH models used in this article
(excluding the moment-rate contribution from the Cascadia
subduction zone). The Type A faults account for about half
of the moment rate of the entire model when the Cascadia
subduction zone is excluded from the moment rate calcula-
tions (see caption of Table 4).

The ri � 0.50 time-dependent PSH model has a 41%
larger Type A fault short-term moment-rate budget than the
CDMG Poisson model of Petersen et al., 1996 (Table 4).
Yet Figures 6d–9d generally only show a 20% or less change
in PGA hazard and expected-damage estimates along the
San Andreas fault. By simply decreasing intrinsic sigma to
0.20, the Type A fault short-term moment-rate budget be-
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Figure 6. Maps of ratios of alluvial PGA hazard between time-dependent and Pois-
son models using the same cascading along the San Andreas fault system (see text).
Maps show ratios (time-dependent over Poisson) for 65% exceedence in 50-year hazard
using different intrinsic sigmas: (a) 0.2, (b) 0.3, (c) 0.4, and (d) 0.5.



14 C. H. Cramer, M. D. Petersen, T. Cao, T. R. Toppozada, and M. Reichle

Figure 7. Same as Figure 6 except for a 10% exceedence in 50-year hazard.



A Time-Dependent Probabilistic Seismic-Hazard Model for California 15

Figure 8. Same as Figure 6 except for a 1% exceedence in 50-year hazard.
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Figure 9. Maps of ratios of expected damage estimates from alluvial PGA hazard
curves between time-dependent and Poisson models using the same cascading along
the San Andreas fault system (see text). The presentation is as in Figure 6.
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Figure 10. Comparison of 50-year conditional
and Poisson probabilities for the North Coast Seg-
ment of the San Andreas fault. Conditional probabil-
ities as a function of lapse time since the last char-
acteristic earthquake (T-lapse) are plotted for intrinsic
sigmas of 0.21 and 0.50. The lapse time is shown as
a ratio of the mean-recurrence interval (T-bar). The
arrow indicates the 1997 lapse time for this segment.

comes 69% larger than the CDMG Poisson model (Table 4).
As shown in Figures 6a–9a, this results in PGA hazard and
expected damage estimate ratios exceeding 20% along por-
tions of the San Andreas fault. The degree of cascading for
these three PSH models is the same and does not influence
the difference in moment-rate budget for these cases.

When the CDMG Poisson model of Petersen et al. is
compared with a noncascade version of that model (Table
4), the noncascade version has a 37% lower moment rate.
Yet changes in PGA hazard and expected-damage estimates
along the San Andreas fault between these two PSH models
generally are less than 20% as shown in Figure 12. Only the
1% exceedence in 50 years PGA hazard changes (Figure
12c) exceed 20% along the San Andreas fault (except at
Parkfield for 65% exceedence in 50 years).

The San Andreas fault cascade model is dominated by
the magnitude assigned to the 1857 and 1906 ruptures. Pe-
tersen et al. (1996) originally assigned the historical mag-
nitudes of 7.8 and 7.9 to the 1857 and 1906 ruptures included
in the model. But using the fault area vs. magnitude relation
of Wells and Coppersmith (1994) yields magnitudes of 7.7
and 7.8, respectively. Using the magnitudes derived from
the Wells and Coppersmith fault area relation in the CDMG
Poisson cascades model results in a Type A fault moment-
rate budget about halfway between the standard CDMG
Poisson cascade model and its noncascade version (Table 4).

When full cascade and noncascade versions of the ri �
0.50 time-dependent PSH model are compared with the
CDMG Poisson PSH model, the Type A fault short-term
moment-rate budget for the no cascade time-dependent ver-

sion is 3% less than the Poisson model and the full cascade
time-dependent version is 44% larger (Table 4). Addition-
ally, when full cascade is compared to a noncascade version
of a time-dependent model with the same intrinsic sigma,
the Type A fault short-term moment-rate budget for the full-
cascade model ranges from 29 to 48% higher than the Type
A fault short-term moment-rate budget for the noncascade
model, depending on the value of ri used. These larger dif-
ferences (�40%) in short-term moment-rate budgets have
large colored areas in Figures 3 and 4 (ratios exceeding 10%)
for PGA hazard at 0.0021 and 0.0002 probability of occur-
rence (475 and 4975 year return periods), but smaller colored
areas in Figures 2 and 5 for PGA hazard at 0.0210 proba-
bility of occurrence (63-year return period) and for expected-
damage estimates.

A Monte Carlo sampling of the model uncertainty was
run for the ri � 0.50 time-dependent PSH model with the
cascading used by Petersen et al. (1996). The approach was
that used by Cramer et al. (1996). The resulting mean and
coefficient of variation (the standard deviation divided by
the mean) for the short-term moment-rate distribution is
0.484 � 1019 N m/yr and 0.91. (Similar results were ob-
tained for the CDMG/USGS Poisson PSH model of Petersen
et al., 1996.) As was found by Cramer et al. (1996), the
largest contributors to this parametric uncertainty in moment
rates are (1) the variation in maximum magnitude from the
uncertainty in the Wells and Coppersmith (1994) magnitude
vs. fault-area relation, and (2) the uncertainty in the fault-
slip rate and characteristic earthquake-displacement obser-
vations. Thus the variations from the CDMG Poisson model
in Table 4 (�70%) and between full and noncascade ver-
sions of the same PSH model in Table 4 (30–50%), are
within the coefficient of variation of 91% for time-dependent
modeling.

Conclusions

CDMG has assembled a time-dependent version of its
PSH model for California for the purpose of sensitivity test-
ing and highlighting components of the time-dependent
models that do not have consensus within the earth-science
community. For the most part, the time-dependent elements
of the model are based on published consensus information.
There are some nonconsensus aspects in the model: (1) the
value of intrinsic sigma for all of California, (2) the amount
of cascading of fault segments into larger earthquakes, (3)
the choice of fault segments exhibiting time-dependence
(i.e., the Parkfield segment, the Cholame segment, the Im-
perial fault, and Laguna Salada fault which the WGCEP94
treated as Poisson), and (4) the choice of the distribution
used to model characteristic earthquake-recurrence intervals
(i.e., log-normal instead of Brownian Passage Time, Wei-
bull, or Gamma). For the latest consensus-mean value for
intrinsic sigma of 0.50, the amount of cascading and the use
of time-dependence results in few areas in which differences
in PGA estimates exceeds 20% at a 0.0021 probability of
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Figure 11. Maps of ratios of alluvial 2.0 sec spectral acceleration (Sa) for 10%
exceedence in 50-year hazard: (a) full cascade over noncascade for 0.20 intrinsic sigma,
(b) full cascade over noncascade for 0.50 intrinsic sigma, (c) time-dependent over
Poisson for 0.20 intrinsic sigma, and (d) time-dependent over Poisson for 0.50 intrinsic
sigma.
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Figure 12. Maps of ratios of alluvial PGA hazard and expected damage estimates
from alluvial PGA hazard curves between the CDMG Poisson model without cascading
and with cascading (see text for cascading definitions). Ratio maps presented (noncas-
cades over cascades) are for (a) 65% exceedence in 50-year hazard, (b) 10% exceedence
in 50-year hazard, (c) 1% exceedence in 50-year hazard, and (d) expected-damage
estimates.
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can exceed 20% within 20 km of the Type A faults for in-
trinsic sigmas of 0.2 to 0.3, similar to the results of Litehiser
et al. (1992). Changes in expected-damage estimates due to
cascading rarely exceed 10%, and changes in 10% in 50-
year PGA hazard due to cascading generally do not exceed
20%. These results for expected damage are only for the Cao
et al. (1999) approach to calculating expected damage by
converting PGA to MMI and may not hold for expected
damage calculated in another manner, such as directly from
spectral acceleration and PGA.
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Table 4
Annual Moment Rates from Type A Faults for Selected
Sensitivity Test PSH Models for California (excluding

the Cascadia subduction zone)*

Model
Annual Moment
Rate (N m/yr)

Standard Models
CDMG Poisson (Petersen et al., 1996) 0.105 � 1020

Time-dependent, ri � 0.50 (this article) 0.148 � 1020

Comparison Models (see text)
Time-dependent, ri � 0.20 0.177 � 1020

Poisson, No Cascade 0.066 � 1020

Poisson, Cascade w/ 1857 & 1906
earthquake magnitudes reduced by 0.1
magnitude unit

0.086 � 1020

Selected Sensitivity Test Models
Time-dependent, full cascade, ri � 0.50 0.151 � 1020

Time-dependent, no cascade, ri � 0.50 0.102 � 1020

Time-dependent, full cascade, ri � 0.20 0.180 � 1020

Time-dependent, no cascade, ri � 0.20 0.140 � 1020

The annual moment rate for the remaining portion of the models (which
is Poisson and hence fixed) is 0.121 � 1020 N m/yr (again excluding the
Cascadia, subduction zone). Short-term annual-moment rates for time-de-
pendent models are based on calculated 50-year conditional probabilities.

occurrence (475-year-return period or 10% exceedence in
50 years) or less. This is similar to the results of WGCEP94
(1995). Similarly, areas are small where expected damage
estimates exceed changes of 20% when the difference ex-
ceeds $0.50 per thousand dollars of structure value. Hence
the ri � 0.50 time-dependent PSH model produces similar
PGA hazard and expected-damage estimates as the CDMG
Poisson PSH model (see Figures 6d–9d). However this is not
true for long period ground motions exceeding 1.0 second
(see Figure 11).

Sensitivity tests on PGA hazard, expected-damage es-
timates, and PSH model moment-rate budgets show the im-
pact of intrinsic sigma, full cascading vs. noncascading, and
time-dependence vs. time-independence:

• Changes in PGA hazard and expected-damage estimates
between time-dependent and time-independent models in-
crease with decreasing intrinsic sigma.

• Changes in PGA hazard and expected-damage estimates
between full cascading and not cascading (extremes) are
insensitive to intrinsic sigma.

• Differences in PGA-hazard increase with increasing return
period (decreasing probability of occurrence) although ra-
tios may not always increase.
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