
A TOOLKIT FOR MANAGING XML DATA WITH A
RELATIONAL DATABASE MANAGEMENT SYSTEM

By

RAMASUBRAMANIAN RAMANI

A THESIS PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

UNIVERSITY OF FLORIDA

2001

Copyright 2001

by

RAMASUBRAMANIAN RAMANI

To my parents, Yamuna and Ramani, who have given me the best values in life.

iv

ACKNOWLEDGMENTS

This thesis is a result of the motivation and support provided by many individuals.

Firstly, I would like to thank Dr. Joachim Hammer who has always remained a constant

source of inspiration and technical expertise. His enthusiasm for the subject has been a

driving force, channeling my efforts. I am also thankful to Dr. Douglas Dankel and Dr.

Herman Lam, who kindly agreed to participate in my supervisory committee. It has been

a great honor to be a part of the IWiz development team and to work with my colleagues

Anna Teterovskaya, Amit Shah, Charnyote Pluempitiwiriyawej and Rajesh Kanna. I

would like to thank Sharon Grant and Mathew Belcher, who deserve a special mention

for their support and help in the lab. Finally, I would like to acknowledge the support

given by my family members, back in India.

v

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS .. iv

LIST OF FIGURES ... vii

ABSTRACT.. ix

CHAPTERS

1 INTRODUCTION ..1

1.1. Using XML to Represent Semistructured Data ... 1
1.2. Goals of This Research.. 2

1.2.1. Challenges ... 3
1.2.2. Contributions ... 3

2 RELATED RESEARCH ..5

2.1. XML... 5
2.1.1. Basics .. 6
2.1.2. DTDs ... 7
2.1.3. APIs for Processing XML Documents ... 9

2.2. XML Query Languages ... 10
2.3. Data Warehousing.. 12
2.4. Mapping DTDs into Relational Schemas .. 13
2.5. Data Loading and Maintenance ... 14
2.6. XML Management Systems .. 15

2.6.1. Oracle XSU... 15
2.6.2. GMD-IPSI XQL Engine ... 16
2.6.3. LORE .. 17

3 THE IWIZ PROJECT...18

4 XML TOOLKIT: ARCHITECTURE AND IMPLEMENTATION22

4.1. Managing XML Data in IWiz.. 22
4.2. Rational for Using an RDBMS as Our Storage Management 23
4.3. Functional Specifications ... 24
4.4. Architecture Overview ... 25

vi

4.5. Schema Creator Engine (SCE)... 28
4.6. XML Data Loader Engine(DLE) ... 32
4.7. Relational- to-XML-Engine (RXE) .. 33
4.8. Database Connection Engine (DBCE) ... 36

5 PERFORMANCE EVALUATION..37

5.1. Experimental Setup .. 37
5.2. Test Cases .. 39
5.3. Analysis of the Results... 42

6 CONCLUSIONS...46

6.1. Summary.. 46
6.2. Contributions .. 46
6.3. Future Work ... 48

LIST OF REFERENCES ...50

BIOGRAPHICAL SKETCH ...54

vii

LIST OF FIGURES

Figure Page

2.1: Example of an XML document. ...6

2.2: A sample DTD representing bibliographic information...7

2.3: An XML Schema representing the bibliographic information in the sample DTD..................9

2.4: Generic warehousing architecture...12

3.1: IWiz Architecture..18

3.2: WHM Architecture ...19

4.1: Proposed Architecture of XML data management in IWiz. ...22

4.2: Built-time architecture of the XML toolkit ..25

4.3: Run-time architecture of the XML toolkit ...26

4.4: Input DTD to the Schema creator engine (SCE)...27

4.5: Joinable Keys file format..29

4.6: Tables created by the SCE for the input DTD in Figure 4.4. ...29

4.7: System tables created by the SCE. ..30

4.8: Pseudo code of the SCE...30

4.9: A sample XML document conforming to the input DTD in Figure 4.4.31

4.10: Contents of the tables after loading the sample XML document in Figure 4.9.31

4.11: Pseudo code of the loader ...33

4.12: SQL query to retrieve books and articles from the data warehouse...................................34

4.13: XML document generated by the Relational-to-XML-engine (RXE).34

viii

4.14: Pseudo code of the RXE. ..35

5.1: DTD describing the structure of a TV programs guide ..38

5.2: Tables created by the SCE for the TV programs guide DTD ..38

5.3: An example XML document conforming to the TV programs guide DTD.39

5.4: An XML-QL query to retrieve information about a particular TV program..........................40

5.5: XML-QL processor output in the form of an XML document. ...41

5.6: Equivalent SQL query to retrieve information about a particular TV program.41

5.7: Output of the RXE in the form of an XML document..42

ix

Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

A TOOLKIT FOR MANAGING XML DATA WITH A
RELATIONAL DATABASE MANAGEMENT SYSTEM

By

Ramasubramanian Ramani

August 2001

Chairman: Joachim Hammer
Major Department: Computer and Information Science and Engineering

This thesis presents the underlying research, design and implementation of our

XML Data Management Toolkit (XML toolkit), which provides the core functionality for

storing, querying, and managing XML data using a relational database management

system (RDBMS). The XML toolkit is an integral part of the Information Integration

Wizard (IWiz) system that is currently under development in the Database Research and

Development Center at the University of Florida. IWiz enables the querying of multiple

semistructured information sources through one integrated view, thereby removing

existing heterogeneities at the structural and semantic levels. IWiz uses a combined

mediation/data warehousing approach to retrieve and manage information from the data

sources which are represented as semistructured data in IWiz; the internal data model is

based on XML and the document object model (DOM). The XML toolkit is part of the

Data Warehouse Manager (WHM), which is responsible for caching the results of

x

frequently accessed queries in the IWiz warehouse for faster response and increased

efficiency.

IWiz has two major phases of operation: A built-time phase during which the

schema creator module of the XML toolkit creates the relational schema for the data

warehouse using the DTD description of the global IWiz schema as input. This is

followed by the run-time or query phase during which the warehouse accepts and

processes XML-QL queries against the underlying relational database. Note the XML-

QL to SQL conversion is part of another ongoing research project in the center. During

run-time, the Relational-to-XML-Engine component of the XML toolkit is used to

convert relational results from the warehouse into an equivalent XML document that has

the same structure as the global IWiz schema. The initial query may also be sent to the

mediator in case the contents of the data warehouse are not up-to-date. The loader

component of the XML toolkit is used to convert and store XML data from the sources

via the mediator into the underlying relational format during warehouse maintenance.

 We have implemented a fully functional version of the XML toolkit, which uses

Oracle 8i as the underlying relational data warehouse engine. The XML toolkit is

integrated into the IWiz testbed and is currently undergoing extensive testing.

1

CHAPTER 1
INTRODUCTION

1.1. Using XML to Represent Semistructured Data

The Web is a vast data store for information and is growing at a fast rate. This

information can originate from a variety of sources, such as email, HTML files,

unstructured text as well as structured databases. These sources make the Web a dynamic

and heterogeneous environment, in which interpretation of information is difficult and

error prone [1]. Much research has been undertaken to provide an integrated view of the

Web by using a computerized approach. However the identification, querying and

merging of data from heterogeneous sources is difficult.

A considerable amount of information available on the Web today is

semistructured [2]. Semistructured data can be defined as data that has structure that may

be irregular and incomplete and need not conform to a fixed schema. There has been a lot

of research in the past in developing data models, query languages and systems to

manage semistructured data. One such model is the Object Exchange Model (OEM) that

was explicitly defined to represent semistructured data in heterogeneous systems in the

Tsimmis system [3]. A variant of this data model has been used in the development of

Lore [4]. The recent emergence of the Extensible Markup Language (XML) from the

World Wide Web Consortium [5] has kindled a lot of interest in using it to model

semistructured data [6-7]. XML is well suited to model semistructured data because it

makes no restrictions on the tags and relationships used to represent the data. XML also

2

provides advanced features to model constraints on the data, using an XML schema or a

Document Type Definition (DTD). However, XML does have some differences with the

other semistructured data models: (1) XML has ordered collections while semistructured

data are unordered, (2) Attributes in XML can be unordered and (3) XML allows usage

of references to associate unique identifiers for elements; this is absent in most other data

models. Despite these differences, XML is a popular data model to represent

semistructured data, mainly due to the close relationship to HTML as well as the

emergence of standards and tools for creating and viewing XML. However, to the best of

our knowledge not much progress has been made in the development of techniques and

tools for storing and managing XML for rapid querying.

1.2. Goals of This Research

The goal of the thesis is to analyze the problems of XML data management and

implement a toolkit that can be used to provide a persistent storage, retrieval and query

component for XML data. We have developed such a toolkit as part of the Warehouse

Manager (WHM) component in the IWiz prototype system in the Database and Research

Center, University of Florida [8].

We rephrase the overall problem statement for this thesis as follows: Given the

need to manage semistructured data in general and XML data in particular we need a

system for managing this data efficiently. There are a wide variety of management

systems, ranging from native XML databases to XML-enabled databases. Among the

alternatives, we found it very compelling to choose the relational DBMS because of its

wide spread popularity, robustness and performance. Since relational databases are

already used to store information for most web sites and since XML is becoming the

3

standard to represent this information, it is of the utmost importance that these two

technologies be integrated [9]. So, in our system we have an underlying relational

database for storing XML data and an interface to transform XML data to relational and

vice-versa. Several major database vendors like Oracle are working on tools for

managing XML data. We have summarized the limitations of these products in the

related research section.

1.2.1. Challenges

To address the problem raised above, we have identified the following three

challenges. (1) Automatic creation of the underlying relational schema based on the

schema for the XML data that must be managed. This problem is further complicated

when using DTDs to specify the structure of XML data; DTDs provide only a loose

description of the structure of an XML document and does not contain any type

information. (2) The loading of a single XML document into an equivalent relational

schema may trigger the insertion of tuples into several tables. (3) Creation of a well-

structured XML document with nested tags requires additional input and processing [10].

Existing methods in converting relational results into equivalent XML documents, use

simple techniques where by the resulting document has tags derived from the metadata

and values from the relational results. XML is a constantly evolving data model. Thus the

solution to XML data management is not permanent and needs to be enhanced with the

progress made in related fields like new query languages, more persistent storage options

and new grammar definitions like XML Schema.

1.2.2. Contributions

Upon the conclusion of this research we will have contributed to the state-of-the-

art in XML data management in several important ways. (1) Automatic schema

4

generation: XML uses hierarchical representation of data. This native nesting in XML

has to be translated to the relational schema that is flat in structure. The schema created

has to preserve the relationships expressed in XML and map them to relational

constraints. (2) Loading of XML data into a relational data warehouse: The loading

operation will have to adhere to the constraints in the relational schema. The data in the

XML data could contain extraneous characters like quotation marks that need to be

removed before loading into the relational tables. (3) Automatic creation of nested XML

documents: A structured XML document has to be recreated from the relational data

obtained as a result of a SQL query. To achieve nesting in the created XML document

would involve additional processing.

The rest of the thesis is composed as follows. Chapter 2 provides an overview of

XML and related technologies. Chapter 3 describes the IWiz architecture and in

particular the warehouse manager component. Chapter 4 concentrates on our

implementation of the XML toolkit and its integration in the IWiz system. Chapter 5

performs an analysis of the implementation, and Chapter 6 concludes the thesis with the

summary of our accomplishments and issues to be considered in future releases.

5

CHAPTER 2
RELATED RESEARCH

2.1. XML

Among the various representations to model semistructured data, XML has clearly

emerged as the frontrunner. XML started as a language to represent hierarchical

semantics of text data, but is now enriched with extensive APIs, tools such as parsers, and

presentation mechanisms, making it into an ideal data model for semistructured data.

XML consists of a set of tags and declarations, but rather than being concerned with

formatting information like HTML, it focuses on the data and its relations to other data.

Some important features of XML that are making it popular are the following [11]:

• XML is a plain ASCII text file making it platform independent.

• XML is self-describing: Each data element has a descriptive tag. Using these tags,
the document structure can be extracted without knowledge of the domain or a
document description.

• XML is extensible by allowing the creation of new tags. This supports new

customized applications such as MathML, ChemicalML, etc.

• XML can represent relationships between concepts and maintain them in a

hierarchical fashion.

• XML allows recursive definitions, as well as multiple occurrences of an element.

• The structure of an XML document can be described using DTD or XML schema.

6

<?xml version="1.0"?>
<bibliography>

<book>
<title>"Professional XML"</title>
<author>

<firstname>Mark</firstname>
<lastname>Birbeck</lastname>

</author>
 <author>

<lastname>Anderson</lastname>
</author>
<publisher>

<name>Wrox Press Ltd</name>
</publisher>
<year>2000</year>

</book>
<article type = "XML">

<author>
<firstname>Sudarshan</firstname>
<lastname>Chawathe</lastname>

</author>
<title>Describing and Manipulating XML Data</title>
<year>1999</year>
<shortversion> This paper presents a brief overview of

data management using the Extensible Markup
Language(XML). It presents the basics of XML
and the DTDs used to constrain XML data, and
describes metadata management using RDF.

</shortversion>
</article>

</bibliography>

Figure 2.1: Example of an XML document.

2.1.1. Basics

The Extensible Markup Language (XML) is a subset of SGML [12]. XML is a

markup language. Markup tags can convey semantics of the data included between the

tags, special processing instructions for applications and references to other data elements

either internal or external; nested markup, in the form of tags, describes the structure of

an XML document.

The XML document in Figure 2.1 illustrates a set of bibliographic information

consisting of books and articles, each with its own specific structure. Tags define the

semantic information and the data is enclosed between them. For example in Figure 2.1,

<year> represents the tag information and “2000” denotes the data value.

The fundamental structure composing an XML document is the element. A

document has a root element that can contain other elements. Elements can contain

character data and auxiliary structures or they can be empty. All XML data must be

7

contained within elements. Examples of elements in Figure 2.1 are <bibliography>,

<title> and <lastname>. Attributes can be used to represent simple information

about elements, which are name-value pairs attached to an element. Attributes are often

used to store the element's metadata. Attributes are not allowed to be nested, they can be

only be simple character strings. The element <article> in our example has an

attribute "type" with an associated data value "XML."

2.1.2. DTDs

To specify the structure and permissible values in XML documents, a Document

Type Definition (DTD) is used. Thus the DTD in XML is very similar to a schema in a

relational database. It describes a formal grammar for the XML document. Elements are

defined using the <!ELEMENT> tag, attributes are defined using the <!ATTLIST>

tag.

<?xml version="1.0"?>
<!DOCTYPE bibliography [
<!ELEMENT bibliography (book|article)*>
<!ELEMENT book (title, author+, editor?, publisher?, year)>
<!ELEMENT article (author+, title, year ,(shortversion|longversion)?)>
<!ATTLIST article type CDATA #REQUIRED

 month CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (firstname?, lastname)>
<!ELEMENT editor (#PCDATA)>
<!ELEMENT publisher (name, address?)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT shortversion (#PCDATA)>
<!ELEMENT longversion (#PCDATA)>
]>

Figure 2.2: A sample DTD representing bibliographic information

When a well-formed XML document conforms to a DTD, the document is called

valid with respect to that DTD. Figure 2.2 presents a DTD that can be used to validate the

XML document in Figure 2.1.

8

The DTD can also be used to specify the cardinality of the elements. The

following explicit cardinality operators are available: “?” stands for "zero-or-one," “*”

for "zero-or-more" and “+” for "one-or-more." The default cardinality of one is assumed

when none of these operators are used. The operator “|” between elements is used to

denote the appearance of one of the elements in the document. In our example in Figure

2.1, a book can contain one or more author child elements, must have a child element

named title, and the publisher information can be missing. Order is an important

consideration in XML documents; the child elements in the document must be present in

the order specified in the DTD for this document. For example, a book element with a

year child element as the first child will not be considered a part of a valid XML

document conforming to the DTD in Figure 2.2.

The entire DTD structure can be placed in the beginning of the associated XML

document or in a separate location, in which case the document contains only a

<!DOCTYPE> tag followed by the root element name and the location of the DTD file in

form of a URI. Separation of a schema and data permits multiple XML documents to

refer to the same DTD.

At the moment of writing, a DTD is the only officially approved mechanism to

express and restrict the structure of XML documents. There are obvious drawbacks to

DTDs. Their syntax is different from the XML syntax (this is one reason why most

parsers do not provide programmatical access to DTD structure). In addition, DTDs do

not provide any inherent support for datatypes or inheritance. Finally, the format of

cardinality declarations permits only coarse-grained specifications.

9

<schema ...>
<element name = "bibliography"

 type = "string"
 minOccurs = "0"
 maxOccurs = "unbounded">
<type>

<group order = choice>
<element type = "book">
...
</element>
<element type = "article">

<attribute name = "type" type ="string">
<attribute name = "month"

 type = "integer"
 default = "1">

...
</element>

</group>
</type>

</element>
</schema>

Figure 2.3: An XML Schema representing the bibliographic information in the sample
DTD.

W3C has recognized these existing problems with DTDs and has been working on

new specifications called XML Schema since 1999 [13-14]. In March 2001, XML

schema has been advanced to the proposed recommendation status. Eventually, this new

data definition mechanism will have features like strong typing and support for data

types. Proposed data types include types currently present in XML 1.0 and additional

data types such as boolean, float, double, integer, URI and date types. In future systems,

XML schema will provide a better integration of XML and existing persistent storage

data models.

2.1.3. APIs for Processing XML Documents

The two alternative ways to access contents of an XML document from a program

are the tree-based approach and the event-based approach. In the tree-based approach, an

internal tree structure is created that contains the entire XML document in memory. An

application program can now freely manipulate any part of the document. In case of the

event-based approach, an XML document is scanned, and the programmer is notified

about any significant events such as start or end of a particular tag that are encountered

10

during scanning. The realizations of these approaches that have gained widespread

popularity are the Document Object Model (implementing the tree-based model) and the

Simple API for XML (in case of the event-based model).

The Document Object Model (DOM) specifications are produced by W3C like

most of the XML-related technologies. The DOM Level 1 Recommendation dates back

to October 1, 1998 [15]. The W3C has also come up with a Level 2 Recommendation for

the DOM model [16]. DOM is a language- and platform-neutral definition and specifies

the APIs for the objects participating in the tree model.

The Simple API for XML (SAX) represents a different approach to parsing XML

documents. A SAX parser does not create a data structure for the parsed XML file.

Instead, a SAX parser gives the programmer the freedom to interpret the information

from the parser, as it becomes available. The parser notifies the program when a

document starts and ends, an element starts and ends and when a text portion of a

document starts. The programmer is free to build his/her own data structure for the

information encountered or to process the information in some other ways.

As we have seen, both approaches have their own benefits and drawbacks. The

decision to use one or the other should be based on a thorough assessment of application

and system requirements.

2.2. XML Query Languages

The W3 consortium is in the process of standardizing a query language for XML

based on the XML query algebra. From the semistructured community, three languages

have emerged for querying XML data: XML-QL [17], YATL [18] and Lorel [19]. The

document processing community has developed XQL [20], which is more suitable for

querying documents and searching for text. For the IWiz system, we use an

11

implementation of XML-QL by AT&T Labs. The following section discusses the syntax

and features provided by the XML-QL language.

XML-QL has several notable features [21]. It can extract data from the existing

XML documents and construct new documents. XML-QL is “relational complete”; i.e.,

it can express joins. Also, database techniques for query optimization, cost estimation and

query rewriting could be extended to XML-QL. Transformation of data from one DTD to

a different DTD can be easily achieved. Finally, it can be used for integration of multiple

XML data sources.

In XML-QL, all the conditions are specified using a <WHERE> clause and the

format of the resulting document is obtained from the <CONSTRUCT> clause. The

structure specified in the <WHERE> clause must conform to the structure of the XML

document that is queried. Tag-elements are bound using the “$” symbol to distinguish

them from string literals and can be used in the <CONSTRUCT> clause or in conditional

filters. Join conditions can be specified implicitly or explicitly. New tags can be created

in the resulting document by using them in the <CONSTRUCT> clause. XML-QL uses

element patterns to match data in an XML document, using the structure in the <WHERE>

clause. There is considerable amount of similarity between XML-QL and other query

languages. In particular, considering SQL, one can notice that the “WHERE” clause

specifying the condition in SQL has the same functionality as the <WHERE> clause in

XML-QL. Just like “AS” can be used to rename results in SQL, the <CONSTRUCT>

clause can be used to create new tags and rename results. The XML document specified

using the “IN” clause in XML-QL is like the set of tables represented using the “FROM”

clause in SQL.

12

2.3. Data Warehousing

Data
Warehouse

User Queries

Warehouse Manager
Meta data
Repository

Source 1 Source 2 Source n…..

Data extractor Data extractor Data extractor

Figure 2.4: Generic warehousing architecture

Another technology related to this research is data warehousing. A data

warehouse is a repository of integrated information from distributed, autonomous and

possibly heterogeneous, sources. In the case of data warehousing systems [22-23], the

warehouse manager loads and maintains the data warehouse, which is usually, a

relational database, in advance using the metadata repository. Figure 2.4 shows the

generic architecture of such a system. This is also commonly referred to as the eager or

in-advance approach to data integration. Each source has a data extractor wrapped

around it. This data warehouse is then queried and results are returned to the user. It

represents a large volume of data that is stored in a single repository. The data warehouse

can be optimized for storage depending on the transactions. Usually most of the loading

into the data warehouse will involve appending of new information and fewer updates.

13

Thus the data warehouse serves as a cache with high query performance. The toolkit uses

the data warehousing approach. Some of the key issues in this approach are the schema

creation of the data warehouse, data loading and maintenance.

2.4. Mapping DTDs into Relational Schemas

 The input queries and maintenance of data influence the schema for the data

warehouse. The schema creation plays a big role in the efficiency of the data warehouse.

The stored data can then be mined for information. Some of the algorithms for schema

creation are as follows:

Edge Approach [24]: The XML document is viewed as a graph with no distinction

between attributes and subelements. A table “Edge” is created with this schema (edge

source, ordinal, name, flag, target). This table stores the tag information of the XML

document. A separate “Values” table is created that has the schema as (target, value) to

store the data contained in the XML document. This method proposes a simple scheme

for translating an XML document to a relational table but is inefficient due to the

redundancy in the schema creation.

Basic-Inlining [25]: Every element in the DTD is mapped to a relation table and elements

mapped to a separate table inline as many of their descendants into the same table. In

such a scheme, a particular element may be present in several tables. While loading the

data element from an XML document, several tables have to be loaded with the data

value. Also, in this schema creation scheme, a simple query would require several join

conditions. Due to these inefficiencies, this approach is not suitable.

Shared-Inlining [25]: This approach tries to solve the problems in the “Basic-Inlining”

approach by sharing relational tables. The principal idea in this method is to create a

DTD graph and create separate relation tables for nodes that have an in-degree either

14

equal to zero or greater than one. Elements being involved in a one-many relationship,

which can be known by the presence of a “*” or a “+ are also mapped to a separate table.

Thus in this scheme, a particular data item will be loaded only into a single relational

table. But this scheme may not be appropriate when you consider data maintenance for

the following reason. Since data elements have been inlined, when maintenance queries

are generated, there is an overlap of concepts from the XML domain. Thus a table

representing book information could have possibly a field for the author’s name. Hence,

this approach is not used.

Hybrid-Inlining [25]: This method is a slight modification of the “Shared-Inlining”

approach. In this scheme, elements with degree greater than one are also inlined as

relational attributes in the table created for the parent. This does reduce the join

conditions but has similar maintenance problems as “Shared-Inlining” scheme.

Our approach uses inlining of child nodes that do not have children or attributes,

without considering the degree of the node. As relational tables contain only related

fields, such a relational mapping provides more clarity to the system.

All the constraints expressed explicitly and derivable have to be translated to the data

warehouse schema [26]. The data warehouse schema creation algorithm can have

additional features to incorporate incremental changes to the schema of the underlying

sources.

2.5. Data Loading and Maintenance

An important concern in using the warehousing approach is dealing with updates.

The warehouse data has to be refreshed so that it can be consistent with the sources.

Some simple techniques propose that the system goes off-line so that the entire

warehouse can be refreshed with new data. This is obviously very inefficient for large

15

data warehouses. There are other algorithms proposed to detect changes in the sources,

escalate them to the integrator, which reflects it in the data warehouse [27-28]. Some of

the loading schemes are as follows:

In the load-append strategy, the input data is loaded into the various relational

tables without checking if the same data actually exists in the data warehouse. This is a

simple technique but redundant tuples can be created. This is just like the “insert”

operation in relational databases.

The load-merge strategy involves merging of the input data along with the

existing data in the warehouse minimizing the redundancy. This operation is comparable

to the “update” operation in relational databases.

In the load-erase strategy the content of the data warehouse is removed and then

loaded with the incoming data. Thus the older content is totally removed and fresh data is

loaded. Such an operation could be useless if the incoming data set is much lesser than

the contents of the data warehouse. The operation is analogous to a “delete” operation

followed by an “insert” operation.

2.6. XML Management Systems

There are several commercial products available to manipulate XML such as

XML parsers, XML editors and other tools. We will briefly highlight the features of a

few commercially available and research oriented XML management systems; thus,

laying a foundation to the set of functions we want to provide in our toolkit.

2.6.1. Oracle XSU

The Oracle XML-SQL Utility (XSU) is an XML application that can be used for XML

content and data management. The underlying persistent storage could be an object-

relational or a relational database like Oracle 8i. XML data is stored as LOB (Large

16

unstructured object) in relational tables and XML documents are stored as CLOB

(Character Large Objects). XSU can also be accessed from a servlet. Some of the features

are as follows [29]:

• Oracle XSU can generate an XML document from SQL results.

• It can store SQL results from XML inserts, updates and deletes.

• There are three different interfaces provided to access XSU: command line front end,
Java API and PL/SQL API.

However, there are a few shortcomings that need to be addressed. The database schema

has to be defined manually. The data loading assumes that the elements and attributes in

the document are columns in a single table. To load multiple tables, the input document

has to be translated into several documents, using XSL or any other language, and

individually loaded into the various tables. Also, the data in the document has to be

stored in child nodes and not as attributes. In the XML document generated, tags are not

automatically nested.

2.6.2. GMD-IPSI XQL Engine

This is a Java based storage and query application that uses two major technologies:

persistent implementation of the DOM objects and XQL language [30]. Some of the

features are as follows:

• XML documents are parsed once and stored as persistent DOM (PDOM).

• The implementation can swap DOM nodes to disk, while handling large DOM trees
and hence main memory is not a limit to file size.

• There are built-in caching and garbage collection mechanisms.

• Multi-threaded access of the PDOM file is allowed.

However the implementation has limitations. A PDOM structure is created for each

incoming XML document. The XML document to be queried has to be specified. An

17

update operation would increase the PDOM file size and requires a de-fragmentation

operation to be initiated. Similarly, a delete operation creates wasted space in the file,

which has to be reclaimed using the garbage collection operation.

2.6.3. LORE

LORE is a DBMS for managing semistructured data developed in the Stanford

University. It was initially developed for the OEM data model to manage semistructured

data but later migrated to XML. A few of the mention-able features are as follows:

A query language LOREL with a cost-based optimizer is used. The prototype is

complete with indexing techniques, multi-user support, logging and recovery.

Dataguides, a structural summary of all database paths, is generated; thus allowing free

form input data.

As mentioned in the web site, LORE needs some more development in the areas of

storage schemes and comparison operators. The LORE system currently does not use

DTDs and does not encode sub-elements ordering.

 Two of the other prominent management systems that are available are

Microsoft SQL Server [31] and Strudel Web site management system [32].

18

CHAPTER 3
THE IWIZ PROJECT

The XML toolkit is an integral part of the IWiz system. IWiz has the following

main modules as shown in the Figure 3.1: A Query Browsing Interface that serves as the

user interface. The Warehouse Manager as shown in the top tier of the architecture

maintains the data warehouse. A Mediator rewrites the user query to source-specific

terms and resolves conflicts in the returned results. Each source is connected to IWiz via

a wrapper (DRE) for querying the data and restructuring the results. The interactions

between the various modules are as shown in Figure 3.1. A brief description of the

modules in the IWiz prototype with their functionality and inputs is provided below.

Warehouse
Manager

IWiz
 Repository

Source 1 Source 2 Source

n

...

Browsing and
Querying

DRE

Mediator

DRE DRE

Sources

...

Front-end

User Query
Query Result

SQL(internal)
User Query

HTTP

Figure 3.1: IWiz Architecture

19

The Query Browsing interface (QBI) presents an integrated view of the IWiz

global schema. The QBI is used to generate a user query, which is then sent to the

warehouse manager component.

The Warehouse Manager (WHM) component, as shown in Figure 3.2, maintains

the IWiz Repository which is an Oracle 8i database. The WHM has two major phases of

operation: a built-time phase during which the schema creator module of the XML toolkit

creates the script file to create the relational schema for the data warehouse using the

DTD description of the global IWiz schema as input. The Database Connection Engine

(DBCE) executes the script file to complete the schema generation process. This is

followed by the run-time or query phase during which WHM accepts and processes

XML-QL queries against the underlying relational database; the same query may also be

sent to the mediator in case the contents of the data warehouse are not up-to-date.

GUI

MDR DWH

User Query
(UQ)

JDBC

WHM

DBCE Mediator

Decision?

DLE

UQ translated to SQL

UQ UQ
Result

XML Doc

SQL

Query Result
XML Doc

Query Result
XML Doc

RXE

Maintenance
Query
(MQ)

MQ
Result

XML Doc

Run-time Phase

SCE

DTD
Joinable
Keys file

Built-time Phase

Figure 3.2: WHM Architecture

20

The WHM server also provides the Ontology contents to the Mediator and the

Wrapper. When the XML-QL query is provided to the WHM, the query is checked if it

could be satisfied from the contents of the data warehouse. The XML-QL is then

translated to SQL and executed against the warehouse by the DBCE. The XML-QL to

SQL conversion is part of another ongoing research project in the Database Research and

Development Center at the University of Florida. The Relational-to-XML-Engine

component of the toolkit could be used to translate the relational result set to an XML

document. In case the user query cannot be satisfied from the contents of the data

warehouse, the XML-QL query and a maintenance query are sent to the Mediator

component. After the Data Merge Engine returns the resulting document generated by

merging the information from the various sources, the WHM presents it to the QBI that

displays it to the user. The XML Loader (DLE) is invoked if the merged document is an

effect of a maintenance query. The DLE parses the document and generates the insert

commands. The DBCE is invoked and the data is loaded into the warehouse. All the

interactions with the data warehouse are interfaced through the DBCE.

The Mediator component has two modules: the Query Restructuring Engine

(QRE) and the Data Merge Engine (DME). The QRE during the built-time phase gets the

knowledge about the data existing in the various data sources. The QRE, using this

information, then splits the input query into source specific queries in terms of the global

schema terms appending the source names to the query id. It also generates the query

plan that is used to merge the data from the sources by the DME. The DME merges the

results from the various sources removing duplicates and transforms them to a single

XML document. The DME returns the merged document to the WHM.

21

Each source in the system has a Data Restructuring Engine (DRE) wrapped

around it. The DRE is responsible for translating the input query in terms of the global

schema terms to the source specific terms and converting the source data returned from

the sources to the global schema terms. The DRE returns the results from each source to

the DME.

22

CHAPTER 4
XML TOOLKIT: ARCHITECTURE AND IMPLEMENTATION

This chapter discusses about the relational approach, the advantages and dis-

advantages of this approach, the architecture and implementation details of the XML

toolkit. It describes the algorithm implemented in the various modules of the toolkit. The

toolkit is implemented using Java (SDK 1.3) from Sun Microsystems. Some of the other

software tools and packages used in the implementation are the XML Parser from Oracle

version 2.0.2.9, Oracle 8i and the Oracle JDBC driver version 2.

4.1. Managing XML Data in IWiz

The popularity of XML as a new standard for data representation and exchange

on the Web necessitates the development of an XML management system. XML

management systems can be broadly classified as XML document management systems

and XML data management systems [33]. In the former case, the structure is very

irregular and is usually difficult for a machine to interpret the data. Some of the examples

Oracle 8i

User Interface

Store a XML doc XML-QL
Query

SQL query

Loader
(DLE)

Relational Results

XML doc
Generator

(RXE)

XML results

Schema Creator

Global schema DTD

DBCE (Database Connection Engine)

Figure 4.1: Proposed Architecture of XML data management in IWiz.

23

could be advertisements and HTML documents. Systems to handle XML documents are

also known as content management systems [34]. The focus of this approach is however

on XML data management. In this data-centric approach XML is used as the

representation format. Many of the documents created in real-world applications such as

flight schedules and sales order are examples of this classification. The XML data

management system should be able to provide a persistent store for XML data using a

relational, object database or an object relational database. The system should be able to

provide an interface to transfer data between the database and XML. All the data can be

stored in a single centralized repository, thus having controlled redundancy. The data can

be queried and a merged view can be created.

The conceptual architecture for our proposed XML data management system is

shown in Figure 4.1. If a global schema exists it can be used to create the schema for the

persistent store. An additional feature of such a system will be to automate schema

creation for the persistent storage. There is usually a user interface that is used to either

load an XML document into the data store or query the stored data. The loader

component stores the data contained in the incoming document in the underlying data

store. The data maintenance is generally built as part of the loader. The XML document

generator module accepts the user query, transforms it to the language of the underlying

data store, executes it and then formats the relational results as an XML document and

presents it to the user.

4.2. Rational for Using an RDBMS as Our Storage Management

In this toolkit, the persistent storage is achieved using the relational Oracle 8i

database. While there are systems that use other techniques such as using semi-structured

24

data stores, for example in Lore, the question of whether which of them is the best

approach remains. The downside of using these other techniques is that they turn their

back on several years of work invested in relational database technology. When semi-

structured data becomes more widely popular and is machine processed, the management

systems will require efficient query processing and storage features. Relational systems

currently are the best in providing these features. Specifically, they have the following

advantages:

• Centralized merged data: The data warehouse is a single repository containing the
data due to several loaded documents and is not specific to any input XML document.

• Scalability: With the increase in contents RDBMS provide one of the best scaling.

• Standard query languages: Using worldwide accepted query languages with efficient
querying capabilities.

• Concurrency Control, Data recovery and management of secondary storage features.

On the other hand, using a relational database management system has the following

drawbacks:

• In order to satisfy a query, the join sequences could be an n-way join leading to an
inefficient execution.

• An RDBMD requires a rigid schema definition.

4.3. Functional Specifications

Next we proceed to derive the set of functional specifications that the toolkit must

satisfy. Firstly, the toolkit must assist in the relational schema creation. Ideally this

process must be automated. The schema creation should be derived from a global schema

that binds the incoming XML documents. For example, a DTD can be used to describe

the global schema definition. The relational schema created must include the cardinality

25

constraints specified in the DTD. There should be an interface to accept an XML

document as input and load the data contained into the various relational tables.

Similarly, the toolkit should have the capability to execute queries and wrap the results as

XML documents. Nesting of tags and creating XML documents conforming to the global

schema would provide additional features.

QRE

Schema Creator Engine
(SCE)

MDR DWH

JDBC

DDL commands for Schema creation

WHM SERVER

DTD file Key Info file

WRP

Notify Ontology Object Ready

Database Connection Engine
(DBCE)

XML toolkit

Figure 4.2: Built-time architecture of the XML toolkit

4.4. Architecture Overview

From the set of functional specifications above we can derive the architecture of

the XML toolkit which is divided into a built-time and run-time phase. The built-time

phase creates the preliminary steps- setting up the schema and the server so that in the

WHM can accept and process user queries during the run-time phase.

26

MEDRelational-to-XML
(RXE)

MDR DWH

JDBC

WHM SERVER

User Query

Database connection
engine

(DBCE)

XML toolkit

Decision EngineXML-QL to SQL

XML Loader
(DLE)

SQL XML doc

XML doc

DML statements

Figure 4.3: Run-time architecture of the XML toolkit

During the built-time phase of the WHM, as shown in Figure 4.2, the Schema

creator engine (SCE) and the database connection engine (DBCE) of the toolkit are used.

The input DTD file representing the IWiz global schema is parsed and the script file to

generate the relational tables is created. The script file is then passed on to the DBCE,

which executes it, and the relational schema is setup. The Joinable Keys file, which is the

other input to this module, is stored in a separate system table. The WHM is implemented

as a server that can accept XML-QL user queries, translate them to SQL, run them

against the warehouse and return the results as an XML document to the user. This also

serves as an Ontology server that provides the Ontology as a DOM object when invoked

by the Mediator and the Wrapper. After parsing the DTD, the Ontology server notifies

the Wrapper and the Mediator. After being notified, the wrapper and mediator request for

the ontology DOM object to begin their built-time phase.

27

In the run-time phase, as shown in Figure 4.3, the Relational-to-XML-engine

(RXE), XML data loader engine (DLE) and the DBCE components of the toolkit are

used. The decision engine module of the WHM analyzes the input XML-QL user query.

If the input query could be satisfied in the warehouse, the user query is translated into

SQL by the XML-QL to SQL module of the WHM. The SQL query generated is then

executed in the data warehouse using the DBCE of the toolkit. The relational results are

then converted to an XML document object by the RXE and returned to the QBI

interface. If the query cannot be satisfied in the data warehouse, due to the absence or

staleness of data then a maintenance query is generated and both the user query and the

maintenance query are sent to the mediator. The maintenance query generates results that

are used to load the data warehouse so that in future, similar queries could be satisfied

directly from the warehouse. The DLE component of the toolkit is used to load the data.

The XML document generated due to the user query is returned to the QBI interface,

which presents it to the user.

<!ELEMENT Bib (Book,Article)>

<!ELEMENT Book (Author+,Title,Year,Editor*,ISBN)>

<!ELEMENT Article (Author*,Title,Year,Editor?)>

<!ELEMENT Author (firstname?,lastname,address)>

<!ELEMENT Editor (lastname)>

<!ELEMENT Title (#PCDATA) >

<!ELEMENT ISBN (#PCDATA) >

<!ELEMENT Year (#PCDATA)>

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT address (#PCDATA) >

Figure 4.4: Input DTD to the Schema creator engine (SCE)

28

4.5. Schema Creator Engine (SCE)

The input to this module is the DTD file and Joinable Keys file. The algorithm for

schema creation views the DTD as a graph and nodes are distinguished based on the path

from the parent node and not based on the tag names. For example, the paths of the

“Year” element in Figure 4.4; “Bib/Article/Year” and “Bib/Book/Year” are different. The

DTD file is parsed by the Oracle XML parser and an n-ary tree is created. The module

begins traversing this tree beginning at the root node identifying the various “CONCEPT”

nodes. An element in the DTD is a “CONCEPT” if it satisfies one or more of the

following conditions:

• It has one or more attributes or

• It has one or more children or

• It is involved in a one-many relationship with some other element in the DTD, which
can be inferred by the presence of the cardinality operators, “*” or “+”, following this
node when it appears as a child node.

Every “CONCEPT” in the DTD is mapped to a relational table and all child elements

that are not “CONCEPT”(leaf), are mapped as relational attributes in the table. A hash

table containing type-information about each element and attribute is created while

processing the DTD. The type can be a “CONCEPT”, “Inlined-Attribute” or a “Inlined-

Child”. This information is also persistently stored in a system table, which is later

retrieved and used by the loader module. The script to create a relational table with the

same name as the “CONCEPT” node is generated and appended to a global script file.

Every table created has a primary key. The name of every table created is stored in a hash

table. A table is created only if it is absent in this hash table. This process is recursively

performed on all the children of this element passing the Parent-element name. All the

29

parent-child relationships between the elements in the DTD are mapped as a general m:n

relation and a separate table is created to store this information. The relation tables

contain two fields with reference to the corresponding field in the parent and child table.

The format of naming the table is “<Parent-element> _ <Child_element>“. The foreign

key references are appended to the global script file. This script file is finally executed,

using the DBCE, creating the various tables and the foreign key constraints. The other

input to this module is the Joinable Keys file. This is used by the QRE module of the

mediator to detect join sequences for the various elements in the global Ontology DTD.

Bib.Book \t 1 \t ISBN

Bib.Book \t 2 \t Title

Bib.Article \t 1 \t Title

Figure 4.5: Joinable Keys file format

Bib

Bib_PK_Id

Book

Book_PK_Id ,Title,Year,ISBN

Article

Article_PK_Id,Title,Year

Author

Author_PK_Id , firstname, lastname,address

Editor

Editor_PK_Id, lastname

Bib_Article

Article_FK_Id, Bib_FK_Id

Bib_Book

Book_FK_Id, Bib_FK_Id

Book_Author

Author_FK_Id, Book_FK_Id

Book_Editor

Editor_FK_Id,Book_FK_Id

Article_Editor

Editor_FK_Id, Article_FK_Id

Article_Author

Author_FK_Id, Article_FK_Id

Figure 4.6: Tables created by the SCE for the input DTD in Figure 4.4.

The format of this file is as shown in Figure 4.5. It contains the path and joinable key for

the “CONCEPT” elements in the DTD.

30

Tag_Info

Tag_Name,Parent_Tag,Type

Foreign_Key_Info

Tag_Name, Source_Field_Name,
Referenced_Table,

Referenced_Field_Name

Timestamp_Info

Tag_Name, Modified_Timestamp

Joinable_Keys_Info

Tag_Name, Rank, Join_Attribute

Primay_Keys_Info

Table_Name, Primarykey_Value

Ontology_Contents

DTD_contents

Figure 4.7: System tables created by the SCE.

Figure 4.6 gives the set of tables created for the DTD in Figure 4.4. The system tables, as

shown in Figure 4.7, are also created by the SCE. The Ontology file contents are stored in

the “Ontology_Contents” system table. It is later retrieved, parsed into a DTD object and

provided to the QRE and the WRP modules. The Joinable Keys file is stored in the

“Joinable_Keys_Info” system table. The “Primary_Keys_Info” and the “Tag_Info” are

used by the loader module.

1. The input DTD file is parsed and a DTD DOM object is created.

2. Invoke method makeRelations (Root,”-”) passing the root of the DTD and ‘-’ to denote that it has no

 parent..

3. A node is a CONCEPT if one of the following conditions holds:

 3.1. It has 1 or more attributes.

 3.2. It has 1 or more children nodes.

 3.3. It has a ‘*’ or a ‘+’ when it appears as a child of some other node.

4. Method makeRelations(Node current_node,String Parent)

 4.1 Check if the current node in the tree is a CONCEPT.

 4.1.1. Check if table is already created for the current node in the hash table.

 4.1.1.1. If false

 4.1.1.1.1 Generate the script file to create a table having with the current_node name and make

 the attributes, and children of the current node which are not Concepts, fields in the table.

 4.1.1.1.2 Generate the script file to create the ‘Par-Child’ relational table using the Parent name.

 4.1.1.1.3. Store the table names for whom the script file are generated in a hash table

 4.1.1.1.4. Store the foreign key constraints in a separate vector.

 4.2. Recursively invoke the makeRelations method passing the children of the current node.

5. Append the foreign key constraints to the script file

6. Execute the script file to generate the ‘CONCEPT’ tables, the ‘Par-Child’ tables and the foreign key
constraints.

Figure 4.8: Pseudo code of the SCE

31

The decision engine module of the WHM uses the “Foreign_Keys_Info” and the

“TimeStamp_Info” system tables.

<?xml version = "1.0"?>
<Bib>
 <Book>
 <Author>

<firstname> Jack </firstname>
<lastname> James</lastname>
<address> #123, 8th Avenue</address>

 </Author>
 <Author>

<lastname> Thomson</lastname>
<address> #149, 18th Avenue</address>

 </Author>
 <Title> XML Manangement Systems </Title>
 <Year> 2001 </Year>
 <ISBN> 3528463422 </ISBN>
 </Book>
 <Article>
 <Title> XML Toolkits </Title>
 <Year> 2001 </Year>
 </Article>
</Bib>

Figure 4.9: A sample XML document conforming to the input DTD in Figure 4.4.

Bib

0

Book

0, XMLManagement Systems,
2001, 3528463422.

Article

0, XML Toolkits, 2001

Author

0, Jack, James, #123, 8th Avenue

1, NULL, Thomson, #149, 18th Avenue

Editor

Bib_Article

0,0

Bib_Book

0,0

Book_Author

0,0

1,0

Book_Editor Article_Editor Article_Author

Figure 4.10: Contents of the tables after loading the sample XML document in Figure
4.9.

The pseudo-code of the algorithm is shown in Figure 4.8. The SCE also generates the

script file for creating and dropping the database in the current directory. In case of any

32

network error while accessing the database, the script file can be executed from the

Oracle SQL*Plus window directly to create the relational tables.

4.6. XML Data Loader Engine(DLE)

The loading operation is a translation from one data model (XML) to the other

(RDBMS). The data in the XML document is stored as relational tuples. The XML data

loader module, also known as the loader, implements the load-append strategy. Figure 4.9

gives an example of an XML document conforming to the DTD shown in Figure 4.4.

This module takes in an XML document DOM object as input and generates the script

file to load the data into the relational tables. The loader uses the “Tag_Info” and the

“Primary_Keys_Info” system tables. The data from both these tables is loaded into two

hashtables, Tag_Info and PK_Vals, so that the database is accessed only once initially.

The loader starts parsing the DOM object from the root until all the nodes in this n-ary

tree are traversed. A node that is found to be a “CONCEPT” triggers loading of a tuple

for the relational table with the same name. The schema information is obtained from the

database. The tuple is initialized with null values. The attributes and children of this node

are examined and the values are loaded into the tuple after matching the relational field

name with the element name. The primary key value for this tuple is assigned from the

PK_vals table. The children nodes are recursively processed passing the parent-name so

that the foreign key references in the Parent-Child table are setup. The foreign key values

for this table is obtained from the PK_vals table as well. The primary key value for the

current table is updated in the Primary_Keys_Info hashtable only after processing all it’s

children. This script file and the PK_Vals hashtable is passed on to the database

connection engine. The DBCE executes the script file to load the data contained in the

33

XML document DOM object into the database. The hashtable is used to update the

contents of the Primary_Keys_Info system table so that if the system were to crash, then

the values of the primary keys for the loading of the next document would begin with the

correct values.

1. Input is a XML document DOM object.

2. Create the Tag_Info and PK_Vals hashtable from the system tables. Make a new hashtable

 Table_Names.

3. Invoke the method makeTuple (Root,’-’)

4. Method makeTuple(Node current_node,String Parent)

 4.1 Check if the current node in the tree is a CONCEPT using the Tag_Info hash table.

 4.1.1. If true

 4.1.1.1 Match the leaf children names with field names in the relational table and generate

 the script to create a tuple using the PK_Vals hashtable.

 4.1.1.2 Generate the script file to create a tuple for the ‘Parent_Child’ table.

 4.2. Recursively invoke the makeTuple method for the children of the current node.

 4.3 Update the primary key value for this table in the PK_Vals hashtable.

5. Execute the script file to insert the data in the XML document into the relational tables and update the

 contents of the Primary_Keys_Info system table.

Figure 4.11: Pseudo code of the loader

The tuples generated by the loader and stored in the schema for the document in Figure

4.5 are shown in Figure 4.10. The pseudo code for the loader module is in Figure 4.11.

4.7. Relational-to-XML-Engine (RXE)

The input to this module is a SQL query. The query is executed in the data

warehouse and the results are wrapped into an XML document DOM object grouping the

results if the SQL query contains the “Group By” clause. The module obtains the

metadata information from the database. The module can create the XML document

conforming to the ontology specifications if the paths of each of the resulting tags are

provided. Initially the RXE looks for the “Group By” clause and stores the grouping

34

attributes in a vector and a hashtable Grp_hash. The grouping attributes are located in the

resultset and the values in the tuples are compared with the value stored in the Grp_hash

hashtable. “GRP By” tags are created for each of them. The new values of the grouping

attributes are updated in Grp_hash. Tags are created from the resultset meta data and are

appended to the XML document DOM object. If the SQL query has no “Group By”

clause, the resulting document created has the metadata name as tag name and the tuple

value as the data value. The important feature of this module is the ability to create a

document grouping the results. Every tuple mapped to the XML document contains a

“ROW ID” attribute, which takes the tuple number as value.

SELECT Author.firstname, Author.lastname, Author.address, Book.Title, Book.Year,
Book.ISBN, Article.Title, Article.Year

FROM Bib,Article,Book, Bib_Article, Bib_Book,Author,Book_Author

WHERE Bib.Bib_PK_ID=Bib_Article.Bib_FK_ID and Bib.Bib_PK_ID=Bib_Book.Bib_FK_ID
and Author.Author_PK_ID and Book_Author.Author_FK_ID;

Figure 4.12: SQL query to retrieve books and articles from the data warehouse.

<Result>
 <ROW ID="1">
 <FIRSTNAME>Jack</FIRSTNAME>
 <LASTNAME>James</LASTNAME>
 <ADDRESS>#123, 8th Avenue</ADDRESS>
 <TITLE>XML Manangement Systems</TITLE>
 <YEAR>2001</YEAR>
 <ISBN>3528463422</ISBN>
 <TITLE>XML Toolkits</TITLE>
 <YEAR>2001</YEAR>
 </ROW>
 <ROW ID="2">
 <FIRSTNAME>NULL</FIRSTNAME>
 <LASTNAME>Thomson</LASTNAME>
 <ADDRESS>#149, 18th Avenue</ADDRESS>
 <TITLE>XML Manangement Systems</TITLE>
 <YEAR>2001</YEAR>
 <ISBN>3528463422</ISBN>
 <TITLE>XML Toolkits</TITLE>
 <YEAR>2001</YEAR>
 </ROW>
</Result>

Figure 4.13: XML document generated by the Relational-to-XML-engine (RXE).

35

The SQL query would have to be generated based on the schema information that can be

known from the system tables. The table name is appended to the field name while

retrieving so that it resolves any conflicts that could occur when the same column exists

in both the tables. A join between two concepts in the global schema can be achieved by

involving the parent-child relational tables. For example for the SQL query in Figure

4.12, a join has to be performed using the Parent table, Bib, Book, Article and the

parent-relational tables Bib_Article and Bib_Book. The query could include a

“Group By” clause, but as per the rules of RDBMS require the inclusion of the non-

aggregateable attributes present in the select clause, in the “Group By” clause as well.

The document created could be nested if the path information about each tag created is

presented to the RXE. The result of a sample SQL, given in Figure 4.12, to extract the

loaded document in Figure 4.9 is shown in Figure 4.13.

1. Input is a SQL query.

2. Check if the query has a ‘GROUP BY’ clause.

 2.1 If true

 2.1.1. Check for all the alias names used for the grouping attributes and store the attribute names in a

 hashtable , Grp_hash and a vector Grp_vec.

3. Execute the SQL query using the Database Connection Engine (DBCE)

 3.1. Obtain the resultset containing the results of the query.

 3.2. Obtain the metadata details of the resultset.

4. Method makeXML()

 4.1. For all the tuples in the resultset do:

 4.1.1. For all the grouping attributes in Grp_Vec.

 4.1.1.1. Locate the grouping attribute in the resultset.

 4.1.1.2. Obtain the value of the attribute from the hashtable.

 4.1.1.3. Compare the value of the grouping attribute in the hashtable and tuple; if they differ:

 4.1.1.3.1. Create a ‘GRP By’ tag and assign the value to it from the tuple.

 4.1.1.3.2. Store the new value in the hashtable

 4.1.1.3.3. Reset the values of the grouping attributes lower in priority than the current attribute in

 Grp_hash.

 4.1.1.4. All the other values that are not a part of the grouping attributes are stored as separate tags

 created from the metatdata details and appended to the XML document DOM object.

5. Return the XML document DOM object created.

Figure 4.14: Pseudo code of the RXE.

36

The pseudo code for the algorithm is given in Figure 4.14.

4.8. Database Connection Engine (DBCE)

This module provides the database connectivity. It uses Oracle JDBC driver

version 2.0 to communicate with the database. It provides a set of API that can be

invoked by the other modules. There is only one instance of the DBCE operating and the

other modules have a reference to it. The DBCE uses a configuration file to obtain the

database details: hostname, database name, port number, user name and password. The

DBCE uses the standard JDBC API classes, “Statement” and “PreparedStatement” to

initiate all connections with the Oracle 8i database engine. All insert operations are

implemented as batch operations in order to increase the efficiency of the database

engine. All the relational attributes have “varchar2” as the type due to inadequate

information in the DTD. Also, the default field size is assumed beforehand.

37

CHAPTER 5
PERFORMANCE EVALUATION

In this chapter, we explain a set of tests to evaluate the performance of our toolkit.

The only XML-processing programs that are benchmarked are several XML parsers [35].

Up to this point, there is very little material discussing the benchmarking of XML data

management systems [36-37]. Among them, Xmach-1 provides the benchmarks based on

web applications, which are not directly applicable to the toolkit. Hence, we intend to

demonstrate in an informal way the validity, functionality and performance of the toolkit.

The focus of test 1 is to analyze the capability of the SCE module to produce

syntactically valid script to generate a relational schema. The goals of test 2 are to study

the correctness and efficiency of the entire toolkit. To illustrate the efficiency, we draw a

comparison between the outputs generated by the XML-QL processor, implemented by

AT&T and the RXE component. Thus, the various aspects of management systems,

schema creation, data loading and data extraction are tested. Section 5.1 describes the

hardware configuration and software packages used for testing. In Section 5.2, we

explain briefly the tests that were performed. Section 5.3 discusses in detail about the

results, bringing out the limitations. The inputs and outputs to the various components are

illustrated in the Figures 5.1-5.7.

5.1. Experimental Setup

All the experiments were carried out on a Pentium II 233 Mhz processor with 256

MB of main memory running Windows NT 4.0. The toolkit was implemented using Java

38

(SDK 1.3) from the Sun Microsystems. Some of the other software tools and packages

used are the XML Parser from Oracle version 2.0.2.9, Oracle 8i, Oracle JDBC driver

version 2 and the XML-QL query processor, implementation by AT&T. The DTDs and

XML documents were created using XML Authority v1.2 and XML instance v 1.1

respectively. All the modules of the toolkit ran in the same address space as the database,

which was installed on the same machine to avoid network delays.

<!ELEMENT TVSCHEDULE (CHANNEL+)>
<!ELEMENT CHANNEL (BANNER, DAY+)>
<!ELEMENT BANNER (#PCDATA)>
<!ELEMENT DAY ((DATE1, HOLIDAY) | (DATE1, PROGRAMSLOT+))+>
<!ELEMENT HOLIDAY (#PCDATA)>
<!ELEMENT DATE1 (#PCDATA)>
<!ELEMENT PROGRAMSLOT (TIME, PROG_TITLE, DESCRIPTION?)>
<!ELEMENT TIME (HRS,MINS)>
<!ELEMENT HRS (#PCDATA)>
<!ELEMENT MINS (#PCDATA)>
<!ELEMENT PROG_TITLE (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ATTLIST TVSCHEDULE NAME CDATA #IMPLIED >
<!ATTLIST CHANNEL CHAN CDATA #IMPLIED >
<!ATTLIST PROGRAMSLOT VTR CDATA #IMPLIED >

Figure 5.1: DTD describing the structure of a TV programs guide

TVSCHEDULE (TVSCHEDULE_PK_ID, NAME)

CHANNEL (CHANNEL_PK_ID, CHAN,BANNER)

DAY (DAY_PK_ID)

HOLIDAY(HOLIDAY_PK_ID, HOLIDAY)

DATE1(DATE1_PK_ID, DATE1)

PROGRAMSLOT(PROGRAMSLOT_PK_ID, VTR,PROG_TITLE, DESCRIPTION)

TIME(TIME_PK_ID, HRS, MINS)

TVSCHEDULE_CHANNEL(CHANNEL_FK_ID, TVSCHEDULE_FK_ID)

CHANNEL_DAY(DAY_FK_ID, CHANNEL_FK_ID)

DAY_DATE1(DATE1_FK_ID ,DAY_FK_ID)

DAY_HOLIDAY(HOLIDAY_FK_ID,DAY_FK_ID)

DAY_PROGRAMSLOT(PROGRAMSLOT_FK_ID,DAY_FK_ID)

PROGRAMSLOT_TIME(TIME_FK_ID, PROGRAMSLOT_FK_ID)

Figure 5.2: Tables created by the SCE for the TV programs guide DTD

39

5.2. Test Cases

Test 1 studies the ability of the SCE module to produce a valid relational schema.

The input DTD is supplied to the SCE that creates the relational schema. The input DTD

describes the structure of a TV programs guide. Figure 5.1 shows the input DTD. Figure

5.2 displays the relational schema that corresponds to the DTD.

<?xml version = "1.0"?>
<TVSCHEDULE NAME=“SPEC”>
 <CHANNEL CHAN=“7”>
 <BANNER> ABC </BANNER>
 <DAY>
 <DATE1> 04-24-2001 </DATE1>
 <PROGRAMSLOT VTR=“FLEXIBLE”>
 <TIME>
 <HRS> 07 </HRS>
 <MINS> 00 </MINS>
 </TIME>
 <PROG_TITLE> SPIN CITY </PROG_TITLE>

 <DESCRIPTION> COMEDY SERIAL </DESCRIPTION>
 </PROGRAMSLOT>

 <PROGRAMSLOT VTR=“FIXED”>
 <TIME>
 <HRS> 07 </HRS>
 <MINS> 30 </MINS>
 </TIME>
 <PROG_TITLE> DAILY NEWS </PROG_TITLE>
 </PROGRAMSLOT>
 </DAY>
 ……..
 ……..
 ……..
 ……..
 ……..
 </CHANNEL>
 ………….
 ………….
 ………….
 </TVSCHEDULE>

Figure 5.3: An example XML document conforming to the TV programs guide DTD.

Test 2 focuses on proving the correctness of the entire toolkit. Initially a relational

schema is created using the SCE component. Then, a sample XML document is queried

using the XML-QL processor and an output XML document is created. The same XML

document is loaded into the database. The input XML-QL query is translated to SQL.

The correctness of the toolkit is proved when an equivalent XML document is created by

RXE. Even though efficiency is not the primary focus, this aspect of the toolkit can be

40

illustrated by comparing the output of the XML-QL processor, implemented by AT&T

and the output of the RXE. To illustrate, the XML-QL processor is used to query an

XML document. The XML document being queried is displayed in Figure 5.3. The

XML-QL processor expects the input query to be stored in a file and then generated an

output file containing the results. The XML-QL processor is invoked from the command-

line as follows:

xmlql -q <query_filename> -o <output_filename>.

function query()
{
 WHERE
 <Ontology>
 <TVSCHEDULE>
 <CHANNEL>
 <BANNER> $B </>
 <DAY>
 <DATE1> $D </>
 <PROGRAMSLOT>
 <TIME> $T </>
 <PROG_TITLE> <PCDATA> $P_TITLE </> </>
 </>
 </>
 </>
 </>
 </> in "TV_data.xml",
 $P_TITLE="SPIN CITY"

 CONSTRUCT
 <Ontology>
 <MY_SCHEDULE>
 <BANNER> $B </>
 <DATE1> $D </>
 <TIME_SLOT> $T </>
 <PROGRAM_NAME> $P_TITLE </>
 </>
 </>
}

Figure 5.4: An XML-QL query to retrieve information about a particular TV program.

The XML-QL query file is shown in Figure 5.4.

41

<?xml version="1.0" encoding="UTF-8"?>
 <MY_SCHEDULE>
 <PROGRAM_NAME>SPIN CITY</PROGRAM_NAME>
 <BANNER> ABC </BANNER>
 <DATE1> 04-24-2001 </DATE1>
 <TIME_SLOT>
 <HRS> 07 </HRS>
 <MINS> 00 </MINS>
 </TIME_SLOT>
 </MY_SCHEDULE>

Figure 5.5: XML-QL processor output in the form of an XML document.

The output of the XML-QL processor is an XML document as shown in Figure 5.5. The

XML-QL query generated must have the same structure as the XML document being

queried. The processor uses the “CONSTRUCT” clause in the XML-QL query to format

the results in the XML document.

SELECT
 CHANNEL.BANNER, DATE1.DATE1, TIME.HRS, TIME.MINS,
PROGRAMSLOT.PROG_TITLE

FROM
CHANNEL, DATE1, TIME, PROGRAMSLOT, DAY, CHANNEL_DAY,
DAY_DATE1, DAY_PROGRAMSLOT, PROGRAMSLOT_TIME

WHERE
PROGRAMSLOT.PROG_TITLE LIKE '%SPIN CITY%' AND
CHANNEL.CHANNEL_PK_ID=CHANNEL_DAY.CHANNEL_FK_ID AND
CHANNEL_DAY.DAY_FK_ID = DAY.DAY_PK_ID AND
DAY.DAY_PK_ID = DAY_DATE1.DAY_FK_ID AND
DAY_DATE1.DATE1_FK_ID = DATE1.DATE1_PK_ID AND
DAY.DAY_PK_ID = DAY_PROGRAMSLOT.DAY_FK_ID AND
DAY_PROGRAMSLOT.PROGRAMSLOT_FK_ID =
PROGRAMSLOT.PROGRAMSLOT_PK_ID AND
PROGRAMSLOT.PROGRAMSLOT_PK_ID =
PROGRAMSLOT_TIME.PROGRAMSLOT_FK_ID AND
PROGRAMSLOT_TIME.TIME_FK_ID = TIME.TIME_PK_ID

Figure 5.6: Equivalent SQL query to retrieve information about a particular TV program.

Then the XML document in Figure 5.3 is stored into the relational database using the

loader component. The XML-QL query in Figure 5.5 is translated to SQL using a

conversion tool that is part of another ongoing research project in the Database Research

and Development Center. Figure 5.6 displays the equivalent SQL query. The SQL query

42

is used to query the underlying relational data warehouse by the Relational-to-Xml-

Engine (RXE) component of the toolkit. The RXE, then converts the relational results

into an equivalent XML document.

<Result>
 <ROW ID="1">
 <BANNER>ABC</BANNER>
 <DATE1>04-24-2001</DATE1>
 <HRS>07</HRS>
 <MINS>00</MINS>
 <PROG_TITLE>SPIN CITY</PROG_TITLE>
 </ROW>
</Result>

Figure 5.7: Output of the RXE in the form of an XML document.

The RXE, then converts the relational results into an equivalent XML document as

shown in Figure 5.7.

5.3. Analysis of the Results

In test 1, the relational schema created using the toolkit captures the cardinality

constraints conveyed in the DTD as referential constraints. The current version does not

represent the domain constraints. To exemplify, an attribute defined as #REQUIRED is

mapped to a relational attribute but without being constrained as “NOT NULL”. This

transformation is valid due to the fact that the loaded XML documents conform to the

DTD describing the IWiz schema. Hence, the domain constraints are checked in the

XML document, and can be ignored in the relational schema. One of the other differences

is in the treatment of composite attributes. In relational algebra, the members of the

composite attributes are nested into the relation. For example, a composite attribute such

as “Time” having “Hrs” and “Mins” as members will be stored as two relational

attributes, “Hrs” and “Mins”. But the SCE creates a separate table for “Time” leading to

43

an inefficient translation. Elements in a DTD are used to express both nested attributes

and entities; due to this it is not possible to distinguish between a nested attribute and an

entity from a DTD declaration. Also, in the relational schema, tables are created with a

single attribute; table “DAY” in Figure 5.2, for example. This translation helps in

recreating the DTD from the schema and constraints description. Thus it provides a

“round-tripping” between the DTD and relational schema. The SCE treats all the

referential constraints as many to many even though they are expressed as one to one.

According to the norms of normalization, such a mapping is inefficient. But the

principles of normalization hold for rigid firmly established relations. But in the case of

XML, this sort of mapping can be acceptable and can be handy when there is a change to

the global schema. Thus, a change to a cardinality constraint in the DTD can be easily

incorporated into the relational schema. More importantly, a DTD only describes the

cardinality relationship between elements in a coarse manner. The SCE is also

constrained by the restrictions in Oracle. Oracle does not allow the creation of a table

with a standard data-type as the name. For example, if “Number” were a “CONCEPT”

element, then the name of this element has to be altered in the DTD because “Number” is

a standard data type in Oracle. The maximum size of relational attribute name in the

schema is 30 characters. The algorithmic complexity for the schema creation process can

be broken down as follows: It takes constant time to find out if an element is a

CONCEPT. Creating the attributes for the relational table will require to traversing all the

children of this node, which can take a worst case time of O(n). Creation of the

parent_child tables and referential constraints take constant time. This process is

44

continued recursively on the children. Hence the overall complexity is O(n2), where n is

the number of element and attribute definitions in the DTD.

The minimal representational features in the DTD and the rules governing the

names and sizes of attribute names in Oracle 8i limit the SCE. The SCE is able to map

the metadata information represented in the DTD to the relational model validating the

schema creation.

In test 2, the correctness of the toolkit is experimented and proved. The toolkit is

able to retrieve a loaded document and construct an equivalent document. Structure can

be imparted to this document by having additional information regarding the output tags.

As shown in Figure 5.5, it can be seen that the output XML document produced by the

XML-QL processor has an already embedded structure. But the performance of the

processor degrades with the size of the data set. In particular, when the size of the input

XML document exceeds 4 Megabytes of data, the processor crashes. On the other hand

the XML document generated by the RXE lacks structure, when additional information is

not provided. It is merely a representation of the relational data set. However structure

can be imparted to the output document if, path expressions for all the output tags in the

relational resultset are provided to the RXE. Further enhancement to the performance can

be achieved if the XML document is generated inside the relational engine. The RXE is

robust and can handle large size of input data. Contrasting the operations of the XML-QL

processor and the RXE, a clear difference in execution speeds can be noticed when the

data size is increased. Although the RXE has an initial database connection time

overhead, it executes at a faster rate when the data size is increased. The loading time for

the input data set requires further improvements. The algorithmic complexity of this

45

process is computed as shown. When the input SQL query is simple ie, it does not

contain a “GROUP By” clause, the RXE looks up the metadata data structure provided

by the JDBC API, which would take constant time, to create the “tag” and includes the

data contained in the resultset as the tag value. Thus this operation requires a O(n) time.

If the input SQL query includes a “GROUP By” clause, the RXE has to group the

resulting data by the grouping attributes mentioned in the clause. Thus this operation

could take O(n*g) where n is the number of resulting tuples and g is the number of

grouping attributes. All in all, RXE clearly outperforms the XML-QL processor when the

size of the data set gets large (> 4MB).

46

CHAPTER 6
CONCLUSIONS

6.1. Summary

XML management systems are an important area of research and development in

the industry today. The area is relatively new and is undergoing constant changes. The

W3C recommendation for an XML query language and XML schema would impact the

development of such systems. The objective of this thesis is to provide a solution to one

such system that manages XML data in a relational database system.

In this thesis, we used the toolkit as a part of the Warehouse Manager component

of the IWiz prototype. The toolkit was used to automatically create the schema for the

data warehouse and to store the data contained in XML documents. The internal data

model and query language used in the IWiz system is XML and XML-QL; this is

abstracted from the user. The toolkit uses relational system as the data model, and

understandably SQL as the query language. The toolkit requires all incoming XML

documents to adhere to a global schema, a DTD. The DTD is also used to create the

relational schema. The Document Object Model (DOM) is used to parse both the DTD

and the XML documents to generate the relational scripts, to generate the schema and to

create the tuples for the relational tables.

6.2. Contributions

The contributions of this work are as follows. We designed and implemented an

algorithm to automatically translate a DTD to a relational schema, a feature absent in a

47

few commercial products. The algorithm was able to identify the foreign key constraints

automatically from the structure of the DTD. The XML loader was designed and the

load-append strategy implemented. Thus the data in an XML document was

automatically stored in the relational database. A database connection engine, providing a

set of API to other modules was implemented. Finally, the XML document generator was

designed and implemented, having features to group the results in the outputted XML

document. Thus, a user currently using a traditional database could “XMLize” his system

by using this toolkit and by manually creating a global DTD and generating XML

documents from the relational tables.

The underlying research for the development of the toolkit would have a

considerable influence on the current technology. It has provided an XML wrapper

system around an existing relational system. XML is the dominant model to represent

information on the Web today. The need for an XML data management system has led to

the development of several commercial products. The toolkit has been developed in view

of the existing products in the industry today. Finally, with respect to the IWiz prototype,

the toolkit has provided the data warehouse manager functionality. Enhancements to the

toolkit, especially to the Relational-to-XML-engine and the XML loader could reduce the

overall wait-time for the user, increasing the throughput of the IWiz system.

Our solution to the problem of XML data management was derived over a period

of 12 months. The first two months were spent in getting acclimatized to XML and

related technologies. After this phase, about three months were spent in studying related

literature and discovering the challenges to this problem. We framed the architecture of

48

the toolkit in the next two months. The implementation was completed in five months.

Currently, testing of the toolkit and its integration in IWiz is underway.

We have developed the toolkit version 1.0 and hope it will be a starting point in

the development of a more robust and extensive system with additional features. In this

ever-changing Information technology era, changes are happening to XML rapidly.

Several aspects of the XML language are yet to be standardized. This factor has

prohibited us from thoroughly covering and using all aspects of the XML technology at

this point in time.

6.3. Future Work

The mechanism of data definition for XML is shifting from using DTDs to using

XML schema. The XML Schema has been recently advanced to proposed

recommendation status. The richer data definition facilities in XML schema when

compared to DTDs will help the SCE in creating “apt” field types in the relational

schema.

When the global schema (DTD) changes, the current system would require the

relational schema to be re-created. Thus a new feature to handle the incremental

maintenance of the relational schema could work towards altering the database metadata

like creating new tables and adding new columns to currently existing tables. A one to

one relation between two elements can become a m:n relation due to the introduction of a

“*”, “+” or due to a new recursive definition in the DTD. The handling of parent child

relations as m:n can help when the DTD changes.

Recursive definitions in DTD declarations are not currently handled. But this

could never cause an incorrect schema creation in the current implementation because

49

when elements recursively define one another, automatically they are concepts, and are

hence mapped to separate relational tables. A future feature could detect these recursive

definitions and try to optimize the schema creation.

A component to translate an existing relational schema to a DTD and to generate

a set of XML documents using the data stored in the relational tables adhering to the

DTD. Then, the output of this component can be fed as the inputs to the toolkit. A new

relational schema loaded with the data as before can be created. Thus a relational

database system can be shifted to the XML system automatically. For all future

transactions, this system will behave like an XML system but using the relational sources

as before.

The Loader currently implements the load-append strategy. The load-merge and

load-erase maintenance strategies could be built into the toolkit making it more powerful.

Many researchers are suggesting changes to the relational system that moves the

generation of XML documents to the relational engine. Using such built-in features of the

database can increase the efficiency of the toolkit. Usage of stored procedures and

functions, reducing the utilization of JDBC can fasten the loading and document

generation process.

50

LIST OF REFERENCES

[1] R. Aranha, J. Cho, A. Crespo, H. Garcia-Molina, J. Hammer. “Extracting
Semistructured Information from the Web.” In Proceedings of the Workshop on
Management of Semistructured Data, Tucson, Arizona, 1997.

[2] S. Abiteboul, "Querying Semistructured Data," Proceedings of the International

Conference on Database Theory,” Delphi, Greece, 1997.

[3] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.

Ullman, and J. Widom, “The TSIMMIS Project: Integration of Heterogeneous
Information Sources,” in Proceedings of the Tenth Anniversary Meeting of the
Information Processing Society of Japan, Tokyo, Japan, 1994.

[4] S. Abiteboul, R. Goldman, K. Haas, Q. Luo, J. McHugh, S. Nestorov, D. Quass,

A. Rajaraman, H. Rivero, J. Ullman, J. Widom and J. Wiener, “LORE: A
Lightweight Object REpository for Semistructured Data.” Proceedings of the
ACM SIGMOD International Conference on Management of Data, Montreal,
Canada, 1996.

[5] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0," W3C

Recommendation, 1998, available at http://www.w3.org/TR/1998/REC-xml-
19980210, March 2000.

[6] R. Goldman, J. McHugh, J. Widom. “From Semistructued Data to XML:

Migrating the Lore Data Model and Query Language,” Proceedings of the 2nd
International Workshop on the Web and Databases (WebDB ’99), Philadelphia,
Pennsylvania, 1999.

[7] D. Suciu. “Semistructured Data and XML,” In Proceedings FODO Conference,

Kobe, Japan, 1998.

[8] J. Hammer, “The Information Integration Wizard (IWiz) Project,” University of

Florida Technical Report, Department of Computer and Information Science and
Engineering, 1999.

[9] G. Kappel, E. Kapsammer, W. Retschitzegger. “Towards Integrating XML and

Relational Database Systems,” International Conference on Conceptual Modeling/
the Entity Relationship Approach, Salt Lake City, USA, 2000.

51

[10] R. Barr, M. Carey, H. Pirahesh, B. Reinwald, J. Shanmugasundaram, E. Shekita.
“Efficiently Publishing Relational Data as XML Documents,” VLDB Conference,
Egypt, 2000.

[11] R. Anderson, D. Baliles, D. Birbeck, M. Kay, S. Livingstone, B. Loesgen, D.

Martin, N. Ozu, B. Pear, J. Pinnock, P.Stark, K. Williams, “Professional XML,”
Wrox Press, 2000.

[12] World Wide Web Consortium, "Overview of SGML Resources," October 2000,

available at http://www.w3.org/MarkUp/SGML, May 2000.

[13] World Wide Web Consortium, "XML Schema Part 1: Structures," Working Draft,

22 September 2000, available at http://www.w3.org/TR/xmlschema-1/, May
2000.

[14] World Wide Web Consortium, "XML Schema Part 2: Datatypes," Working Draft,

22 September 2000, available at http://www.w3.org/TR/xmlschema-2/, June
2000.

[15] World Wide Web Consortium, "Document Object Model (DOM) Level 1

Specification," 1998, available at http://www.w3.org/TR/REC-DOM-Level-1/,
April 2000.

[16] “The Document Object Model (DOM) Level 2 Core Specification,” The World

Wide Web Consortium (W3C), http://www.w3.org/TR/DOM-Level-2-Core/
2000-11-13 2000, December 2000.

[17] XML-QL User’s Guide: Basics, http://www.research.att.com/~mff/xmlql/doc/

sitegraph.grnoid5.html, March 2001.

[18] S. Cluet, S. Jacqmin and J. Siméon, “The New YATL: Design and

Specifications,” Technical Report, INRIA, 1999.

[19] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener, “The Lorel Query

Language for Semistructured Data,” International Journal on Digital Libraries,
vol. 1, pp. 68 - 88, available at ftp://db.stanford.edu/pub/papers/lorel96.ps, April
2001.

[20] J. Robie, “The design of XQL,” 1999, http://www.texcel.no/whitepapers/xql-

design.html, April 2001.

[21] “XML-QL : A Query Language for XML, Version 0.9” : available at http://

www.research.att.com/~mff/xmlql/, 2000, March 2001.

[22] J. Hammer, “Data Warehousing Seminar,” information available at http://

www.cise.ufl.edu/~jhammer/classes/wh-seminar/overview.html, April 2001.

52

[23] H. Garcia-Molina, J. Hammer, J. Widom, W. Labio, and Y. Zhuge, “The Stanford

Data Warehousing Project,” Data Engineering Bulletin, vol. 18, 1995.

[24] D. Florescu, D. Kossman. “Storing and Querying XML Data Using an RDBMS.”

In IEEE Data Engineering Bulletin, volume 22(3), 1999.

[25] D. DeWitt, G. He, J. Naughton, J. Shanmugasundaram, K. Tufte, C. Zhang, “

Relational Databases for Querying XML Documents: Limitations and
Opportunities,” Proceedings on the 25th International Conference On Very Large
Databases (VLDB), Edinburg, 1999.

 [26] W.W. Chu, D. Lee, “ Constraints-preserving Transformation from XML

Document Type Definition to Relational Schema (Extended Version),” UCLA-
CS-TR 200001, 2000, available at http://www.cs.ucla.edu/dongwon/paper, 2001.

[27] H. Garcia-Molina, H. Gupta, J. Labio, J. L. Wiener, J. Widom, Y. Zhuge, "The

WHIPS Prototype for Data Warehouse Creation and Maintenance." In
Proceedings of the ACM SIGMOD Conference, Tuscon, Arizona, 1997.

[28] H. Garcia-Molina, H. Gupta, J. Labio, J. L. Wiener, J. Widom, Y. Zhuge, "A

System Prototype for Warehouse View Maintenance," Proceedings of the ACM
Workshop on Materialized Views: Techniques and Applications, Montreal,
Canada, 1996.

[29] Oracle XML SQL Utility (XSU) for Java and XSQL Servlet, available at

http://technet.oracle.com/tech/xml, August 2000.

[30] GMD-IPSI implementation of PDOM, available at http://xml.darmstadt.gmd.de/

xql/index.html, October 2000.

[31] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu, “STRUDEL: A Web-

site Management System,” presented at SIGMOD'97, Proceedings ACM
SIGMOD International Conference on Management of Data, Tucson, Arizona,
1997.

[32] B.Beauchemin, “Investigating the differences between SQL Server 2000’s XML

integration and Microsoft’s XML technology preview,” available at
http://www.msdn.microsoft.com/library/periodic/period00/thexmlfiles.htm, April
2001.

[33] R. Bourret, “XML and Databases.” Manuscript available at http://www.

rpbourret.com/xml/XMLAndDatabases.htm, April 2001.

53

[34] H. Loeser, N. Ritter, B. Surjanto, “XML Content Management based on Object-
Relational Database Technology,” Proceedings of the 1st International Conference
On Web Information Systems Engineering (WISE), Hongkong, 2000

[35] C. Cooper, "Benchmarking XML Parsers: A performance comparison of six

stream-oriented XML parsers," 1999, available at http://www.xml.com/
pub/Benchmark/article.html, March 2001.

[36] D. Florescu, D. Kossman. “A Performance Evaluation of Alternative Mapping

Schemes for Storing XML Data in a Relational Database.” Technical Report,
INRIA, France, 1999.

[37] T.Bohme, E.Rahm, “XMach-1: A Benchmark for XML Data Management,” In

Proceedings of German database conference BTW2001, Oldenburg, Springer,
Berlin, 2001.

54

BIOGRAPHICAL SKETCH

Ramasubramanian Ramani was born in New Delhi, India, in 1977. He received

his bachelor’s degree in computer science from Sri Venkateswara College of

Engineering, University of Madras in 1995. In 1999, he obtained admission to the Master

of Science program in the Computer and Information Science and Engineering

Department, University of Florida. He will be graduating in August 2001. His research

work in the University of Florida has been focussed on information integration, XML and

database systems.

