
A Touch of Evil: High-Assurance Cryptographic
Hardware from Untrusted Components

Vasilios Mavroudis

University College London

v.mavroudis@cs.ucl.ac.uk

Andrea Cerulli

University College London

andrea.cerulli.13@ucl.ac.uk

Petr Svenda

Masaryk University

svenda@fi.muni.cz

Dan Cvrcek

EnigmaBridge

dan@enigmabridge.com

Dusan Klinec

EnigmaBridge

dusan@enigmabridge.com

George Danezis

University College London

g.danezis@ucl.ac.uk

ABSTRACT
The semiconductor industry is fully globalized and integrated cir-

cuits (ICs) are commonly defined, designed and fabricated in differ-

ent premises across the world. This reduces production costs, but

also exposes ICs to supply chain attacks, where insiders introduce

malicious circuitry into the final products. Additionally, despite

extensive post-fabrication testing, it is not uncommon for ICs with

subtle fabrication errors to make it into production systems. While

many systems may be able to tolerate a few byzantine components,

this is not the case for cryptographic hardware, storing and comput-

ing on confidential data. For this reason, many error and backdoor

detection techniques have been proposed over the years. So far

all attempts have been either quickly circumvented, or come with

unrealistically high manufacturing costs and complexity.

This paper proposes Myst, a practical high-assurance architec-

ture, that uses commercial off-the-shelf (COTS) hardware, and pro-

vides strong security guarantees, even in the presence of multi-

ple malicious or faulty components. The key idea is to combine

protective-redundancy with modern threshold cryptographic tech-

niques to build a system tolerant to hardware trojans and errors.

To evaluate our design, we build a Hardware Security Module that

provides the highest level of assurance possible with COTS compo-

nents. Specifically, we employ more than a hundred COTS secure

cryptocoprocessors, verified to FIPS140-2 Level 4 tamper-resistance

standards, and use them to realize high-confidentiality random

number generation, key derivation, public key decryption and sign-

ing. Our experiments show a reasonable computational overhead

(less than 1% for both Decryption and Signing) and an exponential

increase in backdoor-tolerance as more ICs are added.

KEYWORDS
cryptographic hardware; hardware trojans; backdoor-tolerance;

secure architecture

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3133961

1 INTRODUCTION
Many critical systems with high security needs rely on secure

cryptoprocessors to carry out sensitive security tasks (e.g., key gen-

eration and storage, legally binding digital signature, code signing)

and provide a protection layer against cyber-attacks and security

breaches. These systems are typically servers handling sensitive

data, banking infrastructure, military equipment and space sta-

tions. In most cases, secure cryptoprocessors come embedded into

Hardware Security Modules, Trusted Platform Modules and Cryp-

tographic Accelerators, which are assumed to be both secure and

reliable. This entails that errors in any of the Integrated Circuits

(ICs) would be devastating for the security of the final system. For

this reason, the design and fabrication of the underlying ICs must

abide f to high-quality specifications and standards. These ensure

that there are no intentional or unintentional errors in the circuits,

but more importantly ensure the integrity of the hardware supply

chain. [52].

Unfortunately, vendors are not always able to oversee all parts of

the supply chain [38, 60]. The constant reduction in transistor size

makes IC fabrication an expensive process, and IC designers often

outsource the fabrication task to overseas foundries to reduce their

costs [35, 46, 99]. This limits vendors to run only post-fabrication

tests to uncover potential defects. Those tests are very efficient

against common defects, but subtle errors are hard to uncover.

For instance, cryptoprocessors with defective RNG modules and

hardware cipher implementations have made it into production in

the past [31, 39].

Additionally, parts of the IC’s supply chain are left vulnera-

ble to attacks from malicious insiders [12, 63, 67, 84] and have a

higher probability of introducing unintentional errors in the final

product. In several documented real-world cases, contained errors,

backdoors or trojan horses. For instance, recently an exploitable

vulnerability was discovered on Intel processors that utilize Intel

Active Management Technology (AMT) [49], while vulnerable ICs

have been reported in military [59, 78] applications, networking

equipment [40, 50], and various other application [2, 56, 76, 77]. Fur-

thermore, the academic community has designed various types of

hardware trojans (HT), and backdoors that demonstrate the extent

of the problem and its mitigation difficulty [11, 18, 23, 54, 65, 91–93].

Due to the severity of these threats, there is a large body of

work on the mitigation of malicious circuitry. Existing works have

pursued two different directions: detection and prevention. De-

tection techniques aim to determine whether any HTs exist in a

given circuit [3, 79, 95, 97], while prevention techniques either

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1583

https://doi.org/10.1145/3133956.3133961

impede the introduction of HTs, or enhance the efficiency of HT

detection [28, 69, 88, 89, 94]. Unfortunately, both detection and pre-

vention techniques are brittle, as new threats are able to circumvent

them quickly [94]. For instance, analogmalicious hardware [98] was

able to evade known defenses, including split manufacturing, which

is considered one of the most promising and effective prevention

approaches. Furthermore, most prevention techniques come with a

high manufacturing cost for higher levels of security [19, 28, 94],

which contradicts the motives of fabrication outsourcing. To make

matters worse, vendors that use commercial off-the-shelf (COTS)

components are constrained to use only post-fabrication detec-

tion techniques, which further limits their mitigation toolchest. All

in all, backdoors being triggered by covert means and mitigation

countermeasures are in an arms race that seems favorable to the

attackers [94, 96].

In this paper, we propose Myst a new approach to the problem of

building trustworthy cryptographic hardware. Instead of attempt-

ing to detect or prevent hardware trojans and errors, we proposed

and provide evidence to support the hypothesis:

“We can build high-assurance cryptographic hardware from a set of un-
trusted components, as long as at least one of them is not compromised,
even if benign and malicious components are indistinguishable.”

Our key insight is that by combining established privacy en-

hancing technologies (PETs), with mature fault-tolerant system

architectures, we can distribute trust between multiple components

originating from non-crossing supply chains, thus reducing the

likelihood of compromises. To achieve this, we deploy distributed

cryptographic schemes on top of an N-variant system architec-

ture, and build a trusted platform that supports a wide-range of

commonly used cryptographic operations (e.g., random number

and key generation, decryption, signing). This design draws from

protective-redundancy and component diversification [27] and is

built on the assumption that multiple processing units and com-

munication controllers may be compromised by the same adver-

sary. However, unlike N-variant systems, instead of replicating the

computations on all processing units, Myst uses multi-party cryp-

tographic schemes to distribute the secrets so that the components

hold only shares of the secrets (and not the secrets themselves), at

all times. As long as one of the components remains honest, the

secret cannot be reconstructed or leaked. Moreover, we can tolerate

two or more non-colluding adversaries who have compromised

100% of the components.

Our proposed architecture is of particular interest for two distinct

categories of hardware vendors:

❖ Design houses that outsource the fabrication of their ICs.

❖ COTS vendors that rely on commercial components to build

their high-assurance hardware.

Understandably, design houses havemuch better control over the

IC fabrication and the supply chain, and this allows them to take full

advantage of our architecture. In particular, they can combine exist-

ing detection [8, 26, 68] and prevention techniques [25, 28, 69, 94]

with our proposed design, to reduce the likelihood of compromises

for individual components. On the other hand, COTS vendors have

less control as they have limited visibility in the fabrication process

and the supply chain. However, they can still mitigate risk by using

ICs from sources, known to run their own fabrication facilities.

To our knowledge, this is the first work that uses distributed

cryptographic protocols to build and evaluate a hardware module

architecture that is tolerant to multiple components carrying tro-

jans or errors. The effectiveness of this class of protocols for the

problem of hardware trojans has been also been studied in previous

theoretical works [6, 34].

To summarize, this paper makes the following contributions:

❖ Concept: We introduce backdoor-tolerance, where a system
can still preserve its security properties in the presence of

multiple compromised components.

❖ Design:We demonstrate how cryptographic schemes (§4)

can be combined with N-variant system architectures (§3),

to build high-assurance systems. Moreover, we introduce a

novel distributed signing scheme based on the Schnorr blind

signatures (§4.5).

❖ Implementation:We implement the proposed architecture

by building a custom board featuring 120 highly-tamper

resistant ICs, and realize secure variants of random number

and key generation, public key decryption and signing (§5).

❖ Optimizations:We implement a number of optimizations

to ensure the Myst architecture is competitive in terms of

performance compared to single ICs. Some optimizations

also concern embedded mathematical libraries which are of

independent interest.

❖ Evaluation: We evaluate the performance of Myst, and use

micro-benchmarks to assess the cost of all operations and

bottlenecks (§6).

Related works and their relation to Myst are discussed in Sec-

tion 7.

2 PRELIMINARIES
In this section, we introduce backdoor-tolerance, and outline our

security assumptions for adversaries residing in the IC’s supply

chain.

2.1 Definition
A Backdoor-Tolerant system is able to ensure the confidentiality

of the secrets it stores, the integrity of its computations and its

availability, against an adversary with defined capabilities. Such

a system can prevent data leakages and protect the integrity of

the generated keys and random numbers. Note that the definition

makes no distinction between honest design or fabrication mistakes

and hardware trojans, and accounts only for the impact these errors

have on the security properties of the system.

2.2 Threat Model
We assume an adversary is able to incorporate errors (e.g., a hard-

ware trojan) in some ICs but not all of them. This is because, ICs are

manufactured in many different fabrication facilities and locations

by different vendors and the adversary is assumed not to be able to

breach all their supply chains. Malicious ICs aim to be as stealthy

as possible, and conceal their presence as best as possible, while be-

nign components may have hard to detect errors (e.g., intermittent

faults) that cannot be trivially uncovered by post-fabrication tests.

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1584

Hence, malicious and defective components are indistinguishable

from benign/non-faulty ones.

The adversary can gain access to the secrets stored in the mali-

cious ICs and may also breach the integrity of any cryptographic

function run by the IC (e.g., a broken random number generator).

Moreover, the adversary has full control over the communication

buses used to transfer data to and from the ICs. Hence, they are able

to exfiltrate any information on the bus and the channel controller,

and inject and drop messages to launch attacks. Additionally, they

are able to connect and issue commands to the ICs, and if a sys-

tem features more that one malicious ICs, the adversary is able to

orchestrate attacks using all of them (i.e., colluding ICs). We also

assume that the adversary may use any other side-channel that a

hardware Trojan has been programmed to emit on – such as RF [5],

acoustic [41] or optical [7] channels. Additionally, the adversary

can trigger malicious ICs to cease functioning (i.e., availability at-

tacks). We also make standard cryptographic assumptions about

the adversary being computationally bound.

Finally, we assume a software developer or device operator builds

and signs the applications to be run on the ICs. From our point of

view they are trusted to provide high-integrity software without

backdoors or other flaws. This integrity concern may be tackled

though standard high- integrity software development techniques,

such as security audits, public code repository trees, determinis-

tic builds, etc. The operator is also trusted to initialize the device

properly and choose ICs and define diverse quorums so that the

probability of compromises is minimized.

3 ARCHITECTURE
In this section, we introduce the Myst architecture (build and eval-

utation in § 5 and 6), which draws from fault-tolerant designs and

N-variant systems [27, 82]. The proposed design is based on the

thesis that given a diverse set of k ICs sourced from k untrusted sup-

pliers, a trusted system can be build, as long as at least one of them

is honest. Alternatively, our architecture can tolerate up to 100%

compromised or defective components, if not all of them collude

with each other. As illustrated in Figure 1, Myst has three types of

components: (1) a remote host, (2) an untrusted IC controller, and

(3) the processing ICs.

Processing ICs. The ICs form the core of Myst, as they are col-

lectively entrusted to perform high-integrity computations, and

provide secure storage space. The ICs are programmable processors

or microprocessors. They have enough persistent memory to store

keys and they feature a secure random number generator. Protec-

tion against physical tampering or side-channels is also desirable

in most cases and mandated by the industry standards and best

practices for cryptographic hardware. For this reason, our proto-

type (Section 5), comprises of components that verify to the a very

high level of tamper-resistance (i.e., FIPS140-2 Level 4), and feature

a reliable random number generator (i.e., FIPS140-2 Level 3). Each

implementation must feature two or more ICs, of which at least

one must be free of backdoors. We define this coalition of ICs, as a

quorum. The exact number of ICs in a quorum is determined by the

user depending on the degree of assurance she wants to achieve

(see also Subsection 3.2 and the Assessment Subsection 6).

Figure 1: An overview of the Myst’s distributed architec-
ture, featuring all the integral components and communi-
cation buses. The gray area represents the cryptographic de-
vice, featuring several untrusted cryptoprocessors (ICs). As
shown, the trusted operator interacts with individual ICs,
while the host interacts with the device as a whole.

IC controller. The controller enables communication between the

ICs, and makes Myst accessible to the outside world. It manages

the bus used by the processing ICs to communicate with each other

and the interface where user requests are delivered to. Specifically,

it enables:

❖ Unicast, IC-to-IC: an IC A sends instructions an IC B, and

receives the response.

❖ Broadcast, IC-to-ICs: an IC A broadcasts instructions to all

other ICs, and receive their responses.

❖ Unicast, Host-to-IC: a remote client send commands to a

specific IC, and receives the response.

❖ Broadcast, Host-to-ICs: a remote client broadcasts commands

to all ICs, and receive their responses.

The controller is also an IC and is also untrusted. For instance

it may drop, modify packets or forge new ones, in order to launch

attacks against the protocols executed. It may also collude with one

or more processing ICs.

Operator. The operator is responsible for setting up the system

and configuring it. In particular, they are responsible for sourcing

the ICs and making sure the quorums are as diverse as possible.

Moreover, the operator determines the size of the quorums, and

sets the security parameters of the cryptosystem (Section 4). They

are assumed to make a best effort to prevent compromises and may

also be the owner of the secrets stored in the device.

Remote Host. The remote host connects to Myst through the IC

controller; it issues high level commands and retrieves the results.

The remote host can be any kind of computer either in the local

network or in a remote one. In order for the commands to be exe-

cuted by the ICs, the host must provide proof of its authorization

to issue commands, usually by signing them with a public key as-

sociated with the user’s identity (e.g., certificate by a trusted CA).

Each command issued must include: 1) the requested operation, 2)

any input data, and 3) the host’s signature (see also Section 3.1).

We note that a corrupt host may use Myst to perform operations,

but cannot extract any secrets, or forge signatures (see also § 3.1).

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1585

Communication Channels. At the physical level, the ICs, the

controller, and the hosts are connected through buses and network

interfaces. Hence, all messages containing commands, as well as

their eventual responses are routed to and from the ICs through

untrusted buses. We assume that the adversary is able to eavesdrop

on these buses and tamper with their traffic (e.g., inject or modify

packets). To address this, we use established cryptographic mecha-

nisms to ensure integrity and confidentiality for transmitted data.

More specifically, all unicast and broadcast packets are signed using

the sender IC’s certificate, so that their origin and integrity can be

verified by recipients. Moreover, in cases where the confidentiality

of the transmitted data needs to be protected, encrypted end-to-end

channels are also established. Such encrypted channels should be

as lightweight as possible to minimize performance overhead, yet

able to guarantee both the confidentiality and the integrity of the

transmitted data.

3.1 Access Control Layer
Access Control (AC) is critical for all systems operating on confiden-

tial data. In Myst, AC determines which hosts can submit service

requests to the system, and which quorums they can interact with.

Despite the distributed architecture of Myst, we can simply repli-

cate established AC techniques on each IC. More specifically, each

IC is provided with the public keys of the hosts that are allowed to

have access to its shares and submit requests. Optionally, this list

may distinguish between hosts that have full access to the system,

and hosts that may only perform a subset of the operations. Once a

request is received, the IC verifies the signature of the host against

this public key list. The list can be provided either when setting up

Myst, or when storing a secret or generating a key.

We note that it is up to the operator to decide the parameters of

each quorum (i.e., size k , ICs participating), and provide the AC lists

to the ICs. This is a critical procedure, as if one of the hosts turns out

to be compromised, the quorum can be misused in order to either

decrypt confidential ciphertexts or sign bogus statements. However,

the secrets stored in the quorum will remain safe as there is no

way for the adversary to extract them, unless they use physical-

tampering (which our prototype (§5) is also resilient against). This

is also true in the case where one of the authorized hosts gets

compromised. For instance, a malware taking over a host can use

Myst to sign documents, but it cannot under any circumstances

extract any secrets.

3.2 Reliability Estimation
In the case of cryptographic hardware, in order for the operator

to decide on the threshold k and the quorum composition, an es-

timation of the likelihood of hardware errors is needed. For this

purpose we introduce k-tolerance, which given k foundries and

an independent error probability, computes the probability that a

quorum is secure.

Pr[secure] = 1 − Pr[error]k (1)

The quantification of the above parameters depends on the par-

ticular design and case, and as there is not commonly accepted way

of evaluation, it largely depends on the information and testing

capabilities each vendor has. For instance, hardware designers that

use split manufacturing [28, 69, 94] can estimate the probability of

a backdoored component using the k-security metric [48]. On the

other hand, COTS vendors cannot easily estimate the probability

of a compromised component, as they are not always aware of the

manufacturing technical details. Despite that, it is still possible for

them to achieve very high levels of error and backdoor-tolerance by

increasing the size of the quorums and sourcing ICs from distinct

facilities (i.e., minimizing the collusion likelihood). It should be

noted that as k grows the cost increases linearly, while the security

exponentially towards one.

4 SECURE DISTRIBUTED COMPUTATIONS
In this section, we introduce a set of protocols that leverage the

diversity of ICs in Myst to realize standard cryptographic opera-

tions manipulating sensitive keying material. More specifically, our

cryptosystem comprises of a key generation operation (§4.1), the

ElGamal encryption operation (§4.2), distributed ElGamal decryp-

tion (§4.3), and distributed signing based on Schnorr signatures

(§4.5) [36, 37]. These operations are realized using interactive cryp-

tographic protocols that rely on standard cryptographic assump-

tions. For operational purposes, we also introduce a key propaga-

tion protocol that enables secret sharing between non-overlapping

quorums (§4.6).

Prior to the execution of any protocols, the ICs must be initialized

with the domain parametersT = (p,a,b,G,n,h) of the elliptic curve
to be used, where p is a prime specifying the finite field Fp , a and b
are the curve coefficients,G is the base point of the curve, with order

n, andh is the curve’s cofactor. More details on the technical aspects

of the initialization procedure are provided in the provisioning

Section 6.4.

Distributed Key Pair Generation. The Distributed Key Pair Gen-
eration (DKPG) is a key building block for most other protocols.

In a nutshell, DKPG enables a quorum Q of k ICs to collectively

generate a random secret x , which is an element of a finite field and

a public value Yaдд = x ·G for a given public elliptic curve pointG .
At the end of the DKPG protocol, each player holds a share of the

secret x , denoted as xi and the public value Yaдд . All steps of the
protocol are illustrated in Figure 2, and explained in turn below.

The execution of the protocol is triggered when an authorized

host sends the corresponding instruction (❶). At the first step of

the protocol, each member of Q runs Algorithm 4.1 and generates

a triplet consisting of: 1) a share xi , which is a randomly sampled

element from Zn , 2) an elliptic curve point Yi , and 3) a commitment

to Yi denoted hi . (❷)

Algorithm 4.1: TripletGen: Generation of a pair and its com-

mitment.

Input :The domain parameters λ
Output :A key triplet (xi ,Yi ,hi)

1 xi ← Rand(λ)

2 Yi ← xi ·G

3 hi ← Hash(Yi)

4 return (xi ,Yi ,hi)

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1586

Figure 2: The interaction between the different participants
during the execution of the Distributed Key Pair Generation
(DKPG) protocol.

Upon the generation of the triplet, the members perform a pair-

wise exchange of their commitments (❸), by the end of which, they

all hold a set H = {h1,h2, ..,ht }. The commitment exchange ter-

minates when |Hq | = t ∀q ∈ Q . Another round of exchanges then

starts, this time for the shares of Yaдд (❹) Y = {Y1,Y2, ..,Yt }. The
commitment exchange round is of uttermost importance as it forces

the participants to commit to a share of Yaдд , before receiving the

shares of others. This prevents attacks where an adversary first

collects the shares of others, and then crafts its share so as to bias

the final pair, towards a secret key they know.

Algorithm 4.2: CommitVerify: ChecksYi , against their respec-
tive commitments.

Input : (Y ,H)
Output :Bool

1 for i ∈ {1, |Y |} do
2 if Hash(Yi) , hi then
3 return False

4 return True

Once each member of the quorum receives k shares (i.e., |Y | = k),
it executes Algorithm 4.2 to verify the validity of Y ’s elements

against their commitments in H . (❺) If one or more commitments

fail the verification then the member infers that an error (either

intentional or unintentional) occurred and the protocol is termi-

nated. Otherwise, if all commitments are successfully verified, then

the member executes Algorithm 4.3 (❻) and returns the result to

the remote host (❼). Note that it is important to return Yaдд , as
well as the individual shares Yi , as this protects against integrity
attacks, where malicious ICs return a different share than the one

they committed to during the protocol [42, 64]. Moreover, since Yi
are shares of the public key, they are also assumed to be public, and

available to any untrusted party.

Algorithm 4.3: ShareAggr: Aggregates elements in a set of

shares (e.g., ECPoints, field elements).

Input :Set of shares Q
Output :The aggregate of the shares q

1 q ← 0

2 for qi ∈ Q do
3 q ← q + qi
4 return q

In the following sections, we rely on DKPG as a building block

of more complex operations.

4.1 Distributed Public Key Generation
The distributed key generation operation enables multiple ICs to

collectively generate a shared public and private key pair with

shares distributed between all participating ICs. This is important

in the presence of hardware trojans, as a single IC never gains

access to the full private key at any point, while the integrity and

secrecy of the pair is protected against maliciously crafted shares.

We opt for a scheme that offers the maximum level of confiden-

tiality (t-of-t, k = t), and whose execution is identical to DKPG seen

in Figure 2. However, there are numerous protocols that allow for

different thresholds, such as Pedersen’s VSS scheme [42, 64, 81].

The importance of the security threshold is discussed in more detail

in Section 6.3.

Once a key pair has been generated, the remote host can encrypt

a plaintext using the public key Y , request the decryption of a

ciphertext, or ask for a plaintext to be signed. In the following

sections we will outline the protocols that realize these operations.

4.2 Encryption
For encryption, we use the Elliptic Curve ElGamal scheme [24, 36]

(Algorithm 4.4). This operation does not use the secret key, and

can be performed directly on the host, or remotely by any party

holding the public key, hence there is no need to perform it in a

distributed manner.

Algorithm 4.4: Encrypts a plaintext using the agreed common

public key.

Input :The domain parameters T , the plaintextm encoded

as an element of the group G, and the calculated

public key Yaдд
Output :The Elgamal ciphertext tuple, (C1, C2)

1 r ← Rand(T)

2 C1 ← r ·G

3 C2 ←m + r · Yaдд
4 return (C1, C2)

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1587

Figure 3: The interaction between the different ICs during
the execution of the distributed decryption protocol.

4.3 Decryption
One of the fundamental cryptographic operations involving a pri-

vate key is ciphertext decryption. In settings, where the key is held

by a single authority, the decryption process is straightforward, but

assumes that the hardware used to perform the decryption does

not leak the secret decryption key. Myst addresses this problem by

distributing the decryption process between k distinct processing

ICs that hold shares of the key (Figure 3).

The protocol runs as follows: Initially, the host broadcasts the

decryption instruction along with the part of the ciphertext C1 to

the processing ICs (❶). Upon reception, the ICs first verify that

the request is signed by an authorized user (❷), and then execute

Algorithm 4.5 to generate their decryption shares Ai (❸). Once the

shares are generated they are sent back to the host, signed by the

ICs and encrypted under the host’s public key (❹). Once the host

receives k decryption shares, executes Algorithm 4.6 to combine

them and retrieve the plaintext (❺).

Algorithm 4.5: DecShare: Returns the decryption share for a

given ciphertext.

Input :A part of the Elgamal ciphertext (C1) and the IC’s

private key of xi .
Output :The decryption share Ai , where i is the IC’s uid

1 Ai ← −xi ·C1

2 return Ai

It should be noted that during the decryption process, the plain-

text is not revealed to any other party except the host, and neither

the secret key nor its shares ever leave the honest ICs. An extension

to the above protocol can also prevent malicious ICs from returning

arbitrary decryption shares, by incorporating a non-interactive zero

knowledge proof [21] in the operation output.

Algorithm 4.6: AggrDec:Combines the decryption shares and

returns the plaintext for a given ciphertext.

Input :The Elgamal ciphertext C2 and the set of decryption

shares A.
Output :The plaintextm

1 D ← 0

2 for Ai ∈ A do
3 D ← D +Ai
4 m ← (C2 + D)

5 returnm

4.4 Random Number Generation
Another important application of secure hardware is the genera-

tion of a random fixed-length bit-strings in the presence of active

adversaries. The key property of such systems is that errors (e.g.,

a hardware backdoor), should not allow an adversary to bias the

generated bitstring.

The implementation of such an operation is straightforward.

The remote host submits a request for randomness to all actors par-

ticipating in the quorum. Subsequently, each actor independently

generates a random share bi , encrypts it with the public key of the

host, and signs the ciphertext with its private key. Once the host

receives all the shares, he combines them to retrieve the b and then

uses an one way function (e.g., SHA3-512 [17]) to convert it to a

fixed length string.

4.5 Signing
Apart from key generation, encryption and decryption, Myst also

supports distributed signing – an operation that potentially ma-

nipulates a long term signature key. Here we introduce a novel

multi-signature scheme, based on Schnorr signature [73].

A multi-signature scheme allows a group of signers to distribu-

tively compute a signature on a common message. There has been

a very long line of works on multi-signature schemes [14, 22, 55,

57, 58, 62] featuring several security properties (e.g. accountability,

subgroup-signing) and achieving various efficiency trade-offs. A

significant portion of work has been dedicated in reducing the trust

in the key generation process. However, this often involves the use

of expensive primitives or increases the interaction between parties

[22, 55, 57]. In our construction, we rely on Myst’s DKPG for the

key generation process.

Our multi-signature scheme is based on Schnorr signatures [73]

and has similarities with Bellare and Neven [14] construction. One

crucial difference between existing multi-signature schemes and

ours, is that we utilize a host intermediating between signers (i.e.,

ICs). This intermediating host allows us to eliminate any interaction

between the ICs and thus improve the efficiency of the construction.

To further minimise the interaction between the host and ICs we

adapt existing techniques used in proactive two-party signatures

[61] into the multi-signature context.

We let PRFs (j) be a pseudorandom function with key s , that
takes j as input and instantiates it as Hash(s | |j).

Initially, all k ICs cooperate to generate a public key y using

the distributed key generation operation (Section 4.1), and store

securely their own key share xi . Moreover, each IC generates a

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1588

Algorithm 4.7: SigShare: Returns the signature share of the
IC for a given plaintext and index j.

Input :The digest of the plaintext to be signed H (m), the
IC’s private key of xi and secret s , an index j , and the

aggregated random EC point Rj .
Output :The signature share tuple (σi j , ϵj)

1 ϵj ← Hash(Rj | |Hash(m)| |j)

2 ri j ← PRFs (j)

3 σi j ← ri j − xi · ϵj mod n

4 return (σi j , ϵj)

secret s for the PRF, and stores it securely. After these steps, the

signing protocol can be executed. The protocol comprises of two

phases: caching and signing.
In the caching phase (Figure 4), the host queries the ICs for

random group elements Ri j , where i is the id of the IC and j an
increasing request counter (❶). Once such a request is received,

the IC verifies that the host is authorized to submit such a request

and then applies the keyed pseudorandom function on the index j
to compute ri, j = PRFs (j) (❷). The IC then uses ri, j to generate a
group element (EC Point) Ri j = ri, j ·G (❸), which is then returned

to the host. Subsequently, the host uses Algorithm 4.3 to compute

the aggregate (Rj) of the group elements (Algorithm 4.3) received

from the ICs for a particular j, and stores it for future use (❹). It

should be noted that the storage cost for Rj is negligible: for each
round the host stores only 65 Bytes or 129 Bytes depending on the

elliptic curve used (for Rj) and the corresponding round index j.
This allows the host to run the caching phase multiple times in

parallel, and generate a list of random elements that can be later

used, thus speeding up the signing process.

The signing phase (Figure 5) starts with the host sending a Sign

request to all ICs (❶). Such a request includes the hash of the

plaintext Hash(m), the index of the round j , and the random group

element Rj corresponding to the round. Each IC then first verifies

that the host has the authorization to submit queries (❷) and that

the specific j has not been already used (❸). The latter check on j is
to prevent attacks that aim to either leak the private key or to allow

the adversary to craft new signatures from existing ones. If these

checks are successful, the IC executes Algorithm 4.7 and generates

its signature share (❹). The signature share (σi, j , ϵj) is then sent to

the host (❺). Once the host has collected all the shares for the same

j, can use Algorithm 4.3 on all the σi, j to recover σj , obtaining the

aggregate signature (σj , ϵj) (❻).

The recipient of ⟨(m, j), σ , ϵ⟩ can verify the validity of the signa-

ture by checking if ϵ = Hash(R | |Hash(m)| |j), where R = σ ·G+ϵ ·Y .

Security Analysis. The security of a multi-signature scheme re-

quires that if at least one of the signers behaves honestly, then it is

impossible to forge a multi-signature. In our context, the presence

of a single honest IC guarantees the signature cannot be forged

even in presence of a malicious host controlling all the remaining

ICs. The key generation process is a crucial step for the security of

multi-signature schemes due to the so called rogue-key attacks [14].
The latter enables an attacker to maliciously generate shares of

the public key in such a way that is possible for her to forge multi-

signatures. In Myst’s DKPG process, malicious ICs cannot subvert

Figure 4: The interaction between the different players dur-
ing the caching phase of the distributed signing protocol.

Figure 5: The figure illustrates the interaction between the
different players when signing.

the key generation process as long as at least one IC is not colluding

with the others, thus preventing rogue-key attacks. The security of

our multi-signature scheme is proved in Theorem 4.1 assuming the

hardness of on the one-more discrete logarithm problem [13]. We

refer to Appendix A for the security definitions of multi-signatures

and the proof of the following Theorem.

Theorem 4.1. If there exists a (qS ,qH , ϵ)-forger F for the multi-
signature scheme described in Figures 4 and 5 interacting inqS = O(1)
signature queries, making at most qH Hash queries and succeeding
with probability ϵ , then there exists an algorithm A that solves the
(qS + 1)-DL problem with probability at least

δ ≥
ϵ2

q
qS+1
H

− neдl(λ)

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1589

4.6 Key Propagation
In cases where more than one quorum is available it is useful to

enable them all to handle requests for the same public key. This is

of particular importance for both the system’s scalability and its

availability, as we further discuss in Sections 6.2 and 6.4 respectively.

Once a quorum Q1 has generated its public key y, (Section 4.1)

the operator can specify another quorum Q2 that is to be loaded

with y. Each member qi ofQ1 then splits its secret xi in |Q2 | shares

and distributes them to the individual members ofQ2. To do that qi
follows the secret sharingmethod shown inAlgorithm 4.8. However,

any t-of-t secret sharing schemes proposed in the literature [20, 64,

75] would do.

Algorithm 4.8: SecretShare: Returns a vector of shares from a

secret.

Input :The domain parameters T , a secret s which is to be

shared, and the number of shares k .
Output :A vector of shares ®vs

1 for (i = 0 to k − 2) do
2 ®vs [i] ← Rand(T)

3 ®vs [k − 1] ← (s − ®vs [1] − ®vs [2] − ... − ®vs [k − 2])

4 return ®vs

Once each member of Q2 receives |Q1 | shares, which they then

combine to retrieve their share of the secret corresponding to y.
Each member ofQ2 can retrieve its share by summing the incoming

shares, modulo p (the prime provided in the domain parameters T).
An additional benefit of such a scheme is that Q1 and Q2 may have

different sizes.

It should be also noted that a naive approach of having each

member of q1 send their share of x to a member of q2 is insecure, as
malicious members from q1 and q2 can then collude to reconstruct

the public key.

5 IMPLEMENTATION
In this section, we provide the implementation details of our Myst

prototype. We first focus on the custom hardware we built, and

outline its different components and capabilities. Thereafter, we

discuss the development of the software for the untrusted ICs and

the details of the remote host.

Figure 6: Overview of Myst’s components.

5.1 Hardware Design & Implementation
For our Myst prototype, we designed our own custom circuit board,

which features 120 processing ICs (set to use 40 quorums of 3 smart-

cards from different manufacturers) interconnected with dedicated

buses with 1.2Mbps bandwidth.

Figure 7: Myst’s smartcard board supports 120 ICs (60 on
each side). Our configuration splits them in 40 quorums of
3 diverse ICs each.

The processing ICs are JavaCards (version 3.0.1), loaded with a

custom applet implementing the protocols outlined in Section 4.

JavaCards are an suitable platform as they provide good interop-

erability (i.e., applets are manufacturer-independent), which con-

tributes to IC-diversification and prevents lock-in to particular

vendors. Moreover, they also fulfill all the requirements listed in

Section 2: (1) they are tamper-resistant (FIPS140-2 Level 4, CC EAL4)

and can withstand attacks from adversaries with physical access

to them [70], (2) they feature secure (FIPS140-2 compliant) on-card

random number generators, (3) they offer cryptographic capabilities

(e.g., Elliptic curve addition, multiplication) through a dedicated

co-processor and (4) there are numerous independent fabrication

facilities (Section 6). In addition to these, they have secure and

persistent on-card storage space, ideal for storing key shares and

protocol parameters.

The host is implemented using a computer that runs a python

client application, which submits the user requests (e.g., Cipher-

text Decryption) to Myst using a RESTful API exposed by the de-

vice. The incoming requests are handled by a Spring server, which

parses them, converts them to a sequence of low-level instructions,

and then forwards these to the IC controller, through an 1Gbps

TCP/UDP interface. The ICs controller is a programmable Artix-7

FPGA that listens for incoming instructions and then routes them

to the processing IC, through separate physical connections. We

took special care that these buses offer a high bandwidth (over

400kbps), to prevent bottlenecks between controller and ICs even

under extreme load. Once the ICs return the results, the controller

communicates them back to the server, that subsequently forwards

them to the host.

5.2 Software
We implement the protocols of Section 4 and provide the necessary

methods for inter-component communication and system parame-

terization.

We develop and load the processing ICs with JavaCard applets

implementing methods for 1) Card Management, 2) Key Genera-

tion, 3) Decryption, and 4) Signing. Although JavaCard APIs since

version 2.2.2 specifies a BigNumber class, this class is either un-

supported by real cards or provides only too small internal type

length (typically at most 8 bytes). The only third-party BigInteger

library available (i.e., BigNat
1
) is unmaintained and lacked essential

operations. Moreover, low-level elliptic curve operations are only

1
https://ovchip.cs.ru.nl/OV-chip_2.0

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1590

https://ovchip.cs.ru.nl/OV-chip_2.0

poorly supported by standard JavaCard API. The IC vendors often

offer own proprietary APIs which provides the required operations

(e.g., EC point addition) – but for the price of reduced portability.

This made the implementation of our cryptographic schemes more

complicated.

We extend BigNat to provide methods catering to our specific

needs. Additionally, we develop own EC operations library based

solely on public JavaCard API to support ICs where proprietary

API is not available or cannot be used. Our EC library provides

methods for EC point initialization, negation, addition, subtraction

and scalar multiplication, and has been released as an independent

project
2
.

Note, that although vendor’s proprietary API limits the porta-

bility, it usually provides better performance and better protec-

tion against various side-channel attacks in comparison to custom

software-only implementations. For this reason, we structured the

IC applet code for easy incorporation of proprietary API with mini-

mal code changes. Our EC library is thus used only when no other

option is available for target IC.

Our current implementation is based on the NIST P-256 [1, 86]

curve that provides at least 128 bits of security. However, it can also

be trivially adapted for any other curve.

Optimizations. We optimize our JavaCard applet for speed and

to limit side-channel attacks. Although JavaCard applets are com-

piled with standard Java compiler, common Java implementation

patterns (e.g., frequent array reallocation due to resizing) are pro-

hibitively expensive on JavaCards. Therefore, we use the following

optimization techniques based on good practices and performance

measurements from real, non-simulated, smart cards [83]:

❖ We use hardware accelerated cryptographic methods from

JavaCard API instead of custom implementations interpreted

by JavaCard virtual machine where possible.

❖ We store the session data in the faster RAM-allocated arrays

instead of persistent, but slower EEPROM/Flash

❖ We use copy-free methods which minimize the move of

data in memory, and also utilize native methods provided

by JCSystem class for array manipulation like memory set,

copy and erase.

❖ We made sure to pre-allocate all cryptographic engines and

key objects during the applet installation. No further alloca-

tion during the rest of the applet lifetime is performed.

❖ Surplus cryptographic engines and key objects are used to

minimize the number of key scheduling and initialization

of engine with a particular key as these operations impose

non-trivial overhead [83].

❖ We refrain from using single long-running commands which

would cause other cards to wait for completion, thus increas-

ing the latency of the final operation.

Finally, we optimized two fundamental operations commonly

used in cryptographic protocols: 1) integer multiplication, and 2)

the modulo operation optimized for 32 byte-long EC coordinates.

This was necessary, as the straightforward implementation of these

two algorithms in JavaCard bytecode is both slow and potentially

vulnerable to side-channel timing attacks. Instead, we implemented

2
https://OpenCryptoJC.org

both operations so as to use the native RSA engine and thus have

constant-time run-time.

The integer multiplication of a and b can be rewritten as

a · b = ((a + b)2 − a2 − b2)/2. The squaring operation (e.g., a2) can
be quickly computed using a pre-prepared raw RSA engine with

a public exponent equal to 2 and a modulus n, that is larger than
the sum of the lengths of both operands. On the other hand, the

integer modulo of two operands a (64 bytes long) and b (32 bytes

long) is not so straighforward. We exploit the fact that b is always

the order of the fixed point G in the P-256 Elliptic Curve [1, 86],

and transform a mod b = a − (((a · x) ≫ z) · x) where x and z val-
ues are pre-computed offline [44]. As a result, a modulo operation

can be transformed to two RSA operations, one shift (with z being
multiple of 8) and one subtraction. Note that we cannot directly use

RSA with a public exponent equal to 1 as operands are of different

length and also shorter than smallest RSA length available on the

card.

5.3 System States
Initially, the system is in an non-operational state, where the pro-

cessing ICs do not respond to user requests. To make it operational,

a secure initialization process has to be carried out. During the ini-

tialization the processing ICs and the other components described

in 3 are loaded with verified application packages, and the domain

parameters for the distributed protocols are set. Moreover, the ICs

are provided with their certificates that they will later use to sign

their packets and establish secure communication channels.

Once the initialization process has been completed, the system

switches to an operational state and is available to serve user re-

quests. Depending on the configuration, the systemmay be brought

back to an uninitialized state, in order to load new software or

change the protocol parameters. We further discuss the importance

of the initialization process in Section 6.4.

6 EVALUATION
In this section, we evaluateMyst by examining both its performance,

and its qualitative properties.

Experimental Setup. All evaluations were performed using the

setup illustrated in Figure 6. The host is a single machine with a

CentOS 7 OS (3.10.0 Linux kernel), featuring a 3.00GHz Intel(R) Core

i5-4590S CPU, 16GB of RAM, and uses a python client application to

submit service requests to Myst, through a 1Gbps Ethernet interface

(as described in Section 5). Upon reception, the server uses the

Java Spring framework [51] to parse them, and then forward the

instructions to the Artix-7 FPGA, which subsequently routes them

to the individual smart cards. In all experiments, we collect response-

time measurements from both the host and the Spring server. On

average the round-trip from the host to the server takes 5ms . For
accuracy, we use the host measurements in the rest of the section.

6.1 Performance Impact
This subsection evaluates the performance impact of Myst, and

compares its throughput and latency with that of a single-IC system.

Moreover, it examines the impact of our optimizations on the overall

performance of the system.

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1591

Figure 8: The average response time for each distributed op-
eration of the cryptosystem, in relation to the quorum (i.e.,
a coalition of multiple ICs) size.

Methodology. To better understand the overhead that the use of

a distributed architecture entails we run experiments that measure

the latency as the size of the protocol quorum grows. We first sub-

mit 1,000 requests for each cryptosystem operation (Section 4) in

one JavaCard and measure the response time. We then extend the

experiment to larger quorums with sizes ranging from 2 to 10, and

measure the latency in completing the same 1,000 operations. Si-

multaneously, to gain a more in-depth understanding of the impact

that each low-level instruction type has, we micro-benchmark the

response time for all intra-system communications.

Results. Figure 8 plots the average response time for performing

Key Generation, Decryption and Signing using IC quorums of dif-

ferent sizes. To begin with, Decryption is the fastest (119ms), since

it implements a single round protocol. Moreover, when we compare

the runtime between the single-IC run, and the runs with multiple

ICs, we observe that the latency is stable and the overhead remains

always smaller than 0.8%. Hence, we conclude that the Decryp-

tion time does not increase with the size of the quorum, due to

the ICs performing the decryption computations simultaneously.

This highlights that Decryption is only CPU bound, and the net-

work capacity of our prototype does not pose a bottleneck; and

demonstrates that Myst can essentially provide increased assur-

ance, with negligible impact on the decryption runtime. It should

be noted that, high-throughput decryption is of extreme impor-

tance in applications such as secure key derivation in mix-network

infrastructures [33] that heavily rely on decryption. Similarly, the

runtime for signing remains the constant (∼ 517ms) regardless

of the quorum size. This is because our multi-sig signing proto-

col does not require one-to-one interaction between the ICs. The

runtime difference between decryption and signing is mainly be-

cause of JavaCard API limitations. Specifically, we were forced to

perform some of the mathematical operations for signing in the

general purpose processor of the card, and not in the cryptographic

coprocessor. The caching phase of the signing protocol (takes on

average 169ms/operation) was performed offline for thousands of

Figure 9: Breakdown of the runtime for low-level instruc-
tions that comprise the key generation operation, in rela-
tion to the quorum size. The horizontal reference line repre-
sent the cost of using a single IC.

indices j and is not considered in the measurements, as it is ran

only occasionally.

As with signing and decryption, the runtime for random number

generation is also constant, as the protocol is single round and can

be executed in parallel.

On the other hand, Key Generation (DKPG) requires two phases

(commitment and revelation) and this adds significant latency. In

particular, as seen in Figure 8, each additional IC results in an

runtime increase of approximately 90ms. Figure 9 examines the

timings of low-level operations involved in the key generation

protocols. When quorums are small the cost of key generation

is dominated by the “INS_KEYGEN_INIT” operation that gener-

ates a secret share, and derives a public key (624ms). However,

as the IC quorums grow the operations related to exchanging

public keys (“INS_KEYGEN_STORE_PUBKEY”) and commitments

(“INS_KEYGEN_STORE_HASH”) become significant, and for a quo-

rum of 10 ICs, nearly doubles the cost of key generation. However,

for quorums of 3 the impact on runtime is merely 303ms, com-

pared to a single IC. Other low-level operations used in DKPG have

negligible cost, regardless of the quorum size.

6.2 Scalability & Extensibility
This section examines how the throughput of our prototype grows

as the more processing power (i.e., quorums) is added. The absence

of bottlenecks in the system is important to be able to provide

high-availability in production environments.

Methodology. To determine how efficiently our design scales

in practice, we run a series of experiments that measure Myst’s

throughput, for varying numbers of processing quorums. As de-

scribed in Section 5, our board supports up to 120 processing ICs

which can be divided into multiple quorums and serve requests

simultaneously. To benchmark the scalability of the system, on

each iteration of the experiment we submit 10,000 requests for each

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1592

Figure 10: The average system throughput in relation to the
number of quorums (k = 3) that serve requests simultane-
ously. The higher is better.

high-level operation supported by our cryptosystem, and measure

its throughput. However, this time we fix the quorum size k to 3,

and on each iteration we increase the number of quorums serving

the submitted requests by one, until we involve 40 quorums, which

is the maximum number of 3-IC quorums that our prototype can

support. For simplicity, we assign each processing IC to only one

quorum. However, it is also technically possible for an IC to partic-

ipate in more than one quorums, and store more than one secret

shares.

Results. Figure 10 illustrates the throughput of the Myst system (in

operations per second) as more of the ICs are used for processing

transactions. The maximum throughput of Myst was 315ops/sec for

Decryption and 77ops/sec for Signing, when using all 40 quorums.

We also observe that as the number of quorums increases, the

performance increases linearly, at a rate of ∼ 9 requests per second

per additional quorum for the Decryption operation, and ∼ 1.9

requests per second for Signing. This illustrates that the system is

CPU bound, and the communication fabric between ICs and the

host is not a bottleneck. Consequently, a system with our proposed

architecture can be easily tailored for different use cases to provide

the throughput needed in each of them. It should be also noted that

using a lower threshold k < t does not affect the performance of

the system. However, this may result in some ICs being idle longer.

For this purpose, it would be beneficial if ICs participated in more

than one quorum, thus minimizing their idle time.

6.3 Tolerance levels
Myst is tolerant against both fabrication-time and design-time at-

tacks (assuming independent foundries and design houses). Alterna-

tively, if there is only one design house, then Myst protects against

fabrication-time attacks only. In this section, we examine the rela-

tionship between the system parameters and the tolerance levels

provided depending on the attack type (Table 1). The reported toler-

ance levels are those provided by the schemes outlined in Section 4,

Parameters Leakage Denial-of-Service IC Failures

Sinдle IC 0 0 0

k = t t − 1 0 n − 1
k < t k − 1 t − k (t − k) ∗ n

Table 1: Number of malicious/faulty ICs that different
setups can tolerate in each abnormal scenario. The system
is assumed to feature n identical quorums of size t , with a
secret-sharing threshold k .

and were also empirically verified using our prototype introduced

in Section 5.

In practice, the threshold k and the size of the quorums t express
the trade-off between confidentiality and robustness for each par-

ticular quorum. The relationship between these two parameters

determines how many ICs can cease to function, before the quorum

fails: When k equals the number of processing ICs t , then secrets

are safe in the presence of t − 1 compromised and colluding ICs.

On the other hand, a more “relaxed” threshold (k < t) enables the
quorum to remain fully functional unless more than t − k ICs fail

(maliciously or through wear). Alternatively, (k = t)-systems can

withstand multiple ICs failing (due to wear) using the technique

introduced in Section 4.6. This technique enables several quorums

to handle requests for the same public key, and thus even if mul-

tiple ICs (and consequently the quorums they belong to) fail, the

remaining quorums can still handle incoming requests for those

public keys. It should be noted that this technique provides robust-

ness only in the presence of faulty & defective ICs, but does not

mitigate denial of service attacks. This is because, all n quorums

are identical (same manufacturer diversity) and thus a malicious

IC from a breached supply chain will participate in all quorums.

In contrast, defective ICs will fail with a probability less than 1

(post-fabrication tests detect always failing ICs) and thus several

quorums will remain functional.

From all the above, the security guarantees offered by Myst are

determined by the threshold k , the IC diversity and the number of

quorums. In our prototype, we chose to maximize confidentiality,

and resist the presence of t − 1 actively malicious ICs. Malicious ICs

launching denial-of-service attacks are easier to detect and replace,

compared to those subtly leaking secrets or weakening keys. In

cases where increased robustness and availability are paramount,

the security level can be adjusted in favor of redundancy using the

appropriate threshold schemes [64].

6.4 Other Considerations
In this section, we consider several qualitative properties commonly

used in the industry.

Physical Security & Diversity. SmartCards forms the core of

our prototype and have multiple benefits as they were designed

to operate in a hostile environment that is assumed to be fully

controlled by the adversary [70]. For this reason, they come with

very-high tamper-resistance (FIPS140-2, Level 4) and secure stor-

age capabilities, that are constantly evolving. Another benefit is

that there are several manufacturers owning foundries including

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1593

NXP-semiconductors, ST Microelectronics, Samsung, Infineon and

Athena. Moreover, there are numerous independent facilities used

by different vendors to fabricate their ICs [30, 74, 80, 85], which

also contributes to the necessary diversity for the quorums.

Code & Parameter Provisioning. Crucial component of the se-

curity of Myst. If the code on all the ICs, or the cryptographic

parameters contain errors, then the security of the system is not

guaranteed. We propose two strategies to ensure secure provision-

ing. First, we may assume that provisioning occurs at the factory.

This leverages our assumption that some of the factories are hon-

est, and ensures that an adversary would have to compromise all

fabrication facilities to extract any secrets. The second strategy is

to assume the existence of a trusted off-line provisioning facility

that is not under the control of an adversary. This facility needs

only to guarantee high-integrity, as no secrets are involved in the

provisioning step (secrets are generated within the ICs as part of

protocols executed later).

Formal Security Validations. Any off-premise use of ICs raises

a question of trust. To address this problem, independent security

validations (e.g., FIPS140-2, or Common Criteria) have been intro-

duced. These validations are performed by a third party, which

verifies the claims of hardware vendors. However, these validations

are a serious bottleneck when introducing new IC design. Myst

does not need to go through this process as it executes provably

secure cryptographic schemes on already validated ICs. As a result,

even if one of the ICs has passed an independent validation, the

whole instance of the Myst carries this assurance.

Real-world Practicality.Myst provides a platform for generating

legally binding digital signatures (eIDAS [29]) under the sole con-

trol of the user. Moreover, due to the tamper-resistance properties

of SmartCards, ICs can be also stored remotely thus making Myst a

highly practical system that is able to support some non-typical real-

world use-cases. For instance, Myst can perform code-signing of

mobile applications for apps stores (e.g., AppStore or Google Play),

by sharing the signing keys between developers’ laptops, managers’

computers, and securely stored ICs providing protection against

internal enterprise/company attackers without compromising de-

velopers’ control over the signing process. Finally, another practical

feature of Myst is that each party maintains its own independent

audit logs, thus ensuring non-repudiation.

7 RELATEDWORK
This section examines existing literature on hardware trojans and

countermeasures, outlines relevant fault-tolerant designs and ar-

chitectures, and discusses how Myst compares to prior works.

Hardware Trojans & Countermeasures. To better understand

the extend of the Hardware Trojans threat, numerous attacks and ex-

ploitation techniques have been proposed in the literature in the last

decade. For instance, the authors in [53] design two hardware tro-

jans and implement a proof-of-concept attack against the PRINCE

cipher [23]. The novelty of their attacks is that they use dopant

polarity changes (first introduced in [11]), to create a hard-to-detect

fault-injection attack backdoor. Moreover, [65] also introduces a

hardware trojan attacking RSA applications. In this attack, the ad-

versary is able to use power supply fluctuations to trigger the trojan,

which then leaks bits of the key through a signature. Another very

hard to detect class of trojans (inserted by fabrication-time attack-

ers) was introduced by K Yang et al. in [98]. Such trojans leverage

analog circuits and require only a single logic gate to launch their

attack (e.g., switch the CPU’s mode). Apart from these, detection

evasion and stealthy triggering techniques have been proposed

in [18, 54, 91–93].

As discussed in Section 1, malicious components carrying errors

have been also observed in commercial and military hardware [2,

40, 50, 56, 59, 76–78], while a subset of those incidents also involved

misbehaving cryptographic hardware [43, 45, 71, 72]. In all these

cases, the errors were eventually attributed to honest design or

fabrication mistakes, but the systems were left vulnerable to attacks

regardless. For instance, one popular and well-studied example

of attacks against weak cryptographic hardware is [16]. In this

work, Bernstein et al. study the random number generators used in

smartcards and found various malfunctioning pieces, that allowed

them to break 184 public keys using in “Citizen Digital Certificates”

by Taiwanese citizens.

To address the aforementioned threats, different approaches have

been proposed. The most common ones attempt to either detect ma-

licious circuitry, or prevent insertions. In particular, detection tech-

niques aim to determine whether any HTs exist in a given circuit

and feature a wide range of methods such as side-channel analysis

[3, 79, 95, 97], logic testing [26], and trust verification [8, 68, 90, 102].

On the other hand, prevention techniques aim to either impede the

introduction of HTs, or make HT easier to detect, such approaches

are Split manufacturing [28, 69, 94] which tries to minimize the

circuit/design exposure to the adversary, logic obfuscation [25] and

runtime monitoring [47, 88]

Moreover, there is also a smaller body of work which attempts to

tackle the even harder problem of inferring additional information

about the HT such as its triggers, payload, and exact location [95,

97]. Other works considered verifiable computation architecures

(such as [87]), which provide guarantees for the correctness of the

computation on untrusted platforms. However, they come with a

computation overhead and do not guarantee secure handling of

secrets or protection from side-channel attacks. On top of the above,

previous works [6, 34] have also theoretically discussed using multi-

party computation protocols to distribute trust between untrusted

manufacturers during the fabrication process.

Myst follows an alternative approach that leverages a diverse set

of untrusted ICs tominimize the risk of compromises by distributing

trust between them. For this reason, all the above countermeasures

remain applicable and would even increase the security of the

final system. In other words, our proposed approach is not an

alternative to existing techniques, as it provides a way to combine

ICs fabricated by different manufacturers, in various locations and

featuring a wide-range of protection techniques in one system.

Fault-Tolerant Systems. Component-redundancy and

component-diversification are both key concepts used in N-

variant systems that aim to achieve high fault-tolerance [27].

An example of such a system is the Triple-Triple Redundant

777 Primary Flight Computer [100, 101], that replicates the

computations in three processors and then performs a majority

voting to determine the final result. The applications of N-variance

in security scenarios has been studied in only few works aiming

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1594

to protect systems against software attacks. In particular, [32]

introduces a method to generate randomized system copies, that

will have disjoint exploitation sets, thus achieving memory safety.

On the other hand, [4] proposes a N-variant method for IC diversifi-

cation, aiming again to achieve disjoint exploitation sets. However,

this method is not effective against fabrication-time attacks and

protects only against (potentially exploitable) unintentional errors.

Finally, heterogeneous architectures with COTS components have

been also proposed in [9, 10]. However, the practicality of these

works is very limited as the computations are simply replicated

between the different components, thus not protecting against

confidentiality attacks.

8 CONCLUSION
High-assurance cryptographic hardware, such as hardware secu-

rity modules, is used in production under the assumption that its

individual components are secure and free from errors. However,

even though post-fabrication testing is capable of detecting defec-

tive ICs with high-accuracy, there are certain error classes that are

hard to uncover (e.g., RNG defects). Unfortunately, these errors are

also detrimental to the security of high-assurance hardware such

as hardware security modules. Moreover, hardware trojans and

malicious circuitry have been extensively studied, and there is an

abundance of designs, mitigation techniques and countermeasure

evasion methods. This line of work assumes that not all errors can

be detected and that due to the arms race, between trojan horses

and mitigation techniques, countermeasures will never be 100%

effective against all possible threats.

To resolve this, we introduce Myst, which brings the adversary

into the unfavorable position of having to compromise 100% of the

hardware components to gain any advantage. By employing thresh-

old schemes and a redundancy-based architecture, Myst is able

to distribute both secrets and cryptographic computations among

multiple, diverse integrated circuits. Consequently, an adversary

aiming to breach the confidentiality or the integrity of the system,

must be able to compromise all the ICs. This is not a trivial task

when the ICs are manufactured from different vendors, in different

premises. To evaluate Myst, we build a custom board featuring

120 Smart Cards controlled by an Artix-7 FPGA. The maximum

throughput for distributed decryption is 315ops/sec, while for sign-

ing is 77ops/sec. Both come with an overhead of less than < 1%

compared to a typical single-point of failure system. All in all, our

results show that Myst is highly scalable, and provides strong guar-

antees for the security of the system thus making it suitable for

production.

9 ACKNOWLEDGEMENTS
This work was supported by the European Commission through

the H2020-DS-2014-653497 PANORAMIX project and the European

Research Council via the European Union’s Seventh Framework

Programme (FP/2007-2013) / ERC Grant Agreement n. 307937, and

the Czech Science Foundation under project GA16-08565S.

REFERENCES
[1] Mehmet Adalier. 2015. Efficient and Secure Elliptic Curve Cryptography Imple-

mentation of Curve P-256. (2015).

[2] Sally Adee. 2008. The hunt for the kill switch. IEEE Spectrum 45, 5 (2008), 34–39.

[3] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and Berk

Sunar. 2007. Trojan detection using IC fingerprinting. In Security and Privacy,
2007. SP’07. IEEE Symposium on. IEEE, 296–310.

[4] Yousra Alkabani and Farinaz Koushanfar. 2008. N-variant IC design: methodology

and applications. In Proceedings of the 45th Design Automation Conference, DAC
2008, Anaheim, CA, USA, June 8-13, 2008. 546–551. https://doi.org/10.1145/1391469.
1391606

[5] Jacob Appelbaum, Judith Horchert, and Christian Stöcker. 2013. Shopping for

spy gear: Catalog advertises NSA toolbox. Der Spiegel 29 (2013).
[6] Giuseppe Ateniese, Aggelos Kiayias, Bernardo Magri, Yiannis Tselekounis, and

Daniele Venturi. 2016. Secure Outsourcing of Circuit Manufacturing. Cryptology

ePrint Archive, Report 2016/527. (2016). http://eprint.iacr.org/2016/527.

[7] Michael Backes, Markus Dürmuth, and Dominique Unruh. 2008. Compromising

reflections-or-how to read LCD monitors around the corner. In Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 158–169.

[8] Chongxi Bao, Yang Xie, and Ankur Srivastava. 2015. A security-aware design

scheme for better hardware Trojan detection sensitivity. In IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington,
DC, USA, 5-7 May, 2015. 52–55. https://doi.org/10.1109/HST.2015.7140236

[9] Mark Beaumont, Bradley Hopkins, and Tristan Newby. 2012. Safer path: Security

architecture using fragmented execution and replication for protection against

trojaned hardware. In Proceedings of the Conference on Design, Automation and
Test in Europe. EDA Consortium, 1000–1005.

[10] Mark Beaumont, Bradley Hopkins, and Tristan Newby. 2013. Hardware trojan

resistant computation using heterogeneous COTS processors. In Proceedings of
the Thirty-Sixth Australasian Computer Science Conference-Volume 135. Australian
Computer Society, Inc., 97–106.

[11] Georg T Becker, Francesco Regazzoni, Christof Paar, and Wayne P Burleson.

2013. Stealthy dopant-level hardware trojans. In International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 197–214.

[12] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson.

2014. Stealthy dopant-level hardware Trojans: extended version. J. Cryptographic
Engineering 4, 1 (2014), 19–31. https://doi.org/10.1007/s13389-013-0068-0

[13] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.

2003. The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind

Signature Scheme. J. Cryptology 16, 3 (2003), 185–215.

[14] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-Key

model and a general forking lemma. 390–399.

[15] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-

digm for Designing Efficient Protocols. In CCS ’93, Proceedings of the 1st ACM
Conference on Computer and Communications Security, Fairfax, Virginia, USA,
November 3-5, 1993. 62–73.

[16] Daniel J Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia

Heninger, Tanja Lange, and Nicko Van Someren. 2013. Factoring RSA keys

from certified smart cards: Coppersmith in the wild. In International Conference
on the Theory and Application of Cryptology and Information Security. Springer,
341–360.

[17] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2009.

Keccak sponge function family main document. Submission to NIST (Round 2) 3
(2009), 30.

[18] Swarup Bhunia, Michael S. Hsiao, Mainak Banga, and Seetharam Narasimhan.

2014. Hardware Trojan Attacks: Threat Analysis and Countermeasures. Proc.
IEEE 102, 8 (2014), 1229–1247. https://doi.org/10.1109/JPROC.2014.2334493

[19] Swarup Bhunia, Michael S Hsiao, Mainak Banga, and Seetharam Narasimhan.

2014. Hardware Trojan attacks: threat analysis and countermeasures. Proc. IEEE
102, 8 (2014), 1229–1247.

[20] George Robert Blakley. 1979. Safeguarding cryptographic keys. Proc. of the
National Computer Conference1979 48 (1979), 313–317.

[21] Manuel Blum, Paul Feldman, and Silvio Micali. 1988. Non-interactive zero-

knowledge and its applications. In Proceedings of the twentieth annual ACM
symposium on Theory of computing. ACM, 103–112.

[22] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind

Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In Public
Key Cryptography - PKC 2003. 31–46.

[23] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-

vic, Lars R Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian

Rechberger, et al. 2012. PRINCE–a low-latency block cipher for pervasive com-

puting applications. In International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 208–225.

[24] Felix Brandt. 2005. Efficient Cryptographic Protocol Design Based on Distributed

El Gamal Encryption. In Information Security and Cryptology - ICISC 2005, 8th
International Conference, Seoul, Korea, December 1-2, 2005, Revised Selected Papers
(Lecture Notes in Computer Science), Dongho Won and Seungjoo Kim (Eds.),

Vol. 3935. Springer, 32–47. https://doi.org/10.1007/11734727_5

[25] Rajat Subhra Chakraborty and Swarup Bhunia. 2009. Security against hardware

Trojan through a novel application of design obfuscation. In Proceedings of the
2009 International Conference on Computer-Aided Design. ACM, 113–116.

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1595

https://doi.org/10.1145/1391469.1391606
https://doi.org/10.1145/1391469.1391606
http://eprint.iacr.org/2016/527
https://doi.org/10.1109/HST.2015.7140236
https://doi.org/10.1007/s13389-013-0068-0
https://doi.org/10.1109/JPROC.2014.2334493
https://doi.org/10.1007/11734727_5

[26] Rajat Subhra Chakraborty, Francis G. Wolff, Somnath Paul, Christos A. Papachris-

tou, and Swarup Bhunia. 2009. MERO: A Statistical Approach for Hardware

Trojan Detection. In Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings. 396–410. https://doi.org/10.1007/978-3-642-04138-9_28

[27] Liming Chen and Algirdas Avizienis. 1978. N-version programming: A fault-

tolerance approach to reliability of software operation. In Digest of Papers FTCS-8:
Eighth Annual International Conference on Fault Tolerant Computing. 3–9.

[28] Zhang Chen, Pingqiang Zhou, T. Y. Ho, and Y. Jin. 2016. How secure is split

manufacturing in preventing hardware trojan?. In 2016 IEEE Asian Hardware-
Oriented Security and Trust (AsianHOST). 1–6. https://doi.org/10.1109/AsianHOST.
2016.7835561

[29] European Commission. 2016. Questions & Answers on Trust Ser-

vices under eIDAS. https://ec.europa.eu/digital-single-market/en/news/

questions-answers-trust-services-under-eidas. (February 2016).

[30] Semiconductor Manufacturing International Corporation. 2017. Embedded Non-

Volatile Memory for Smart Card & MCU. http://www.smics.com/eng/foundry/

technology/tec_envm.php. (May 2017).

[31] Nicolas T Courtois. 2009. The dark side of security by obscurity and cloning

Mifare Classic rail and building passes, anywhere, anytime. (2009).

[32] Benjamin Cox and David Evans. 2006. N-Variant Systems: A Secret-

less Framework for Security through Diversity. In Proceedings of the 15th
USENIX Security Symposium, Vancouver, BC, Canada, July 31 - August 4,
2006. https://www.usenix.org/conference/15th-usenix-security-symposium/

n-variant-systems-secretless-framework-security-through

[33] George Danezis, Claudia Diaz, and Paul Syverson. 2009. Systems for anonymous

communication. Handbook of Financial Cryptography and Security, Cryptography
and Network Security Series (2009), 341–389.

[34] Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert. 2016. Pri-

vate circuits III: Hardware Trojan-Resilience via testing amplification. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 142–153.

[35] Don Edenfeld, Andrew B. Kahng, Mike Rodgers, and Yervant Zorian. 2004. 2003

Technology Roadmap for Semiconductors. IEEE Computer 37, 1 (2004), 47–56.
https://doi.org/10.1109/MC.2004.1260725

[36] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE transactions on information theory 31, 4 (1985),

469–472.

[37] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to

identification and signature problems. In Conference on the Theory and Application
of Cryptographic Techniques. Springer, 186–194.

[38] Task Force. 2005. High Performance Microchip Supply. (2005).

[39] Bastian Fredriksson. 2016. A case study in smartcard security Analysing Mifare

Classic Rev. (2016).

[40] Sean Gallagher. 2014. Photos of an NSA âĂIJupgradeâĂİ factory show Cisco

router getting implant. Ars Technica 14 (2014).
[41] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA key extraction via

low-bandwidth acoustic cryptanalysis. In International Cryptology Conference.
Springer, 444–461.

[42] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptology
20, 1 (2007), 51–83. https://doi.org/10.1007/s00145-006-0347-3

[43] Dan Goodin. 2013. ’We cannot trustâĂİ Intel and ViaâĂŹs chip-based

crypto’, FreeBSD developers say. http://arstechnica.com/security/2013/12/we-

cannot-trust-intel-and-vias-chip-based-crypto-freebsd-developers-say/. (Decem-

ber 2013).

[44] Torbjörn Granlund and Peter L Montgomery. 1994. Division by invariant integers

using multiplication. In ACM SIGPLAN Notices, Vol. 29. ACM, 61–72.

[45] FreeBSD Security Working Group. 2013. FreeBSD Developer Summit: Security

Working Group. https://wiki.freebsd.org/201309DevSummit/Security. (December

2013).

[46] Stefan Heck, Sri Kaza, and Dickon Pinner. 2011. Creating value in the semicon-

ductor industry. McKinsey & Company (2011).

[47] Matthew Hicks, Murph Finnicum, Samuel T. King, Milo M. K. Martin, and

Jonathan M. Smith. 2010. Overcoming an Untrusted Computing Base: Detecting

and Removing Malicious Hardware Automatically. In 31st IEEE Symposium on
Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA.
159–172. https://doi.org/10.1109/SP.2010.18

[48] Frank Imeson, Ariq Emtenan, Siddharth Garg, and Mahesh V Tripunitara. Secur-

ing Computer Hardware Using 3D Integrated Circuit (IC) Technology and Split

Manufacturing for Obfuscation.

[49] Intel Inc. 2017. About the Intel manageability firmware critical vulnerabil-

ity. http://www.intel.com/content/www/us/en/architecture-and-technology/

intel-amt-vulnerability-announcement.html. (May 2017).

[50] Yier Jin and Yiorgos Makris. 2010. Hardware Trojans in wireless cryptographic

ICs. IEEE Design & Test of Computers 27, 1 (2010).

[51] Rod Johnson et al. 2005. Introduction to the spring framework. TheServerSide.
com 21 (2005), 22.

[52] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and

Yuanyuan Zhou. 2008. Designing and Implementing Malicious Hardware. In First
USENIX Workshop on Large-Scale Exploits and Emergent Threats, LEET ’08, San
Francisco, CA, USA, April 15, 2008, Proceedings. http://www.usenix.org/events/

leet08/tech/full_papers/king/king.pdf

[53] Raghavan Kumar, Philipp Jovanovic, Wayne P Burleson, and Ilia Polian. 2014.

Parametric Trojans for Fault-Injection Attacks on Cryptographic Hardware. IACR
Cryptology ePrint Archive 2014 (2014), 783.

[54] Sebastian Kutzner, Axel York Poschmann, and Marc Stöttinger. 2013. Hardware

trojan design and detection: a practical evaluation. In Proceedings of the Workshop
on Embedded Systems Security, WESS 2013, Montreal, Quebec, Canada, September
29 - October 4, 2013. 1:1–1:9. https://doi.org/10.1145/2527317.2527318

[55] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.

2013. Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted

Signatures Without Random Oracles. Journal of cryptology 26, 2 (2013), 340–373.

[56] John Markoff. 2009. Old trick threatens the newest weapons. The New York Times
27 (2009).

[57] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. 2001. Accountable-subgroup

multisignatures: extended abstract. In CCS 2001, Proceedings of the 8th ACM
Conference on Computer and Communications Security. 245–254.

[58] Markus Michels and Patrick Horster. 1996. On the Risk of Disruption in Several

Multiparty Signature Schemes. In Advances in Cryptology - ASIACRYPT ’96, Inter-
national Conference on the Theory and Applications of Cryptology and Information
Security, Kyongju, Korea, November 3-7, 1996, Proceedings. 334–345.

[59] Subhasish Mitra, H-S Philip Wong, and Simon Wong. 2015. The Trojan-proof

chip. IEEE Spectrum 52, 2 (2015), 46–51.

[60] Inez Miyamoto, Thomas H Holzer, and Shahryar Sarkani. 2017. Why a counterfeit

risk avoidance strategy fails. Computers & Security (2017).

[61] Antonio Nicolosi, Maxwell N. Krohn, Yevgeniy Dodis, and David Mazières. 2003.

Proactive Two-Party Signatures for User Authentication. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2003, San Diego, Cali-
fornia, USA.

[62] Kazuo Ohta and Tatsuaki Okamoto. 1991. A Digital Multisignature Scheme Based

on the Fiat-Shamir Scheme. In Advances in Cryptology - ASIACRYPT ’91. 139–148.
[63] United States. Defense Science Board. Task Force on High Performance Mi-

crochip Supply. 2005. Defense science board task force on high performance
microchip supply. Office of the Under Secretary of Defense for Acquisition,

Technology, and Logistics.

[64] Torben P. Pedersen. 1991. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings. 129–140. https://doi.org/10.1007/3-540-46766-1_9

[65] Andrea Pellegrini, Valeria Bertacco, and Todd Austin. 2010. Fault-based attack of

RSA authentication. In Proceedings of the conference on Design, automation and
test in Europe. European Design and Automation Association, 855–860.

[66] David Pointcheval and Jacques Stern. 2000. Security Arguments for Digital

Signatures and Blind Signatures. Journal of cryptology 13, 3 (2000), 361–396.

[67] Miodrag Potkonjak, Ani Nahapetian, Michael Nelson, and Tammara Massey.

2009. Hardware Trojan horse detection using gate-level characterization. In

Proceedings of the 46th Design Automation Conference, DAC 2009, San Francisco,
CA, USA, July 26-31, 2009. 688–693. https://doi.org/10.1145/1629911.1630091

[68] Jeyavijayan JV Rajendran and Siddharth Garg. 2017. Logic Encryption. In

Hardware Protection through Obfuscation. Springer, 71–88.
[69] Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh Karri. 2013. Is split

manufacturing secure?. In Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 1259–1264.

[70] Wolfgang Rankl and Wolfgang Effing. 2004. Smart card handbook. John Wiley &

Sons.

[71] RT. 2013. ’We cannot trust them anymore’: Engineers abandon

encryption chips after Snowden leaks. https://www.rt.com/usa/

snowden-leak-rng-randomness-019/. (December 2013).

[72] Bruce Schneier. 2013. Surreptitiously Tampering with Computer Chips.

https://www.schneier.com/blog/archives/2013/09/surreptitiously.html. (Novem-

ber 2013).

[73] Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Journal
of cryptology 4, 3 (1991), 161–174.

[74] Hua Hong Semiconductor. 2017. Hua Hong Semiconductor Limited. http://www.

huahonggrace.com/html/about.php. (May 2017).

[75] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[76] Thomas Shrimpton and R Seth Terashima. 2015. A provable-security analysis of

IntelâĂŹs secure key RNG. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 77–100.

[77] S Skorobogatov. 2012. Hardware assurance and its importance to national security.

Available On-line:< http://www. cl. cam. ac. uk/sps32/secnews. html (2012).

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1596

https://doi.org/10.1007/978-3-642-04138-9_28
https://doi.org/10.1109/AsianHOST.2016.7835561
https://doi.org/10.1109/AsianHOST.2016.7835561
https://ec.europa.eu/digital-single-market/en/news/questions-answers-trust-services-under-eidas
https://ec.europa.eu/digital-single-market/en/news/questions-answers-trust-services-under-eidas
http://www.smics.com/eng/foundry/technology/tec_envm.php
http://www.smics.com/eng/foundry/technology/tec_envm.php
https://www.usenix.org/conference/15th-usenix-security-symposium/n-variant-systems-secretless-framework-security-through
https://www.usenix.org/conference/15th-usenix-security-symposium/n-variant-systems-secretless-framework-security-through
https://doi.org/10.1109/MC.2004.1260725
https://doi.org/10.1007/s00145-006-0347-3
https://wiki.freebsd.org/201309DevSummit/Security
https://doi.org/10.1109/SP.2010.18
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-amt-vulnerability-announcement.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-amt-vulnerability-announcement.html
http://www.usenix.org/events/leet08/tech/full_papers/king/king.pdf
http://www.usenix.org/events/leet08/tech/full_papers/king/king.pdf
https://doi.org/10.1145/2527317.2527318
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/1629911.1630091
https://www.rt.com/usa/snowden-leak-rng-randomness-019/
https://www.rt.com/usa/snowden-leak-rng-randomness-019/
https://www.schneier.com/blog/archives/2013/09/surreptitiously.html
http://www.huahonggrace.com/html/about.php
http://www.huahonggrace.com/html/about.php

[78] Sergei Skorobogatov and Christopher Woods. 2012. Breakthrough Silicon Scan-

ning Discovers Backdoor in Military Chip. In Cryptographic Hardware and Embed-
ded Systems - CHES 2012 - 14th InternationalWorkshop, Leuven, Belgium, September
9-12, 2012. Proceedings. 23–40. https://doi.org/10.1007/978-3-642-33027-8_2

[79] Oliver Soll, Thomas Korak, Michael Muehlberghuber, and Michael Hutter. 2014.

EM-based detection of hardware trojans on FPGAs. InHardware-Oriented Security
and Trust (HOST), 2014 IEEE International Symposium on. IEEE, 84–87.

[80] StarChip. 2017. Smart CARD ICs. http://www.starchip-ic.com/en/

smart-card-chips/. (May 2017).

[81] Douglas R. Stinson and Reto Strobl. 2001. Provably Secure Distributed Schnorr

Signatures and a (t, n) Threshold Scheme for Implicit Certificates. In Information
Security and Privacy, 6th Australasian Conference, ACISP 2001, Sydney, Australia,
July 11-13, 2001, Proceedings (Lecture Notes in Computer Science), Vijay Varad-

harajan and Yi Mu (Eds.), Vol. 2119. Springer, 417–434. https://doi.org/10.1007/

3-540-47719-5_33

[82] Lorenzo Strigini. 2005. Fault tolerance against design faults. (2005).

[83] Petr Svenda. 2014. Nuances of the JavaCard API on the cryptographic smart

cards–JCAlgTest project. (2014).

[84] Mohammad Tehranipoor and Cliff Wang. 2011. Introduction to hardware security
and trust. Springer Science & Business Media.

[85] Taiwan Semiconductor Manufacturing Company Limited TSMC. 2017. Value

Chain Aggregator - KM211. http://www.tsmc.com/english/dedicatedFoundry/

services/value_chain_aggregator_km211.htm. (May 2017).

[86] Sean Turner, Russ Housley, Tim Polk, Daniel RL Brown, and Kelvin Yiu. 2009.

Elliptic curve cryptography subject public key information. (2009).

[87] Riad S. Wahby, Max Howald, Siddharth Garg, abhi shelat, and Michael Wal-

fish. 2016. Verifiable ASICs. In IEEE Security and Privacy (Oakland) 2016,
eprint/2016/1243.

[88] Adam Waksman and Simha Sethumadhavan. 2010. Tamper evident microproces-

sors. In Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 173–188.
[89] AdamWaksman and Simha Sethumadhavan. 2011. Silencing hardware backdoors.

In Security and Privacy (SP), 2011 IEEE Symposium on. IEEE, 49–63.
[90] Adam Waksman, Matthew Suozzo, and Simha Sethumadhavan. 2013. FANCI:

identification of stealthy malicious logic using boolean functional analysis. In

2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013. 697–708. https://doi.org/10.1145/2508859.
2516654

[91] Xinmu Wang. 2014. Hardware trojan attacks: Threat analysis and low-cost coun-
termeasures through golden-free detection and secure design. Ph.D. Dissertation.
Case Western Reserve University.

[92] Xinmu Wang, Tatini Mal-Sarkar, Aswin Raghav Krishna, Seetharam Narasimhan,

and Swarup Bhunia. 2012. Software exploitable hardware Trojans in embedded

processor. In 2012 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems, DFT 2012, Austin, TX, USA, October 3-5, 2012.
55–58. https://doi.org/10.1109/DFT.2012.6378199

[93] Xinmu Wang, Seetharam Narasimhan, Aswin Krishna, Tatini Mal-Sarkar, and

Swarup Bhunia. 2011. Sequential hardware trojan: Side-channel aware design and

placement. In Computer Design (ICCD), 2011 IEEE 29th International Conference
on. IEEE, 297–300.

[94] Yujie Wang, Pu Chen, Jiang Hu, and Jeyavijayan Rajendran. 2016. The cat

and mouse in split manufacturing. In Proceedings of the 53rd Annual Design
Automation Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016. 165:1–165:6.
https://doi.org/10.1145/2897937.2898104

[95] S. Wei and M. Potkonjak. 2012. Scalable Hardware Trojan Diagnosis. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 20, 6 (June 2012),

1049–1057. https://doi.org/10.1109/TVLSI.2011.2147341

[96] Sheng Wei and Miodrag Potkonjak. 2013. The undetectable and unprovable

hardware trojan horse. In Proceedings of the 50th Annual Design Automation
Conference. ACM, 144.

[97] Sheng Wei and Miodrag Potkonjak. 2014. Self-Consistency and Consistency-

Based Detection and Diagnosis of Malicious Circuitry. IEEE Trans. VLSI Syst. 22,
9 (2014), 1845–1853. https://doi.org/10.1109/TVLSI.2013.2280233

[98] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis Sylvester.

2016. A2: Analog malicious hardware. (2016).

[99] Age Yeh. 2012. Trends in the global IC design service market. DIGITIMES research
(2012).

[100] Ying C Yeh. 1996. Triple-triple redundant 777 primary flight computer. In

Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE, Vol. 1. IEEE,
293–307.

[101] Ying C Yeh. 1998. Design considerations in Boeing 777 fly-by-wire computers.

In High-Assurance Systems Engineering Symposium, 1998. Proceedings. Third IEEE
International. IEEE, 64–72.

[102] Jie Zhang, Feng Yuan, Lingxiao Wei, Yannan Liu, and Qiang Xu. 2015. VeriTrust:

Verification for Hardware Trust. IEEE Trans. on CAD of Integrated Circuits and
Systems 34, 7 (2015), 1148–1161. https://doi.org/10.1109/TCAD.2015.2422836

A MULTI-SIGNATURE SCHEME PROOF
In this Appendix we discuss the security of our construction intro-

duced in Section 4.5. Before moving to the proof of the Theorem 4.1

we recall the definition of the one-more discrete logarithm problem

[13] and security definitions for multi-signatures schemes.

Definition A.1 (N -DL). A group generatorG(1λ) is a probabilistic

polynomial time algorithm that on input a security parameter λ
returns a pair (p,G) where p is a λ-bit prime and G is a random

generator of a cyclic group G of order p.
An algorithm A to solve the N -DL problem is a probabilistic

polynomial time algorithm which receives as input an instance

(p,G) ← G(1λ) and can access two oracle Och ,Odloд . Upon re-

quest, the former returns a random group element in G. The lat-
ter gets as input a group element C and returns its discrete loga-

rithm with respect to the generator G, i.e. such that C = x ·G. Let
C1,C2, . . . ,CN be the challenges returned by Och . We say that ad-

versaryA wins if he returns c1, . . . , cN ∈ Zp satisfyingCi = ci ·G
by using a number of queries to Odloд strictly smaller than N .

Next, we recall definitions of multi-signatures of [14], adapted

to our settings.

Definition A.2 (Multi-Signature). A multi-signature scheme is a

tuple (KeyGen, Siдn,Veri f y) of algorithms.

❖ KeyGen: This is an interactive protocol between n parties

ICi to jointly compute a common shared verification key Y
and n individual signing keys xi associated with Y .

❖ Siдn: This is an interactive protocol between the n ICs that

given input a common messagem and their individual secret

keys xi allows to compute a shared signature Σ onm.

❖ Veri f y: This is a deterministic algorithm that given in input

the common verification key Y , a signature Σ and a message

m returns 1 if the signature is valid and 0 otherwise.

In the construction presented in Section 4.5 the key generation

protocol is handled by the DKPG; Siдn is described by Algorithm 4.7

and Figures 4 and 5; Veri f y consists of the verification algorithm

of standard Schnorr signatures on the aggregated signature using

the shared verification key Y .

Definition A.3 (Security Game). We consider and adversary F

attempting to forge a multi-signature. The attack is modelled as a

game in three phases.

❖ Setup: We assume the key generation protocol among n
parties to be successfully executed and returning a shared

public key Y and a set of n secret keys xi .
❖ Attack: We assume the forger F to corrupt n − 1 ICs and

learn their own individual secret keys xi . Without loss of

generality, we assume user IC1 to be the only honest user

in the system. The forger F interacts as the host over qS
interactive signing sessions with IC1 and arbitrarily deciding

on the messages to be signed. LetQ to be the set of messages

m used in the interactive signing sessions.

❖ Forgery: At the end of its execution, the forger F returns a

signature Σ on a messagem which was not used on a signing

session with IC1, namely m < Q . The forger F wins the

game if Veri f y(Y ,m, Σ) = 1.

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1597

https://doi.org/10.1007/978-3-642-33027-8_2
http://www.starchip-ic.com/en/smart-card-chips/
http://www.starchip-ic.com/en/smart-card-chips/
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
http://www.tsmc.com/english/dedicatedFoundry/services/value_chain_aggregator_km211.htm
http://www.tsmc.com/english/dedicatedFoundry/services/value_chain_aggregator_km211.htm
https://doi.org/10.1145/2508859.2516654
https://doi.org/10.1145/2508859.2516654
https://doi.org/10.1109/DFT.2012.6378199
https://doi.org/10.1145/2897937.2898104
https://doi.org/10.1109/TVLSI.2011.2147341
https://doi.org/10.1109/TVLSI.2013.2280233
https://doi.org/10.1109/TCAD.2015.2422836

We model the security of the scheme in the random oracle

model [15, 37]. This means that we assume the hash function to

behave as an ideal random function. This is modelled by giving

to the adversary F access to an oracle OHash returning random

values in a range {0, 1}λ .

The advantage advms (F) of algorithm F in forging a multi-

signature is defined to be the probability that F wins the above

game, where the probability is taken over the random coins of F ,

IC1, DKGP and the random oracle. We say that F (qS ,qH , ϵ)-breaks
the multi-signature scheme if it participates in qS signing sessions

with IC1, makes at most qH queries to OHash and the advantage

advms (F) ≥ ϵ .

We now restate and prove Theorem 4.1.

Theorem 4.1. If there exists a (qS ,qH , ϵ)-forger F for the multi-
signature scheme described in Figures 4 and 5 interacting inqS = O(1)
signature queries, making at most qH Hash queries and succeeding
with probability ϵ , then there exists an algorithm A that solves the
(qS + 1)-DL problem with probability at least

δ ≥
ϵ2

q
qS+1
H

− neдl(λ)

Proof. We start by describing the idea behind the reduction.

Assume for a moment that a forger F is able to produce two valid

signatures (σ , ϵ) and (σ ′, ϵ ′) on the same message, i.e.

ϵ = Hash(σ ·G +ϵ ·Y | |H (m)| |j) ϵ ′ = Hash(σ ′ ·G +ϵ ′ ·Y | |m | |j)
(2)

and such that

R = σ ·G + ϵ R = σ ′ ·G + ϵ ′ · Y (3)

Dividing the two equations we obtain

(σ − σ ′) ·G = (ϵ ′ − ϵ) · Y

then we get the discrete logarithm of Y with respect toG by com-

puting (σ − σ ′) ∗ (ϵ ′ − ϵ)−1 mod p.
Given a forger F to output forged signatures, we construct an

adversary A for solving the (qS + 1)-DL problem. In the process,

A has to simulate signatures as produced by IC1 and answer to the

random oracle queries made by F during the attack, as it happen

in the security game for multi-signatures. In case F succeeds in

forging a first signature, then adversary A rewinds F and replay

him reusing the same coin tosses used in the first execution. How-

ever in the second run of F , the adversary replaces the answer of

the random oracle query corresponding to the forgery produced

in the first execution with a fresh random string in the range of

the hash function. By applying a forking lemma type of argument

[66] one can then argue that with good probability the replay of

F will return a new forgery which has the same R as in the first

forged signature but different (σ ′, ϵ ′). Once adversary A obtains

two signatures of this kind, he will be able to compute the discrete

logarithm of Y as shown above
3
.

The description ofA is given in Algorithm A.1. Throughout the

execution, adversary A keeps track of the random oracle queries

made by F using a list L[·]. Without loss of generality we assume

3
The adversary described in the proof actually has to computes the discrete logarithm

of Y1 , the public key of IC1 . This is trivial to do once the adversary A has obtained

the discrete logarithm of Y , the shared verification key.

the adversary F checks all the signature queries made to her oracle,

as well as the signature he attempts to forge.

We can summarise the interaction of adversaryA with F in the

following phases.

❖ Setup Phase:A initialises an empty list L. She picks a random
string ρ for the randomness used by adversary F as well as

qH random values πi from the range of the hash function,

hereby set to be {0, 1}λ . The adversary then simulates the

multi-signature key generation process: she generates pairs

of public and secret keys for the corrupted cards IC2, . . . , ICn ,
as honest cards would do, and generates the public key of IC1

by querying his own challenge oracle Y1 ← Och . Finally, she

generates the shared public key Y as in the key generation

protocol (Algorithm 4.3). Then she starts adversary F on

inputs the shared verification key Y , the list of verification
key-shares and the n − 1 signing key corresponding to the

corrupted ICs.

❖ Caching Phase: the adversary F , acting as the hosts, initiates

the signature process by sending Init to IC1. In this phase

the adversary emulates the caching phase of IC1 by making

qS queris to Och and returning the list of group elements to

F .

❖ Random Oracle Queries: whenever F makes a new query

(Hash,M) to its random oracle, adversary A answers it by

picking the next unused random string in {π1,π2, . . . ,πqH }.
She keeps track of F requests to answer consistently.

❖ Signing Queries: in this phase the forger submits signature

queries as the host in the system. The adversary A hashes

the message, consistently with the list of random oracle

queries and uses her oracle Odloд to compute the requested

signature.

❖ Replay: F eventually attempts to output a forged multi-

signature (σ , ϵ). If the signatures verifies, A rewinds adver-

sary F to the beginning and replay it on input the same

random coins ρ and same inputs and reusing the same re-

sponse in the caching phase. A answers the random oracle

and signing queries as in the first execution apart form the

random oracle query which generated ϵ . A answers this

query by picking a random string π ′i ∈ {0, 1}
λ
. The forger

attempts to produce a new signature (σ ′, ϵ ′). If conditions
(2) and (3) are met, then A computes the discrete logarithm

of Y , and thus the discrete logarithm of Y1. Given the latter

and the responses ofOdloд she can also compute the discrete

logarithm of the R1, j , the outputs of Och .

In order to succeed in her game, adversaryA has to simulate the

interaction between F and IC1 as described in the security game

of multi-signatures. The above adversary perfectly simulates the

multi-signature key generation phase, the caching phase of IC1 and

the random oracle queries of F . Extra care needs to be taken for

signature queries simulating the interaction of IC1 and F .

Simulation of Signature Queries. Note that differently from

standard Schnorr signatures, we cannot simulate a signature by

programming the random oracle. This is because the caching phase

of IC1 fixes the randomness used in the signatures beforeA knows

the messages corresponding to them, preventing him to program

the random oracle accordingly. Thus, in order to simulate IC1’s

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1598

Algorithm A.1: Adversary A
Och,Odloд

F
against (qS + 1)-DL

Input : (p,G).
Output :qS + 1 discrete logarithms using qS calls to Odloд

1 Setup Phase
2 ctr = 0, j = 1

3 Set L[·] = ∅, J [·] = ∅

4 Set random string ρ for adversary F .

5 Pick π1,π2, . . . ,πqH ← {0, 1}
λ

6 Y1 ← Och
7 for i = 2 to n do
8 xi ← Zp
9 Yi = xi ·G ← Och

10 Y =
∑n
i=1 Yi

11 Start F (Y , (Y1, . . . ,Yn), (x2, . . . ,xn); ρ)

12 Caching Phase: Init ← F
13 R1,1,R1,2, . . . ,R1,qS ← Och
14 Run F (R1,1,R1,2, . . . ,R1,qS)

15 Random Oracle Queries: (Hash,M) ← F
16 if L[M] = ⊥ then
17 ctr+ = 1

18 L[M] = ctr

19 k = L[M]

20 Run F (πk)

21 Signing Queries: (Siдn, (R,H (m), j ′)) ← F
22 if j ′ , j then
23 return ⊥ to F
24 else
25 j+ = 1

26 if L[R | |H (m)| |j ′] = ⊥ then
27 ctr+ = 1

28 L[R | |H (m)| |j ′] = ctr

29 k = L[[R | |H (m)| |j ′]]

30 J [j ′] = k

31 ϵj′ = πk
32 σj′ ← Odloд(R1, j′ − h · Y)

33 Run F ((σj′ , ϵj′))

34 (Forдery, (m, (σ ,πi))) ← F

35 if Veri f y(Y ,m, (σ ,πi)) = 0 then
36 return ⊥

37 Replay F

38 (Forдery, (m, (σ ′,π ′i))) ← F

39 if Veri f y(Y ,m, (σ ′,π ′i)) = 0 then
40 return ⊥
41 x1 = (σ − σ

′) ∗ (πi
′ − πi)

−1 −
∑n
j=2 x j mod p

42 for j = 1 to qS do
43 k = J [j]

44 r1, j = sj + x1 ∗ πk mod p

45 return (x1, r1,1, . . . , r1,qS)

signatures A takes advantage of her Odloд oracle. As A has to

make fewer queries toOdloд than toOch , she is allowed one call to

the discrete logarithm oracle for each signature in the first round.

The problem arises when A replays the forger F . In this execu-

tion we want F to behave exactly as in the first round up to the

point he queries (a second time) the random oracle on the forged

message. This means that in the caching phaseA is forced to reuse

the same random group elements as in the first execution. Since

A cannot make new queries to the challenge oracle, she cannot

make any more queries to the Odloд during the second execution

of F . Therefore, in the second execution, A has to simulate signa-

tures (on potentially different messages) without the help of her

oracle. Assume for a moment that the index of hash queries used

for the creation of signatures is the same in both executions. In this

case, the response of the random oracle on the corresponding hash

queries will be the same, even if the message has changed during

the two execution. Since the the output of the hash is the same

in both runs, A is able to answer the signature queries by simply

recycling the signature produced in the first execution.

Computation of Discrete Logarithm. Under the condition that

A simulates F ’s environment, the above adversary succeeds to

extract the discrete logarithm of Y1 as long as the index of the

hash query associated to the forged signatures is the same in both

runs. In this case conditions (2) and (3) are met with overwhelming

probability and A can proceed to compute discrete logarithm as

illustrated above.

From the above observations we can summarise two conditions

which make adversary A to succeeds in her game:

(1) The index i of the random oracle query corresponding to the

forged signature is the same in both executions of F .

(2) The set J of indexes of random oracle queries corresponding

to signature queries is the same in both execution of F .

By assuming that F forges signatures with non-negligible prob-

ability ϵ , the following lemma shows the above conditions holds

with non-negligible probability. This concludes the proof as it gives

a bound δ , the probability of success of A. �

The following lemma is an adaptation of the generalized forking

lemma of [14] and Lemma 5 of [61].

Lemma A.4. Let F be an adversary producing a multi-signature
forgery with probability ϵ . Assuming that F makes at most qH hash
queries and interacts in qS = O(1) signatures, then by replaying F ,
A succeeds with probability δ ≥ ϵ 2

qqS +1H

− neдl(λ).

Proof. Let i ∈ [qH] be the index of the random oracle query

associated to the forgery returned by F and let J ⊆ [qH], |J | ≤ qS
be the set of indexes of oracle queries associated with the signatures

queries made by F . Call i and J the target indexes. Note that J and
{i} are disjoint as a valid forgery cannot be on a message queried

on the signature oracle.

For any fixed i, J let ϵi, J be the probability that F produces

a forgery on target indexes i, J . The probability of F forging a

signature is given by ϵ =
∑
i, J ϵi, J .

Consider now all the random inputs given to F . These includes

the random coins ρ, his inputs, the response of the caching phase,
the responses of the random oracle queries and the signature

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1599

queries. We split these into: the i-th response to the random oracle

query, πi , and everything else, which we call R. Consider now a

matrixMi, J with one column for every possible answer to πi and
one row for any possible string R. The entries of the matrix are 1,

in case R and πi will make F produce a forgery for target indexes

i, J , and 0 otherwise. For any i, J , let ϵi, J ,R be the probability of the

adversary F to produce a forgery given randomness R. This cor-
responds to the density of the row R in the matrixMi, J . Similarly,

ϵi, J corresponds to the density of the matrixMi, J , namely

ϵi, J =
1

|R |

∑
R

ϵi, J ,R

In a similar fashion we define δi, J to be the probability of pro-

ducing two forgeries on the same target indexes i, J while replaying
the adversary on same randomness and replacing πi with a random

π ′i ← {0, 1}
λ
. Similarly, we also define δi, J ,R for which we have

δi, J =
1

R

∑
R

δi, J ,R

We now relate probability δ of adversaryA to F . The probability

δi, J ,R corresponds to the event of sampling randomness R for the

adversary F , hitting a first 1 in the row R ofMi, J and then probe

another random column in the same row and hitting another 1.

Since the two runs are independent, the probability of succeeding

in the replay attack is

δi, J ,R = ϵi, J ,R ∗

(
ϵi, J ,R −

1

2
λ

)
Replacing the above in the expression of δi, J and applying the

Cauchy-Schwartz inequality give the following

δi, J =
1

|R |

∑
R

δi, J ,R

=
1

|R |

(∑
R

ϵ2i, J ,R −
ϵi, J ,R

2
λ

)
≥

(
1

|R |

∑
R

ϵi, J ,R

)
2

−
ϵi, J

2
λ

= ϵ2i, J −
ϵi, J

2
λ

Given the above we get the following bound on δ

δ =
∑
i, J

δi, J ≥
∑
i, J

(
ϵ2i, J −

ϵi, J

2
λ

)
=

∑
i, J

ϵ2i, J −
ϵ

2
λ

≥
1

q
qS+1
H

©­«
∑
i, J

ϵi, J
ª®¬
2

−
ϵ

2
λ

=
ϵ2

q
qS+1
H

−
ϵ

2
λ

where the last inequality is obtained by applying again the Cauchy-

Schwartz inequality. �

B PROTOTYPE EXTENSIONS
Our Myst prototype can also be extended to use multiple ICs boards,

if higher throughput is needed. Figure 11 depicts an instantiation

with 240 ICs: two boards holding 120 ICs each (60 ICs on each

side) and an Artix-7 FPGA to facilitate the inter-IC communication

within each board.

Figure 11:Myst’s prototypewith 240 JavaCards fitted into an
1U rack case.

Session G5: Hardening Hardware CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1600

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definition
	2.2 Threat Model

	3 Architecture
	3.1 Access Control Layer
	3.2 Reliability Estimation

	4 Secure distributed computations
	4.1 Distributed Public Key Generation
	4.2 Encryption
	4.3 Decryption
	4.4 Random Number Generation
	4.5 Signing
	4.6 Key Propagation

	5 Implementation
	5.1 Hardware Design & Implementation
	5.2 Software
	5.3 System States

	6 Evaluation
	6.1 Performance Impact
	6.2 Scalability & Extensibility
	6.3 Tolerance levels
	6.4 Other Considerations

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Multi-signature Scheme Proof
	B Prototype Extensions

