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We present a triangular six-node shell element that represents an important improvement over a
recently published element [1]. The shell element is formulated, like the original element, using the MITC
procedure. The element has the attributes to be spatially isotropic, to pass the membrane and bending
patch tests, to contain no spurious zero energy mode, and is formulated without an artificial constant.
In particular, the improved element does not show the instability sometimes observed with the earlier
published element. We give the convergence behavior of the element in discriminating membrane-
and bending-dominated benchmark problems. These tests show the effectiveness of the element.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A large amount of research has been expended over the past
four decades on the development of shell finite elements, and yet
more effective triangular shell elements are still much needed,
see Refs. [1-3] and the references therein. In particular, the search
for a general and uniformly effective six-node triangular shell ele-
ment continues, and indeed the development of such an element
represents one of the remaining key challenges in finite element
analysis. While such an element is, in the first instance, sought
for linear analysis, of course, the formulation should, as well, be di-
rectly extendable to general nonlinear analysis.

Numerous shell analyses are conducted routinely but very fine
discretizations and quadrilateral elements are typically used [4].
An effective general curved six-node shell element would be very
useful in that: (i) it can be employed to discretize virtually any
shell geometry, (ii) it can be used to model shells overlaid on
three-dimensional solids that are represented in free-form mesh-
ing by 10 or 11-node tetrahedral solid elements, and (iii) it would
give accurate solutions when using relatively coarse meshes.

Originally, to a large extent, shell elements were developed by
simply superimposing plate bending and in-plane membrane
behavior, and flat facet-shell elements were proposed. As now well
known, such elements are not truly representing shell behavior
and indeed may not even converge depending on which shell prob-
lem is solved [2]. The most promising formulation approach for a
general shell element is based on the use of the “basic shell model”
[2,5,6]. This mathematical model is obtained from the 3D contin-
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uum by introducing the Reissner-Mindlin kinematical hypothesis
and the plane stress assumption for the mid-surface and the mate-
rial layers parallel to that surface. Ideally, the shell element should
then converge reliably and optimally to the exact solution of the
mathematical model and for any well-posed shell problem. How-
ever, the usual displacement interpolation leads to locking and a
scheme needs to be used to alleviate this detrimental behavior.

Successful quadrilateral general shell elements have been devel-
oped using the mixed-interpolated-tensorial-component ap-
proach, that is, the MITC procedure [7-11]. The advantage of this
approach is that the elements are general, that is, they can be used
for general shell geometries in linear and nonlinear analyses, and
the elements have only the degrees of freedom of displacement-
based elements with negligible additional computational cost.
The MITC4 element is now widely used [4] and can also be em-
ployed in a hierarchical manner to model additional 3D effects
[12]. While tight mathematical convergence proofs of the MITC
shell elements are not available, and indeed for general geometries
may be out of reach, the elements have been thoroughly tested on
appropriate ‘discriminating and revealing’ test problems [2,11-16].
However, these studies largely focused on the use of quadrilateral
elements, equally successful general triangular shell elements are
more difficult to develop.

On the other hand, the family of MITC plate bending elements
contains quadrilateral and triangular elements that are very effec-
tive, and for plate bending solutions practically optimal [17-19].
Thorough mathematical convergence analyses and results of
numerical studies have been published, see e.g. Refs. [20-23].
However, except for the MITC4 element, the elements contain
internal nodes with rotational degrees of freedom only, which ren-
ders them not effective for extension to shell analyses and general


mailto:kjb@mit.edu
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc

1452

R

e, =ay+b,r+cys

e, = a, +b,r+c;,(1=r—ys)

D.-N. Kim, KJ. Bathe/Computers and Structures 87 (2009) 1451-1460

e.=a,+b,r+c,s+s(dr+e.s)

st

=a, +b,r+c,s—r(dr+e,s)

Fig. 1. Interpolations and tying points used for the MITC6 shell element; 11 =s1 =351z, o = =3+51 and r3=s3=3
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Fig. 2. Analysis of a hyperboloid shell problem. The mid-surface is given by
x> +2> =14y% (-1 <y<1). The shell is fixed at its bottom and free at its top;
E=2.0 x 10", v=1/3, t/L = 1/10000 (where t denotes the thickness of the shell, see
Section 4, and L=1); the loading is the pressure loading p(0)=pocos(20),
Po=1.0 x 10%. The problem is solved using the original MITC6 shell element of
Ref. [1].

nonlinear analysis. Still, the fact that excellent MITC triangular
plate bending elements exist encourages the search for an effective
MITC triangular shell element.

A triangular six-node shell element based on the MITC approach
was recently presented by Lee and Bathe [1].! This element has the
desirable properties of not containing a spurious zero energy mode
or artificial factor, being spatially isotropic, having the same degrees
of freedom at every node, passing the plate bending and membrane
patch tests, showing good convergence behavior in plate bending
analyses, and reasonable convergence behavior in the analysis of

1 When we refer to the MITC6 shell element of Ref. [1], we mean the MITC6a shell
element formulated and tested in that reference.

‘discriminating and revealing’ shell test problems. In particular,
these shell test problems include the analysis of a hyperboloid shell
with, at both ends, either clamped or totally free conditions. We con-
sider these two problems to be excellent benchmark problems to
test an element formulation for its capacity to predict membrane-
dominated and bending-dominated shell behaviors.

However, additional testing of the element by Chapelle et al.
[24,25] showed a surprising element peculiarity. Namely, when
used to model certain shell geometries and boundary conditions,
the solution becomes unstable, although the single element does
not contain a spurious zero energy mode. An unphysical oscillatory
response is predicted, somewhat like observed in some solutions
with the 4/1 element of the displacement-pressure formulation
for incompressible materials [19]. Chapelle et al. stabilized the for-
mulation by replacing a part of the mixed-interpolated shear strain
energy by the unreduced displacement-based shear strain energy.
As is typical in such techniques of stabilization, a factor is intro-
duced to allocate the amount of stabilization [2,19,24]. Depending
on the shell problem solved, if the factor is too large the element
behavior deteriorates significantly and if the factor is too small,
the instability shows up. While the magnitude of the stabilizing
factor is based on some analysis, ideally, we would have a stable
and effective formulation without such factor. This is particularly
desirable when the element formulation is to be used in general
nonlinear analysis. Hence we continued our search for a more reli-
able and accurate triangular shell element.

In the search for more effective elements, the fundamental dif-
ference between the MITC formulation approach and the ‘en-
hanced assumed strain’, or EAS, formulation approach is
important [26], although, of course, they are theoretically related.
Both techniques start with the displacement formulation and aim
to improve its predictive capability. Then, in the MITC formulation,
the strain assumptions inherently used in the displacement formu-
lation are improved by not including certain terms of the displace-
ment-based strain space. In this way, many MITC elements can, in
principle, be developed even for the same displacement assump-
tions, and the key is to identify the optimal formulation. Hence,
when searching for an effective six-node MITC triangular shell ele-
ment, many possibilities arise, some of which were studied in Refs.
[1,24,25].

On the other hand, in the EAS formulations, new strain fields are
added to those already inherently used in the displacement formu-
lation, like first proposed by Wilson et al. with incompatible dis-
placement modes, see Refs. [27,19] and the references therein.
The EAS approach is generally implemented using static condensa-
tion for the additional strain terms on the element level. This re-
sults into some additional cost, and complexity in nonlinear
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Fig. 3. Isotropic element test of the six-node triangular shell element, taken from Ref. [1].
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Fig. 4. Mesh used for patch tests.

analysis, not present in the MITC formulations. While there exists
potential in developing elements based on the EAS method, a diffi-
culty encountered is that stable formulations in linear analysis may
become unstable in nonlinear analysis [28,29].

In an additional approach to obtain more effective elements, the
‘discontinuous Galerkin (DG) method’ can be pursued and shell
elements can be formulated within this framework [30,31]. In this
approach, stability parameters are used and significant additional
computational cost is present, even when static condensation can
be employed. The performance of such shell elements in nonlinear
solutions need also still be studied.

An important point is that any newly formulated element
should not only be tested on rather simple shell analysis problems,

Table 1

Basic test results of MITC6 shell elements.

Element Isotropic Zero energy Membrane Bending
element test mode test patch test patch test

The original MITC6 Pass Pass Pass Pass

The improved MITC6  Pass Pass Pass Pass

but also on the discriminating problems proposed in Refs. [2,13]
and used, for example, in Refs. [1,2,6,11,15,24,25]. The actual per-
formance of a shell element formulation will only be revealed
when solving these or equivalent problems and measuring the
solution errors in appropriate norms.

The objective in this paper is to present a further development
of the MITC6 shell element of Ref. [1]. The improved MITC6 shell
element represents a simple but effective extension of the original
development. The element is not based on a stabilization scheme
and does not contain any factor to be set. The same membrane
strain and transverse shear strain interpolations as in Ref. [1] are
used, but the interpolated covariant strain components are re-
ferred to an element constant contravariant basis. Of course, the
geometry and the displacement-based strains used in the tying
process are calculated using the varying quantities, as defined
through the discretization of the ‘basic shell mathematical model'.
For plate problems, the improved element reduces to the original
element and hence the results obtained using the original and
the improved elements are identical. Indeed, this is one reason
why we use this specific interpolation of strain components.

In the next sections we first briefly review the original MITC6
shell element, then we present the formulation of the improved
element, and finally we give the numerical results obtained in
the solution of the test problems. These benchmark tests include
the discriminating test problems referred to above. While we con-
sider in this paper only linear analysis, the element formulation
can directly be extended to general nonlinear analysis, which is
an inherent property of the MITC formulations [2,8,19].
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Fig. 5. Shell problem of Fig. 2 solved with the improved MITC6 shell element.
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2. The formulation of the MITC6 shell element

As for displacement-based shell elements, the geometry of the
six-node shell element is interpolated using
6
=1

X(rs,t) => h(r,s)% + % 26: ahi(r,s)Vi (1)
i i=1

where h; is the 2D interpolation function of the standard isopara-
metric procedure corresponding to node i, X; is the position vector
at node i in the global Cartesian coordinate system, and a; and \7§l
denote the shell thickness and the director vector at node i,
respectively.

The displacements of the element are given by

N~

6
t(r,s,t) =Y hi(r,s)ii +5 > ahi(r,s)(-Vho + Vi ) (2)
i=1 i=1
where for node i, #i; is the nodal displacement vector in the global
Cartesian coordinate system, Vi and V}, are unit vectors orthogonal
to Vi and to each other, and o; and p; are the rotations of the direc-
tor vector Vi about Vi and Vi, respectively.

The covariant strain components are calculated using

1. - .
ey =5 (8-l +8& Ui 3)
where
L OX . oi .
gi= o, and i; = o, with ri=rr=sr=t (4)

The basic step in the MITC formulation is to select a set of tying
points k=1,..,n; on the shell mid-surface with coordinates
(rg,s{;), and define the assumed covariant strain components &; as
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Fig. 7. Convergence curves for the clamped plate problem. The bold line shows the
optimal convergence rate.

nij

ej(r,s,t) = hii(r, S)eij}(rs_,sg.t) (5)
k=1

where n;; is the number of tying points for the covariant strain com-
ponent é; and the hf; are the assumed interpolation functions
satisfying
k

h,»j(rfj,sﬂj)zék,, l=1,...71'l,'j (6)
with §;, the Kronecker delta. This tying procedure is carried out on
the elemental level for each individual element. We next express
the displacement-based covariant strain components in terms of
the nodal displacements and rotations

ey = ByU (7)

where B is the strain-displacement matrix and U is the nodal dis-
placement/rotation vector. Thus we obtain

i
~ k B
e,'j = [; hij(r7 S)BU |(rg_,s§.[):| U = BUU (8)
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Fig. 6. Clamped plate subjected to uniform pressure; L=1.0, E=1.7472 x 107, v=0.3 and q = 1.0.
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Fig. 8. Cylindrical shell problem; pressure loading p(0) = po cos(20); both ends are
either clamped or free, see Refs. [1,2]; L=R=1.0, E=2.0 x 10°, v=1/3 and po=1.0

The strain-displacement matrix in Eq. (8) gives the covariant
strain components as a function of the element coordinates r, s,
and t. The constitutive tensor is defined with respect to the local
Cartesian coordinate system in which the plane stress assumption
holds. Hence the assumed covariant strains in Eq. (8) are trans-
formed into that coordinate system at each integration point to ob-
tain the stiffness matrix. The local Cartesian coordinate axes are
given by (E,, E;, E;) where [19]

E =% «E.E—E xE,E =5 9)
[1&sll &l
The key ingredients in the element formulation are the specific
interpolations used for the membrane and transverse shear strains.
Many different possibilities are available but the difficulty is to ob-
tain an effective element that does not contain a spurious zero en-
ergy mode, is spatially isotropic, passes the patch tests, and
performs well in bending-dominated and in membrane-dominated
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Fig. 10. Meshes used for 1/8th of the hyperboloid shell (8 x 8 element mesh) with
symmetry boundary conditions applied. The geometry, material properties and
loading are as in Fig. 2. (a) The graded mesh is used when both ends are fixed and
(b) the uniform mesh is used when both ends are free. The boundary layer of width
64/t is meshed in the graded mesh [1].

problems. The interpolations presented in Ref. [1] are leading to
quite an effective element and are,

€ = ay; + byt + cqiS
éss =ay + bzir + CyiS (]O)
éqq =das; + bgﬂ’ + C3i(] —Tr— S)

for the in-plane strains, as denoted by the subscript i on the coeffi-
cients, where é = 1 {ér + éx} — €, and

e = 1¢ + byr + c1eS + 5(der + €.5)

~ 11
st = Qg + byl + oS — 1(der + €45) (an

for the transverse shear strains, as denoted by the subscript t on the
coefficients. We refer to Ref. [1] for details on how to obtain the
coefficients in Egs. (10) and (11). The interpolations with the tying
points used are shown in Fig. 1.

However, as mentioned above already, and reported first in Ref.
[24] the resulting element shows an instability in the analysis of
certain shell problems, depending on the curvature and the bound-
ary conditions of the shell structure. Fig. 2 shows this instability in
the analysis of a hyperboloid shell, clamped at the bottom and free
at the top. These instabilities, even when seen only in the solution

(b) 0.0
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—A— /L=1/1000
0.6 | —©— L=1/10000 1

log (relative error)

4.0 ! ! !
-1.8 -1.2 -0.6
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Fig. 9. Convergence curves for the cylindrical shell problem (a) when both ends are clamped and (b) when both ends are free. The bold lines show the optimal convergence

rate.
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of certain problems, are clearly undesirable and a remedy needs to
be introduced. Chapelle et al. [24,25] discussed in depth the diffi-
culty to obtain an improved triangular shell element that shows
all the desirable properties and no instability, and presented a sta-
bilization of the MITC6 element. However, as is typical in stabilized
formulations [2,19] a stabilization factor is introduced. In the next
section we improve the original element formulation in a different
way, without the use of a factor, while preserving the other desir-
able properties of the original element.

3. The improved MITC6 shell element

The basic approach in this formulation is as presented above.
However, instead of using Eq. (5), we use the interpolation

- jj

ei(r,s,t) = Zh;(r, s)eﬁ|(r§_55_[) (12)
k=1 vy

where

&y =eu(@ - g)(8 &) with g(rs.t)=g(1/3,1/3,0) (13)

Here we imply summation over the indices k and [, and the
interpolation functions are those introduced in Ref. [1], see Fig. 1.
Therefore, the same form of interpolation as given in Egs. (5) and
(6), is used in the improved element, but the interpolated strains
are given in the basis (g',g%,8") and the é; are employed instead
of the e; to evaluate the coefficients of the interpolation functions.
Except for using the base vectors (g,,g;,8;), constant in r and s, in
the interpolations instead of the base vectors (g;,&s,8;), there is
no difference in the element formulations. Using Eq. (12) the strain
terms in the Cartesian basis aligned with the normal shell direction
are calculated for use of the plane stress constitutive law.

Note that, when the element is flat and straight-sided, the base
vectors (g,8s,8;) are constant throughout the element, and the
interpolations given in Eqs. (12) and (13) reduce to those of the ori-
ginal MITC6 element. Hence identical results are obtained when
plate problems are solved.

(a) 0.0

—B— tiL=1/100
—A— t/L=1/1000
—©— t/L=1/10000

log (relative error)

-4.0 L
1.8 1.2 -0.6

log(h)

Considering shell analyses, we note that when the element size
becomes small, the base vectors are almost constant within the
element, and hence the improved shell element must be expected
to perform like the original element. We shall see in the tests given
below that the improved element does not display the instability of
the original element and performs quite well. The reason is the
coupling of strain components used in Eqgs. (12) and (13). In some
respects, a more natural approach is to use membrane and shear
strain interpolations as in Eq. (5), but with different interpolation
functions and tying points than employed in the original MITC6
shell element. Many different schemes can be explored but - with
the criteria to be satisfied - it appears difficult to reach in this way
a significantly improved shell element, see Refs. [1,25].

4. Solution of test problems

In this section we report on the performance of the improved
MITC6 shell element. As mentioned already, the element is isotro-
pic, hence the test of Fig. 3 is passed. The element contains only the
rigid body modes, no spurious zero energy mode, and passes the
membrane and bending patch tests, see Fig. 4 and Table 1.

Of particular interest is the solution of the problem considered
in Fig. 2, to see whether spurious displacements are obtained. Fig. 5
shows the result using the improved MITC6 shell element and we
see that no spurious displacements occur.

In the further tests, we evaluate the s-norm introduced in Ref.
[15] to measure the rate of convergence, since this norm can be ap-
plied in bending-dominated and membrane-dominated shell prob-
lems. The relative error is defined as [1,2,15]

||ﬂr8f - ﬁh”f
= 2
ltdrer 15
where ii,; denotes the reference solution. We consider below the
problems solved in Ref. [1]. For each problem, we use as i, the
solution obtained with a fine enough reference mesh.

In these tests we consider only structures of constant thickness t
and t/L denotes the thickness over length ratio, as e.g. in Refs. [1,2].

relative error = (14)
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Fig. 11. Convergence curves for the hyperboloid shell problem (a) when both ends are clamped and (b) when both ends are free. The bold lines show the optimal convergence

rate.
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Fig. 12. Convergence curves in the A, norm for the fully clamped hyperboloid shell problem solved using (a) the displacement-based six-node element, (b) the original MITC6
element and (c) the improved MITC6 element. Graded meshes are used as shown in Fig. 10(a).

4.1. Analysis of clamped plate problem

The plate problem considered is shown in Fig. 6 and the conver-
gence results are given in Fig. 7. These results should be identical to
those reported for the MITC6 shell element in Ref. [1], and indeed
are for individual nodal displacements. However, slight differences
in the relative errors are observed because the s-norms were calcu-
lated using different implementations.

4.2. Analysis of cylindrical shell problems

The geometry and the loading of the problems are defined in
Fig. 8. Depending on the boundary conditions used, a membrane-

dominated problem (clamped boundary conditions) and a bend-
ing-dominated problem (free ends) are obtained [1,2]. We solve
both problems and the results are given in Fig. 9. The same good
convergence behavior as reported in Ref. [1] is seen.

4.3. Analysis of hyperboloid shell problems

The MITC6 shell element performs very well in the analysis of
the plate and cylindrical shell problems. However, these shells
have rather simple surfaces, the plate is flat and the cylinder has
one principal curvature equal to zero.

Two much more discriminating problems are obtained when
considering the hyperboloid shell shown in Fig. 2. A membrane-
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Fig. 13. Convergence curves in the A, norm without shear terms for the fully clamped hyperboloid shell problem solved using (a) the displacement-based six-node element,
(b) the original MITC6 element and (c) the improved MITC6 element. Graded meshes are used as shown in Fig. 10(a).

dominated problem is obtained by considering clamped-clamped
conditions and a bending-dominated problem is obtained when
considering both edges to be free. It is important to mesh appropri-
ately the boundary layer in the case of the clamped case [2,32], and
we use the meshing of Ref. [1], where half the mesh is used in the
boundary layer of width 6+/f, see Fig. 10. The very thin boundary
layer present in the free case is not specially meshed. Fig. 11 shows
the results obtained which are quite close to those reported for the
original MITC6 shell element [1].

While the convergence behavior is quite good, of course, the
element does not show optimal behavior, which would correspond
to the optimal rate of convergence and no shift in the convergence
curves when the ratio t/L decreases.

Finally we calculate the convergence curves of the element in
the solution of the clamped hyperboloid in the A,;, norm, that is,
we evaluate

Am (ﬁref - ﬁ’h ﬁref - ﬁh)

relative error = ——
A (Uref, Uref)

(15)

where Ap( -, - ) is the exact bilinear form containing the membrane
and shear strain contributions. As well known, displacement-based
elements show excellent convergence in this norm when mem-
brane dominated problems are solved, and indeed display optimal
behavior when properly graded meshes are used [2]. To calculate
An and s we use the displacement-based six-node triangular shell
element with a mesh of 128 x 128 elements.
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(a)

(c)

6

Fig. 14. Rotation magnitudes (y/o2 + %) of the fully clamped hyperboloid shell
problem solved using (a) the displacement-based six-node element, (b) the original
MITC6 element and (c) the improved MITC6 element. The 16 x 16 graded mesh is
used with t/L=1/10000.

Since the solution i, obtained with the MITC6 shell element
will be different from the displacement-based solution, this mea-
sure for convergence is very discriminating. Any small difference
in the calculated shell section displacements and rotations is
magnified in the norm by the fact that the displacement-based
element formulation locks when solving bending dominated
problems.

Figs. 12 and 13 show the results obtained using Eq. (15). We
also show the behaviors of the displacement-based six-node trian-
gular shell element and the original MITC6 shell element, and the
results when excluding the transverse shear strain effects. The
figures show that reasonable convergence is measured with the
improved MITC6 shell element, and that the errors are substan-
tially less when the shear strain effects are excluded. The shear
strain error is largely due to errors in the nodal rotations which
cause spurious shear stresses. Fig. 14 displays the rotations for
one case of number of elements used, and we see that the
improved MITC6 shell element result, compared with the original
element result, is closer to the displacement-based solution.

4.4. A brief study using a stabilized shell element formulation
Here we want to briefly show how a formulation like the one gi-

ven in Ref. [24] based on stabilization performs in the solution of
the problem of Fig. 2. As pointed out already above, the major con-
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Fig. 15. Shell problem of Fig. 2 solved with the stabilized MITC6 shell element. (a)
C=0.1,(b)C=0.2 and (c)C=0.4

Table 2
Normalized maximum displacements of the clamped plate problem in Fig. 6.

Improved MITC6 t/L =1/10000 t/L = 1/10000 t/L = 1/10000

4x4 1.020307 1.014698 1.014628
8$x8 1.012138 1.009567 1.009512
16 x 16 1.006941 1.005911 1.005839
Stabilized MITC6 (C=0.1) t/L=1/10000 t/L = 1/10000 t/L = 1/10000
4x4 1.019691 0.967412 0.306133
8x8 1.012110 1.008506 0.964094
16 x 16 1.006935 1.005893 1.004342
Stabilized MITC6 (C= 0.4) t/L=1/10000 t/L=1/10000 t/1=1/10000
4x4 1.010283 0.698071 0.026907
8x8 1.011874 0.996715 0.673236
16 x 16 1.006914 1.005626 0.994437

cern using a stabilization approach is that a factor has to be set.
Hence we focus on the use of different values of the stabilization
factor.

We obtain a stabilized shell element of the original MITC6 shell
element by replacing a part of the mixed-interpolated shear strain
by the unreduced displacement-based shear strain, see Refs.
[2,19,24].
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to (1=t )l
h h (16)
est = (1 _ CTT> éQ/[IITCG n CTTesDtI

where M and eMTC® are the shear strains calculated from the
MITC6 strain interpolation in Eq. (11) and el and el are the strains
obtained from the displacement interpolation in Eq. (3). In Eq. (16)
C is the stabilization factor to be set, hy is a measure of the element
size and L is the characteristic length. For the problems we consider,
L=1 and we use hy to be the radius of the circumscribed circle
around the corner points of the triangular element. This stabiliza-
tion operates on the transverse shear strains whereas the procedure
of Ref. [24] operates on the shear strain energy. We expect that a
similar stabilization is achieved with the two techniques.

Fig. 15 shows the deformations of the shell considered in Fig. 2
when three different values of C are used. As seen, the deforma-
tions of the shell are quite sensitive to the value of C, but once
the stabilization factor is large enough, the instability of the origi-
nal MITC6 element is no longer present. Hence it appears that sim-
ply a large enough value of C needs to be selected.

However, clearly, if the stabilization factor is too large, the error
in the response prediction (displacements and stresses) is signifi-
cant, see Ref. [24]. We demonstrate this deterioration of the re-
sponse prediction in Table 2 for the analysis of the clamped plate
problem of Fig. 6. Here the stabilization is not needed but when
used with values as in Fig. 15, the response prediction is much
deteriorating.

Hence a major difficulty when using this stabilization approach
is to choose the optimal stabilization factor automatically for each
element for any shell analysis, including nonlinear analysis. This is
hardly possible but assuming that it is achieved, we may find
thereafter that the accuracy of the solution is not acceptable.

5. Conclusions

The objective in this paper was to present a triangular shell ele-
ment which represents a significant improvement over an earlier
published element [1]. Like the earlier presented element, the im-
proved six-node element is based on the MITC formulation ap-
proach and has all the attractive attributes of MITC shell
elements, with respect to ease of use and computational effective-
ness. Actually, the changes in the formulation of the earlier ele-
ment to reach the improvements are quite simple.

The formulation of the improved MITC6 shell element given here
specifically addresses the peculiar unstable behavior reported in Ref.
[24] observed with the earlier published six-node element [1] in the
solution of certain shell problems. Specific shell geometries and
boundary conditions allow the instability to occur. The improved
MITC6 shell element does not show this behavior and in the other
test problems performs practically as well as the earlier published
element. In plate analyses the same results as earlier are obtained.

While the shell element does not show uniformly optimal behav-
ior in all analyses, a property that is extremely difficult to reach [2],
the element shows good convergence behavior. A mathematical
analysis of the discretization scheme would be very valuable and
could yield insight into how the element might be further improved.
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