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1 Introduction

MetaOmics is a browser-based software suite for transcriptomic meta-analysis with R Shiny-based graphi-
cal user interface (GUI). Many state-of-the-art meta-analysis tools are available in this software, including
MetaQC for quality control, MetaDE for differential expression analysis, MetaPath for pathway enrichment
analysis, MetaNetwork for differential co-expression network analysis, MetaPredict for classification analy-
sis, MetaClust for sparse clustering analysis, and MetaPCA for principal component analysis. For detailed
explanation of these omics data-analysis approaches, please refer to (to be updated once the manuscript is
accepted).

In this tutorial, we will go through the installation and usage of MetaOmics step by step using real data ex-
amples. The MetaOmics software suite is publicly available at https://github.com/metaOmics/metaOmics.
This tutorial can be found at https://github.com/metaOmics/tutorial/blob/master/metaOmics_turtorial.
pdf. Each MetaOmics module will be introduced in later sections, and the associated R packages are available
on GitHub at https://github.com/metaOmics.

1.1 Abbreviation terms

• General terms:

– CV: Cross validation

– DE: Differentially expressed

– FDR: False discovery rate

– FC: Fold change

– FPKM: Fragments Per Kilobase Million mapped reads

– QC: Quality control

– RPKM: Read Per Kilobase Million mapped reads

– TPM: Transcripts Per Kilobase Million mapped reads

– CDF: Cumulative density function.

• Methods or tools:

– AW-Fisher: Adaptively weighted Fisher’s method

– CPI: Comparative pathway integrator

– FEM: Fixed effects model

– KS test: Kolmogorov-Smirnov test

– MAPE: Meta analysis pathway enrichment method

– PCA: Principal component analysis

– REM: Random effects model

– SMR: Standardized mean ranks

– TSP: Top scoring pair algorithm

– KNN: K-nearest neighbor algorithm

– MCMC: Markov Chain Monte Carlo
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– PR: Pearson rank correlation

– SR: Spearman rank correlation

– rankProd: product of ranks from multiple studies

– SAM: R package for Significance Analysis of Microarrays

– LIMMA: R package for the analysis of gene expression data arising from microarray or RNA-Seq
technologies

– DESeq2: R package for moderated estimation of fold change and dispersion for RNA-seq data

– edgeR: R package for Empirical Analysis of Digital Gene Expression Data

– voom: R package for precision weights unlock linear model analysis tools for RNA-seq read counts

2 Preliminaries

2.1 Citing MetaOmics

MetaOmics software suite implements many meta-analysis methods from different authors. Please cite ap-
propriate papers if you use MetaOmics, by which the authors will receive professional credits for their work.

• MetaOmics software suite itself can be cited as:

– Ma, T., Huo, Z., Kuo, A., Zhu, L., Fang, Z., Zeng, X., Lin, C.-W., Liu, S., Wang, L., Liu, P.,
et al. (2018). Metaomics: Analysis pipeline and browser-based software suite for transcriptomic
meta-analysis. Bioinformatics

• Review, comparative papers and published R packages:

– Tseng, G. C., Ghosh, D., and Feingold, E. (2012). Comprehensive literature review and statistical
considerations for microarray meta-analysis. Nucleic acids research, 40(9):3785–3799.

– Chang, L.-C., Lin, H.-M., Sibille, E., and Tseng, G. C. (2013). Meta-analysis methods for com-
bining multiple expression profiles: comparisons, statistical characterization and an application
guideline. BMC bioinformatics, 14(1):368.

– Wang, X., Kang, D. D., Shen, K., Song, C., Lu, S., Chang, L.-C., Liao, S. G., Huo, Z., Tang, S.,
Ding, Y., Kaminski, N., Sibille, E., Lin, Y., Li, J., and Tseng, G. C. (2012). An r package suite
for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway
enrichment detection. Bioinformatics, 28(19):2534–2536.

• MetaQC:

– (MetaQC) Kang, D. D., Sibille, E., Kaminski, N., and Tseng, G. C. (2012). Metaqc: objective
quality control and inclusion/exclusion criteria for genomic meta-analysis. Nucleic acids research,
40(2):e15–e15.

• MetaDE:

– (Fisher) Fisher, R. A. (1925). Statistical methods for research workers. Genesis Publishing Pvt
Ltd.

– (AW-Fisher) Li, J. and Tseng, G. C. (2011). An adaptively weighted statistic for detecting dif-
ferential gene expression when combining multiple transcriptomic studies. The Annals of Applied
Statistics, 5(2A):994–1019.

– (AW-Fisher) Huo, Z., Tang, S., Park, Y., and Tseng, G. (2017). P-value evaluation, variability
index and biomarker categorization for adaptively weighted fisher’s meta-analysis method in omics
applications. arXiv preprint arXiv:1708.05084.

– (REM/FEM) Choi, J. K., Yu, U., Kim, S., and Yoo, O. J. (2003). Combining multiple microarray
studies and modeling interstudy variation. Bioinformatics, 19(suppl 1):i84–i90.

– (rOP) Song, C. and Tseng, G. C. (2014). Hypothesis setting and order statistic for robust genomic
meta-analysis. The annals of applied statistics, 8(2):777.
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– (minMCC) Lu, S., Li, J., Song, C., Shen, K., and Tseng, G. C. (2009). Biomarker detection in
the integration of multiple multi-class genomic studies. Bioinformatics, 26(3):333–340.

– (Stouffer) Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., and Williams Jr, R. M.
(1949). The american soldier: adjustment during army life.(studies in social psychology in world
war ii, vol. 1.)

– (RankProd) Hong, F., Breitling, R., McEntee, C. W., Wittner, B. S., Nemhauser, J. L., and
Chory, J. (2006). Rankprod: a bioconductor package for detecting differentially expressed genes
in meta-analysis. Bioinformatics, 22(22):2825–2827

• MetaPath:

– (MAPE) Shen, K. and Tseng, G. C. (2010). Meta-analysis for pathway enrichment analysis when
combining multiple genomic studies. Bioinformatics, 26(10):1316–1323.

– (CPI) Fang, Z., Zeng, X., Lin, C.-W., Ma, T., and Tseng, G. C. (2017). Comparative pathway inte-
grator: a framework of meta-analytic integration of multiple transcriptomic studies for consensual
and differential pathway analysis. In preparation.

• MetaNetwork:

– (MetaDCN) Zhu, L., Ding, Y., Chen, C.-Y., Wang, L., Huo, Z., Kim, S., Sotiriou, C., Oesterreich,
S., and Tseng, G. C. (2016). Metadcn: meta-analysis framework for differential co-expression
network detection with an application in breast cancer. Bioinformatics, 33(8):1121–1129.

• MetaPredict:

– (MetaKTSP) Kim, S., Lin, C.-W., and Tseng, G. C. (2016). MetaKTSP: A Meta-Analytic Top
Scoring Pair Method for Robust Cross-Study Validation of Omics Prediction Analysis. Bioinfor-
matics, 32(13):1966–73.

• MetaClust:

– (MetaSparseKmeans) Huo, Z., Ding, Y., Liu, S., Oesterreich, S., and Tseng, G. (2016). Meta-
analytic framework for sparse k-means to identify disease subtypes in multiple transcriptomic
studies. Journal of the American Statistical Association, 111(513):27–42.

• MetaPCA:

– (MetaPCA) Kim, S., Kang, D., Huo, Z., Park, Y., and Tseng, G. C. (2017). Meta-analytic principal
component analysis in integrative omics application. Bioinformatics, 1:8.

2.2 How to start MetaOmics

The full instruction of how to install and start MetaOmics software suite is also available at https://github.
com/metaOmics/metaOmics. There are two ways to start the MetaOmics software: via R software or via
docker.

2.2.1 Start from R

Requirement:

• R >= 3.3.1

• Shiny >= 0.13.2

Note:

• We recommend users to use R 3.3 to implement our tool. If you are using R 3.4 (released on 4/24/2017),
you may encounter errors in installing dependencies of the modules. You can manually install the
dependencies by running the following commands in R:
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install.packages(c('GSA', 'combinat', 'samr', 'survival', 'cluster', 'gplots', 'ggplot2', 'irr', 'shape', 'snow',
'snowfall', 'igraph', 'doMC', 'PMA'))

source('https://bioconductor.org/biocLite.R')

biocLite(c('multtest', 'Biobase', 'edgeR', 'DESeq2', 'impute', 'limma', 'AnnotationDbi', 'Consensus-
ClusterPlus', 'genefilter', 'GSEABase', 'Rgraphviz'))

• For Windows, users need to run the following command in R to install the package 'doMC':

install.packages('doMC', repos='http://R-Forge.R-project.org')

How to install the software:

• At the MetaOmics home page https://github.com/metaOmics/metaOmics, clone the project by click-
ing on “Clone or download,” and extract to a working directory, or type in the following in the command
line:

git clone https://github.com/metaOmic/metaOmics

How to start the software:

1. Open R.

2. Set the working directory such that the MetaOmics folder is included.

install.packages('shiny')

shiny::runApp('metaOmics', port=9987, launch.browser=T)

2.2.2 Run from docker image:

1. Install docker (https://www.docker.com).

2. In terminal:

docker pull metaomics/app

docker run –rm –name metaOmics -p 3838:3838 metaomics/app

2.3 MetaOmics setting page

After starting MetaOmics, the first page is the MetaOmics setting page as shown in Figure 1. There are
four tabs on the top of this page (see Figure 1 (1)), which will direct users to specific functional modules
of the software including “Setting,” “Preprocessing,” “Saved Data,” and “Toolsets.” Below these tabs is a
Welcome to MetaOmics section, which briefly introduces the software and other information about the
authors and maintainers. Further below, there are two sections: Session Information and Directory for
Saving Output Files (see Figure 1 (2)). By clicking the “. . .” button, users can set the working directory,
in which all the meta-analysis results will be saved. The current working directory is displayed on the top-
right corner (see Figure 1 (3)). There is one more section with the header Toolsets (see Figure 1 (4)),
where users can click the blue button to install the desired modules if the “Status” shows “not installed.” If
the packages are already installed, an icon of “checked installed” will show up in “Status.” The installation
progress may take up to a few minutes for each module. A notification icon will pop up at the bottom-right
corner upon finishing the installation process. After the modules are installed, users need to restart the
MetaOmics software suite so that the Shiny application interface is updated with the installed modules. The
current active dataset is shown in Figure 1 (5), which is introduced in Section 4.1 Step 2.
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(1) 

(2) 

(3) (5) 

(4) 

Figure 1: MetaOmics software suite GUI setting page

2.4 Question and bug report

If you encounter errors or bugs, please report to the maintainer, Tianzhou Ma <tim28@pitt.edu>.

3 Prepare data

In this section, we will introduce how to prepare a gene-expression data matrix as well as the clinical-data
files for the MetaOmics software suite.

3.1 Raw data

The gene-expression matrix should be prepared as tab-delimited “.txt” or comma-separated “.csv” files (see
an example in Figure 2). The first column corresponds to the feature ID (e.g., gene symbol, probe ID,
or entrez ID) and the rest of columns are the expression data from samples. The first row contains the
sample ID. Valid data types include microarray data, RNA-seq FPKM/RPKM data, and RNA-seq count
data. Abbreviation terms for FPKM and RPKM are explained in Section 1.1.
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Figure 2: An example input data format

3.2 Clinical data

Figure 3: A example clinical data format

Clinical data should be prepared as in the exam-
ple in Figure 3. The first column corresponds to
the sample ID, and the rest of columns contain the
clinical information of the samples (e.g., case/con-
trol labels). Sample IDs of the clinical data (on
rows) should be ordered in the same way as the gene-
expression data (on columns) to avoid any mismatch
issues.

3.3 Example data in the MetaOmics
software

We collected three multi-cohort example datasets for
the MetaOmics software, including an acute myeloid
leukemia (AML) example, a breast cancer (BRCA)
example, and a prostate cancer example. Table 1
summarizes the first example dataset of three studies
on acute myeloid leukemia (AML). Table 2 summa-
rizes the second example dataset of four studies on
breast cancer, whereas the first study contains both
count data and FPKM data (continuous). Table 3 summarizes the third example dataset of eight studies on
prostate cancer. The leukemia data is used to demonstrate MetaPreprocess and all seven analytical modules
(MetaQC, MetaDE, MetaPath, MetaNetwork, MetaPredict, MetaClust, and MetaPCA). Considering that
all three studies in leukemia data are of high quality, we further run MetaQC on the prostate cancer data
with eight studies to show its capability to identify low-quality studies.

Table 1: Multi-study acute myeloid leukemia (AML) gene-expression profiles. All three studies are from
Affymetrix Human Genome U133plus2 with 5,135 genes. Three subtypes of leukemia are defined as the
chromosomal translocation, including inversion of chromosome 16 - inv(16), translocation of chromosome 15
and 17 - t(15:17) and translocation of chromosome 8 and 21 - t(8:21).

Study Source # Samples
# Samples by subtypes
inv(16)/t(15:17)/t(8,21)

Study 1 Verhaak et al. (2009) 89 33/21/35
Study 2 Balgobind et al. (2010) 74 27/19/28
Study 3 Kohlmann et al. (2008) 105 28/37/40
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Table 2: Multi-study breast cancer gene-expression profiles. All gene-expression profiles of all four studies
contain 10,330 genes. Study 1 contains both count data and FPKM (continuous) data, so user should select
only one of them. The other three studies contain only continuous data. The phenotype of interest is the
estrogen-receptor (comparing ER+ vs ER-).

Study Source Scale # Samples
# Samples by ER

ER+/ER-

Study 1 Weinstein et al. (2013)
count

406 319/87
continuous

Study 2 Desmedt et al. (2007) continuous 198 134/64
Study 3 Wang et al. (2005) continuous 286 209/77
Study 4 Ivshina et al. (2006) continuous 245 211/34

Table 3: Multi-study prostate cancer dataset information. Eight prostate cancer gene-expression profiles
were measured by different microarray platforms.

Study Source # Platform # Samples
# Samples by label

# Genes
Normal/Primary

Study 1 Welsh et al. (2001) HG-U95A 34 9/25 8798
Study 2 Yu et al. (2004) HG-U95Av2 146 81/65 8799
Study 3 Lapointe et al. (2004) cDNA 103 41/62 13579
Study 4 Varambally et al. (2005) HG-U133 Plus 2 13 6/7 19738
Study 5 Singh et al. (2002) HG-U95Av2 102 50/52 8799
Study 6 Wallace et al. (2008) HG-U133A2 89 20/69 12689
Study 7 Nanni et al. (2006) HG-U133A 30 7/23 12689
Study 8 Tomlins et al. (2006) cDNA 57 27/30 9703
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4 MetaPreprocess

In this section, we introduce how to upload the datasets into the MetaOmics software suite, which is the first
step in order to run any of the seven analytical modules. The R package for the MetaPreprocess module can
be found at https://github.com/metaOmics/preproc.

4.1 Preprocessing page

Step 1 Uploading data:

(2)
(1)

(3)

Figure 4: GUI for the preprocessing page

On the preprocessing page, by clicking on the “Choosing/Upload Expression Data” tab, users can
upload expression data files (i.e., a data file from each study) or choose the existing saved data files
as in Figure 4 (1). The data should be prepared according to Section 3. Users may optionally upload
clinical data (see Figure 4 (2)), depending on their biological purposes. Note that all MetaOmics
modules require external clinical labels except for the MetaClust module. The three example datasets
are available under MetaOmics folder “/metaOmics/data/example/”, and we will mainly focus on the
AML dataset (“/metaOmics/data/example/leukemia”) throughout this tutorial. By clicking the “save
single study” button, the gene-expression profile will be uploaded, and the data can be previewed on
the right side of the page.

Step 2 Preprocessing:

The MetaOmics software suite also provides handlers (see Figure 4 (3)) for feature annotation, missing
value imputation, and multiple probes reduction for the same gene. For preprocessing, click on the
“Annotate/Impute/Replicate” button to:

1. Annotate the probe ID/reference sequence ID/Entrez ID of an individual dataset (choose the gene
symbol if the input data rows are already annotated).
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2. Impute the missing value using the K-Nearest Neighbors (KNN) algorithm. The algorithm has
been described in Troyanskaya et al. (2001). Note that the missing value will be automatically
detected. If there is no missing value, this function will be disabled.

3. Handle the multiple probes matching the same gene issue. For the meta-analysis purpose, if
multiple probes match the same gene symbol, only one represented gene will be selected. If each
input feature represents a unique gene symbol, this function will be disabled.

A complete introduction of these options is available in Section 6. The right side of Figure 5 will show
the summary statistics of uploaded data and preview of the data matrix. There is a search box where
users can search for their genes of interest.

Figure 5: Uploading individual studies

Step 3 Save single study: In the next step, specify the data type (microarray data; RNA-seq FPKM/RPKM
data; RNA-seq count data) and study name, and click “save single study.” To upload RNA-seq data,
the count data and FPKM/RPKM data should be uploaded separately and saved using different names.
Abbreviation terms for FPKM and RPKM are explained in Section 1.1.

Step 4 Upload datasets for all studies: Repeat the steps above for all studies in the meta-analysis. All
uploaded studies are now available on the “Saved Data” page.

Download GEO datasets (optional):

In the newest revision of our software (2018/09), we have added the “Download GEO dataset (optional)”
feature to our preprocessing page to give users convenient options to directly download datasets from GEO
via GEOquery. Users can type in the GSE ID they are looking for and click on the green button “Download
GEO data” to download the data (Figure 6). The data will be saved under the folder ”GEO” in the working
directory with file names in the form of “GSExxx expr.csv” (corresponding to the expression data) and
“GSExxx pheno.csv” (corresponding to the phenotype data).
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Figure 6: Download GEO dataset

Once retrieved, users can either choose to upload the csv file of the GEO dataset (either GSExxx expr.csv
or the file after processing by users), or directly use the downloaded GEO dataset (choose “Yes”) with log
transforming option. On the right side of Figure 7, we will see the preview of both expression data and
clinical data (by default, the clinical data will be the phenotype data downloaded). Users can then do the
standard preprocessing as above and save the study for the next steps.
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Figure 7: Download GEO dataset

4.2 Saved Data page

After uploading multiple studies with/without clinical data, users can turn to the Saved Data page.

(1)

(2)

Figure 8: Merge from selected datasets

Step 1 Merging and filtering: All saved datasets from the previous step will be found in Figure 8 (2). Users
should select multiple datasets for further meta-analysis. Users can filter out genes with low expression
level (by default, mean expression lower than 30th percentile) or low variance (by default, variance lower
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than 30th percentile). After specifying filtering criteria, enter “Project Name” and click on the “Merge
from Selected Datasets” (see Figure 8 (1)). A merged dataset (study type = “multiple”) will appear on
the “List of Saved Data” panel (Figure 8 (2)). Creating multiple projects with varying preprocessing
criteria is useful. For example, the user can start from a project with harsh filtering criteria (maintain
500-1000 genes) and give a test run through all modules to save time. If successful, a larger project
can be created by including more genes. If users want to delete any dataset, they can click on the red
“danger zone” button and delete the selected datasets.

Step 2 Make active dataset: The last thing to do before using any of the meta-analytic modules is to select
the merged data and click on the “Make Your Dataset Active Dataset” button – a big green button in
Figure 9. Then the merged data will become the active study that shows up on the top-right corner of
the page. The active dataset serves as the input for all the analytical modules in MetaOmics.

Figure 9: Make merged dataset active

5 Toolsets

After the MetaPreprocess module, the merged multiple studies are ready for the seven analytical modules
in MetaOmics. By clicking on the “Toolsets” tab, users can navigate to individual MetaOmics modules. In
the next few subsections, we will introduce in detail how to run each of these modules. For each MetaOmics
module, a summary table of studies and sample sizes is shown on the top-left corner. There is an “about”
drop-down menu that contains a brief introduction of the module. The “options” drop-down menu contains
common options users can select or tune in the analysis. The “advanced options” menu contains more
technical options, which we generally do not recommend users change unless they are familiar with the
methods. After applying the modules, all result files will be automatically saved in the working directory
that is specified in Section 2.3. For computationally demanding methods, the procedure may take minutes
or hours, depending on the size of datasets. Users can keep track of the progress by checking the R console.

5.1 MetaQC

The MetaQC package provides an objective and quantitative tool to help determine the inclusion/exclusion
of studies for meta-analysis. More specifically, MetaQC provides users with six quantitative quality control
(QC) measures: IQC, EQC, AQCg, CQCg, AQCp, and CQCp. Details of how each measure is defined and
computed can be found in Kang et al. (2012). In addition, visualization plots and summarization tables are
generated using principal component analysis (PCA) biplots and standardized mean ranks (SMR) to assist
in visualization and decision. The MetaQC package itself can be downloaded at (https://github.com/
metaOmics/MetaQC).
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5.1.1 Procedure

(3)

(4)

(1)

(2)

Figure 10: MetaQC options

There are three main options available for the MetaQC package, as shown in Figure 10. The complete list
of MetaQC options is available in Section 6.1.

Step 1 Options: Under the drop-down menu “Options” (Figure 10 (2)), users can:

• Perform gene filtering. Gene filtering is suggested to reduce computational cost. Once “Yes” is
chosen for gene filtering, users need to further specify the filtering cutoffs by mean and variance.
In the demo example, the merged data have already had gene filtering in the merging step, so no
further filtering is performed.

• Specify the approach (either by raw p-value or adjusted p-value) and cutoff to select potentially
DE genes needed in the computation of IQC, EQC, AQCg, and CQCg.

• Specify the approach (either by raw p-value or adjusted p-value) and cutoff to select potentially
enriched pathways needed in the computation of AQCp and CQCp.

Note that the larger the p-value or adjusted p-value is, the more genes will be included in the quality
control computing. The default parameters are suggested for the purpose of MetaQC.

Step 2 Advanced options:

Under the drop-down menu “Advanced Options” ((3) in Figure 10), users are allowed to tune other
parameters of MetaQC. In particular, it includes the selection of pathways by pathway size and the
number of permutations to run to obtain the six measures. A complete list of all options available for
the package can be found in Section 6.1. However, these are advanced methods and users are suggested
not to modify the option setting in this section without knowing the method.

Step 3 Run MetaQC Analysis:

Once all the above options are specified, users can click on “Run MetaQC Analysis” (Figure 10 (4)) to
perform MetaQC.
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5.1.2 Results for MetaQC on AML example

(1)

(2)

Figure 11: MetaQC Results for AML example. Figure 11 (1) includes seven columns, with the first six
columns corresponding to the six quantitative quality control measures of all studies (a larger value indicates
a better quality), and the seventh column is the rank of summary statistics of all six quality measures (a lower
rank indicates a better quality). Users can download the full table as a .csv file by clicking on “Download
.csv File”. In addition to the tabular results, MetaQC also generated a PCA biplot based on the six quality
control measures, where the circled number is the study index and arrows indicate different measures. If a
study (a circled number) is along the direction of the majority of the six QC directions, then the study has
higher quality and is consistent with other studies. In general, if a study has larger standard mean rank
(SMR) values, it is considered to have lower quality and is inconsistent with other studies. In this specific
example, since the six QC directions are quite heterogeneous, we cannot exclude any study because of quality
issues.

The performance of MetaQC in the AML example is shown in Figure 11. Detailed descriptions of these
studies can be found in Table 1. As shown in Figure 11, the MetaQC module generates a summary table
of MetaQC results (Figure 11 (1)) as well as a PCA biplot (Figure 11 (2)). In Figure 11 (1), if a study has
larger standard mean rank (SMR) values, it is considered to have lower quality and is inconsistent with other
studies. In Figure 11 (2), if a study (a circled number) is along the direction of majorities of the six QC
directions, then the study has higher quality and is consistent with other studies. Since the AML example
has very good data quality, we won’t be able to demonstrate how to use MetaQC to identify studies of low
quality. Thus, in order to demonstrate how to give suggestions on excluding studies with low quality or
incompatibility with other studies, we further performed MetaQC on the prostate cancer example.
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5.1.3 Results for MetaQC on prostate cancer example

(1)

(2)

Figure 12: MetaQC Results for prostate cancer example. Figure 12 (1) includes seven columns, with the
first six columns corresponding to the six quantitative quality control measures of all studies (a larger value
indicates a better quality), and the seventh column is the rank of summary statistics of all the six quality
measures (a lower rank indicates a better quality). Users can download the full table as a .csv file by clicking
on “Download .csv File”. In addition to the tabular results, MetaQC also generated a PCA biplot based on
the six quality control measures, where the circled number is the study index and arrows indicate different
measures. If a study (a circled number) is along the direction of majority of the six QC directions, then
the study has higher quality and is consistent with other studies. In general, if a study has larger standard
mean rank (SMR) values, it is considered to have lower quality and is inconsistent with other studies. In this
specific example, the six QC directions all direct to the left, and study 8 and study 7 are discordant with this
direction. As a consequence, study 8 and study 7 are inconsistent with other studies and should be further
scrutinized for potential technical or biological causes of their lower quality.

The test data used to demo the MetaQC package here is merged from eight prostate cancer studies with
30% of genes filtered out by mean and 30% filtered out by variance (2077 genes remained for the MetaQC
analysis). Detailed descriptions of these studies can be found in Table 3. As shown in Figure 12, the MetaQC
module generates a summary table (Figure 12 (1)) of MetaQC results as well as a PCA biplot (Figure 12
(2)). In this specific example, the 7th and the 8th studies have larger SMR values than the other studies. In
addition, in the biplot, the 7th and the 8th studies are inconsistent with the six QC directions. Therefore,
both the 7th and the 8th studies have relatively poorer quality, and they are inconsistent with other studies.
Users should pay attention to these potential outlier studies.
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5.2 MetaDE

The MetaDE package implements 12 major meta-analysis methods with 22 variations for differential expres-
sion analysis that fall into three main categories: combining p-values, combining effect sizes, and others (e.g.,
combining ranks, etc.). Depending on the type of outcome, the package can perform two-classes comparison,
multi-class comparison, and association with continuous or survival outcomes. The package allows the input of
either microarray (continuous intensity) and/or RNA-seq data (count or FPKM/RPKM) for individual study
analysis. The R package for the MetaDE module can be found at https://github.com/metaOmics/MetaDE.
After obtaining differentially expressed (DE) genes from the differential expression analysis, users can further
perform post-hoc pathway enrichment analysis using the declared DE genes. In the two subsections below, we
will go over how to perform (1) differential expression analysis and (2) pathway enrichment analysis based on
(1) differential expression analysis. Note that MetaDE involves many sophisticated meta-analysis methods;
please refer to the MetaOmics paper (supplementary information: Box S3) for a detailed description of each
method.

5.2.1 Procedure of differential expression analysis

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Figure 13: MetaDE options

In Figure 13, the red boxes (1) - (7) are the options and steps to run the differential expression analysis. A
complete list of all options is available in Section 6.2.

Step 1 Choose the type of meta-analysis method: There are three types of meta-analysis to choose from:
combining p-values, combining effect sizes and others. Note that there are many abbreviation terms.
Users could refer to Section 1.1 for their full names.

Step 2 Choose a meta-analysis method:
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• For the “combining p-values” category, users can choose from “Fisher”, “AW-Fisher∗”, “maxP”,
“minP”, “rOP∗” and “Stouffer”, where some of them have the one-sided, corrected versions.

• For the “combining effect size” category, users can choose from “FEM” and “REM∗”, where
“REM∗” has choice of six analytical algorithms for implementation.

• For “others”, there are three rank-based methods (PR, SR, and rankProd) and minMCC for
multi-class meta-analysis. To choose from the overwhelming number of meta-analysis methods,
we follow Chang et al. (2013) and mark * for the top performing methods AW-Fisher, REM (HO
option), and rOP as recommendations for users.

Step 3 Mixed data type: If this option is selected, MetaDE will allow partial studies with count data from
RNA-seq and remaining studies with continuous intensities from microarray.

Step 4 Choose the response type: Under the drop-down menu, users can specify the types of outcome
(response) variables to be two-class, continuous, multi-class, or survival. By choosing “two class com-
parison,” users can specify the group label name for the Label Attribute (from the column names of
your clinical data). Then for group label (a factor of at least two levels), specify the name for the
Control Label and Experimental Label, respectively. For the other types, only the group label name is
needed.

Step 5 Choose study design for individual study:

• Individual data types can be either discrete (count) or continuous.

• Under the drop-down menu “Setting Individual Study Method,” user can specify individual study
methods according to individual data type. For continuous data (e.g., microarray), available
options include LIMMA (default method) and SAM. For discrete data (e.g., RNA-seq count),
available options include edgeR, DESeq2, and Voom.

• The users can also specify whether each study is paired design or not.

Step 6 Advanced Options If selected, other uncommonly used options will become available. Again, this is
not suggested if you are not familiar with the method.

• Parametric: If “no” is selected, permutation will be performed instead of the parametric closed
form solution.

• Covariate: Indicate if any covariate will be adjusted.

• Alternative hypothesis: Two-sided or one-sided.

Step 7 Run: Once all the above options are specified, users can click on the “Run” button to perform MetaDE
analysis.

5.2.2 Results of differential expression analysis

We used the AML example to demonstrate the MetaDE module. After merging the three datasets and
filtering out 50% of genes by mean and 50% of genes by variance, 1283 genes remained. In this example we
only compared two phenotypes: inv(16) and t(15;17). Detailed descriptions of these studies can be found in
Table 1. Two main outputs from the first “meta differential analysis” step in the procedure are shown in
Figure 14.
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Figure 14: MetaDE Results. The heatmap of DE genes is rendered after specifying the FDR cutoff for
selection of DE genes and clicking on “Plot DE Genes Heatmap.” The image size can be adjusted by dragging
the scrolling bar. In the heatmap, rows refer to the declared DE genes under the specified FDR cutoff,
columns refer to samples, and solid white lines are used to separate different studies. The dashed white lines
are used to separate groups. Colors of the cells correspond to scaled expression level, as indicated in the
color key below. For the results generated by “AW-Fisher∗”, there is one additional column of cross-study
weight distribution on the left end of the heatmap, and the genes in the heatmap are sorted by their weight
distribution. The summary of meta-analysis results is on the bottom, including information of individual
test statistics, individual study p-value, meta-analysis p-value, FDR, etc.

19



5.2.3 Procedure of downstream pathway analysis

Users can then perform pathway enrichment analysis on the declared DE genes from the previous step, the
options and steps of which are shown in red boxes (8) - (10) in Figure 13. The procedure is outlined as below.

Step 1 Choose the pathway database: Users can select from 25 available pathway databases to perform
the pathway enrichment analysis.

Step 2 Choose the pathway enrichment method and the pathway size range: In this step users can
choose pathway enrichment options with the Kolmogorov-Smirnov (KS) test (default option), or the
Fisher’s exact test by specifying number of input genes for pathway analysis. Both of these tests could
provide the significance measurement on DE gene enrichment for the prespecified pathways. For Fisher’s
exact test, the input genes can be obtained by either specifying a MetaDE p-value cutoff or specifying
the number of top DE genes. The KS-test doesn’t require a specific p-value cutoff as it will use all
MetaDE p-value information to test the enrichment. Users can also specify the minimum/maximum
gene size of pathways to be included for pathway enrichment analysis.

Step 3 Run: Once all the above options are specified, users can click on the “Run Pathway Analysis” button
to perform pathway enrichment analysis.

5.2.4 Result of downstream pathway analysis

The result of downstream pathway analysis is shown in Figure 15. The summary includes the pathway names,
the corresponding enrichment p-value and FDR. In addition to the results shown in the browser, users can
download the result by clicking on the “Download .csv File” button on the top left of the summary table.

Figure 15: Downstream pathway analysis based on MetaDE genes. Each row represents a pathway with its
p-value and q-value listed on the right.

5.3 MetaPath

In the previous MetaDE package, pathway analysis is performed using the declared DE genes from MetaDE
analysis. The MetaPath module performs pathway analysis by two advanced meta-analytic pathway analysis
tools: Meta-Analysis for Pathway Enrichment (MAPE) and Comparative Pathway Integrator (CPI) (Shen et
al., 2010; Fang et al., 2017). Instead of directly using the declared DE genes from MetaDE analysis as input,
the MAPE algorithm performs pathway analysis in each study and performs meta-analysis on the pathway
level. In addition, CPI also includes advanced pathway clustering diagnostics and pathway clustering with
text mining to circumvent abundant pathway redundancy in the databases and improve interpretation. The
R package for MetaPath module can be found at https://github.com/metaOmics/MetaPath.
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Note that both MetaDE and MetaPath could perform pathway enrichment analysis. Below are their
differences. MetaDE only provides more traditional downstream pathway analysis for the functional anno-
tation of detected DE genes from meta-analysis. On the other hand, MetaPath uses more comprehensive
and sophisticated methods to jointly perform DE analysis and pathway analysis, and it provides stronger
statistical power and more extensive and intuitive biological insights. For example, MAPE G is more similar
to MetaDE in a sense since both of them combine gene level p-values first and then perform pathway analysis,
while MAPE P is different since it performs single-study DE and pathway analysis first and then combines
pathway level p-values. MAPE I takes the advantage of both, and CPI is a more advanced algorithm to
further perform meta-analysis on studies with known heterogeneities. In addition, MetaPath performs addi-
tional pathway clustering to reduce pathway redundancy and extracts the key words from each cluster via
the text mining algorithm to assist with the interpretation.

5.3.1 Procedure

The MetaPath package requires the input of raw expression data as in MetaDE. There are three major steps
to implement the package: pathway analysis, pathway clustering diagnostics, and pathway clustering with
text mining. As shown in Figure 16, there are nine major options that need to be specified to implement the
package. A complete list of all options for the package can be found in Section 6.3

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Figure 16: MetaPath options

Setup pathway analysis parameters: As shown in Figure 16, users need to specify (1) whether the
input gene-expression profile is a mix of continuous data and discrete data; (2) response type, case/control
labels (similar to MetaDE); (3) individual study option (similar to MetaDE); (4) advanced options, including
whether to adjust for covariates or the direction of hypothesis testing. In (5), users can select from 25 available
pathway databases for the enrichment analysis. In (6), users can select the MetaPath method (either MAPE
or CPI). By default, the MAPE approach is used. Other options include the pathway enrichment method
(Fisher’s Exact Test or KS Test), the minimum and maximum pathway size. If Fisher’s exact test is chosen
for the enrichment method, users need to further specify the criteria for selection of DE genes, (e.g., the
number of top ranked genes). On the other hand, if KS test is chosen, one needs to further specify whether
to use permutation to obtain the enrichment p-value.
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Step 1 Run pathway analysis: Once the above options are specified, users can click on (7) to “Run Pathway
Analysis”.

Step 2 Pathway clustering diagnostics: Since these pathways may contain redundant information, we want
to cluster these pathways into certain groups. The first thing is to determine number of clusters K.
Following the previous step (Step 1), users can specify the top enriched pathways for further clustering.
The top enriched pathways can be specified by choosing the FDR cutoff by expanding the drop-down
menu in (8). Then, by clicking on “Pathway Clustering Diagnostics” (Figure 16 (8)), the MetaPath
module will perform consensus clustering analysis to determine the optimum number of clusters K.

Step 3 Pathway clustering with text mining: From the previous step (Step 2), users can determine
the optimal number of clusters in the pool of pathways selected. Now, one can specify the number of
clusters and click on (9) to get pathway clustering results.

5.3.2 Results

Figure 17: MetaPath analysis summary. This table shows analysis results of all pathways, including individual
study association analysis p-value, meta pathway analysis p-value/FDR, etc. Users can sort these pathways
by clicking the p value meta “up arrow” button. In addition, users can search the pathway name in the
search bar.

We used the AML data to demonstrate the usage of the MetaPath module with the same filtering criteria
and the phenotype of interest as in the MetaDE module. Detailed descriptions of these studies can be found
in Table 1. After Step 1 is finished, a summary table was generated, as shown in Figure 17 (based on the
CPI method). The full table is automatically saved in the working directory specified previously.
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Figure 18: MetaPath results (2). Both plots assist users in finding the optimal number of clusters K, and
users may refer to Monti et al. (2003) for detailed interpretation of the two plots. To be brief, the cumulative
density function (CDF) of the consensus matrix for each K (indicated by colors) is estimated by a histogram
of 100 bins. The CDF reaches an approximate maximum, implying consensus and cluster confidence is at
a maximum at this K. The Delta area shows the relative change in area under the CDF curve comparing
K and K − 1, thus allowing users to determine K at which there is no appreciable increase in CDF (which
drops as the number of cluster increases). In the example, K = 5 is chosen since it locates at the elbow
turning point (i.e., where the magnitude of incremental decrease in delta area diminishes).

In order to perform pathway clustering analysis, the number of clusters K needs to be determined. By
clicking “Pathway Cluster Diagnostics” (Step 2), a user generates two plots on the right panel (Figure 18),
including a consensus CDF plot and a Delta area plot (both from the “ConsensusClusterPlus” package).
Note that in this specific example, we set the FDR cutoff value in Step 2 as 0.4, and 27 pathways are left
under this cutoff. Both plots assist users in finding the optimal number of clusters K, and a brief explanation
is described in Figure 18. Users may refer to Monti et al. (2003) for a detailed interpretation of the two plots.
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Figure 19: MetaPath results (3). The heatmap in Figure 19 shows the -log10 transformed p-value of enrich-
ment analysis in each study from Step 3. Studies are on columns, and the selected pathways are on rows.
The color bar on left indicates group of pathways. In the heatmap, red indicates “more enriched,” and yellow
indicates “not significantly enriched.” The color key is on the top left corner. The pathways are sorted by
the pathway clusters, as indicated by the colors on the left side of the heatmap.

The heatmap in Figure 19 shows the -log10 transformed p-value of enrichment analysis in each study
from Step 3. In addition, key words of each cluster of pathways are extracted and analyzed by a built-in
text mining algorithm. One file named “Clustering Summary.csv” is saved to the working directory, which
shows a summary of the text-mining results.

5.4 MetaNetwork

By clicking toolsets and then MetaNetwork, users are directed to the MetaNetwork home page, as Figure 20.
MetaNetwork aims to detect gene modules with different co-expression patterns under different biological
conditions. We use the correlation to quantify the co-expression level. High correlation in a gene module,
either positive or negative, means the genes inside this module are functionally related, which may indicate
they are controlled by the same transcriptional regulatory program, or member of the same pathway. The R
package for the MetaNetwork module can be found at https://github.com/metaOmics/MetaNetwork.
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Figure 20: MetaNetwork homepage

MetaNetwork includes three steps to get differentially co-expressed networks, including (1) generate net-
work, (2) search for basic modules, and (3) assemble supermodules. The left side of Figure 20 is the control
panel of Step 1. The control panel for Step 3 and Step 3 will show up after the previous step is completed.
The explanation of the complete list of all options are in Section 6.4

5.4.1 Procedure

Step 1 Generate Network The first step of MetaNetwork is to generate the co-expression network. In this
step, the network for permuted data will also be generated. Users need to select case and control
names, the number of permutations, and edge cutoff which determines the proportion of edges to be
kept in the network. Permutations are used to generate the null distribution for edge energy, which
will be further used to calculate edge FDR. Increasing the number of permutations can provide a
more accurate FDR estimate but also increases the computation time if a single CPU is used. Given a
reasonable number of edges, 3-10 permutations are recommended. A quantile cutoff for edge correlation
is applied to decide if an edge exists or not. Only edges with correlations above this cutoff will be kept
as connected. Decreasing the edge cutoff will result in a denser network and add computation time.
We recommend starting with a large cutoff (looser network), especially for large numbers of genes and
then gradually decreasing it (increasing network density) for a desirable network. After clicking the
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Generate Network button, the screen will show a message indicating the algorithm is running to
generate the network.

Step 2 Search for basic modules

The next step is to search for basic modules. Advanced options (users are recommended not to change)
include the number of repeats used for each initial seed modules (Number to repeat), the maximim
Monte Carlo steps for the simulated annealing algorithm (MC Steps), and the maximum pairwise
Jaccard index allowed for basic modules (Jaccard Cutoff), as shown in Figure 21. When searching
for basic modules, we try multiple repeats with different seeds to avoid local optimum. Increasing
the repeat times will generate more basic modules but will again raise the computation burden. We
recommend starting with the default number of three repeats, and only increasing it if the number of
basic modules detected is too small. If two repeats from the Monte Carlo simulation are very similar
(with a Jaccard index greater than the cutoff), only one repeat with stable configuration (low energy)
will be kept in the analysis. Users are advised to use the default options (Jaccard index cutoff = 0.8).
Explanations of these technical terms are omitted in this tutorial, but readers can refer to Zhu et al.
(2016) for details. After clicking the Search for basic modules button in Figure 21, the screen
will show a message indicating the algorithm is running to search for basic modules. This step is
computationally demanding, depending the on gene size. After this step is done, tables summarizing
two kinds of basic modules: one highly connected in cases but loosely connected in control, and the
other one with reverse pattern.

Figure 21: MetaNetwork control panel for search for basic modules

A search for basic modules can be time consuming, especially if a large number of genes are used. After
this step is done, the screen will show a table of basic modules higher correlated in case and a table of
basic modules higher correlated in control, as in Figure 22.
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Figure 22: MetaNetwork output from search for basic modules step. These modules higher correlated in
case are labeled as H1, . . ., H6, and the modules higher correlated in control are labeled as L1, . . ., L6. The
component number and repeat index are for intermediate indexes. The actual gene sets are listed for each
basic module.

Step 3 Assemble supermodules

After searching for basic modules step, the control panel becomes what is shown in Figure 23. The last
step is to assemble supermodules. Users can decide the FDR cutoff to select basic modules for super-
module assembly. In Figure 23, MCStep denotes the maximum number of iterations in the simulated
annealing searching algorithm. A default 500 is recommended. After clicking the Assemble super-
modules button, the screen will show message indicating the algorithm is running to assemble super-
modules. A table for basic modules, supermodules, and their network visualization will be shown on the
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right panel of the screen. MetaNetwork automatically creates files of top supermodules designed to input
to a Cytoscape plug-in “MetaDCNExplorer” (http://tsenglab.biostat.pitt.edu/software.htm)
for improved visualization and dynamic exploration.

Figure 23: MetaNetwork control panel for the “Assemble supermodules” step

5.4.2 Results

We used the leukemia data to demonstrate the MetaNetwork module. After merging the three datasets by
filtering out 80% of genes by mean and 80% by variance, 206 genes remained. In this example we only
compared two phenotypes: inv(16) and t(15;17). Detailed descriptions of these studies can be found in
Table 1. In general, the MetaNetwork tool is time consuming for large datasets (for both the “network
generation” and “search for basic modules” steps). We generally suggest users carefully restrict the number
of genes (e.g., less than a thousand) for a test run before applying them to a large gene set. By default,
all outputs and several interim RData files will be automatically saved to the folder named “MetaNetwork”
under the working directory specified in Section 2.3.

After the Generate Network step is done, no output will show up on the screen. Instead, a message
box will show up indicating several Rdata files are saved in the MetaNetwork folder. After the Search for
basic modules step is done, the screen will show a table of basic modules higher correlated in case or
control, as in Figure 22. After the Assemble supermodules assembly is done, the screen will show a table
of supermodules (Figure 24). Users can also select basic modules to plot (Figure 25). Meanwhile several files
will be saved in the MetaNetwork folder. Detailed explanations of all these intermediate files are described
in Section 6.4.
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Figure 24: MetaNetwork supermodules table. The second column shows the pathway size. The third and
fourth column show the p-value and q-value of the detected supermodule. The last column is the size of the
supermodule.
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Figure 25: MetaNetwork select basic modules to plot. Each dot represents a gene. An edge represents the two
genes are highly correlated. The network density is marked on top of each network. The top three modules
show higher correlation in inv(16), and the bottom three modules show higher correlation in t(15:17).

5.5 MetaPredict

Top scoring pairs (TSP) is a robust algorithm for predicting gene-expression profiles, which adopts non-
parametric rank-based prediction rule. The MetaPredict is a meta-analysis version of the TSP algorithm
that combines multiple transcriptomic studies to build a prediction model and shows improved prediction
accuracy as compared to single study analysis. The R package for the MetaPredict module can be found at
https://github.com/metaOmics/MetaPredict.

The homepage for MetaPredict is shown in Figure 26. Under advanced options, there is one drop-down
menu (“Methods for MetaPredict”) (1), “Max number of top scoring pairs (K)” (2), “Number of cores for
parallel computing” (3). These will be introduced shortly, but the users are not advised to change them
unless they know about the algorithm. The necessary parameters include “Number of top scoring pairs (K)”
(7)), three character entries (“Please select TWO labels to cluster” (4), “Please select studies for training”
(5), and “Please select studies for testing”) (6), and two executing tabs (“Train model” and “Predict”).
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5.5.1 Procedure

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 26: Homepage of MetaPredict

Step 1 Building prediction model based on meta-analysis

First, we need to decide a method to select K top scoring gene pairs from multiple studies (Figure 26).
Second, we need to provide the maximum number of top scoring pairs K (algorithm will search from 1
up to K with default K = 29) and the number of cores for parallel computing. Next, we need to select
only two labels to build the classification model. In other words, if there exists more than two kinds
of labels, we need to choose two from them. If you click on (4), all available labels will pop up. Then,
select the dataset as training data and testing respectively, and click the “Train model” button to run
the MetaPredict program. It may take a while to run the model.

Step 2 MetaPredict prediction

After the model training is finished, on the top right, it will show up a “Gene pair table” (Figure 27),
which presents the top K gene pairs statistics. A diagnostic plot (Figure 28) is generated to assist users
in deciding which K to use in the final prediction model. The suggested value is shown in the plot
as a green line, which is decided by the VO method we introduced in the original paper. Users may
also decide K on their own to predict the class label of testing data. After deciding K, users then hit
the button “Predict” (Figure 26). Finally, a confusion matrix is output to show the prediction results
(Figure 29). The prediction results are also saved in the working directory. A complete list of options
is available in Section 6.5.
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Figure 27: Results for MetaPredict, top predictive pairs of genes. A score measures the correlation between
the pairs of genes.
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Figure 28: Results for MetaPredict. Select K by maximizing variance optimizaiton (VO) t statistics. The
x-axis is the number of top scoring pairs K, and the y-axis is the variance optimization (VO) t-statistics.

Figure 29: Confusion table for MetaPredict testing cohort

5.5.2 Results

We used the leukemia data to demonstrate the MetaNetwork module. After merging the three datasets by
filtering 50% of genes by mean and 50% by variance, 1283 genes remained. In this example we only compare
two phenotypes: inv(16) and t(15;17). Detailed descriptions of these studies can be found in Table 1. The
top predictive pairs of genes are available in Figure 27. The diagnostic plot showing the optimum K is shown
in Figure 28. A confusion matrix is output, showing the prediction results in Figure 29). The prediction
results are also saved in the working directory.

5.6 MetaClust

By clicking on the Toolset tab and then choosing MetaClust, users are directed to the MetaClust homepage
as in Figure 30. MetaClust (Huo et al., 2016) aims to perform sample clustering analysis combining multiple
transcriptomic studies. By integrating information from multiple studies of similar biological purposes,
MetaClust can identify a unified intrinsic gene set among all studies, perform weighted clustering analysis
using the common intrinsic gene set, and match the clustering patterns across studies to define disease
subtypes/cluster types. The resulting clustering from meta-analysis is more robust and accurate than single
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study analysis. The R package for the MetaClust module can be found at https://github.com/metaOmics/
MetaSparseKmeans.

(1)

(2)

(3)

(4)

(5)

Figure 30: MetaClust homepage

5.6.1 Procedure

Figure 30 shows the homepage of MetaClust. On the top-left panel, users can see the “data summary
table (1)”. Below there are four tabs. “About tab (2)” describes basic introduction of MetaClust; “Tune
K tab (3)” performs tuning parameter selection for the number of clusters K; “Tune Wbounds tab (4)”
performs tuning parameter selection for the number of selected features, where a larger Wbound will yield
more selected genes; “Run Meta Sparse K-Means tab (5)” performs the MetaClust algorithm. Starting with
multiple studies, we could run MetaSparseKmeans (5) with pre-specified number of clusters (K) and gene
selection tuning parameter (Wbounds). If you are not sure about what constitutes good K and Wbounds,
users are advised to use the “Tune K (3)” and “Tune Wbounds (4)” panel. A complete list of options is
available in Section 6.6.

Step 1 Tune K:
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(1)

(2)

(3)

(4)

(5)

Figure 31: Tuning parameter selection for number of clusters. A good K is selected such that the Gapk is
maximized or stabilized across all studies.

If the users are not sure what is the number of clusters, they can start to use the “Tune K panel” as in
Figure 31. Gap statistics will be used to get optimal K for each individual study. Detailed descriptions
of the gap statistics can be found Tibshirani et al. (2001). Users need to specify the maximum number
of K (1), with which the algorithm will search number of studies from 1 to K. Studies to be tuned
can be selected (4). In advanced options, users can further specify the number of top variance genes
to be included and number of permutations. But if users don’t know the algorithm, please leave them
as default. Top percentage p% by larger variance means that we will use top p% larger variance genes
to perform gap statistics (3). The number of permutations is the number of bootstrap samples for gap
statistics (4). At least 50 bootstrap samples are suggested for a stable result of number of clusters.
By clicking the button “Tune K,” users will obtain the gap statistics, as in Figure 31. A good K is
selected such that the Gapk is maximized or stabilized across all studies. From the figure, K = 3 is
preferred since the gap statistics from all three studies become flat (5).

Step 2 Tune Wbounds:

Wbounds directly control number of features selected by the MetaClust module. A larger number of
Wbounds will result in more selected genes. If the users are not sure what is a good Wbound, they can
start to use the “Tune Wbounds panel”, as in Figure 32.
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(1)

(2)

(5)

(3)

(4)

Figure 32: Wbound selection. The Wbound controls the number of selected features. A larger Wbound
will yield a larger number of selected genes. The optimum Wbound is selected when the gap statistics is
maximized.

Again, gap statistics will be used for tuning Wbounds. Users will specify the number of clusters for
tuning Wbounds (1), which could be obtained from the previous step. In advanced options, users can
further specify the number of iterations and the range of candidate Wbounds. But if users don’t know
the algorithm, please leave them as default. Iterations (2) specify the number of bootstrap samples for
gap statistics. Users also need to specify the searching space of Wbounds by minimum of Wbounds,
maximum of Wbounds, and step of Wbounds (3). After all these steps are set, the user can click on
the “Tune Wbounds” button (4). The results will be shown in Figure 32 (5). Wbound=12 is preferred
since the corresponding gap statistics is maximized (where the red arrow indicates).

Step 3 Run MetaClust:

Under the “Run Meta Sparse K-Means” panel, the user can specify the number of clusters (1) and
Wbounds (2), and run MetaClust (5), as in Figure 33.

(2)

(6)

(3)

(5)
(4)

(1)

Figure 33: Result for MetaClust. The heatmap on top shows the gene-expression profiles of the three studies
with selected features. Each row represents a gene, and each column represents a sample. Note that the
three studies share a common set of genes. The color bar on top of the heatmap represents the subtype
labels. For instance, the black bar on top of each study represents the same subtype for all studies. Clearly,
we could see distinct subtype patterns, and these patterns are consistent across studies.
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In advanced options (which users are not adviced to change if they are not familiar with the algorithm),
there are three clustering matching methods (3): exhaustive, linear, and MCMC. Exhaustive is sug-
gested if the data is not large. Currently, only the exhaustive search method is implemented. “Adjust
sample size” checkbox (at position (5)) allows users to adjust sample size effect. After the number of
clusters and Wbounds are specified, users can click on the “Run meta sparse K means” and obtain
results, as shown in Figure 33.

5.6.2 Results

We used the leukemia data to demonstrate the MetaClust module. After merging the three datasets, we
didn’t filter out any genes (filter 0% genes by mean and 0% by variance); thus 5133 genes remained. Detailed
descriptions of these studies can be found in Table 1. In this example, we do not need the extra label
information. The result is shown in Figure 33 (5). We obtained unified feature selection across all studies.
The clusters are well separated in each study, and the cluster patterns are consistent across all studies. The
clustering heatmaps and labels are saved in the MetaClust folder.

5.7 MetaPCA

Dimension reduction is a popular data-mining approach for transcriptomic analysis. MetaPCA aims to
combine multiple omics datasets of identical or similar biological hypothesis and perform simultaneous di-
mensional reduction in all studies. The results show improved accuracy, robustness, and better interpretation
among all studies. By clicking the “Toolsets” tab and then choosing MetaPCA, users are directed to the
MetaPCA homepage, as shown in Figure 34. The R package for the MetaPCA module can be found at
https://github.com/metaOmics/metaPCA.

(1)

(2)

(3)

(4)

(5)

Figure 34: MetaPCA settings

5.7.1 Procedure

The procedure on describing how to use metaPCA is described below. A complete list of options is available
in Section 6.7.

Step 1 Specify parameters

There are very few parameters that need to be specified for MetaPCA, as in Figure 34. Advanced
options are not suggested to be changed unless the users are familiar with the algorithm. There are
two methods for MetaPCA (at position (1)). SSC represents MetaPCA via sum of squared cosine
(SSC) maximization. SV represents MetaPCA via sum of variance decomposition (SV). Details of SSC
and SV can be found in MetaPCA manuscript (Kim et al., 2017). SSC has better performance and is
suggested. The dimension of meta-eigenvector matrix option (2) allows users to specify the dimension
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of the output meta-eigenvector matrix. The checkbox of “dimension determined by variance quantile”
is suggested to be checked (3). When checked, the dimension size of each study’s eigenvector matrix
(SSC) is determined by the pre-defined level of variance quantile 80%. If the checkbox of “sparsity
encouraged” is checked (at position (4)), users can perform MetaPCA. After clicking on the “search for
optimal tuning parameter” button, the optimum tuning parameter will be returned to the box “tuning
parameter for sparsity,” which may be time consuming.

Step 2 Perform MetaPCA

By clicking the “Run Meta PCA” button, the MetaPCA module will be performed.

5.7.2 Results

The input dataset is the same as the input for MetaDE module. Detailed descriptions of these studies can
be found in Table 1.

The result of MetaPCA is shown in Figure 35, which shows nice separations between three groups. These
figures and eigenvectors are saved to the MetaPCA folder.

Figure 35: MetaPCA result. The x-axis (horizontal) is the first principal component, and the y-axis (vertical)
is the second principal component. Each dot represents a sample in a study with the sample label marked
to the top right of the figure.

6 Complete list of options

MetaPreprocess

Complete List of Options:

1. Upload expression data:

• Header: should be checked if the input file includes a header.

• Separator: indicates what type of separator is used for the data matrix.

• Quote for String: how is the data matrix quoted.

• Log transforming data: if you want to perform log transformation of your data, check yes.

• Use existing datasets: if you want to load a dataset previously uploaded, you can choose from the
checklist.

2. Annotation/impute/Replicate:

• Annotation: possible ID type can be Gene Symbol (default), Probe ID, reference sequence ID,
entrez ID.

• Impute: if selected, missing value imputation will be performed by K-Nearest Neighbor (KNN)
algorithm.
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• Replicate Handling: if selected and if the same gene symbol maps to multiple probes, the probe
with the largest interquartile range (IQR) will be selected as a representative for this gene.

3. Saved Data, Merging and Filtering Datasets:

• Mean: the percentage of genes being filtered out based on the mean expression levels (e.g. 0.3
represent 30%).

• Variance: the percentage of genes being filtered out based on the variance of expression (e.g. 0.3
represent 30%).

• Study Name: dataset name after merging. This name will appear in the list of saved data table.

• Merge from Selected Datasets: perform filtering and merging.

4. Danger zone:

• Delete Selected Data: the selected data will be deleted permanently if clicked, so please be cautious.

6.1 MetaQC

Complete List of Options:

1. Options

• Perform gene filtering: If yes: cut lowest percentile by mean, cut lowest percentile by variance.

• Use adjusted p-value for selecting DE genes

• p-value cutoff for selecting DE genes

• Use adjusted p-value for selecting pathways

• p-value cutoff for selecting pathways

2. Advanced Option (**Optional):

• Pathway min gene size

• Pathway max gene size

• Number of permutations

3. Run MetaQC Analysis

6.2 MetaDE

Complete List of Options:

1. Meta Method Type: Combining p-value, Combining effect size, Others.

2. Meta Method: Fisher, AW-Fisher, FEM, REM, Sum of Rank, Product of Rank, multi-class correlation

3. Mixed data type: selected if both count data and continuous data exist.

4. Response Type:

• Two class comparison, Multi-class comparison, Continuous outcome, Survival outcome.

• Label Attribute: select the label name of the outcome.

• Control Label & Experimental Label: specify the case/control label for two-class comparison.

5. Individual Study Option:

• Setting individual study method

• Setting individual study paired option

6. Advanced Option (**Optional):

39



• Use complete options

• Parametric

• Covariate

• Alternative hypothesis

7. Run

8. Pathway Databases

9. Pathway Analysis Option:

• Pathway enrichment method

• Pathway min gene size

• Pathway max gene size

10. Run Pathway Analysis

6.3 MetaPath

Complete List of Options:

1. mixed data types: whether the input data is a mixture of count data and continuous data.

2. Response Type:

• Two class comparison, Multi-class comparison, Continuous outcome, Survival outcome.

• Label Attribute: select the label name of the outcome.

• Control Label & Experimental Label: specify the case/control label for two-class comparison.

3. Individual Study Option:

• Setting individual study method

• Setting individual study paired option

4. Advanced Option (**Optional):

• Covariate

• Alternative hypothesis

5. Pathway Databases

6. Pathway Analysis Option:

• Software

• Pathway enrichment method

• Pathway min gene size

• Pathway max gene size

7. Run Pathway Analysis

8. Pathway Clustering Diagnostics

9. Get Clustering Result
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6.4 MetaNetwork

Complete List of Options:

1. Generate Network:

• Case Name: specify case group label.

• Control Name: specify control group label.

• Number of Permutations: the number of permutations used for generating network.

• Edge Cutoff: edge cut-off determines the proportion of edges to be kept in the network.

2. Search for basic modules:

• Number to repeat: the number of repeats used for each initial seed modules.

• MC steps: the maximum Monte Carlo steps for simulated annealing algorithm.

• Jaccard cutoff: maximum pairwise Jaccard index allowed for basic modules. If two repeats from
Monte Carlo simulation are very similar (with Jaccard index greater than the cutoff), only one
repeat with stable configuration (low energy) will be kept in the analysis.

3. Assemble supermodules:

• FDR cutoff: FDR cut-off to select basic modules for supermodule assembly.

Intermediate results

1. Generate Network

• AdjacencyMatrices.Rdata is a list of adjacency matrices for case and control subjects in each
study. The order is study1 case, study2 case, . . . , studyS case, study1 control, study2 control, . . . ,
studyS control.

• CorrelationMatrices.Rdata is a list of correlation matrices for case and control subjects in each
study.

• AdjacencyMatricesPermutationP.Rdata is a list of adjacency matrices for permuted datasets in
permutation P.

2. Search for basic modules

• basic modules summary forward weight w1.csv is a summary table of basic modules that are
higher correlated in case, detected using w1.

• basic modules summary backward weight w1.csv is a summary table of basic modules that are
higher correlated in control, detected using w1.

• threshold forward.csv is a table of number of basic modules higher correlated in case, detected
under different w1 values and FDR cut-offs.

• threshold backward.csv is a table of number of basic modules higher correlated in control, detected
under different w1 values and FDR cut-offs.

• permutation energy forward P.Rdata is a list of energies for basic modules that higher correlated
in case, detected from permutation P.

• permutation energy backward P.Rdata is a list of energies for basic modules that higher correlated
in control, detected from permutation P.

3. Assemble supermodules

• module assembly summary weight w1.csv is summary table of supermodules using w1 weight.

• CytoscapeFiles folder contains the input files for Cytoscape to visualize supermodules.
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6.5 MetaPredict

Complete List of Options:

1. Model trainings:

• Methods for MetaPredict: include Mean score, Fisher, Stouffer.

• Max number of top scoring pairs (K)

• Number of cores for parallel computing

• TWO labels to cluster: labels for MetaPredict

• Please select studies for training

• Please select studies for testing

• Number of top scoring pairs (K): Number of top scoring pairs (K) for prediction.

6.6 MetaClust

Complete List of Options:

1. Tune K (** optional)

• Maximum of K: the maximum number of K that gap statistics will step through.

• Top percentage by larger variance: Top percentage p% by larger variance means that we will use
top p% larger variance genes to perform gap statistics.

• Number of permutaitons: Number of permutation is number of bootstrap samples for gap statis-
tics.

• Select studies to be tuned: Studies to be tuned.

• Tune K: start tuning K.

2. Tune Wbounds (** optional)

• Number of clusters for tuning wbounds: number of clusters for tuning Wbounds.

• Iterations: Iterations are number of bootstrap samples for gap statistics.

• Minimum of wbounds: lower bound of the searching space of Wbounds.

• Maximum of wbounds: upper bound of the searching space of Wbounds.

• Step of of wbounds: stepsize of the searching space of Wbounds.

• Tune wbounds: start tuning wbounds.

3. Run Meta Sparse K-means:

• Number of clusters: number of clusters. Can be tuned from Tune K option.

• Wbounds: control numbers of selected features. Can be tuned from Tune Wbounds option.

• Methods for MetaClust: Exhaustive is suggested if the data is not large. Linear will perform smart
search and get solution much faster than Exhaustive, but it may yield less accuracy. MCMC might
by very time consuming.

• Adjust sample size: adjust sample size effect.

• Run meta sparse Kmeans: start tuning wbounds.
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6.7 MetaPCA

Complete List of Options:

1. Common MetaPCA parameters:

• Methods for MetaPCA: SSC represent MetaPCA via sum of squared cosine (SSC) maximization.
SV represent MetaPCA via sum of variance decomposition (SV).

• Dimension of meta-eigenvector matrix: dimension of the output meta-eigenvector matrix.

• Dimension determined by variance quantile: the dimension size of each study’s eigenvector matrix
(SSC) is determined by the pre-defined level of variance quantile 80%.

2. If sparsity encouraged is selected, there are extra tuning parameter (λ) that may need to be tuned.

• Min λ: lower bound of the searching space of λ.

• Max λ: upper bound of the searching space of λ.

• Step of of λ: stepsize of the searching space of λ.

• Tuning parameter for sparsity: Tuning parameter for sparsity that will be used for sparse MetaPCA.
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