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Gasoline Prices Are Driving Commercial
HEV Development
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Nations’ Fuel Standards Are Driving

HEV Development
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Power Electronics in Hybrid Vehicles

ELECTRIC ELECTRIC ELECTRIC
DRIVE MODE DRIVE MODE DRIVE MODE
BATTERY BUCK-BOOST THREE PHASE
DISCHARGE CONVERTER INVERTER
vcl)-lLlfAHGE DC-DC INVERTER/ OTOR
CONVERTER RECTIFIER
BATTERY
R‘EGENERATIVE REGENERATIVE REGENERATIVE
BRAKING MODE BRAKING MODE BRAKING MODE
BATTERY CHARGE BUCK-BOOST 3 PHASE DIODE

CONVERTER RECTIFIER



Energy Flow Diagram for
Series PHEV
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Systems Architectures of HEVs
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Types of EVs

Internal Combustion Engine ICEV
Belt Driven Integrated Starter Generator (ISG): . .
3-5kW With Idle Stop and Regenerative Braking Micro HEV Gas. 1
Integrated Starter Generator: 7-12kW With Idle Stop, Mild HEV Engme Fuel
Regenerative Braking & Downsized ICE

30-50 kW, 200-500 Volts With Electric Launch, Idle Stop, Full HEV
Regenerative Braking & Downsized ICE

Battery Powered Electric Vehicles

75-100 kW Fuel Cell Electric Vehicles

Propulsion Energy
device source
K. T. Chau and C.C. Chan, Emerging Energy-Efficient Technologies for Hybrid Electric Vehicles, Proceedings of the IEEE, April, 2007.



Toyota Hybrid Roadmap
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C.C. Chan, The State of the Art of Electric Hybrid, and Fuel Cell Vehicles, Proceedings of the IEEE, April, 2007.



Characteristics of EVs, HEVs, PHEVs
and FCEVs

mana&emem

Types of EVs Battery EVs Hybrid EVs Fuel Cell EVs
Propulsion e  Electric motor drives e  Electric motor drives Electric motor drives
¢ Intemal combustion engines
Energy system Battery e  Battery Fuel cells
Ultracapacitor ¢ Ultracapacitor Need battery / ultracapacitor
e |ICE generating unit to enhance power density for
starting.
Energy source & o  Electric grid charging *  Gasoline stations Hydrogen
infrastructure facilitics e  Electric grid charging Hydrogen production and
facilities (for Plug In transportation infrastructure
Hybrid)
Characteristics e Zero emission Very low emission Zero emission or ultra low
e  High energy efficiency Higher fuel economy as emission
e Independence on crude oils compared with ICE vehicles High energy efficiency
*  Relatively short range * Long driving range Independence on crude oil
e  High initial cost *  Dependence on crude oil (if not using gasoline to
e  Commercially available (for non Plug In Hybrid) produce hydrogen)
e  Higher cost as compared Satisfied driving range
with ICE vehicles High cost
e  The increase in fuel Under development
economy and reduce in
emission depending on the
power level of motor and
battery as well as driving
cycle.
Commercially available
Major issues e  Battery and battery Multiple energy sources Fuel cell cost, cycle life and
management control, optimization and reliability
Charging facilities management. Hydrogen infrastructure
Cost e  Battery sizing and

C.C. Chan, The State of the Art of Electric Hybrid, and Fuel Cell Vehicles, Proceedings of the IEEE, April, 2007.




Integrated Starter-Generator Based 42
Volt System
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Ali Emadi, Kauskik Rajashekara, Sheldon Wiliamson and Srdjan Lukic,Topological Overview of Hybrid Electric and Fuel Cell Vehicular
Power System Architectures and Configurations, |EEE Transactions on Vehicular Technology, Vol. 54, No. 3, May 2005



Series Hybrid System
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Parallel HEV Drive Train

t Sill |:1“:| ;‘[:iw TORQUE
ST i o)
ENGINE COUPLER

e —

0000

TRANSMISSION
— rowm o —
i B ATE AN IRACTION
ELECTRONIC .
e i CONVERTER MOTOR
T I—
BATTERY H H H
PACK

Ali Emadi, Kauskik Rajashekara, Sheldon Wiliamson and Srdjan Lukic,Topological Overview of Hybrid Electric and Fuel Cell Vehicular
Power System Architectures and Configurations, |EEE Transactions on Vehicular Technology, Vol. 54, No. 3, May 2005



Series/Parallel HEV Hybrid
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Planetary Gear Set
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FCEV & PHEV Volt Concepts
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Integration of PHEVs On Grid
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Night Electricity Is the Fuel for PHEV

Using Off-Peak Power
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Thomas Schneider, Transportation Efficiency Through Electric Drives and the Power Grid, Capitol Hill Forum,
Plug-in Hybrid Electric Vehicles: Towards Energy Independence, July 10, 2007.



PHEV Energy Storage Used for Power Peaking

Load Demand and Supply Characteristics:
Where does solar generation fit?

Load Curve — Summer profile (7/17/08)
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EPRI Assumptions for New Car US Sales
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Environmenital Assessment of Plug-In Hyvbrid Electric Vehicles, Volume 1. Narionwide
Greenhouse Gas Emissions. EPEL Palo Alto, CA: 2007, 1015325,



Two Battery Types Are Preferred for
Hybrid-Electric Vehicles

* Nickel Metal Hydride (NiMH)

— Introduced near end of 20" century

— Similar performance to NiCad battery but its energy and power densities are
higher and it charges faster

— The metals into which hydrogen is adsorbed are proprietary

— The battery cell must be sealed in order to keep air from reacting with the
hydride

— Battery can require cooling if charged fast

e Lithiumlon

— Introduced in early 1990s.

— Precise voltage control is needed when charging battery because if too high,
battery can be damaged and if too low, battery will be undercharged

— Because of its considerable weight advantage over other battery types, it is
highly attractive for future hybrid electric vehicles

— Large batteries are prohibitively expensive



NiMH Battery Discharge Reactions

Metal alloy sponge that absorbs and then gives back hydrogen

H, + M 4mmmpMH;

H, + 20H 21,0 + 2¢’

X
K* + H,O mmmp OH
\

2NiO(OH)+2H,0 +2¢ = 2Ni(OH); + 20H"

Load




Charge Flow in Li-lon Battery
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Steven Vance, Parallel-Cell Connection in Lithium-lon Battery, Kettering University Senior Thesis, 12/08



Hysteresis Effect in NiMH Battery Cell
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Steven Vance, Parallel-Cell Connection in Lithium-lon Battery, Kettering University Senior Thesis, 12/08



Comparison of Performance of
Battery Types Used in HEV
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Andrew F. Burke, Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles, Proceedings of the IEEE,
April, 2007.




Battery Power as Function of
Temperature

[Pz e i 250 0 P Lavasl

=30 -3 =20 -1 [ id Z0 = 40 =
Temparaius (5]

Steven Vance, Parallel-Cell Connection in Lithium-lon Battery, Kettering UniversitySenior Thesis, 12/08



Effect of Temperature on NiMH
Battery Performance
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L. Serraro, Z. Chehab, Y. Guezennec and G. Rizzoni, An Aging Model fo NI-MH Batteries for Hybrid Electric
Vehicles, IEEE VTS Vehicle Power and Propulsion Conference, July, 2005.




Dependence of NiMH Cycle Life on
Depth of Discharge
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Ultracapacitors Reduce Battery Surge
Currents and Increase Battery Life
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Andrew F. Burke, Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles, Proceedings of the IEEE,
April, 2007.
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Buck-Boost DC-DC Converter-
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Inverter Schematic
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80kW converter
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Time Dependence of IGBT Switch Turn-Off

Current tail

Switching loss



Switching Losses

DC-DC Converters
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Heat Removal Mechanisms from Chip
Without Special Cooling

In ICs with conventional packaging, the heat generation is at the top surface
of the chip.
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Parameter Camry Prius

Motor inverter peak specific power

(without converter), KW/kg 105/~7.5=~14 | 50/8.8=5.7
Motor inverter peak power density

(without converter), KW/L 105/~6=~17.5 | 50/8.7=5.7
Buck/boost converter specific power,

kW/kg 30/~7.6=~3.9 20/4.8=4.2
Buck/boost converter power density,

KW/L 30/2.9=10 20/5.9=3.41

1 This low converter power density is largely the result of the non-optimal packaging of
the converter filter capacitor in the Prius inverter/converter housing
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Three Dimensions of Power
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Steady Innovation Stream for IGBTs
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Z. John Chen and Ichiro Omura, Power Semiconductor Devices for Hybrid, Electric and Fuel Cell Vehicles,
Proceedings of the IEEE, April, 2007.




Evolution of Power Packaging Technology
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Proceedings of the IEEE, April, 2007.




Cross-Section of Normally-On lon-
Implanted SiC VIJFET.

4 epitaxaal layers
2 mmplant regions

Zero bias depletion
Permuts normally-off
operation

Dirain WNot to Scale




0.19 Square Cm VIJFETs Fabricated on
a 3-Inch 4H-SiC Wafer




Power Electronics Noise in

Hybrid Vehicles
NOISE SOURCES
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Inverter Common Mode Noise

The output voltages of a power converter (Va, Vb, V) are not the
phase voltages. The load phase voltages and a common mode
voltage (Vn) can be denved based on the power converter voltages as
below:

Ya=Van+Vn
Yb=Vbn+VYn Ve
Ye=Ventn
Va+Vb+Ve=Van+Vbn+Ven+3Vn I
Va+Vb+Ve=(Van+Vbn+Ven)+3Vn
Vatib+Ve=3Vn

Vn=(Va+Vb+Vc)/3 £ero

Firuz Zare, EMC and Modern Power Electronics, Tutorial, 2007 IEEE International Symposium on EMC




Noise Spectrum Due to IGBT or
MOSFET Switching in Power
\ Electronics
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Frequency Spectrum of an
Ideal Trapezoid Signal
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Trapezoid signal amplitude = 1, Frequency = 20kHz, Rise time = Fall time = 400ns = tau, full width at
half max of current = 25 microseconds = to.

F. Costa and D. Magnon, Graphical Analysis of the Spectra of EMI Sources in Power Electronics, |EEE Transactions on Power Electronics,
Vol. 20, No. 6, Nov. 2005.




Electrical Behavior of Ball Bearings

Impedance of a Ball Bearing is an important factor in AC drive systems.

There is a capacitive coupling between the upper and lower traces, but
this capacitor is a nonlinear component. Dunng nomal operation, the
separations between the balls and traces vary randomly and change the

capacitance value.

The model of a ball bearing is shown in this figure which consists of a
capacitor and a switch. A lubncated grease in the ball bearing cannot
stand at high voltage and a short circuit through the lubricated grease
may happensd and this phenomenon can be modelled as a switch.

... 7 N\ cly s ‘FQ@;
#2000 o T o

Firuz Zare, EMC and Modern Power Electronics, Tutorial, 2007 IEEE International Symposium on EMC




Effects of Inverter
Generated Common Mode
Noise on Motors

e Leakage Currents or Bearing Current Going to
Ground Through Stray Capacitance Between Stator
and Rotor Can Create Skin Currents on Auto Body.
(Very low impedance at high frequency.)

— Want CM return currents to flow on cable shield so no
external electromagnetic field generated.

e Shortened Insulation Lifetime of Stator Windings.

e Pitting of Bearings.



