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Summary

This tutorial derives in detail an estimation procedure—restricted maximum likeli-

hood (ReML) [Patterson and Thompson, 1971] [Harville, 1974]—that is able to produce

unbiased estimates for variance components of an linear model. We first introduce the

concept of bias in variance components by maximum likelihood (ML) estimation in

simple linear regression and then discuss a post hoc correction. Next, we apply ReML

to the same model and compare the ReML estimate with the ML estimate followed by

post hoc correction. Finally, we explain the linear mixed-effects (LME) model for lon-

gitudinal analysis [Bernal-Rusiel et al., 2013] and demonstrate how to obtain unbiased

estimators of the parameters with ReML.

1 Linear Regression

Familiarity with basic linear regression facilitates the understanding of more complex

linear models. We Therefore, start with this and introduce the concept of bias in

estimating variance components.

1.1 The Model

The simplest linear regression is of the form y = β0+β1x+ε, where y is named response

(or dependent variable or prediction), x is named regressor (or explanatory variable,

independent variable), β’s are regression coefficients, and ε is called residual (or
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error), which is assumed to distribute as a zero-mean Gaussian with an unknown

variance, i.e., N (0, σ2).

When we have more than one regressor (a.k.a. multiple linear regression1), the

model comes in its matrix form

y = Xβ + ε, (1)

where y is the response vector, X is the design matrix with each its row specifying

under what design or conditions the corresponding response is observed (hence the

name), β is the vector of regression coefficients, and ε is the residual vector distributing

as a zero-mean multivariable Gaussian with a diagonal covariance matrix N (0, σ2IN ),

where IN is the N ×N identity matrix. Therefore

y ∼ N (Xβ, σ2IN ), (2)

meaning that linear combination Xβ explains (or predicts) response y with uncertainty

characterized by a variance of σ2.

As seen, this assumption on the covariance matrix mandates that (i) residuals

among responses are independent, and (ii) residuals of all the responses have the same

variance σ2. This assumption makes parameter estimations straightforward, but mean-

while imposes some limitations on the model. For example, the model cannot handle

properly intercorrelated responses, such as the longitudinal measurements of one in-

dividual. This motivates the usage of linear mixed-effects (LME) model in analyzing

longitudinal data [Bernal-Rusiel et al., 2013].

1.2 Parameter Estimation

Under the model assumptions, we aim to estimate the unknown parameters (β and σ2)

from the data available (X and y). Maximum likelihood (ML) estimation is the most

common estimator. We maximize the log-likelihood w.r.t. β and σ2

L(β, σ2 | y,X) = −N
2

log 2π − N

2
log σ2 − 1

2σ2
(y −Xβ)T (y −Xβ)

and obtain

β̂ = (XTX)−1XT y (3)

σ̂2 =
1

N
(y −Xβ̂)T (y −Xβ̂), (4)

where N is the number of responses. β̂ is simply the ordinary least squares (OLS)

estimator of β, and we compute σ̂2 with the value of β̂. As we will prove in the

1A single-response special case of general linear model, which itself is a special case of generalized

linear model with identity link and normally distributed responses.
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following section, estimator σ̂2 is biased downwards as compared with real value σ2,

because we neglect the loss of degree of freedom (DoF) for estimating β.

1.3 Estimation Bias in Variance Component

The bias of an estimator refers to the difference between this estimator’s expectation

(here E{σ̂2}) and the true value (here σ2). To facilitate computing E{σ̂2}, we define

matrix A = X(XTX)−1XT , so Ay = Xβ̂ = ŷ. In fact, A is an orthogonal projection

that satisfies A2 = A (idempotent) and A∗ = A (Hermitian or self-adjoint or simply

symmetric for real matrices). We can then verify that (IN −A)T (IN −A) = IN −A.

E{σ̂2} =
1

N
E{(y −Xβ̂)T (y −Xβ̂)}

=
1

N
E{(y −Ay)T (y −Ay)}

=
1

N
E{yT (I −A)T (I −A)y}

=
1

N
E{yT (I −A)y}

=
1

N

(
E{yT y} − E{yTAy}

)
Theorem 1.1

If y ∼ N (0, IN ), and A is an orthogonal projection, then yTAy ∼ χ2(k) with

k = rank(A).

Proof. If A is idempotent, its eigenvalues satisfy λ2 = λ. If A is also Hermitian,

its eigenvalues are reala. Hence, in eigendecomposition A = QΛQ−1 = QΛQT b,

Λ is a diagonal matrix containing either 0 or 1.

(i) When A is full-rank, Λ = IN , A has to be IN , and yTAy = yT y. Then the

result follows immediately from the definition of chi-square distribution.

(ii) When A is of rank k < N ,

yTAy = yTQΛQT y = W T

[
Ik 0

0 0

]
W = W T

k Wk,

where W = QT y, and Wk denotes the vector containing the first k elements of

W . Since Q is orthogonal, W ∼ N (0, IN ), so Wk ∼ N (0, Ik). The result again

follows directly from the definition of chi-square distribution. �

aSee http://proofwiki.org/wiki/Hermitian_Matrix_has_Real_Eigenvalues.
bEigenvectors of a real symmetric matrix are orthogonal, i.e., Q−1 = QT .
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Recall Equation (2). By Theorem 1.1,(
y −Xβ

σ

)T (y −Xβ
σ

)
∼ χ2(N).

Hence,

E{yT y} = Nσ2 + (Xβ)T (Xβ).

Similarly, (
y −Xβ

σ

)T
A

(
y −Xβ

σ

)
∼ χ2(k),

where k = rank(A). Hence,

E{yTAy} = kσ2 + (Xβ)T (Xβ).

Substituting E{yT y} and E{yTAy} gives

E{σ̂2} =
N − k
N

σ2 < σ2, (5)

where k = rank(A) is just the number of columns (regressors) in X. Therefore, our

estimation of the variance component is biased downwards. This bias is especially

severe when we have many regressors (a large k), in which case we need to correct

this bias by simply multiplying a factor of N/(N − k). Hence, the corrected, unbiased

estimator becomes

σ̂2unbiased =
1

N − k
(y −Xβ̂)T (y −Xβ̂)

=
1

N − k
(y −X(XTX)−1XT y)T (y −X(XTX)−1XT y), (6)

which is classically used in linear regression [Verbeke and Molenberghs, 2009].

2 Restricted Maximum Likelihood

In simple problems where solutions to variance components are closed-form (like lin-

ear regression above), we can remove the bias post hoc by multiplying a correction

factor. However, for complex problems where closed-form solutions do not exist, we

need to resort to a more general method to obtain a bias-free estimation for variance

components. Restricted maximum likelihood (ReML) [Patterson and Thompson,

1971] [Harville, 1974] is one such method.

2.1 The Theory

Generally, estimation bias in variance components originates from the DoF loss in

estimating mean components. If we estimated variance components with true mean
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component values, the estimation would be unbiased. The intuition behind ReML is to

maximize a modified likelihood that is free of mean components instead of the original

likelihood as in ML.

Consider a general linear regression model

y = Xβ + ε,

where y is still an N -vector of responses, X is still an N×k design matrix, but residual

ε is no longer assumed to distribute as N (0, σ2IN ), but rather N (0, H(θ)), where H(θ)

is a general covariance matrix parametrized by θ. For simplicity, H(θ) is often written

as just H. Previously, we have been referring to θ as “variance components.”

If vector a is orthogonal to all columns of X, i.e., aTX = 0, then aT y is known as an

error contrast. We can find at most N−k such vectors that are linearly independent2.

Define A =
[
a1 a2 . . . aN−k

]
. It follows that ATX = 0 and E{AT y} = 0. S =

IN −X(XTX)−1XT is a candidate for A, as SX = 0. Furthermore, it can be shown

AAT = S and ATA = IN .

The error contrast vector

w = AT y = AT (Xβ + ε) = AT ε ∼ N (0, ATHA)

is free of β. [Patterson and Thompson, 1971] has proven that in the absence of informa-

tion on β, no information about θ is lost when inference is based on w rather than on

y. We can now directly estimate θ by maximizing a “restricted” log-likelihood function

Lw(θ | AT y). This bypasses estimating β first and can Therefore, produce unbiased

estimates for θ.

Once H(θ) is known, the generalized least squares (GLS) solution to β mini-

mizing squared Mahalanobis length of the residual (Y −Xβ)TH−1(Y −Xβ) is just

β̂ = (XTH−1X)−1XTH−1y. (7)

We now derive a convenient expression for Lw(θ | AT y) [Harville, 1974].

Lw(θ | AT y) = log fw(AT y | θ)

= log fw(AT y | θ)
∫
fβ̂(β̂ | β, θ) dβ̂

= log fw(AT y | θ)
∫
fβ̂(GT y | β, θ) dβ (β̂, β exchangeable here)

= log

∫
fw(AT y | θ)fβ̂(GT y | β, θ) dβ

= log

∫
fw,β̂(AT y,GT y | β, θ) dβ

2Imagine a plane spanned by k = 2 linearly independent vectors in three-dimensional space (N = 3). We

can find at most N − k = 1 vector (passing the origin) orthogonal to the plane.
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= log

∫
fy

([
A G

]T
y | β, θ

)
dβ

= log
1

|det
[
A G

]
|

∫
fy (y | β, θ) dβ.

Interlude 2.1

We express |det
[
A G

]
| in terms of X.

|det
[
A G

]
| =

(
det
[
A G

]T [
A G

]) 1
2

=

(
det

[
ATG ATG

GTA GTG

]) 1
2

=
(
detATA

) 1
2
(
detGTG−GTA(ATA)−1ATG

) 1
2

= (det I)
1
2
(
detGTG−GTAI−1ATG

) 1
2

=
(
detGTG−GTSG

) 1
2

=
(
detXTX

)− 1
2

We continue deriving

Lw(θ | AT y) = log
1

|det
[
A G

]
|

∫
fy (y | β, θ) dβ

= log
(
detXTX

) 1
2

∫
fy (y | β, θ) dβ

= log
(
detXTX

) 1
2

∫
1√

(2π)N detH
exp

(
−1

2
(y −Xβ)TH−1(y −Xβ)

)
dβ

= log
(
detXTX

) 1
2 (2π)−

N
2 (detH)−

1
2

∫
exp

(
−1

2
(y −Xβ)TH−1(y −Xβ)

)
dβ

Interlude 2.2

We can decompose (y −Xβ)TH−1(y −Xβ) into

(y −Xβ̂)TH−1(y −Xβ̂) + (β − β̂)T (XTH−1X)(β − β̂)

with Equation (7).

We resume

Lw(θ | AT y) = log
(
detXTX

) 1
2 (2π)−

N
2 (detH)−

1
2

∫
exp

(
−1

2
(y −Xβ)TH−1(y −Xβ)

)
dβ

= log
(
detXTX

) 1
2 (2π)−

N
2 (detH)−

1
2 exp

(
−1

2
(y −Xβ̂)TH−1(y −Xβ̂)

)
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∫
exp

(
−1

2
(β − β̂)T (XTH−1X)(β − β̂)

)
dβ

= log
(
detXTX

) 1
2 (2π)−

N
2 (detH)−

1
2 exp

(
−1

2
(y −Xβ̂)TH−1(y −Xβ̂)

)
(2π)

k
2 (detXTH−1X)−

1
2 (a Gaussian integral)

= log(2π)−
1
2
(N−k) (detXTX

) 1
2 (detH)−

1
2 (detXTH−1X)−

1
2

exp

(
−1

2
(y −Xβ̂)TH−1(y −Xβ̂)

)
= −1

2
(N − k) log(2π) +

1

2
log detXTX − 1

2
log detH − 1

2
log detXTH−1X

− 1

2
(y −Xβ̂)TH−1(y −Xβ̂), (8)

where

β̂ = (XTH−1X)−1XTH−1y. (9)

With this convenient expression, we can maximize the restricted log-likelihood

Lw(θ | AT y) w.r.t. variance components θ to obtain an unbiased estimate for the covari-

ance matrix H(θ̂) and the corresponding regression coefficient estimates β̂. Newton-

Raphson method is usually employed. For more computational details, see [Lindstrom

and Bates, 1988].

2.2 Applied to Simplest Linear Regression

We have seen the estimation bias in θ by ML from Equation (5). In the simplest

form of linear regression where we assume H = σ2IN , estimation σ̂2 is closed-form

(Equation (4)), allowing us to correct the bias simply with a multiplicative factor. In

this section, we verify that, in the simplest form of linear regression, the ReML method

produces exactly the same solutions as ML method followed by the post hoc correction.

Set

d

dσ2
Lw(σ2 | AT y) =

d

dσ2
− 1

2
log detH − 1

2
log detXTH−1X − 1

2
(y −Xβ̂)TH−1(y −Xβ̂)

=
d

dσ2
− 1

2
(N − k) log σ2 − 1

2σ2
(y −Xβ̂)T (y −Xβ̂)

= 0

We obtain exactly the same result as Equation (6), produced by post hoc correction.

It is worth noticing that in this simplest linear regression case, the mean estimate

β̂ is independent of the variance component θ (Equation (3)). This implies although

the ML and ReML estimates of σ̂2 are different, the estimates of β̂ are the same. This

is no longer true for more complex regression models, such as the linear mixed-effects

model, as to be seen in the next section. Thus, for those complex models, we have a
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ReML estimate of θ and also a “ReML” estimate of β, both being different from their

ML estimates.

3 Linear Mixed-Effects Model

Longitudinal data are (usually non-uniformly) ordered in time, and missing data are

very common. Furthermore, serial measurements of one subject are positively corre-

lated, and between-subject variance is not constant over time due to possible diverging

trajectories [Bernal-Rusiel et al., 2013]. The linear mixed-effects (LME) model [Laird

and Ware, 1982] is a suitable model to handle such data.

3.1 The Model

The Ni serial measurements yi of subject i are modeled as

yi = Xiβ + Zibi + εi,

where Xi is the ni×p subject design matrix for the fixed effects (e.g., gender, education,

clinical group), β is a p-vector of fixed effects regression coefficients to be estimated,

Zi is a Ni × q design matrix for the random effects, bi is a q-vector of random effects,

and ε is a Ni-vector of residuals. Zi’s columns are a subset of Xi’s, linking random

effects bi to Yi. That is, any component of β can be allowed to vary randomly by

simply including the corresponding columns of Xi in Zi [Bernal-Rusiel et al., 2013].

For example, to allow each subject to have their own trajectory intercepts, we set Zi

to be a Ni-vector of 1’s. The following distributional assumptions are made

bi ∼ N (0, D)

εi ∼ N (0, σ2INi)

ε1, . . . , εM , b1, . . . , bM independent,

where D and σ2IN are covariance matrices of multivariate Gaussian distributions, M

is the total number of subjects, bi reflects how the subset of regression coefficients

for subject i deviates from those of the population, and εi represents residuals not ex-

plained by fixed or random effects. This allows subjects to deviate from the population,

accounting for inter-subject variability.

Intuitively, the LME model extends simple multiple regression y = Xβ+ε by allow-

ing for the additions of zero Gaussian noise bi to a subset of the regression coefficients.

More formally, the introduction of random effects helps distinguish the conditional

(subject-specific) mean E{yi | bi} and marginal (population-average) mean E{yi}:

E{yi | bi} = Xiβ + Zibi
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E{yi} = Xiβ

as well as subject-specific covariance Cov{yi | bi} and population-average covariance

Cov{yi}:

Cov{yi | bi} = Cov{εi} = σ2INi

Cov{yi} = Cov{Zibi}+ Cov{εi} = ZiDZ
T
i + σ2INi ,

which is not a diagonal matrix (cf. the diagonal covariance matrix σ2IN in linear

regression). Therefore, Zi and D give a “structure” to the originally diagonal matrix,

in turn allowing us to model intra-subject measurement correlations.

Finally, for each subject, we have

yi ∼ N (Xiβ,Hi(θ)),

where Hi(θ) = ZiDZ
T
i + σ2INi . See [Bernal-Rusiel et al., 2013] and [Verbeke and

Molenberghs, 2009] for real-world applications of the LME model.

3.2 Estimation by Restricted Maximum Likelihood

We aim to estimate fixed effects regression coefficients β as well as model parameters

σ2 and D from the data. The solutions to variance components θ (i.e., σ2 and D) are

not closed-form. Therefore, we need to perform ReML rather than ML followed by

post hoc correction to obtain unbiased estimates of θ.

To estimate these quantities, which are shared across all subjects, we need to stack

up all subjects’ data

y = Xβ + Zb + ε,

where

y =


y1

y2
...

yM

 X =


X1

X2

...

XM

 Z =


Z1 0 . . . 0

0 Z2 . . . 0
...

...
. . .

...

0 0 . . . ZM

 b =


b1

b2
...

bM

 ε =


ε1

ε2
...

εM

 .

That is,

y ∼ N

Xβ,H(θ) =


H1(θ) 0 . . . 0

0 H2(θ) . . . 0
...

...
. . .

...

0 0 . . . HM (θ)



 ,

where H(θ) (or H for short) is a block diagonal matrix.
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Substitute y = y, X = X, and H = H into Equation (8) and drop constant terms

Lw(θ | AT y) = −1

2
log detH − 1

2
log detXTH−1X − 1

2
(y −Xβ̂)TH−1(y −Xβ̂)

= −1

2
log det H− 1

2
log det XTH−1X− 1

2
(y −Xβ̂)TH−1(y −Xβ̂)

= −1

2
log

M∏
i=1

detHi −
1

2
log

M∏
i=1

detXT
i H

−1
i Xi −

1

2

M∑
i=1

(yi −Xiβ̂)TH−1
i (yi −Xiβ̂)

= −1

2

M∑
i=1

log detHi −
1

2

M∑
i=1

log detXT
i H

−1
i Xi −

1

2

M∑
i=1

(yi −Xiβ̂)TH−1
i (yi −Xiβ̂),

where

β̂ = (XTH−1X)−1XTH−1y

=

(
M∑
i=1

XT
i H

−1
i Xi

)−1 M∑
i=1

XT
i H

−1
i yi.

We can then maximize Lw(θ | AT y) w.r.t. β, σ2, and D. Computational details are

found in [Lindstrom and Bates, 1988]. Details on hypothesis testing can be found

in [Bernal-Rusiel et al., 2013].
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